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THE D-RESULTANT, SINGULARITIES

AND THE DEGREE OF UNFAITHFULNESS

ARNO VAN DEN ESSEN AND JIE-TAI YU

(Communicated by Wolmer V. Vasconcelos)

Abstract. We introduce the D-resultant of two polynomials in one variable
and show how it can be used to decide if k(f(t), g(t)) = k(t), k[f(t), g(t)] = k[t]
and to find the singularities of the curve x = f(t), y = g(t). The second
criterion is used to give a very short proof of a special case of the epimorphism
theorem of Abhyankar and Moh.

Introduction

Let k be a field. In lecture 19 of [2] Abhyankar defines the Taylor resultant of
two polynomials f(t) and g(t) in k[t] as the resultant (with respect to the variable
t) of the polynomials

f ′(s) +
f ′′(s)

2!
t+

f ′′′(s)

3!
t2 + · · · , g′(s) +

g′′(s)

2!
t+

g′′′(s)

3!
t2 + · · · .

He introduces this concept to solve the following questions: how can one decide if
k(t) = k(f(t), g(t)) or if k[t] = k[f(t), g(t)] and how can one compute the singulari-
ties of the curve x = f(t), y = g(t)? The solutions to these questions are described
in Theorem on page 153 of [2], however no proof is presented.

An objection to the Taylor resultant is that, apparently, it is only defined for
fields of characteristic zero. To overcome this point we introduce in this paper the
so-called D-resultant (see §1) of polynomials over arbitrary fields (or more generally
over arbitrary domains) and show that in case char k = 0 it agrees with Abhyankar’s
Taylor resultant. Furthermore we show that the above three questions can be very
easily solved by the D-resultant (cf. Theorem 2.1).

At the end of this paper we use the D-resultant to give a very short proof of a
special case of the epimorphism theorem of Abhyankar and Moh (cf. [3]); we show
that if g.c.d. (deg f(t), deg g(t)) = 1, then k[f(t), g(t)] 6= k[t].

It is worth remarking that also the formulas obtained in Proposition 1.1 below
turn out to be very useful for applications. More precisely, the results on the D-
resultant obtained in this paper are used in [5] to give a new characterisation of
polynomial automorphisms of the plane over an arbitrary field k.

Finally we would like to mention that in [6] the D-resultant is used to show that
a polynomial map F : C2 → C2 with det JF ∈ C∗ is an automorphism, if there
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690 ARNO VAN DEN ESSEN AND JIE-TAI YU

exist a point p in C2 and three lines going through p such that the restriction of F
to each of these three lines is injective.

0. Preliminaries

0.1 The resultant of two polynomials in one variable. Let A be a commu-
tative ring without zero-divisors, K its quotient field and A[t] the polynomial ring
in the variable t with coefficients in A. Let f = f0t

n + f1t
n−1 + . . . + fn be a

polynomial in A[t] with f0 6= 0. Then n is called the degree of f , denoted degt f or
deg f . Let also g = g0f

m + g1f
m−1 + . . . + gm be in A[t] with g0 6= 0. Then the

resultant of f and g with respect to t, denoted Rest(f, g) is a well-defined element
of A (cf. [7] or [9]). The next proposition summarises some of its properties (cf.
[7, 9]).

Proposition 0.2. Let f, g ∈ A[t], n = deg f, m = deg g.

1) Rest(f, g) = (−1)nm Rest(g, f).
2) If also h ∈ A[t], then Rest(fg, h) = Rest(f, h) Rest(g, h).
3) If a ∈ A, then Rest(t− a, f(t)) = f(a).
4) f and g have a common zero (in some field extension of K) if and only if

Rest(f, g) = 0.
5) If f and g are polynomials in t with literal coefficients i.e.

f, g ∈ Z[f0, . . . , fn, g0, . . . , gm][t], then

Rest(f, g) =
∑

mi0...inj0...jmf
i0
0 . . . f inn g

j0
0 . . . gjmm ,

where each mi0...inj0...jm is an integer and 0.i0 + 1.i1 + 2i2 + . . .+ nin + j1 +
. . .+mjm = mn.

0.3 Resultants and minimal polynomials. Let k be an arbitrary field and let
f = f(t) and g = g(t) be two elements of k[t], not both constants. Then f(t) and
g(t) are algebraically dependent over k, so there exists an irreducible polynomial
m(X,Y ) ∈ k[X,Y ] such that m(f(t), g(t)) = 0. It is not difficult to prove that m
is unique up to a non-zero constant factor (cf. [11, Lemma 1]). We call such an m
a minimal polynomial of f and g. One has the following useful result (cf. [1, 8]).

Theorem 0.4 (Abhyankar, McKay, Wang). Let m be a minimal polynomial
of f and g; then there exists c ∈ k∗ such that

Rest(f(t)−X, g(t)− Y ) = cm(X,Y )q

where

q = |k(t) : k(f, g)|.

0.5 Branch representations. Let C be an irreducible plane curve given by the
irreducible polynomial m(X,Y ) ∈ k[X,Y ]. Suppose m(0, 0) = 0. A pair of formal
power series f(t), g(t) in k[[t]], not both constant, satisfying f(0) = g(0) = 0 and
m(f(t), g(t)) = 0, is called a branch representation of the curve C at (0, 0). Such
a branch representation is called not primitive if there exists a formal power series
τ(t) in k[[t]] with ord τ(t) > 1 such that f(t) = f̃(τ(t)) and g(t) = g̃(τ(t)) for

some f̃ , g̃ in k[[t]]. Otherwise a branch representation is called primitive. Two
branch representations (f1, g1) and (f2, g2) of m = 0 at (0, 0) are called equivalent
if there exists a formal power series τ(t) of order 1 such that f1(t) = f2(τ(t)) and
g1(t) = g2(τ(t)). Now suppose that (0, 0) is a simple point of the curve m = 0,
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THE D-RESULTANT AND SINGULARITIES 691

say my(0, 0) 6= 0. Then by the formal implicit function theorem there exists a
(primitive) branch representation of m of the form (t, g0(t)) with g0(t) ∈ k[[t]] and
g0(0) = 0. Now let (f(t), g(t)) be another primitive branch representation of m
at (0, 0). By [10, Theorem 12.6] (f(t), g(t)) is equivalent with (t, g0(t)); i.e. there
exists a formal power series τ(t) of order 1 such that (f(t), g(t)) = (τ(t), g0(τ(t))).
In particular f(t) = τ(t). Consequently f ′(0) = τ ′(0) 6= 0. If mx(0, 0) 6= 0 a similar
argument gives g′(0) 6= 0. Summarizing we showed

(0.6) If (0, 0) is a simple point of the curve m = 0, then for every branch represen-
tation (f, g) of m at (0, 0) we have (f ′(0), g′(0)) 6= (0, 0).

To conclude this section we give a simple fact which will be used below: let A
be a commutative ring, f(t) ∈ A[t] and a ∈ A. Instead of f(a) we sometimes write

f(t)|t=a. Observe that f(t)− f(a) is divisible by t− a, so f(t)−f(a)
t−a belongs to A[t].

Lemma 0.7. f(t)−f(a)
t−a |t=a = f ′(a).

Proof. For f = ti the result follows from the formula ti−ai
t−a = ti−1+ati−2+. . .+ai−1.

Writing f(t) =
∑
fn−it

i one deduces the general case as a direct consequence.

§1. The D-resultant of two polynomials in one variable

LetA be a commutative ring without zero-divisors,K its quotient field andA[t, s]
or A[X,Y ] denotes the polynomial ring in two variables over A. Let f(t), g(t) be

in A[t]. So we get the polynomials f(t)−f(s)
t−s and g(t)−g(s)

t−s in A[t, s]. Now we define

the D-resultant of f(t) and g(t) by putting

DRest(f(t), g(t)) := Rest

(
f(t)− f(s)

t− s ,
g(t)− g(s)

t− s

)
(The D stands for Divided difference.) Obviously this resultant is an element of
A[s]. If no confusion is possible we write D(s) instead of DRest(f(t), g(t)). The
next useful proposition relates D(s) with

R(X,Y ) := Rest(f(t)−X, g(t)− Y ).

Proposition 1.1.

f ′(s)D(s) = (−1)deg fRY (f(s), g(s)), g′(s)D(s) = (−1)1+deg fRX(f(s), g(s)).

Proof. We only prove the first formula (the other one is proved similarly). Writing

g(t)− g(s) = (t− s)g(t)−g(s)t−s we obtain

r(s) := Rest

(
f(t)− f(s)

t− s , g(t)− g(s)

)
= Rest

(
f(t)− f(s)

t− s , t− s
)
D(s).

So by Proposition 0.2.1, 0.2.3 and Lemma 0.7 we obtain

r(s) = (−1)deg f−1f ′(s)D(s).

Put R̃(s, Y ) := Rest(
f(t)−f(s)

t−s , g(t) − Y ). Then r(s) = R̃(s, Y )|Y=g(s). Writing

f(t)− f(s) = (t− s)f(t)−f(s)
t−s we obtain

R̃(s, Y ) = Rest(f(t)− f(s), g(t)− Y )/Rest(t− s, g(t)− Y )

= −Rest(f(t)− f(s), g(t)− Y )/(Y − g(s)) = −R(f(s), Y )/Y − g(s).
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Consequently, using R(f(s), g(s)) = 0 we obtain

r(s) = R̃(s, Y )|Y=g(s) = (−1) (R(f(s), Y )−R(f(s), g(s))) /(Y − g(s))|Y=g(s)

= (−1)RY (f(s), g(s)) (by Lemma 0.7).

So together with (1.2) this gives: RY (f(s), g(s)) = (−1)deg ff ′(s)D(s).

To conclude this section we recall Abhyankar’s Taylor resultant and show that,
in case k is a field of characteristic zero, the Taylor resultant of two polynomials in
k[t] equals the D-resultant of these polynomials.

Definition 1.2. Let k be a field of characteristic zero and f(t), g(t) in k[t]. Then
the Taylor resultant of f(t) and g(t) is the polynomial

T (s) := Rest(f
′(s) +

1

2!
f ′′(s)t+

1

3!
f ′′′(s)t2 + · · · ,

g′(s) +
1

2!
g′′(s)t+

1

3!
g′′′(s)t3 + · · · )

Proposition 1.3. Let k be a field of characteristic zero. Then D(s) = T (s).

Proof. By Taylor’s formula we get

f(t) = f(s) + f ′(s)(t− s) +
1

2!
f ′′(s)(t − s)2 + · · ·

and a similar result for g(t). Consequently we get

D(s) = Rest(f
′(s) +

1

2!
f ′′(s)(t− s) + · · · , g′(s) +

1

2!
g′′(s)(t− s) + · · · ).(1.3.1)

Now observe that in general Rest(F (t − a), G(t − a)) = Rest(F (t), G(t)) for all
domains A, F (t), G(t) ∈ A[t] and all a ∈ A.

So in (1.3.1) we may replace t− s by t, which implies that D(s) = T (s).

§2. The main theorem

Throughout this section k is an arbitrary field. Now we are able to prove the
main result of this paper.

Theorem 2.1. Let f(t) and g(t) in k[t] be such that both f ′(t) and g′(t) are non-
zero. Then

1) k(f(t), g(t)) = k(t) if and only if D(s) 6= 0.
2) k[f(t), g(t)] = k[t] if and only if D(s) ∈ k∗.
3) If D(s) 6= 0, say D(s) =

∏r
i=1(s − si)

ei , where each ei is a positive in-

teger and all si are distinct (and belong to some algebraic closure k of k),
then the singularities of the curve x = f(t), y = g(t) are exactly the points
(f(si), g(si)), i ≤ i ≤ r.

Proof. i) Let m be a minimal polynomial of f and g over k. Then R = cmq for some
c ∈ k∗ and q = |k(t) : k(f, g)| (by Theorem 0.4). Consequently RX = cqmq−1mX

and RY = cqmq−1mY . Now assume that q > 1. Then both RX and RY contain
a factor m, hence RX(f, g) = RY (f, g) = 0. So D(s) = 0 follows from Proposition
1.1 and the hypothesis that both f ′ and g′ are non-zero. If q = 1, then RX = cmX

and RY = cmY . So again using Proposition 1.1 we conclude that if D(s) = 0 then
both mX(f, g) and mY (f, g) are zero. Consequently m divides both mX and mY .
If char k = 0 this is clearly impossible; if char k = p > 0 then mX = mY = 0
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THE D-RESULTANT AND SINGULARITIES 693

implies that m = m̃p for some m̃ in k[X,Y ] which contradicts the minimal choice
of m. So in any case we get a contradiction, and hence D(s) 6= 0.

ii) Now we show 3). Without loss of generality we may assume that f(0) =
g(0) = 0. First observe that if D(s) 6= 0, then (f(t), g(t)) is a primitive branch

representation of m at (0, 0); for if f(t) = f̃(τ(t)) and g(t) = g̃(τ(t)) with f̃ , g̃ in

k[[t]] and τ(t) ∈ k[[t]] with ord τ(t) > 1, then f(t)−f(s)
t−s = f̃(τ(t))−f̃(τ(s))

τ(t)−τ(s) · τ(t)−τ(s)
t−s ,

so τ(t)−τ(s)
t−s is a factor of f(t)−f(s)

t−s and by a similar argument also of g(t)−g(s)
t−s . But

this implies that D(s) = 0, a contradiction. Furthermore, since D(s) 6= 0 it follows
from 1) that q = 1, so RX = cmX and RY = cmY for some c ∈ k∗. Since D(si) =
0 it follows from Proposition 1.1 that mX(f(si), g(si)) = mY (f(si), g(si)) = 0,
so (f(si), g(si)) is a singular point of the curve x = f(t), y = g(t). Conversely,
if mX(f(s0), g(s0)) = mY (f(s0), g(s0)) = 0 it follows from Proposition 1.1 that
f ′(s0)D(s0) = g′(s0)D(s0) = 0. Now observe that by (0.6) either f ′(s0) 6= 0 or
g′(s0) 6= 0, which implies that D(s0) = 0, so s0 = si for some 1 ≤ i ≤ r, as desired.

iii) Now we show 2). Suppose k[f(t), g(t)] = k[t]. Then there exists some F ∈
k[X,Y ] such that t = F (f(t), g(t)). So (F (f(t), g(t)) − F (f(s), g(s)))/(t − s) = 1.
So

F (f(t), g(t))− F (f(s), g(t))

t− s +
F (f(s), g(t))− F (f(s), g(s))

t− s = 1.(2.2)

Observe that F (X, g(t)) − F (a, g(t)) is divisible by X − a (for all a in k[s]). So
substituting X = f(t) and a = f(s) we obtain that

F (f(t), g(t))− F (f(s), g(t)) = h1 · (f(t)− f(s)), for some h1 ∈ k[t, s].

Similarly

F (f(s), g(t))− F (f(s), g(s)) = h2 · (g(t)− g(s)), for some h2 ∈ k[t, s].

So by (2.2) we get

h1(t, s)
f(t)− f(s)

t− s + h2(t, s)
g(t)− g(s)

t− s = 1.

So for each s0 ∈ k the polynomials f(t)−f(s0)
t−s0 and g(t)−g(s0)

t−s0 have no common zero,

hence (by Proposition 0.2.4) D(s0) 6= 0 for all s0 in k. So D(s) ∈ k∗.
Finally we show the converse: since k[f(t), g(t)] = k[t] implies k[f(t), g(t)] = k[t],

we may assume that k is algebraically closed. Now suppose that D(s) ∈ k∗. Then
in particular D(s) 6= 0, so by 1) k(f(t), g(t)) = k(t) and by 3) the irreducible plane
curve m(x, y) = 0 has no singularities. So for each maximal ideal η of the ring
A = k[X,Y ]/(m) (' k[f, g]), Aη is a discrete valuation ring. Hence by [4, Theorem
9.3] A is integrally closed. So k[f, g] is integrally closed in k(t). Since t is obviously
integral over k[f, g] it follows that t ∈ k[f, g], whence k[f, g] = k[t] as desired.

§3. A remark on the Abhyankar-Moh epimorphism theorem

In [3] Abhyankar and Moh proved the following well-known result.

Theorem 3.1. Let k be an arbitrary field of characteristic p (p = 0 or p > 0). Let
f(t), g(t) in k[t] of degree n resp. m be such that p does not divide g.c.d(n,m). If
k[f(t), g(t)] = k[t], then either n divides m or m divides n.
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694 ARNO VAN DEN ESSEN AND JIE-TAI YU

In other words: if say m ≤ n and m does not divide n, and p does not divide
g.c.d(n,m), then k[f, g] 6= k[t]. So using Theorem 2.1.2, Theorem 3.1 is equivalent
with

(3.2) Let m ≤ n. If m does not divide n and g.c.d(m,n) 6≡ 0 mod p, then either
D(s) = 0 or D(s) contains the variable s.

In the remainder of this paper we will show (3.2) for the special case that
g.c.d(m,n) = 1. Therefore we need

Lemma 3.3. Let f(t) = a0t
n+a1t

n−1 + · · ·+an and g(t) = b0t
m+b1t

m−1 + ·+bm
be polynomials in the polynomial ring Z[a0, . . . , an, b0, . . . , bm, t]; i.e. f and g have
literal coefficients. If g.c.d(n,m) = 1, then
D(s) = dam0 b

n
0s

(n−1)(m−1)+ lower order terms in s, for some d ∈ Z\{0}.

Proof.

f(t)− f(s)

t− s = a0

(
tn − sn
t− s

)
+ a1

(
tn−1 − sn−1

t− s

)
+ . . .+ an−1

= a0t
n−1 + (a0s+ a1)tn−2 + · · ·+ (a0s

n−1 + a1s
n−2 + · · ·+ an−1).

Similarly

g(t)− g(s)

t− s = b0t
m−1 + (b0s+ b1)tm−2 + . . .+ (b0s

m−1 + b1s
m−2 + . . .+ bm−1).

So if we give each ai weight i, each bj weight j and s weight 1, then according

to Proposition 0.2.5 each monomial ai00 · · · a
in−1

n−1 b
j0
0 · · · b

jm−1

m−1 s
k appearing in D(s)

has weight (m − 1)(n − 1). In particular degsD(s) ≤ (m − 1)(n − 1) and the
coefficient c of s(m−1)(n−1) can only contain a0 and b0. So we can compute c by
setting a1 = · · · = an = b1 = · · · = bm = 0. Therefore consider

r(a0, b0, s) := Rest

(
a0

(
tn − sn
t− s

)
, b0

(
tm − sm
t− s

))
.

Since, as observed above, each monomial in r(a0, b0, s) has weight (m−1)(n−1) and
a0 and b0 have weight zero it follows that r(a0, b0, s) = cs(m−1)(n−1). Consequently

c = r(a0, b0, 1) = am0 b
n
0 Rest

(
tn − 1

t− 1
,
tm − 1

t− 1

)
.

Now observe that d := Rest

(
tn−1
t−1 ,

tm−1
t−1

)
is non-zero, since if (n,m) = 1 and an

n-th root of unity 6= 1 cannot be an m-th root of unity. Then apply Proposition
0.2.4.

Proof of (3.2) in case g.c.d(m,n) = 1. Let f(t) = f0t
n + f1t

n−1 + . . .+ fn, g(t) =
g0t

m + g1t
m−1 + . . . + gm with f0, g0 in k∗. Then D(s) can be otbained from the

resultant of Lemma 3.3 by the substitutions ai → fi, bj → gj for all i, j. Since

f0 and g0 are non-zero it follows that s(n−1)(m−1) has non-zero coefficient. Finally
(n− 1)(m− 1) > 0. So D(s) 6∈ k∗.
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