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Abstract. We prove the equivariant holomorphic Morse inequalities for a holomorphic torus action on

a holomorphic vector bundle over a compact Kähler manifold when the fixed-point set is not necessarily

discrete. Such inequalities bound the twisted Dolbeault cohomologies of the Kähler manifold in terms

of those of the fixed-point set. We apply the inequalities to obtain relations of Hodge numbers of the

connected components of the fixed-point set and the whole manifold. We also investigate the consequences

in geometric quantization, especially in the context of symplectic cutting.

1. Introduction

In [18] a rigorous proof of equivariant holomorphic Morse inequalities of Witten [25] was found based on the

heat kernel approach. The result proved holds for circle actions on holomorphic vector bundles over compact

Kähler manifolds with isolated fixed points. In [26], this result is extended to torus and non-Abelian group

actions and it was shown that the Kähler condition is necessary. The purpose of this paper is to prove the

general case when the fixed points can be non-isolated.

Recall that in his heat kernel proof of the Bott-Morse inequalities for the de Rham complex, Bismut [5]

used a further rescaling near the critical set of a Morse function in the sense of Bott, besides the deformation of

Witten [24]. In our treatment of the holomorphic analog with non-isolated fixed points, instead of using [5], we

adapt the methods and techniques in [6], where a general and direct localization procedure is developed which

applies to a wide range of problems on localization in index theory. For example, to prove the Bott-Morse

inequalities using this method, no rescaling near the critical set is needed.
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As in [26], the equivariant holomorphic Morse inequalities for circle actions imply those for torus actions;

we derive the latter by considering various circle subgroups of the torus. For circle actions, we deform the

Dolbeault operator as in [25]. The corresponding Laplacian is roughly of the form ∆ + |V |2 +LV , where ∆ is

the standard Laplacian, V is the vector field that generates the circle action, and LV , the Lie derivative. LV

is a first order differential operator that commutes with all other operators.. The crucial step is to restrict the

problem to the eigenspaces of LV , on each of which LV is a constant and therefore the techniques of [6] can

be applied. This leads naturally to an equivariant Morse theory.

The equivariant holomorphic Morse inequalities relate the Dolbeault cohomologies (twisted by a holomor-

phic vector bundle) of the whole manifold to those of the fixed point set. We apply our result to two situations.

First, considering the exterior power of the holomorphic tangent bundle, we obtain relations of Hodge numbers

of the fixed submanifolds, including some results of Carrell-Sommese [9] and Carrell-Lieberman [8]. Second,

we apply the inequalities to symplectic cutting and geometric quantization. We obtain a gluing formula for

the Poincaré-Hodge polynomials under the symplectic cutting precess of Lerman [17]. Applying our result to

the pre-quantum line bundles, we recover and/or strengthen a few results in [10, 20, 22] when the symplectic

manifold is Kähler.

Throughout this paper, N, R, R
± and C denote the sets of non-negative integers, real numbers, positive

(negative) real numbers and complex numbers, respectively.

2. Main Results

In this section, we state the equivariant holomorphic Morse inequalities for holomorphic torus action on

holomorphic vector bundle over a compact Kähler manifold when the fixed-point set need not be isolated. We

then show that the result for torus action can be deduced from that of circle action. The latter will be proved

in Section 3.

2.1. Equivariant holomorphic Morse inequalities for torus actions

We first recall from [26] a few notations of the Lie algebra and the formal character ring of the torus group.

Let t =
√
−1Lie(T ) be the Lie algebra of the torus group T and L, the integral lattice in t; the dual lattice

L∗ in t
∗ is the weight lattice.

Definition 2.1 Let C[L∗] be the formal character ring of T consisting of elements q =
∑

ξ∈L∗ qξe
ξ (qξ ∈ Z).

We say q ≥ 0 if qξ ≥ 0 for all ξ ∈ L∗. Let Q(t) =
∑n

k=0 qkt
k ∈ C[L∗][t] be a polynomial of degree n with

coefficients in C[L∗], we say Q(t) ≥ 0 if qk ≥ 0 in C[L∗] for all k. For two such polynomials P (t) and Q(t),

we say P (t) ≤ Q(t) if Q(t) − P (t) ≥ 0.

If W is a finite dimensional representation of T , We denote by multξ(W ) the multiplicity of the weight

ξ ∈ L∗ in W . The character of W is char (W ) =
∑

ξ∈L∗ multξ(W ) eξ ≥ 0 in C[L∗]. Let the support of W
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be supp(W ) = {ξ ∈ L∗ | multξ(W ) 6= 0}. For any θ ∈ t
∗, there is a homomorphism C[L∗] → C given by

eξ 7→ e
√
−1〈ξ,θ〉. For instance, char (W ) 7→ trW e

√
−1θ under this homomorphism.

Now let (M,ω) be a compact Kähler manifold of complex dimension n. Suppose that T acts onM effectively

preserving the complex structure and the Kähler form. If the fixed-point set F ⊂ M of the T -action is non-

empty, then the action is Hamiltonian [11]. F is a finite union of connected compact Kähler submanifolds

F1, . . . , Fm; let n1, . . . , nm be their complex dimensions, respectively. For each connected component Fr (1 ≤
r ≤ m), the complexification of the normal bundle Nr → Fr in M has the decomposition NC

r = N1,0
r ⊕N0,1

r ,

and N1,0
r is a holomorphic vector bundle over Fr of rank n− nr. The torus T acts on Nr preserving the base

points in Fr. Moreover, the weights of the isotropy representation on the normal fiber remains unchanged

within any connected component of F . Let λr,k (1 ≤ k ≤ n− nr) be the isotropy weights on Nr. Nr splits,

and N1,0
r splits holomorphically, into the direct sum of various sub-bundles, each with a given weight. The

hyperplanes (λr,k)⊥ ⊂ t cut t into open polyhedral cones called action chambers, as in [12,21,26]. We fix a

positive action chamber C. Let λC
r,k = ±λr,k be the polarized weights, with the sign chosen so that λC

r,k ∈ C∗.

(Here C∗ is the dual cone in t
∗ defined by C∗ = {ξ ∈ t

∗ | 〈ξ, C〉 > 0}.) We define the polarizing index νC
r of

the component Fr with respect to C as the number of weights λr,k ∈ −C∗. Let NC
r be the direct sum of

the sub-bundles corresponding to the weights λr,k ∈ C∗. νC
r is the rank of the holomorphic vector bundle

N
−C,(1,0)
r ; that of N

C,(1,0)
r is ν−C

r = n − nr − νC
r . Finally, we define the polarized symmetric tensor product

(with respect to C) of the holomorphic normal bundle N1,0
r by

KC(Nr) = S((NC,(1,0)
r )∗) ⊗ S(N−C,(1,0)

r ) ⊗∧νC
r (N−C,(1,0)

r ). (2.1)

This is bundle of eigenspaces of small eigenvalues implicitly contained in [25]. It also appeared in [7], which

generalizes [12] to cases with non-isolated fixed points.

If E is a holomorphic vector bundle over M on which the T -action lifts holomorphically, then the fiber

Ep over each fixed point p ∈ F is a representation of T , and char (Ep) is also constant within any connected

component of F . Consider an infinite dimensional bundle holomorphic KC(Nr) ⊗ E|Fr
. The torus T acts

on the total space while preserving the base points in Fr. It is easy to see that each sub-bundle of any

given weight is a holomorphic vector bundle of finite rank, i.e., KC(Nr) ⊗ E|Fr
= ⊕ξ∈LEC

r,ξ, where EC
r,ξ

is a T -invariant sub-bundle of finite rank on which the torus acts with weight ξ. The cohomology groups

Hk(Fr,O(KC(Nr)⊗E|Fr
)) are the sum of those with coefficients in EC

r,ξ, each equipped an induced T -action.

Therefore charHk(Fr ,O(KC(Nr)⊗E|Fr
)) =

∑

ξ∈L dimCH
k(Fr ,O(EC

r,ξ)) e
ξ is a well-defined element in C[L∗].

Moreover, suppHk(Fr ,O(KC(Nr) ⊗ E|Fr
)) is contained in a suitably shifted cone −C∗ in t

∗.

Our main result is the following

Theorem 2.2 For each choice of the positive action chamber C, we have the strong equivariant holomorphic

Morse inequalities

m
∑

r=1

tν
C
r

nr
∑

k=0

tk charHk(Fr ,O(KC(Nr) ⊗ E|Fr
)) =

n
∑

k=0

tk charHk(M,O(E)) + (1 + t)QC(t) (2.2)

3



for some QC(t) ≥ 0 in C[L∗][t].

Remark 2.3 1. Formula (2.2) clearly implies the corresponding weak inequalities

charHk(M,O(E)) ≤
m
∑

r=1

charHk−νC
r (Fr,O(KC(Nr) ⊗ E|Fr

)). (2.3)

2. It is easy to see that for any choice of C, (2.2) reduces to the Atiyah-Bott-Segal-Singer fixed-point theorem

[2, 3] after setting t = −1. In fact,

n
∑

k=0

(−1)k charHk(M,O(E)) =

m
∑

r=1

∫

Fr

chT (KC(Nr) ⊗ E|Fr
) td (Fr)

=

m
∑

r=1

∫

Fr

chT

(

E|Fr

det(1 −N
∗(1,0)
r )

)

td (Fr), (2.4)

where chT , td stand for the equivariant Chern character and the Todd class, respectively.

3. If p ∈ F is an isolated fixed point, then the normal bundle Np = TpM and

charH0({p},O(KC(Np) ⊗ Ep)) = char (Ep)
∏

λC
p,k

∈C∗

1

1 − e−λp,k

∏

λC
p,k

∈−C∗

e−λC
p,k

1 − e−λC
p,k

. (2.5)

Therefore, (2.2) reduces to the result in [26] when F is discrete.

4. Though the Kähler assumption is not necessary in the fixed-point formula (2.4), it is essential for the strong

inequalities (2.2) even when all the fixed points are isolated and when T is a circle group [26].

As in [26], (2.3) or (2.2) is a set of inequalities for each choice of the action chamber C. These inequalities

provides bounds, along various directions in t
∗ given by C, the multiplicities of weights in the Dolbeault

cohomology group Hk(M,O(E)) (0 ≤ k ≤ n) in terms of the fixed-point data, which includes Fr and the

bundles Nr, E|Fr
→ Fr with T -actions. The applications will be given in Section 4.

When the group acting on M is a non-Abelian group G, we can apply (2.2) to the maximal torus T of

G. There is in addition an action of the Weyl group W on the fixed-point set F of T . Each w ∈ W induces

an action on the set of connected components {F1, . . . , Fm} of F . The sum over the connected components

on the left hand side of (2.2) can be rearranged into sums over W (after incorporating the character of the

isotropy representation of T on the bundle E|F ) and over its orbits in the set of connected components. Thus

we can obtain the non-Abelian version of the holomorphic Morse inequalities like the case when F is isolated

[26]. The details are left to the interested reader.

2.2. Reduction to the case of circle actions

When the torus T is the circle group S1, the Lie algebra is Lie(S1) =
√
−1R. There are two action chambers

R
±, labeled by ± for simplicity. The weights of isotropy representation of S1 on Nr (1 ≤ r ≤ m) are

λr,k ∈ Z\{0} (1 ≤ k ≤ nr). As before, N±
r is the direct sum of the sub-bundles corresponding to the positive
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and negative weights, respectively, and K±(Nr) = S((N
±,(1,0)
r )∗) ⊗ S(N

∓,(1,0)
r ) ⊗∧top(N

∓,(1,0)
r ) ⊗ E|Fr

. Let

νr be the rank of N
−,(1,0)
r ; that of N

+,(1,0)
r is then n− nr − νr.

Then we have the following result for the S1-case.

Theorem 2.4 Under the above assumptions, we have the strong equivariant holomorphic Morse inequalities

for circle actions

m
∑

r=1

tνr

nr
∑

k=0

tk charHk(Fr ,O(K+(Nr) ⊗ E|Fr
)) =

n
∑

k=0

tk charHk(M,O(E)) + (1 + t)Q+(t), (2.6)

m
∑

r=1

tn−nr−νr

nr
∑

k=0

tk charHk(Fr,O(K−(Nr) ⊗ E|Fr
)) =

n
∑

k=0

tk charHk(M,O(E)) + (1 + t)Q−(t), (2.7)

where Q±(t) ≥ 0.

Clearly (2.6) follows from (2.7) by reversing the S1-action. Section 3 will be devoted to proving (2.7).

To show that the strong inequalities (2.2) of the torus case follows from (2.6) or (2.7), we proceed slightly

differently from [26].

Recall that a cone C in t is proper if there is ξ ∈ t
∗ such that 〈ξ, C\{0}〉 > 0. If C is an open proper cone,

so is C∗ in t
∗. For example, if T acts on M effectively, then all action chambers are open proper cones. (See

[21] for the geometry of cones in the context of Hamiltonian torus actions.)

Lemma 2.5 If C be an open proper cone in t, then for any ξ ∈ C∗ ∩ L∗, there is an element v ∈ C ∩ L such

that the hyperplane ξ + v⊥ = {λ ∈ t
∗ | 〈λ− ξ, v〉 = 0} contains no points in C∗ ∩ L∗ other than ξ.

Proof. Choose an open proper subcone D ⊂ C such that D ⊂ C ∪ {0}. If v ∈ D ∩ L, then the intersection

(ξ+ v⊥)∩ (C∗ ∩L∗) is contained in (C∗\(ξ+D∗))∩L∗; the latter is a finite set since C∗ ⊂ D∗∪{0}. For each

λ ∈ (C∗\(ξ+D∗))∩L∗, consider the hyperplane Hλ = {v ∈ t | 〈λ− ξ, v〉 = 0} in t. Let π: t\{0} → P (t) be the

canonical projection to the real projective space P (t). Since the images π(Hλ) ⊂ P (t) are of codimension 1,

π(L) is dense in P (V ), and π(D) is open in P (t), there is an element v ∈ t such that π(v) ∈ π(D ∩ L)\π(Hλ)

for any λ ∈ (C∗\(µ+D∗))∩L∗. By multiplying with a non-zero real number, we may choose v ∈ D∩L. The

condition n 6∈ Hλ means that λ+ v⊥ does not contain the point λ. The result follows. 2

Reduction of Theorem 2.2 to Theorem 2.4: For any action chamber C, there is λ0 ∈ L∗ such that

suppHk(Fr ,O(KC(Nr) ⊗ E|Fr
)), suppHk(M,O(E)) ⊂ (λ0 − C∗) ∩ L∗ (2.8)

for all 1 ≤ r ≤ m, 0 ≤ k ≤ n. (2.2) is equivalent to

m
∑

r=1

tν
C
r

nr
∑

k=0

tk multξH
k(Fr ,O(KC(Nr) ⊗ E|Fr

)) =

n
∑

k=0

tk multξH
k(M,O(E)) + (1 + t)QC

ξ (t), (2.9)

where QC
ξ (t) ≥ 0 for all ξ ∈ (λ0 −C∗) ∩ L∗. For any v ∈ C ∩ L, let S1 be the circle subgroup generated by v.

Consider this circle action on M and E. The isotropy weights on Fr (1 ≤ r ≤ m) are 〈λr,k, v〉 (1 ≤ k ≤ nr).
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Since 〈λC
r,k, v〉 > 0, KC(Nr) = K+(Nr) for all 1 ≤ r ≤ m. By the above Lemma, for any ξ ∈ (λ0 − C∗) ∩ L∗

there is an element v ∈ C ∩ L such that (ξ + v⊥) ∩ ((λ0 − C∗) ∩ L∗) = {ξ}. It follows that if W is a

representation of T such that supp(W ) ⊂ (λ0 − C∗) ∩ L∗ and the multiplicities of weights are finite, then

multξ(W ) = mult〈ξ,v〉(W ). Therefore (2.9) follows from (2.6). 2

3. The case of holomorphic circle actions

The entire section is devoted to proving (2.7) in Theorem 2.4. In subsection 3.1, we study Witten’s deformation

of the Dolbeault operator on a compact Kähler manifold as well as on flat spaces. In subsection 3.2, we establish

the Taylor expansion of the deformed operator near the fixed-point set. In subsection 3.3, we split the space

of sections into a subspace corresponding to small eigenvalues and its complement, and estimate the deformed

operator and its resolvent on these subspaces. It is crucial that these estimates are done on each eigenspace

of LV . Finally, in subsection 3.4, we prove Theorem 2.4.

3.1. Witten’s deformation of the Dolbeault operator

We consider a holomorphic S1-action on a Kähler manifold M which preserves the Kähler structure. Let ω,

gTM and J be the Kähler form, the Kähler metric and the complex structure on M , respectively. We assume

that the fixed point set F is non-empty. In this case, there is a moment map h:M → R satisfying iV ω = dh,

where V is the vector field on M that generates the S1-action [11]. We further assume that the S1-action can

be lifted holomorphically to a holomorphic vector bundle E over M . We can choose an S1-invariant Hermitian

form on E. Then the Hermitian connection ∇E is also S1-invariant. ∇E induces an (S1-equivariant) action,

also denoted by ∇E , on the space of E-valued differential forms Ω∗(M,E), The group elements of S1 acts on

the sections of E. Let LV be the Lie derivative of E-valued forms along V . (The fibers of E over different

points on the integral curve of V are related by the lifted S1-action.) Then −LV is the infinitesimal generator

of the S1-action on Ω∗(M,E). Let LV = {iV ,∇E}. Then the operator

rV = LV − LV (3.1)

is an element of Γ (M,End(E)). Over the fiber of a fixed point p ∈ F , rV (p) is simply the representation of

Lie(S1) on Ep; this is independent of the choice of the connections on E.

Let ∂̄ = ∂̄E be the twisted Dolbeault operator of the complex Ω0,∗(M,E) = Γ (∧∗(T ∗(0,1)M)⊗E) and ∂̄∗,

its formal adjoint. Consider Witten’s deformation of the (twisted) Dolbeault operator

∂̄h = e−h∂̄eh, ∂̄∗h = eh∂̄∗e−h. (3.2)

We define the Clifford action. For X ∈ Γ (TCM), let X = X1,0 + X0,1 such that X1,0 ∈ Γ (T 1,0M) and

X0,1 ∈ Γ (T 0,1M). Set

c(X1,0) =
√

2(X1,0)∗, c(X0,1) = −
√

2 iX0,1 , (3.3)

6



where (X1,0)∗ ∈ Γ (T ∗(0,1)M) corresponds to X1,0 via the metric gTM . It is easy to verify that for X,Y ∈
Γ (TCM), the anti-commutation relation {c(X), c(Y )} = −2gTM(X,Y ). Let {ei, i = 1, . . . , 2n} be a (local)

orthonormal frame and DM =
∑2n

i=1 c(ei)∇ei
, the spinC-Dirac operator acting on Ω0,∗(M,E).

Lemma 3.1 1.

DM =
√

2(∂̄ + ∂̄∗); (3.4)

2.

DM +
√
−1 c(V ) =

√
2(∂̄h + ∂̄∗h); (3.5)

3.

(DM+
√
−1 c(V ))2 = (DM )2+|V |2−2

√
−1LV + 1

2

√
−1

2n
∑

i=1

c(ei)c(∇ei
V )+

√
−1 tr∇.V |T 0,1M−2

√
−1 rV . (3.6)

Proof. Parts 1 and 2 follow from

∂̄ =
1

2
√

2

2n
∑

i=1

c(ei −
√
−1Jei)∇ei

, ∂̄∗ =
1

2
√

2

2n
∑

i=1

c(ei +
√
−1Jei)∇ei

, (3.7)

∂̄h = ∂̄ +
1

2
√

2

2n
∑

i=1

c(ei −
√
−1Jei)h,i, ∂̄∗h = ∂̄∗ − 1

2
√

2

2n
∑

i=1

c(ei +
√
−1Jei)h,i, (3.8)

and that J gradh = −V . To show part 3, we compute

(DM +
√
−1 c(V ))2 = (DM )2 +

√
−1{DM , c(V )} + |V |2 (3.9)

and

{DM , c(V )} =

2n
∑

i=1

({c(ei), c(V )}∇ei
+ c(ei)c(∇ei

V )) = −2∇V +

2n
∑

i=1

c(ei)c(∇ei
V ). (3.10)

Further, since LV = ∇V −∇.V on vector fields, the induced relation on Ω0,∗(M,E) is

∇V = LV +
1

4

2n
∑

i,j=1

g(∇ei
V, ej)c(ei)c(ej) +

1

2
tr∇.V |T∗(0,1)M

= LV +
1

4

2n
∑

i=1

c(ei)c(∇ei
V ) − 1

2
tr∇.V |T 0,1M . (3.11)

(3.6) follows from (3.9), (3.10), (3.11) and (3.1). 2

(3.6) was derived in [18] without using the Clifford algebra.

Next we study Witten’s deformation on flat spaces [25]. Let W be a complex vector space of (complex)

dimension n with an Hermitian form. Let ρ be a unitary representation of the circle group S1 on W such

that all the weights are non-zero. Suppose W± are the subspaces of W corresponding to positive (negative)

weights, respectively, and dimC W
− = ν, dimC W

+ = n−ν. Let z = {zk} be the complex linear coordinates on

W such that the Hermitian structure on W takes the standard form and such that ρ is diagonal with weights

7



λk ∈ Z\{0} (1 ≤ k ≤ n). The Lie algebra action is given by the vector field V =
√
−1
∑n

k=1 λk(zk ∂
∂zk − z̄k ∂

∂z̄k )

on W . With respect to the standard Kähler form ω =
√
−1
2

∑n
k=1 dz

k ∧ dz̄k, ρ is a Hamiltonian action with

moment map h(z) = − 1
2

∑n
k=1 λk|zk|2. As in the compact case, we have the deformed operators ∂̄h and ∂̄∗h in

(3.2) and D +
√
−1c(V ) =

√
2(∂̄h + ∂̄∗h), where D is the Dirac operator with the same Clifford action (3.3).

We set K±(W ) = S((W±)∗)⊗S(W∓)⊗∧top(W∓). Let E be a finite dimensional complex vector space with

a Hermitian form and suppose E carries a unitary representation of S1.

Proposition 3.2 1. The space of L2-solutions of a given weight of D +
√
−1 c(V ) on the space of (0, ∗)-

forms on W with values in E is finite dimensional. The direct sum of these weight spaces is isomorphic to

K−(W ) ⊗ E as representations of S1.

2. When restricted to an eigenspace of LV , the operator D +
√
−1 c(V ) has discrete eigenvalues.

Proof. It suffices to prove the case when E ∼= C is a trivial representation.

1. Since W decomposes into a direct sum of 1-dimensional representations and since the solution space on

the direct sum corresponds to a tensor product, it suffices to prove the result when dimC W = 1 with weight

λ ∈ Z\{0}. Let ϕ ∈ Ω0,∗(C) solve (D +
√
−1c(V ))ϕ = 0, i.e., ∂̄hϕ = ∂̄∗hϕ = 0. For λ < 0, an L2-solution of a

fixed weight are proportional to

ϕk(z) =

√

(−λ)k+1

πk!
zke

λ
2 |z|2 (k ∈ N). (3.12)

ϕk has unit norm and weight −kλ. Since z ∈ W ∗ = (W−)∗, the direct sum of Cϕk (k ∈ N) is S((W−)∗). If

λ > 0, then W = W+, and a solution of a given weight is proportional to

ϕk̄ =

√

λk

πk!
z̄ke−

λ
2 |z|

2

dz̄ (k ∈ N), (3.13)

of unit norm and weight (k + 1)λ. The direct sum of Cϕk̄ (k ∈ N) is S(W
∗
) ⊗W

∗ ∼= S(W+) ⊗W+; the last

isomorphism is induced by the Hermitian form on W ∼= C.

2. This follows from (3.6) after setting LV to a constant and from the standard properties of harmonic

oscillators. 2

3.2. A Taylor expansion of the operator near the fixed-point set

Since the fixed point set F is the zero set of the Killing vector field V , F is a totally geodesic compact

Kähler submanifold of M . We denote by nF and νF the complex dimension and the polarizing index of F ,

respectively, which are locally constant. Let gTF be the induced metric and dvF , the volume element on F .

Let π̃:N → F be the normal bundle of F in M . We identify N as the orthogonal complement of TF in TM |F ,

i.e., TM |F = TF ⊕ N and gTM = gTF ⊕ gN , where gN is the induced inner product on N . Following [6,

Section 8e)], we now describe a coordinate system on M near F .
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If y ∈ F , Z ∈ Ny, let t ∈ R 7→ xt = expM
y (tZ) ∈ M be the geodesic in M with x0 = y, dx

dt |t=0 = Z. For

ǫ > 0, set Bǫ = {Z ∈ N ; |Z| < ǫ}. Since M and F are compact, there exists ǫ0 > 0 such that for 0 ≤ ǫ < ǫ0,

the map (y, Z) ∈ N 7→ expM
y (Z) ∈ M is a diffeomorphism from Bǫ onto a tubular neighborhood Uǫ of F in

M . From now on, we identify Bǫ with Uǫ and use the notation x = (y, Z) instead of x = expM
y (Z). Finally,

we identify y ∈ F with (y, 0) ∈ N .

Let dvN denote the volume element of the fibres in N . Then dvF (y)dvNy
(Z) is a natural volume element on

the total space of N . Let k(y, Z) be the smooth positive function defined on Bǫ0 by the equation dvM (y, Z) =

k(y, Z)dvF (y)dvNy
(Z). The function k has a positive lower bound on Uǫ0/2. Also, k(y) = 1 and ∂k

∂Z (y) = 0 for

y ∈ F ; the latter follows from [6, Proposition 8.9] and the fact that F is totally geodesic in M .

As in [6, Section 8g)], for x = (y, Z) ∈ Uǫ0 , we will identify Ex with Ey and ∧(T
∗(0,1)
x M) with ∧(T

∗(0,1)
y M)

by the parallel transport with respect to the S1-invariant connections ∇E and ∇TM , respectively, along the

geodesic t 7→ (y, tZ). The induced identification of (∧(T ∗(0,1)M) ⊗ E)x with (∧(T ∗(0,1)M) ⊗ E)y preserves

the metric, the Z-grading of the Dolbeault complex, and is moreover S1-equivariant. Consequently, DM can

be considered as an operator acting on the sections of the bundle on π̃∗((∧(T ∗(0,1)M) ⊗ E)|F ) over Bǫ0 . It

still commutes with the S1-action.

For ǫ > 0, let H(Bǫ) (resp. H(N)) be the set of smooth sections of π̃∗(∧(T ∗(0,1)M) ⊗ E) on Bǫ (resp. on

the total space of N). If f, g ∈ H(N) have compact support, set

〈f, g〉 =

(

1

2π

)n ∫

F

(∫

N

〈f, g〉(y, Z)dvNy
(Z)

)

dvF (y). (3.14)

Notice that the identification of elements in H(N) which have compact support inBǫ0 with those in Γ (∧(T ∗(0,1)M)⊗
E) with support in Uǫ0 is not unitary with respect to the Hermitian product (3.14). Consequently DM as an

operator on the sections of π̃∗((∧(T ∗(0,1)M) ⊗ E)|F ) over Bǫ0 is not in general self-adjoint with respect to

(3.14). However k
1
2DMk−

1
2 does act as a (formal) self-adjoint operator on H(Bǫ0).

The connection ∇N on N induces a splitting TN = N ⊕ THN , where THN is the horizontal part of TN

with respect to ∇N . Moreover, since F is totally geodesic, this splitting, when restricted to F , is preserved by

the connection ∇TM|F on TM |F . If we denote by pTF , pN the orthogonal projections from TM |F to TF , N ,

respectively, then ∇TF = pTF∇TM|F and ∇N = pN∇TM|F . Let ∇̃F be the connection on (∧(T ∗(0,1)M)⊗E)|F
induced by the restrictions of ∇TM and ∇E to F . The connection ∇̃F lifts to one on π̃∗((∧(T ∗(0,1)M)⊗E)|F ),

which we still denote by ∇̃F .

We choose a local orthonormal frame such that e1, . . . , e2nF
form a basis of TF , and e2nF +1, · · · , e2n, that

of N . Denote the horizontal lift of ei (1 ≤ i ≤ 2nF ) to THN by eH
i . As in [6, Definition 8.16], we define

DH =

2nF
∑

i=1

c(ei)∇̃F
eH

i

, DN =

2n
∑

i=2nF +1

c(ei)∇̃F
ei
. (3.15)

Clearly, DN acts along the fibers of N . Let ∂̄N be the ∂̄-operator along the fibers of N , and let (∂̄N )∗ be its

formal adjoint under (3.14). It is easy to see that DN =
√

2(∂̄N + (∂̄N)∗). Both DN and DH are self-adjoint

with respect to (3.14).
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For T > 0, we define a scaling f ∈ H(Bǫ0) 7→ ST f ∈ H(Bǫ0
√

T ) by

ST f(y, Z) = f(y,
Z√
T

), (y, Z) ∈ Bǫ0T . (3.16)

For a first order differential operator

QT =

2nF
∑

i=1

ai
T (y, Z)∇̃F

eH
i

+

2n
∑

i=2nF +1

biT (y, Z)∇̃F
ei

+ cT (y, Z) (3.17)

acting on H(Bǫ0
√

T ), where ai
T , biT and cT are endomorphisms of π̃∗((∧(T ∗(0,1)M) ⊗ E)|F ), we write

QT = O(|Z|2∂N + |Z|∂H + |Z| + |Z|p), (p ∈ N) (3.18)

if there is a constant C > 0 such that for any T ≥ 1, (y, Z) ∈ Bǫ0
√

T , we have

|ai
T (y, Z)| ≤ C|Z| (1 ≤ i ≤ 2nF ),

|biT (y, Z)| ≤ C|Z|2 (2nF + 1 ≤ i ≤ 2n),

|cT (y, Z)| ≤ C(|Z| + |Z|p). (3.19)

Let JV be the representation of Lie(S1) on N . Then Z 7→ JV Z is a Killing vector field on N . We have the

following analog of [6, Theorem 8.18].

Proposition 3.3 As T → ∞,

ST k
1
2 (DM +

√
−1Tc(V )) k−

1
2S−1

T

=
√
T (DN +

√
−1 c(JV Z)) +DH +

1√
T
O(|Z|2∂N + |Z|∂H + |Z| + |Z|3). (3.20)

Proof. Following the proof of [6, Theorem 8.18], we get

ST k
1
2 (DM +

√
−1Tc(V ))k−

1
2S−1

T =
√
TDN +DH +

1√
T
O(|Z|2∂N + |Z|∂H + |Z|). (3.21)

In fact the proof is much easier here because F is totally geodesic, hence the second fundamental form

in [6, (8.18)] vanishes. Next, we observe that V = 0 on F and that the vector field JV Z on N is the linear

approximation of V on M near F . Further, since the actions of S1 on N and M commute with the exponential

map, V (y, Z) is odd in Z, and hence the second order terms vanish. Therefore

ST c(V )S−1
T =

1√
T
c(JV Z) +

1√
T 3
O(|Z|3). (3.22)

The result follows. 2

By Proposition 3.2, the solution space of the operator DN +
√
−1 c(JV Z) along the fiber Ny (y ∈ F ) is

(the L2-completion of) K−(Ny) ⊗ Ey. These form an (infinite dimensional) Hermitian holomorphic bundle

K−(N) ⊗ E|F over F , with the Hermitian connection ∇F induced from those in N,E|F → F . Let ∂̄F be the
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corresponding operator of the twisted Dolbeault complex Ω0,∗(F,K−(N)⊗E|F ). Set DF =
∑2nF

i=1 c(ei)∇F
ei

=
√

2(∂̄F + (∂̄F )∗).

Let H0(F ) be the Hilbert space of square-integrable sections of ∧(T ∗(0,1)F )⊗K−(N)⊗E|F , and H0(N),

that of the bundle π̃∗((∧(T ∗(0,1)M)⊗E)|F ), equipped with the Hermitian form (3.14). We define an embedding

ψ:H0(F ) → H0(N) by

ψ:α⊗ β ∈ H0(F ) 7−→ π̃∗α ∧ τ(β) ∈ H0(N). (3.23)

Here α ∈ Ω0,∗(F ), β ∈ L2(K−(N)⊗E|F ) and τ is the isometry from L2(K−(N)⊗E|F ) to L2(π̃∗(∧(N∗(0,1))⊗
E|F )) given by Proposition 3.2. Let the image of ψ be H′,0 = ψ(H0(F )) ⊂ H0(N). Clearly, ψ is an isometry

onto H′,0. Let p:H0(N) → H′,0 be the orthogonal projection. Then we have the following analog of [6,

Theorem 8.21].

Proposition 3.4

ψ−1pDHpψ = DF . (3.24)

Proof. For simplicity, we prove in the case when E is a trivial line bundle and N is of rank 1 with isotropy

weight λ ∈ Z\{0}. By the definitions of DH and DF , we need to prove

∇̃F
XH (τ(β)) = τ(∇F

Xβ) (3.25)

for any β ∈ L2(K−(N)) and any vector field X on F . On a small neighborhood U ⊂ F , choose a unitary

trivialization N |U ∼= U×C = {(y, z) | y ∈ U, z ∈ C}. Let A ∈ Ω1(U) be the connection 1-form of the Hermitian

connection ∇N in N → F . The horizontal lift of X is XH = X− iXA (z ∂
∂z − z̄ ∂

∂z̄ ). If λ < 0, a straightforward

calculation shows that for β(y, z) = f(y)ϕk(z), we have

∇̃F
XH τ(β)(y, z) = XH(f(y)ϕk(z)) = (Xf − k iXA)(y)ϕk(z); (3.26)

this is the connection on (N∗)⊗k. If λ > 0, for β(y, z) = f(y)ϕk̄(z), we have

∇̃F
XH τ(β)(y, z) = (∇N

X(f(y)dz̄) + k iXA(y))ϕk̄(z) = (Xf + (k + 1) iXA)(y)ϕk̄(z); (3.27)

this is the connection on N⊗(k+1). The result is proved. 2

3.3. Estimates of the operator and resolvent as T → ∞

For p ≥ 0, let Hp(M), Hp(N) and Hp(F ) be the p-th Sobolev spaces of the sections of the bundles

∧(T ∗(0,1)M) ⊗ E → M , π̃∗((∧(T ∗(0,1)M) ⊗ E)|F ) → N and ∧(T ∗(0,1)F ) ⊗ K−(N) ⊗ E|F → F , respec-

tively. The circle group S1 acts on all these spaces; let H
p
ξ(M), H

p
ξ(N) and H

p
ξ(F ) be the corresponding

weight spaces of weight ξ ∈ Z. Recall the constant ǫ0 > 0 defined in the previous subsection. We now take
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ǫ ∈ (0, ǫ0
2 ], which is small enough for each eigenvalue of LV we will consider, but otherwise can be assumed

fixed. Let ρ: R → [0, 1) be a smooth function such that

ρ(a) =







1, if a ≤ 1
2 ,

0, if a ≥ 1.
(3.28)

For Z ∈ N , set ρǫ(Z) = ρ( |Z|
ǫ ). For β ∈ L2(K−(N) ⊗ E|F ), denote the component of weight ξ ∈ Z by

βξ ∈ L2(K−(N) ⊗ E|F )ξ. Let α ∈ L2(∧(T ∗(0,1)F )). We define a linear map IT,ξ by

σ = α⊗ β ∈ H0(F ) 7−→ IT,ξσ =
ρǫ||β||0

||ρǫS
−1
T (τ(βξ))||0

α ∧ S−1
T (τ(βξ)). (3.29)

Let the image of IT,ξ from Hp(F ) be H
p
T,ξ(N) = IT,ξH

p(F ) ⊂ H
p
ξ(N). Denote the orthogonal complement of

H0
T,ξ(N) in H0

ξ(N) by H
0,⊥
T,ξ (N), and let H

p,⊥
T,ξ (N) = H

p
ξ(N) ∩ H

0,⊥
T,ξ (N). Let pT,ξ and p⊥T,ξ be the orthogonal

projections from H0
ξ(N) onto H0

T,ξ(N) and H
0,⊥
T,ξ (N), respectively.

Moreover, since the bundle ∧(T ∗(0,1)M)⊗E over Uǫ0 is identified with π̃∗((∧(T ∗(0,1)M)⊗E)|F ) over Bǫ0 ,

we can consider k−
1
2 IT,ξσ as an element of H

p
ξ(M) for σ ∈ Hp(F ). Define the linear map JT,ξ by

σ ∈ Hp(F ) 7−→ JT,ξσ = k−
1
2 IT,ξσ ∈ Hp(M). (3.30)

Let H
p
T,ξ(M) = JT,ξH

p(F ) be the image. Denote the orthogonal complement of H0
T,ξ(M) in H0

ξ(M) by

H
0,⊥
T,ξ (M), and let H

p,⊥
T,ξ (M) = H

p
ξ(M) ∩ H

0,⊥
T,ξ (M). Let p̄T,ξ and p̄⊥T,ξ be the orthogonal projections from

H0
ξ(M) onto H0

T,ξ(M) and H
0,⊥
T,ξ (M), respectively. It is clear that p̄T,ξ = k−

1
2 pT,ξk

1
2 .

For any (possibly unbounded) operator A on H0
ξ(M), write

A =





A(1) A(2)

A(3) A(4)



 (3.31)

according to the decomposition H0
ξ(M) = H0

T,ξ(M) ⊕ H
0,⊥
T,ξ (M), i.e., A(1) = p̄T,ξA p̄T,ξ, A

(2) = p̄T,ξA p̄
⊥
T,ξ

A(3) = p̄⊥T,ξA p̄T,ξ, and A(4) = p̄⊥T,ξA p̄
⊥
T,ξ.

Let DT = DM +
√
−1Tc(V ). Let DT,ξ and DF

ξ be the restrictions of the operators DT and DF on the

subspaces H0
ξ(M) and H0

ξ(F ), respectively, of weight ξ ∈ Z.

Proposition 3.5 1. As T → ∞,

J−1
T,ξD

(1)
T,ξJT,ξ = DF

ξ +O

(

1√
T

)

, (3.32)

where O( 1√
T

) denotes a first order differential operator whose coefficients are dominated by C√
T

(C > 0).

2. For each ξ ∈ Z, there exists C > 0 such that for any T ≥ 1, σ ∈ H
1,⊥
T,ξ (M), σ′ ∈ H1

T,ξ(M), we have

||D(2)
T,ξσ||0 ≤ C

( ||σ||1√
T

+ ||σ||0
)

, (3.33)

||D(3)
T,ξσ

′||0 ≤ C

( ||σ′||1√
T

+ ||σ||0
)

. (3.34)

3. For each ξ ∈ Z, there exist ǫ ∈ (0, ǫ0
2 ], T0 > 0, C > 0 such that for any T ≥ T0, σ ∈ H

1,⊥
T,ξ (M), we have

||D(4)
T,ξσ||0 ≥ C(||σ||1 +

√
T ||σ||0). (3.35)
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Proof. We proceed as in [6, Section 9]. In fact, parts 1 and 2 follow from Propositions 3.2, 3.3 and 3.4

the same way as in the proofs of [6, Theorems 9.8, 9.9] with trivial modifications. Part 3 is the analog of [6,

Theorem 9.14]. The key observation is that we are restricting the operators to a fixed weight space Hξ(M),

where LV is a constant. Thus the terms

− 2
√
−1LV + 1

2

√
−1

2n
∑

i=1

c(ei)c(∇ei
V ) +

√
−1 tr∇.V |T 0,1M − 2

√
−1 rV (3.36)

in (3.6) is bounded on Hξ(M). This is the analog of the fact that [D,V ] is of order zero in [6]. The boundedness

of (3.36) allows us to localize the problem to sufficiently small neighborhood Uǫ of F for each weight ξ ∈ Z.

Using Propositions 3.2, 3.3 and 3.4 again, (3.35) can be proved by similar arguments as in [6, Section 9b).3].

The details are left to the interested reader. 2

For two bounded operators A ∈ L(H0
ξ(M)), B ∈ L(H0

ξ(F )), set

d(A,B) =

4
∑

j=2

||A(j)||1 + ||J−1
T,ξA

(1)JT,ξ −B||1. (3.37)

We fix a constant c0 ∈ (0, 1] such that

Spec(DF
ξ ) ∩ [−2c0, 2c0] ⊂ {0}, (3.38)

where Spec denotes the spectrum of an operator. Then we have the following analog of [6, Theorem 9.23].

Proposition 3.6 For any ξ ∈ Z, there exists T0 ≥ 1, such that for any T ≥ T0, λ ∈ C with |λ| = c0, λ−DT,ξ

is invertible on H0(M). Moreover, for any integer p ≥ 2n+ 2, there exists cp > 0 such that for any T ≥ T0,

λ ∈ C with |λ| = c0, we have

d((λ−DT,ξ)
−p, (λ−DF

ξ )−p) ≤ cp√
T
. (3.39)

Proof. In view of Proposition 3.5, the result can be proved using the same formal arguments in [6, Sections

9c)-9e)]. 2

3.4. Proof of Theorem 2.4

Let γ be the circle in C of center 0 and radius c0, oriented counterclockwise when necessary. By Proposition 3.6,

γ ∩ Spec(DT,ξ) = ∅ for T large enough. Let Kc0

T,ξ be the direct sum of eigenspaces of DT,ξ associated to the

eigenvalues λ such that |λ| ≤ c0. For T large enough,

P c0

T,ξ =
1

2π
√
−1

∫

γ

(λ−DT,ξ)
−1dλ (3.40)

is the orthogonal projection from H0
ξ(M) onto Kc0

T,ξ. Integrating by parts in (3.40), we get for any p ∈ N,

P c0

T,ξ =
1

2π
√
−1

∫

γ

λp−1(λ−DT,ξ)
−pdλ. (3.41)
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Using Proposition 3.6, we obtain, for some C > 0,

d(P c0

T,ξ , P
F
ξ ) ≤ C√

T
, (3.42)

where PF
ξ is the orthogonal projection from H0

ξ(F ) onto Kξ = kerDF
ξ . Therefore for T large enough,

dimC K
c0

T,ξ = dimC Kξ =

nF
∑

k=0

dimC H
k(F,O(K−(N) ⊗ E|F )ξ). (3.43)

In fact, (3.43) holds for each degree in the Dolbeault complexes. By Hodge theorem and Proposition 3.2, we

have for any 0 ≤ k ≤ nF ,

JT,ξ H
k(F,O(K−(N) ⊗ E|F )ξ) ⊂ H0

ξ(M) ∩ L2(∧k+(n−nF −νF )(T ∗(0,1)M) ⊗ E). (3.44)

Let mk
ξ be the sum of the multiplicities of all eigenvalues λ of DT,ξ on (0, k)-forms such that |λ| < c0. Then

mk
ξ = dimC H

k−(n−nF −νF )(F,O(K−(N) ⊗ E|F )ξ). (3.45)

On the other hand, an obvious application of (the equivariant version of) the Hodge theorem yields that mk
ξ

(0 ≤ k ≤ n) satisfy the Morse-type inequalities

n
∑

k=0

tkmk
ξ =

n
∑

k=0

tk multξH
k(M,O(E)) + (1 + t)Qξ(t), (3.46)

where Qξ(t) ≥ 0. Combining (3.45) and (3.46), we get

n
∑

k=0

tk multξH
k−(n−nF −νF )(F,O(K−(N) ⊗ E|F )) =

n
∑

k=0

tk multξH
k(M,O(E)) + (1 + t)Qξ(t). (3.47)

This is exactly (2.7). 2

4. Applications

We consider various applications of the equivariant holomorphic Morse inequalities. In subsection 4.1, we

apply the inequalities (2.2) to exterior powers of holomorphic cotangent bundles. The results are relations of

the Hodge numbers of compact Kähler manifolds and the fixed submanifolds of torus actions. In subsection

4.2, we obtain a gluing formula of the Poincaré-Hodge polynomials in the context of symplectic cutting. We

also study geometric quantization by applying the inequalities to the prequantum line bundles.

4.1. Relations among Hodge numbers of the fixed submanifolds

Consider a compact Kähler manifold (M,ω) of complex dimension n. Let Hk,l(M) = H l(M, Ek(M)) (k, l =

0, 1, . . . , n) be the Dolbeault cohomology groups of M , where Ek(M) = O(M,∧k(T ∗(1,0)M)) is the sheaf of

holomorphic sections in the k-th exterior power of the holomorphic cotangent bundle of M . Let hk,l(M) =
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dimC H
k,l(M) be the Hodge numbers of M and P (M ; s, t) =

∑n
k,l=0 s

ktlhk,l(M), the Poincaré-Hodge polyno-

mial. (The Poincaré polynomial of M is P (M ; t) = P (M ; t, t).) The Todd genus (or arithmetic genus) of M

is given by τ(M) = P (M ; 0,−1). We also have the well-known relations hk,l(M) = hl,k(M) = hn−k,n−l(M)

for any 0 ≤ k, l ≤ n, or P (M ; s, t) = P (M ; t, s) = (st)nP (M ; s−1, t−1) for compact Kähler manifolds.

Suppose that there is a holomorphic action of the torus group T on M preserving the Kähler form. As

before, if the fixed-point set F is non-empty, it is a disjoint union of connected compact Kähler submanifolds

F1, . . . , Fm, of (complex) dimensions n1, . . . , nm, respectively. Recall that the weights λr,k (1 ≤ r ≤ m,

1 ≤ k ≤ n) of isotropy representations of T on the normal bundles of Fr cut the Lie algebra t into action

chambers.

Theorem 4.1 1. All the cohomology groups Hk,l(M) (k, l = 0, 1, . . . , n) are trivial representations of T .

2. For any choice of action chamber C,

m
∑

r=1

(st)νC
r P (Fr; s, t) = P (M ; s, t). (4.1)

In particular, if all the fixed points are isolated, then for any choice of chamber C, we have

hk,k(M) = #{p ∈ F | νC
p = k} (0 ≤ k ≤ n) (4.2)

and hk,l(M) = 0 for k 6= l.

Proof. The T -action can be lifted holomorphically to the bundles ∧k(T ∗(1,0)M) (0 ≤ k ≤ n). Applying

(2.2), we obtain, for some Qk,C(t) ≥ 0,

m
∑

r=1

tν
C
r

nr
∑

l=0

tl charH l(Fr ,O(T k,C
r )) =

n
∑

l=0

tl charHk,l(M) + (1 + t)Qk,C(t), (4.3)

where

T k,C
r = S((NC,(1,0)

r )∗) ⊗ S(N−C,(1,0)
r ) ⊗∧νC

r (N−C,(1,0)
r ) ⊗∧k(N∗(1,0)

r ⊕ T ∗(1,0)Fr). (4.4)

If λr,l (1 ≤ l ≤ n− nr) are the weights of the T -action on the fiber of N1,0, then the weights in T k
r are of the

form

−
n−nr
∑

l=1

mlλ
C
r,l +

∑

λr,l∈−C∗

λr,l −
∑

l∈I

λr,l, (4.5)

where ml ≥ 0 and I ⊂ {1, . . . , n} with |I| ≤ k. (4.5) is an element in the closed cone −C∗; it is 0 if and only if

all ml = 0 and I = {l |λr,l ∈ −C∗} (hence |I| = νC
r ≤ k), corresponding to the sub-bundle ∧k−νC

r (T ∗(1,0)Fr)

(if k ≥ νC
r ) of T k,C

r . By the weak inequalities (2.3), we conclude that suppHk,l(M) ⊂ −C∗ ∩ L∗. Had we

chosen the opposite chamber −C, we would get suppHk,l(M) ⊂ C∗∩L∗. Therefore suppHk,l(M) ⊂ {0}, and

hence Hk,l(M) are trivial representations of T . Restricting (4.3) to 0 ∈ L∗, we get

m
∑

r=1

tν
C
r

nr
∑

l=0

tlhk−νC
r ,l(Fr) =

n
∑

l=0

tlhk,l(M) + (1 + t)Qk,C
0 (t) (4.6)
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for some polynomial Qk,C
0 (t) ≥ 0 in Z[t]. By the symmetry of Hodge numbers, we obtain

m
∑

r=1

(st)νC
r P (Fr; s, t) = P (M ; s, t) + (1 + s)(1 + t)QC

0 (s, t), (4.7)

where QC
0 (s, t) ≥ 0 in Z[s, t] is defined by the relation

∑n
k=0 s

kQk,C
0 (t) = (1 + s)QC

0 (s, t). Now let s = t in

(4.7). Since the moment map (after projecting to any direction in ±C) is a perfect Morse function in the sense

of Bott (see for example [11]), we get QC
0 (t, t) = 0. Therefore QC

0 (s, t) = 0 and (4.1) follows. 2

Remark 4.2 1. Part 1 of Theorem 4.1 is in fact true for any connected group acting holomorphically and

isometrically: Since the action of any group element is homotopic to the identity map, its actions on the de

Rham cohomology groups Hk(M) (0 ≤ k ≤ 2n) are trivial. Moreover, since the action preserves the complex

and Kähler structures, it preserves the Hodge decomposition. Hence the result.

2. Part 2 of the theorem in the case of C
∗-actions was obtained by Carrell-Sommese [9, Theorem 2]. For torus

actions, that formula (4.1) is true for any choice of action chamber gives various constraints on the fixed-point

data. For example, when the fixed-points are isolated, the number of fixed points p ∈ F with polarizing index

νC
p = k is independent of the choice of the chamber C. In general, consider two action chambers ±C. We

have
m
∑

r=1

(st)ν−C
r P (Fr ; s, t) =

m
∑

r=1

(st)νC
r P (Fr ; s, t). (4.8)

In fact, using ν−C
r = n − nr − νC

r and P (Fr; s, t) = (st)nrP (Fr; s
−1, t−1), it is not hard to see that (4.8) is

equivalent to P (M ; s, t) = (st)nP (M ; s−1, t−1).

Corollary 4.3 For any choice of action chamber C, there is only one component FrC
with νC

rC
= 0. Moreover,

h0,k(M) = h0,k(FrC
) for all 0 ≤ k ≤ n. In particular, τ(M) = τ(FrC

).

Proof. The first part is well-known [1,13] and is included here for completeness; in fact, FrC
is the inverse

image of a vertex of the moment polytope. Taking s = 0 in (4.1), we get P (M ; 0, t) = P (FrC
; 0, t). The rest

follows easily. 2

Example 4.4 Hamiltonian S1-actions on symplectic 4-manifolds have been classified up to S1-equivariant

diffeomorphisms [4], and subsequently, up to S1-equivariant symplectomorphisms [16]. Moreover it was shown

that all such manifolds are Kähler [16]. Let M be such a manifold with a Hamiltonian S1-action and let

h:M → R be a moment map. Suppose Σ± are the critical components on which h reaches its maximum,

minimum, respectively. By dimensional reasons, other critical points of h have Morse indices 2 and are

isolated; let m2 be the number of such. The Hodge-Poincaré polynomial of M is

P (M ; s, t) = P (Σ−; s, t) + stP (Σ+; s, t) +m2st

= P (Σ+; s, t) + stP (Σ−; s, t) +m2st (4.9)
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It follows that there are three possibilities:

I: Both Σ± are isolated points, i.e., P (Σ±; s, t) = 1. In this case, h0,0(M) = h2,2(M) = 1, h1,1(M) = m2 =

b2(M), others = 0.

II: One of them is reached at an isolated point, the other at a sphere, i.e., P (Σ±; s, t) = 1 and st, respectively.

In this case, h0,0(M) = h2,2(M) = 1, h1,1(M) = m2 + 1 = b2(M), others = 0.

III: Both Σ± are Riemann surfaces of the same genus, i.e., P (Σ±; s, t) = 1 + g(s + t) + st, where g is the

genus. In this case, h0,0(M) = h2,2(M) = 1, h0,1(M) = h1,0(M) = h1,3(M) = h3,1(M) = g = 1
2b1(M),

h1,1(M) = m2 + 2 = b2(M), others = 0.

In all cases, b+2 (M) = 1.

If V is a holomorphic Killing vector field on (M,ω), let Z1, . . . , Zm be the connected components of the

zero-set of V , of (complex) dimensions n1, . . . , nm, respectively. We have the following special case of the

theorem of Carrell-Lieberman [8,9], which holds for a more general (not necessarily Killing) holomorphic

vector field.

Corollary 4.5 hk,l(M) = 0 if |k − l| > max{n1, . . . , nm}.

Proof. The 1-parameter group generated by V is a subgroup of the isometry group of M . Therefore its

closure is a torus T , whose fixed-point set is precisely Z. We choose any action chamber C (for example, the

one which contains the generator V ). Let s = t−1 in (4.1). We get

m
∑

r=1

nr
∑

k,l=0

hk,l(Zr)t
l−k =

n
∑

k,l=0

hk,l(M)tl−k. (4.10)

The result follows easily. 2

When the fixed-point set F is discrete, this result was deduced from holomorphic Morse inequalities in

[25].

4.2. Symplectic quotients, symplectic cuts and quantization

Let (M,ω) be a symplectic manifold of (real) dimension 2n. If the circle group S1 acts Hamiltonianly on

(M,ω), let V be the vector field on M that generates the action and h:M → R, the moment map such that

iV ω = dh. If 0 is a regular value of h, then S1 acts locally freely on h−1(0) and the symplectic quotient

M0 = h−1(0)/S1 is an orbifold. Let i:h−1(0) → M be the inclusion and π:h−1(0) → M0, the projection.

There is a canonical symplectic form ω0 on M0 such that π∗ω0 = i∗ω. To avoid orbifold singularities, we

further assume that S1 acts freely on h−1(0). In this case, M0 is a smooth manifold of dimension 2n− 2.

We now recall the notion of symplectic cutting [17]. Let the complex plane C be equipped with the standard

Kähler form ω =
√
−1
2 dz∧dz̄. Consider two actions of the circle group S1 on C with weights ±1. Both actions

are Hamiltonian with the moment maps ∓ 1
2 |z|2, respectively. The diagonal actions of S1 on M ×C are again
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Hamiltonian and the moment maps are h∓ 1
2 |z|2, of which 0 is still a regular value. Let M± be the symplectic

quotients of M ×C at level 0 by the two S1-actions defined above. (M±, ω±) are smooth symplectic manifolds

with Hamiltonian S1-actions and M0 is embedded as one of the components (still denoted by M0) fixed by S1;

the compliments M±\M0 are S1-equivariantly symplectomorphic to h−1(R±) ⊂ M , respectively. Therefore

the fixed-point set of M± is the union of M0 and all the components Fr (1 ≤ r ≤ m) such that h(Fr) ∈ R
±.

Moreover the circle bundle of the normal bundle N0 of M0 in M+ is isomorphic to the bundle h−1(0) →M0,

with weight −1, while the normal bundle of M0 in M− is isomorphic to N∗
0 , with weight 1.

When (M,ω) is a Kähler manifold with a Hamiltonian S1-action, then the symplectic quotient (M0, ω0)

and two symplectic cuts (M±, ω±) are also Kähler. We now establish a gluing formula for Poincaré-Hodge

polynomials.

Proposition 4.6 Let (M,ω) be a compact Kähler manifold with a Hamiltonian S1-action. If 0 is a regular

value of the moment map h and S1 acts freely on h−1(0), then

P (M+; s, t) + P (M−; s, t) = P (M ; s, t) + (1 + st)P (M0; s, t). (4.11)

Proof. If we choose the positive chamber chamber C = R
+, then M0 is embedded in M± with polarizing

indices 1 and 0, respectively. Applying (4.1) to M±, we get

P (M+; s, t) =
∑

Fr⊂h−1(R+)

(st)νrP (Fr ; s, t) + stP (M0; s, t) (4.12)

and

P (M−; s, t) =
∑

Fr⊂h−1(R−)

(st)νrP (Fr; s, t) + P (M0; s, t). (4.13)

(4.11) follows from the above two equalities and (4.1). 2

As a consequence, we have the following interesting

Corollary 4.7 Under the above assumptions, h0,k(M) = h0,k(M0) for all 0 ≤ k ≤ n. Hence τ(M) = τ(M0).

Proof. From Corollary 4.3 we get P (M+; 0, t) = P (M−; 0, t) = P (M0; 0, t). This, together with (4.11) when

s = 0, implies that P (M ; 0, t) = P (M0; 0, t). 2

By induction, these results are true for Hamiltonian torus actions. In fact, the second part is true when

M is a general symplectic (hence almost complex) manifold with a (possibly) non-Abelian group action [20,

22]. The first part is the refinement of this result when M is Kähler.

Recall that a symplectic manifold (M,ω) is quantizable if the de Rham class [ ω
2π ] ∈ H2(M,Z). In this case,

there is a complex line bundle, called the pre-quantum line bundle, with a connection ∇ whose curvature is

ω√
−1

. We have the following
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Lemma 4.8 Suppose that a symplectic manifold (M,ω) is quantizable and is equipped with a Hamiltonian

S1-action with moment map h. If one of h(Fr) ∈ Z, then all h(Fr) ∈ Z and the S1-action can be lifted to the

pre-quantum line bundle L. In this case, M±, M0 are quantizable; let L±, L0 be their pre-quantum line bundles.

There are following isomorphisms of line bundles with connections: L±|M0
∼= L0, L±|M±\M0

∼= L|h−1(R±).

Proof. The generator of Lie(S1) acts on the space of sections of L by −∇V +
√
−1h; this gives an R-action on

L preserving ∇. If h(Fr) ∈ Z, then the R-action is an S1-action on L|Fr
. Since ∇ is R-invariant, the parallel

transport commutes with the R-action. Therefore the R-action factorizes through S1 on the total space of L.

In particular, h(Fr) ∈ Z on any fixed component Fr. The line bundle L0 = i∗L/S1 → M0 has a connection

∇0 such that π∗∇0 = i∗∇ so that its curvature is ω0√
−1

[14]. Following the construction of symplectic cuts,

there are S1-invariant pre-quantum line bundles L± on M± whose curvature is ω±√
−1

. The isomorphisms in

the last part were proved in [10,19]. 2

If in addition (M,ω) is Kähler, the pre-quantum line bundle L can be made into an S1-invariant holomor-

phic Hermitian line bundle. Therefore the line bundle L0 over M0 is also holomorphic and Hermitian, and so

are L±. Furthermore, the actions of S1 on L± preserve holomorphic structures. By quantization on (M,ω)

we mean to associate to (M,ω) the virtual vector space

H(M) =

n
⊕

k=0

(−1)kHk(M,O(L)). (4.14)

When M is not a complex manifold, each individual cohomology group in (4.14) does not make sense, however

the alternating sum can be defined as the index of a spinC-Dirac operator using only an almost complex

structure. In [10], it was proved that under this more general setting, we have the following relation on

quantization, symplectic cutting and reduction

dimC H(M±)S1

= dimC H(M0) = dimC H(M)S1

, (4.15)

and the gluing formula

charH(M) = charH(M+) + charH(M−) − dimC H(M0). (4.16)

The last equality in (4.15) was the S1-case of a conjecture by Guillemin and Sternberg [14]; the case with

compact non-Abelian group actions was proved by Meinrenken [19], and Vergne [23], Jeffrey and Kirwan [15]

and others under various generalities using localization techniques, and by Tian and Zhang [22] using a direct

analytic approach. Moreover, when M is a compact Kähler manifold with a Hamiltonian action of (possibly)

non-Abelian group G, there are Morse-type inequalities which bound the invariant cohomologies of M in terms

of those of the symplectic quotient M0 (of complex dimension n0)[22]. That is,

n0
∑

k=0

tk dimC H
k(M0,O(L0)) =

n
∑

k=0

tk dimC H
k(M,O(L))G + (1 + t)Q0(t) (4.17)

for some Q0(t) ≥ 0. We prove similar Morse-type inequalities relating quantizations on M0 and M±, which

will strengthen the first equality of (4.15) when M is Kähler and the group is S1.
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Proposition 4.9 If M is Kähler, then there exist polynomials Q±
0 (t) ≥ 0 such that

n−1
∑

k=0

tk dimC H
k(M0,O(L0)) =

n
∑

k=0

tk dimC H
k(M±,O(L±))S1

+ (1 + t)Q±
0 (t). (4.18)

Proof. Consider the S1-action on M+, whose fixed-point set consists of M0 and Fr with h(Fr) > 0. The

weights of the S1-action on the fibers of L+ over M0 and Fr are 0 and h(Fr), respectively. Applying (2.7) to

M+, we obtain

n−1
∑

k=0

tk charHk(M0,O(S(N∗
0 ) ⊗ L0)) +

∑

Fr⊂h−1(R+)

tk charHk(Fr ,O(K−(Nr) ⊗ L|Fr
))

=
n
∑

k=0

tk charHk(M+,O(L+)) + (1 + t)Q+(t), (4.19)

for Q+(t) ≥ 0. Notice that all the weights on S(N∗
0 ) ⊗L0 and K−(Nr) ⊗L|Fr

are non-negative, and the zero

weight comes only from the sub-bundle L0 of the former. By restricting (4.19) to the zero weight, we obtain

(4.18) for M+. 2

Remark 4.10 In the light of (4.16), we conjecture that there is an S1-equivariant Mayer-Vietoris-type long

exact sequence

· · · → Hk(M,O(L)) → Hk(M+,O(L+)) ⊕Hk(M−,O(L−)) → Hk(M0,O(L0)) → Hk+1(M,O(L)) → · · ·
(4.20)

when M is Kähler. If so, then there is a polynomial Q(t) ≥ 0 such that

n
∑

k=0

tk charHk(M,O(L)) +

n−1
∑

k=0

tk dimC H
k(M0,O(L0))

=
n
∑

k=0

tk charHk(M+,O(L+)) +
n
∑

k=0

tk charHk(M−,O(L−)) + (1 + t)Q(t). (4.21)

In fact, the polynomial Q(t) ≤∑n−1
k=0 t

k charHk(M0,O(L0)). Therefore (4.21), if correct, also implies

n
∑

k=0

tk charHk(M+,O(L+)) +

n
∑

k=0

tk charHk(M−,O(L−)) +

n−1
∑

k=0

tk+1 charHk(M0,O(L0))

=
n
∑

k=0

tk charHk(M,O(L)) + (1 + t)Q′(t) (4.22)

for some Q′(t) ≥ 0.
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