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so the bound in (22) applies with € = 4/ é log D/ log q. Plugging this

value of ¢ into (22) and manipulating the resulting expression, we ob-
tain the bound of the theorem. O
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Geometrical and Numerical Design of Structured Unitary
Space-Time Constellations

Guangyue Han and Joachim Rosenthal, Senior Member, IEEE

Abstract—There exist two important design criteria for unitary space
time codes. In the situation where the signal-to-noise ratio (SNR) is large
the diversity product (DP) of a constellation should be as large as possible. It
is less known that the diversity sum (DS) is a very important design criterion
for codes working in a low SNR environment. So far, no general method to
design good-performing constellations with large diversity for any number
of transmit antennas and any transmission rate exists.

In this correspondence, we propose constellations with suitable struc-
tures, which allow one to construct codes with excellent diversity using geo-
metrical symmetry and numerical methods. The presented design methods
work for any dimensional constellation and for any transmission rate.

Index Terms—Diversity product, diversity sum, multiple antennas,
space-time coding, space—time constellations.

I. INTRODUCTION AND MODEL

One way to acquire reliable transmission with high transmission rate
on a wireless channel is to use multiple transmit or receive antennas.
Either because of rapid changes in the channel parameters or because
of limited system resources, it is reasonable to assume that both the
transmitter and the receiver do not know about the channel state infor-
mation (CSI), i.e., the channel is noncoherent.
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In [14], Hochwald and Marzetta study unitary space—time modu-
lation. Consider a wireless communication system with M transmit
antennas and [V receive antennas operating in a Rayleigh flat-fading
channel. We assume time is discrete and at each time slot, signals are
transmitted simultaneously from the M transmit antennas. We can fur-
ther assume that the wireless channel is quasi-static over a time block
of length T'.

A signal constellation ¥V := {®;,..., P} consists of L matrices
having size T x M and satisfying T > M and &3P, = In. The
last equation simply states that the columns of ¥, form a “unitary
frame,” i.e., the column vectors all have unit length in the complex
vector space C” and the vectors are pairwise orthogonal. The scaled
matrices VT ®, k = 1,2, ..., L, represent the codewords used during
the transmission. It is known that the transmission rate is determined
by L and T

_ log, (L)
R= T

Let p represent the expected signal-to-noise ratio (SNR) at each re-
ceive antenna. The basic equation between the received signal 12 and
the transmitted signal v/ T'® is given through

s -
R= .M(I)H_FW

where the M x N matrix H accounts for the multiplicative complex
Gaussian fading coefficients and the ' x N matrix W accounts for the
additive white Gaussian noise. The entries 2, ,, of the matrix H as well
as the entries w;¢ , of the matrix ¥ are assumed to have a statistically
independent normal distribution CA/(0, 1). In particular, it is assumed
that the receiver does not know the exact values of either the entries of
H or W (other than their statistical distribution).

The decoding task asks for the computation of the most likely sent
codeword ® given the received signal R. Denote by || || the Frobenius
norm of a matrix. If A = (a; ;) then the Frobenius norm is defined
through ||A|lFr =
model the maximum-likelihood (ML) decoder will have to compute

>_i.; lai;[?. Under the assumption of the above

P = arg max

|1 B @]
P, e{P,Po,..., P}

for each received signal R (see [14]).

Let 6,,(®;®;/) be the mth singular value of ®; P, . It has been
shown in [14] that the pairwise probability of mistaking ®; for &,/
using ML decoding satisfies

Py, e, =Prob (choose ®;: | ®;transmitted ) (p)
= Prob (choose ®; | @,/ transmitted ) (p)

M T\2(1 _ 82 P, -
LT 14 T2 = 8 (@i 0))
2m:1 4(14 pT /M)

It is a basic design objective to construct constellations V =
{®1,..., P, } such that the pairwise probabilities Py, e, are as
small as possible. Mathematically, we are dealing with an optimization
problem with unitary constraints:

N

(1.1)

Minimize max Pg, ¢ v with the constraints ®;P; = I where
120

i=12,....L.

Formula (1.1) is sometimes referred to as “Chernoff’s bound.” Re-
searchers have been searching for constructions where the maximal
pairwise probability of Fs,, &, is as small as possible. Of course the
pairwise probabilities depend on the chosen SNR p and the construc-
tion of constellations has therefore to be optimized for particular values
of the SNR.
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The design objective is slightly simplified if one assumes that trans-
mission operates at high-SNR situations. In [13], a design criterion for
high SNR is presented and the problem has been converted to the de-
sign of a finite set of unitary matrices whose diversity product is as large
as possible. In this special situation, several researchers [2], [22]-[24]
came up with algebraic constructions and we will say more about this
in the next section.

The main purpose of this correspondence is to present structured
constellation and to develop geometrical and numerical procedures
which allow one to construct unitary constellations with excellent
diversity for any set of parameters M, N, T, L and for any SNR p. The
correspondence is structured as follows. In Section II, we illustrate
unitary space—time constellation design criteria and present certain
example constellations.

In Section III, we parameterize constellations which will be efficient
for numerical search algorithms. For this purpose, we introduce the
concept of a weak group structure and we classify all weak group struc-
tures whose elements are normal and positive.

In Section IV, we investigate an algebraic structure which led to
some of the best constellations which we were able to derive. We also
show that in the good-performing codes the distance spectrum profile
for both the diversity sum and the diversity product are important.

Section V is one of the main sections of this correspondence. We
first explain a general method on how one can efficiently design ex-
cellent constellations for any set of parameters M, N, T, L, and p. For
this we review the Cayley transform. We conclude this section with an
extensive table where we publish a large set of codes having some of
the best diversity sums and diversity products in their parameter range.
More extensive lists of codes with large diversity can be found on the
website [6].

Finally, in Section VI, we explain how the algebraic structure which
underlies most of the derived codes can be used to have a fast decoding
algorithm. Our simulations indicate that in the design of codes more
attention should be given to the diversity sum which previously has not
been fully studied.

II. CONSTELLATION DESIGN CRITERIA AND EXAMPLES

In this correspondence, we will be concerned with the construction
of constellations where the right-hand side in (1.1), maximized over
all pairs /,1' is as small as possible for fixed numbers of T, M, N, L.
This task depends on the SNR the system is operating. We consider
designing constellations for high- and low-SNR cases.

A. Design Criterion for High-SNR Channel

In high-SNR scenario, namely, when p is large, maximizing the con-
stellation performance boils down to designing a constellation with
large diversity product:

Definition 2.1: (See [13]) The diversity product of a unitary constel-
lation V is defined as

-

min
121

M ﬁ
(H (1- 5m(<1>7<1>,,)'2)> .

m=1

An important special case occurs when T" = 2M. In this situation,
it is customary to represent all unitary matrices ®;. in the form

=% (0,

Note that by definition of ®;., the matrix ¥ is an 3 X M unitary
matrix. The diversity product as defined in Definition 2.1 has then a

2.1
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nice form in terms of the unitary matrices. For this, let A, be the mth
eigenvalue of a matrix, then

1—62(8;®) = %Am(sz - OBy — D)D)

1 - . I .
= 15577,(1%4 -V = 15577,(‘1’1/ - ¥).

So we have

M M
1

T[] 1 - 6% @ian)=r = 5 IT dw(wr - W)

m=1

m=1

- %|det(\11,/ AES

When T = 2M and the constellation V is defined as above, then the
formula of the diversity product assumes the simple form

1
HV =3 0<§nln

We call a constellation V a fully diverse constellation if [TV > 0.
A lot of efforts have been taken to construct constellations with large
diversity product. (See e.g., [13], [17], [8], [7], [22]-[24].) For the par-
ticular situation 7' = 20 with special form (2.1) the design asks for
the construction of a discrete subset V = {¥q,..., , ¥} of the set of
M x M unitary matrices U (M ). When this dlscrete subset has the
structure of a discrete subgroup of U (M) then the condition that V is
fully diverse is equivalent to the condition that the identity matrix is the
only element of V having an eigenvalue of 1. In other words, the con-
stellation V is required to operate fixed point free on the vector space
CM. Using a classical classification result of fixed point free unitary
representations by Zassenhaus [26], Shokrollahi et al. [22], [23] were
able to study the complete list of fully diverse finite group constella-
tions inside the unitary group U (M). Some of these constellations have
the best known diversity product for given fixed parameters M, N, L.

In most of the literature mentioned above, researchers focus their
attention on constellations having the special form (2.1). Unitary dif-
ferential modulation [13] is used to avoid sending the identity (upper
part of every element in the constellation) redundantly. This increases
the transmission rate by a factor of 2 to

_ log, (L) _ 210g2(L)
M T

| det (T, — T,/)| 77, 2.2)

Because of this reason we will also focus ourselves in the later part of
the correspondence on the special form (2.1) as well. The numerical
techniques presented in this correspondence work in all situations.

B. Design Criterion for Low-SNR Channel

At low-SNR regime, we consider diversity sum as the design crite-
rion for unitary space time constellation.

Definition 2.2: The diversity sum of a unitary constellation V is de-
fined as

(127 2 II7
D T

Again one has the important special case where I’ = 2M and the
matrices ® take the special form (2.1). In this case, one verifies that

* 2 ]- * p 1 * *
17 @7 = I+ ¥ T llf = Tt ((F+ )T + T E))

= itl(?] + \Ill*l\:[ll + \IJI*\I/II)
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i(4M — (2M — tr (U0, + U ¥,)))
1 *

= 1(4.7\/.[ - tl((\ljl - \Ijl’) (‘I/[ - \I/]/)))
1 .

= (AM = [ = Wy},

For the form (2.1), the diversity sum assumes the following simple
form:

([T — Ty || g (2.3)

Z V = m 1

v
Without mentioning the term, the concept of diversity sum was used in
[12]. Liang and Xia [17, p. 2295] explicitly defined the diversity sum
in the situation when 7" = 2M using (2.3). Definition 2.2 naturally
generalizes the definition to arbitrary constellations.

Hochwald and Marzetta [14] calculate the noncoherent space—time
channel capacity and indicate that unitary signal constellation are
capacity achieving signal sets only for high-SNR scenarios. For the
low-SNR case, the transmitting power should be allocated unsymmet-
rically, i.e., unitary constellations are not capacity achieving in the first
place. However, unitary signal sets are easily manageable and one can
take advantage of differential modulation technique [13] to speed up
the transmission. Moreover, our simulation results indicate that codes
with near optimal diversity sum tend to perform significantly better
compared to the currently existing ones optimized for the diversity
product for low- and even moderate-SNR scenarios. So it is quite
reasonable and more toward the practical use to construct unitary
constellations with good diversity sum. Interestingly, for constellations
inside the special unitary group SU(2), we have [[V = Y_ V.

C. Four lllustrative Examples

The diversity sum governs at low-SNR regimes, while the diversity
product governs at high-SNR regimes. Codes optimized at these ex-
treme values of the SNR-axis do not necessarily perform well on the
“other side of the spectrum.” In this subsection, we illustrate the in-
troduced concepts on four examples. All examples have about equal
parameters, namely, 7' = 4, M = 2, and the size L is 121 (respec-
tively, 120). The first two examples are well studied examples from the
literature. We derived the third and the fourth examples by geometrical
design and numerical methods, respectively.

Orthogonal Design: This constellation has been considered by sev-
eral authors [2], [23]. For our purpose, we simply define this code as a
subset of STU(2)

2mmi 2nmwi

2 > >
{% ( p_l;ﬂri ¢ 21,:Lm > lm,n=0,1,..., 10}
—e e~

The constellation has 121 elements and the diversity sum and the di-
versity product are both equal to 0.1992.

Unitary Representation of SL2(Fs): Shokrollahi er al. [23] de-
rived a constellation using the theory of fixed point free representa-
tions whose diversity product is near optimal. This constellation ap-
pears as a unitary representation of the finite group S L2 (Fs) and we
will refer to this constellation as the S L (F5 )-constellation. The finite
group S L2 (Fs5) has 120 elements and this is also the size of the con-
stellation. The constellation has rate R = 3.45 and

[[5L2(Fs) =) SLa(Fs) = %\/ (“’_2—‘/5) ~ 0.3090.

The diversity product of this constellation is truly outstanding.
Numerically Derived Constellation: Using simulated annealing al-
gorithm we found after short computation a constellation with very
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Comparisons of Four Constellations
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Fig. 1. Simulations of four constellations having sizes T = 4, M = 2, and L = 120 (respectively, L = 121).

TABLE 1
PARAMETERS OF THE FOUR CONSTELLATIONS
Orthogonal SL(F Numerically Geometrically
design 2(F5) derived designed
Number of elements 121 120 121 120
diversity sum 0.1992 0.309 0.3886 0.4156
diversity product 0.1992 0.309 0.0278 0.1464

good diversity sum. The constellation is given through a set of 121 ma-
trices shown at the bottom of the page. As we explain in Section VI, the
ML decoding of this constellation admits a simple decoding algorithm:
sphere decoding.

Geometrically Designed Constellation: A geometrically designed
constellation can be described as follows:

! 1T /60i 0
{‘Ifk = A"B"A = ( 0 er/ﬁoi> )

sin(227/60)
. k=0,1,...,119 %,
cos(227r/6())) ’ ’ }

cos(227/60)
B= . '
— sin(227/60)

This constellation has superb diversity sum and reasonably good di-
versity product. One can also use sphere decoding to implement ML
decoding of this constellation.

Fig. 1 provides simulation results for each of the four constellations
of Table I. Note that the numerically designed code who has a very
bad diversity product is performing very well nevertheless due to the
exceptional diversity sum. One can see that up to 12-dB numerically
derived codes outperform the group code by about 1 dB. In fact, our
simulation results show that until 35 dB, the numerical one is still per-
forming much better than the orthogonal one. However, at around 18
dB, the group constellation surpasses the numerical one due to excep-
tional diversity product. The geometrically designed constellation has
better diversity sum and diversity product than the numerical one, there-
fore, its performance is better than the numerical one (our results show

—0.9049 + 0.3265 x ¢

U, :=A"B'|A =
o | < 0.0364 + 0.2707 % i

[ —0.1596 4 0.9767 * i
T\ 0.0833—-0.1171 %3

0.1635+0.2188 * ¢
—0.8748 +0.4002 % ¢ ) °

—0.1038 4+ 0.0994 x 1

k1=0,1,...,1
—0.9432+0.2995*i)’ =0, 10
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that their performance curves are quite close, although the geometrical
one is slightly better). These simulation results give an indication that
the diversity sum is a very important parameter for a unitary constella-
tion at low-SNR regime.

III. CONSTELLATIONS WITH ALGEBRAIC STRUCTURE

In the sequel, we are going to investigate structured constellations
and explain how one can restrict the parameter space to judiciously
chosen subsets and how one can convert ML decoding to lattice de-
coding by using structured constellations.

Consider a general constellation of square unitary matrices

V= {\111, Usy,... ,‘I/L}.

In order to calculate the diversity product, one needs to do @
calculations: | det(¥; — ¥;)| for every different pair ¢, j. The same
statement can be made about the diversity sum, however, for simplicity
we only show the diversity product case in the sequel unless specified
otherwise.

As shown in [23], if one deals with a group constellation then one
needs only to calculate L — 1 such determinant calculations. This is a
direct consequence of

| det(T,— )| =| det(¥;) det(I— U ¥ ,)|=| det(I— T} T,)]|

where W7 W ; is still in the group. Group constellations are, however,
very restrictive about what the algebraic structure is concerned, and
the constellations found by this approach [23] are really few and far
between. In the following, we are going to present some constellations
which have some small number of generators and whose diversity can
be efficiently computed. This will ensure that the total parameter space
to be searched is limited as well. We start with an example:

Example 3.1: Consider the constellation

V={A"B A, BeUM), k=0,....p, [=0,....q}.

(We remark that a more specified constellation of this type has been
considered in [23].) The parameter space for this constellation is
U(M) x U(M), this is a manifold of dimension 234* and the number
of elements in V is (p+1)(¢+1).If one has to compute | det(¥; — T ;)|

p+1)(g+1 .
G )Z(q )) determinant

for every distinct pair, this would require (
calculations. We will show in the following that the same result can be
obtained by doing 2pq + p + ¢ determinant computations.

Let ¥, and ¥; be two distinct elements having the form A*1 B
and AF2 B%2 respectively. We have now several cases. When k1 = ko,

then necessarily /1 # [> and the distance is computed as

|det( 4" B — 4% B)| = | det( — B2 7)),

where |l2 — 1] is an integer between 1 and ¢. If [y = I2, then we have

k1 # k2 and the distance is computed as
|det(441 B — 42 B2)] = [des(T — al>=411)

where |k2 — k1 | is an integer between 1 and p. If (k1 < ko2 and 11 < I2)
or (k1 > ko and 11 > l2), we have
|det(A1 Bt — AF2 B'2)| = | det(I — AlF2—F1lpltz—til)

where 1 < |kz — ki| < pand 1 < |l — 1] < ¢. Similarly, if
(k1 < k2 and 1y > l3) or (k1 > k2 and [; < l2) then

|det(AM Bt — AF2 B2)| = | det(AlF2~F1l — pll2=hily,
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with 1 < |k2 — k1| < pand 1 < |l — I1] < p. The total number of
distances to be computed is in total equal to 2pg + p + q.

In the sequel, we are going to loosen the constraints imposed by the
group structures. As demonstrated in Example 3.1, it is desirable to
have a small-dimensional manifold (in Example 3.1 it was U (M) X
U (M)) which parameterizes a set of potentially interesting constella-
tions. Having such a parameterization will help to avoid the problem
of “dimension explosion.” The set of constellations parameterized by
U(M) x U(M) in Example 3.1 are interesting as we are not required
to compute all pairwise distances in order to compute the diversity
product (sum).

Definition 3.2: Let X be the set {z1, x2, ..., 7, } and F be the free
group on the set X . A subset G C U(M) is called freely generated if
there are elements {g1, gz, ..., gn } C G such that the homomorphism
¢ : F — G with ¢(z;) = g, is an isomorphism.

An immediate consequence of this definition is that every element in
G can be uniquely written as a product of g;’s and g; !*s. The elements
g; are called the generators of (. A freely generated subset G is simply
parameterized by the set

- . !
{af1ab? ---al* | a; isone of gis, pi € Z}.

Take an element ¢ € G with its representation g = [[\_, a?",
we say that the presentation is reduced whenever a; # ;41 for
t =1,...,n — 1. Observe that taking the product of distinct matrices
[T, A: is numerically expensive, however, taking the power of one
matrix A* is much easier (note that for A = U S U~ with 3
diagonal, we have A* = U Zk U™1). Moreover, by considering the
powers of one matrices, we are able to impose the lattice structure
to the constellation, which makes sphere decoding of structured
constellations possible. (see Section VI) Therefore, we are interested
in “normal” elements of G.

Definition 3.3: We say that an element ¢ = [[*_, %' in reduced
form is a normal element whenever a; # a; fori # j. A subset V of
the freely generated set G is said to be a normal constellation if every

nonidentity element in V' is normal.
In the following we limit our searches to positive constellations:

Definition 3.4: An element ¢ in G with the reduced form g =
Hf:1 a;P* is said to be a positive element if p; > 0fori = 1,2,..., k.
A subset V of the freely generated set GG is said to be a positive con-
stellation if every nonidentity element in V is positive.

Positive normal constellations are desirable for numerical searches
as they can be efficiently parameterized and searched. If one wants to
compute the diversity product (or sum) of an arbitrary positive constel-
lation with L elements one still has to compare a total of (5 ) pairs of
matrices. In the sequel, we will impose more structure on a constella-
tion ¥V C G which will guarantee that only L — 1 pair of elements have
to be compared during the diversity product (sum) computation.

Definition 3.5: Two unitary matrices A, B € G are said to be equiv-
alent (denote by A ~ D) if there is a unitary matrix U € G such
that A = UBU ' or A = UB 'U'. [A] will denote all the ma-
trices that are equivalent to A. For a constellation ¥ C (G, we say that
YV ={¥,,¥,,..., ¥} has a weak group structure if for any two dis-
tinct elements ¥;, ¥; the product ¥; ' ¥, is equivalent to some ¥y,.

The reader can verify that we indeed defined an equivalence relation.
Note also that V has a group structure as soon as ¥; ' is always
another element of V and this explains our wording.
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Lemma 3.6: LetV = {¥o =I,¥;,¥,,...,¥;_1} be aconstel-
lation with a weak group structure. In order to compute the diversity
product (sum) it is enough to do L — 1 distance computations.

Proof:

| det(¥; — ;)| = |det(I — @7 ' ¥,)| = | det(I — B)|

where B € V is an element in V equivalent to ¥; ' ¥ ;. This shows the
result for the diversity product. If one is concerned with the diversity
sum, then the same argument still holds if the absolute value of the
determinant | det(:) | is replaced by the Frobenius norm || . || .. O

Based on this lemma, we are interested in finite constellations inside
G whose elements have a weak group structure and are all normal. The
following theorem provides a complete characterization of all these
constellations.

Theorem 3.7: Let ¥V C G be a finite positive normal constellation
(including identity element) with L > 3 elements. If V has a weak
group structure then V takes one of the following forms:

o {I,A A% .. AT 1Y
o {I,AB,A’B? ... A""'B*1}).

where A = ¢?", B = gfj for some ¢ # j.

The proof of Theorem 3.7 is rather involved. In order to make it more
understandable we will divide it in several definitions and lemmas.

Definition 3.8: For any element ¥ € G, we define the length of
¥ = Hle a;** to be

k
length (¥) = Zp,
=1

It is a routine to check that the definition is wel defined and does not
depend on the representation of the element. For the identity element,
one will have length (7) = 0. One immediate consequence from this
definition is that if A ~ B, one will have [length (A)| = |length ( B)|.
The following lemma claims that any freely generated positive weak
group constellation “approximately” takes cyclic form.

Lemma 3.9: LetV = {¥g = I,U,¥s,..., U1} C Gbea
positive constellation of the freely generated set G C U (M ). Suppose
length (¥;) < length (¥;) for: < j.If V is a weak group constella-
tion, then

¥, € [‘Ifl]i

where [\Ill]i = {araz - aslar, az, ..., a; € [¥1]}.

Proof: We first show that length (¥;) < length (¥;) fori < j:
Indeed, if length (¥;) = length(¥;), then length (U] 'W¥,) =
length (¥;) — length (¥;) = 0. That means ¥ ' ¥; ~ I, equivalently
one will have ‘I/;I‘I/]' = I,ie., ¥; = U;. That contradicts the fact
that ¥; and ¥ are distinct.

Consider \Ill_1 W,. Since

0 < length (7' ¥y)
=length (¥,) — length (¥,) < length (¥5)

therefore, \Ilfl\Ilg = U, where Uy ~ ¥,.So T, = U, 0, € [\Ill]z.
Proceeding by induction, one can show ¥ ' ¥y = ¥5 where ¥2 ~
Uy, S0 Uypy = U, Ty € [¥;]5 by induction. d
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Remark 3.10: An immediate observation is that

length (¥;) = i % length (¥1).

Take two positive normal elements in G with their reduced forms

Pm

— ,P1,P2
Uy =aj'ab? - al;

Ty = bT1H22 . blr,

We define the shift operator Sy on the reduced form of a positive

normal element ¥ by induction: S1(¥) = Sq(aftah? - -alm) =
ay® ---abmalt and Sy = Sk o S1. We assume that So(¥) = ¥,

then apparently for a fixed element ¥ the shift operator is periodic.
We have the following lemma.

Lemma 3.11: ¥y ~ ¥, if and only if ¥4 = Si(¥>) for some k.

Proof: The sufficiency part of this lemma is straightforward. So
we have to prove the necessity part. Since ¥ ~ Wo, according to
the definition of equivalence there exists ¢ such that ¢¥; ¢l =, or
W™ =, ! However, since length (c¥1¢™") = length (¥2) > 0
and length (¥, ') < 0, the second case will not happen. The only
possibility is ¥ ¢! = ¥y, We assume that ¢ is generated by only
one generator and further assume ¢ = cll1 with [; > 0, then we will
have

—ly

{ -
A1 p1 P2 ---af,;”cl

citaltal = bPpd2 . pin,

Soc¢i = an and Iy < p,, follows, otherwise, the left-hand side of
the equation above will have negative power, while the right-hand side
only has positive power. This will contradict the uniqueness of the rep-
resentation of the same element. In fact, [y = p,,, since otherwise,
Wy = cltaPrad? ... 2~ This will contradict the fact that ¥ is a
normal element. So with

Pm—1

Pm ,P1 ,
Ay~ A m—1

— K91p92 q
cea = pT1pIz .. pin

one can check m = n and ¥o = S,,,—1 (¥4).

Proceeding by induction, suppose ¢ has the reduced form
1 .02 L1

¢ =citey - ey, then the following equation follows:
PRI C[k+1aP1aP2 e gPm Cflk+1 ceeeTlomlh —papez L pan
162 k1 A1 2 m Cpi 2 01 =010y n -

Without loss of generality, we assume /41 > 0 and apply the same
argument as in the one-generator case. One proves da,, =
lk+1 = pm. Therefore, we reach the following equation:

Chk+1 and

I 12 s —ly —ly —li _ 3913,92 q
ey e S (Wi)eg B ey Zer T = b1T037 D

By induction, ¥5 = Sg, © Spm—1(¥1) = Sk, +m—1(¥1) for some k1.

O

Proof of Theorem 3.7: Pick any two distinct elements ¥;, ¥; € V

having length (¥;) < length (¥ ;). We claim thatif ¥; = aqa2 - - - a4,
then either there exists 1 < k& < m — 1 such that

\I’] = daida - a,kln bz e bl(l,k+1 s
or

‘I/]' = blbz .- 'b101(12 R )
or
o v bl

\I’j = dadi1da - a,mblb

for some [ > 0.
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Suppose that the claim is not true, then for ¥'; = cyca, .. . ¢p, there
exist ki, k2 suchthat0 < k1 <m,1 < ko <m41,and by < ko —1
and ¥ ; will take the following form:

Ui =ajas - apbibs-

biagy ++ am

where by # ay,+1 and b; # ag,—1. (For the special case k1 = 0,
we assume ¢; # a; . For the special case k2 = m+ 1, we assume ¢, #
d,,.) Then ¥ 1 ; would be equivalent to a;21_1 e by,
which in any case will not be equivalent to any positive element ¥, =
dids -+ -d4 or I. That contradicts the fact that V is equipped with a
weak group structure.

As explained above we can further assume that

—1
aply biba-

length (I) < length (¥) < --- < length (¥7_).

If U, is generated by only one generator, i.e., ¥; = ¢7* for some
¢. Since ¥, is a normal element, accordmg to the claim, either ¥, =
U, T, or ¥y = U, ¥, for some ¥s. In either case, ¥, will be equiva-
lent to ¥, while Lemma 3.11 will guarantee Uy = &y, Therefore, we
will have U, = g2p ‘. Proceeding by induction, it can be checked that
¥ = g ¢ for every [. So the constellation will take the first form in
the theorem.

If @4 is generated by two generators, i.e., ¥1 = gt ij for some
i, 7. Accordmg to the claim, we will have ¥y = W, \Ilz or¥, = \I/ Uy
or¥y = g i, gl . Because U is equivalent to ¥, ¥, is a shifted
version of ¥ . Exhausting all the possibilities, the first two cases would
make ¥y a non-normal element, so the only possibility is the third case.

Consider two shifted versions of ¥1:.50(¥;) = g** gfj and 51 (¥,) =
qf’ g¥%. Only So(¥) will satisfy the condition that ¥5 is a normal

element. So the analysis above shows that

Pi P 2p; 2Pj
‘1,2 :gf \I/]{[]-J :gip gj J.

By induction it can be shown that

(k+1)p; (k+1)p7

i ya
Uy =gl Uy’ =g, 9;

So in this case, the constellation will take the second form in the
theorem.

However, the constellation does not exist if ¥; is generated
by more than three elements. Indeed, suppose with the reduced
form ¥, = aftab? -+ al with m > 3, then ¥, will take one of
the following forms: \ilaa’fla’”’- -abm™ . a 1\112(17’2
aPlab? ... qPm U, with Uy being a shifted version of ¥y. But ¥y
would not be a normal element for any of the above form, so there
does not exist weak group constellation for this case. O

Pm
437

preey

A weak group constellation is very group like, while it is not ex-
actly a group. It does keep the advantage of a group constellation:
for example, for any weak group constellation V' taking the second
form in the theorem, only L — 1 computations | det(I — A* B*)| for
k=1,2,...,L—1 are needed to calculate the diversity product. Con-
trary to group codes, the generators can freely be chosen. Moreover,
the restriction to code elements in normal form is very advantageous
during sphere decoding. In the next section, we will mainly use the
second weak group structure as described in Theorem 3.7. Before we
describe these search procedures we would like to illustrate some al-
ternative methods.

It is possible to increase the number of generators to obtain new
structures. For example

Vv ={A*B'C™A,B,C € U(M),

k=0,....p, 1=0,....,q, m=0,...,7}
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For a unitary constellation V = {®;|i = 1,...,L}, wecall Vs =
{U®;V|i =1,..., L} shifted version of V. It will be straightforward
to prove that V; has the same complexity as ¥ when one calculates
the diversity. {A*CB*|A,B,C € U(M), k =0,...,L —1}isa
shifted copies of the second weak group structure in Theorem 3.7. To
see this, note that A¥C'B* = A*CB*C~1C = A¥(CBC H*C. 1t
can checked that A BYH1—k = A (Bf1 )kBLJrl , therefore,

{A*B" T MA,BeUM), k=1,....L}

is also a shifted version of the second form weak group structure.

Also, we can consider the “combination” or the “product” of two
structures. For example, {I, A, AB, ABA, ABAB, ABABA, ...}
is the union of {(AB)*|k = 0,...} and its shifted version
{(AB)*A|k = 0,...}. Another example is the product case: let
Vi = {I,C,C*,C% ...} and V» = {I,A,AB,ABA,...} and
consider the Cartesian product constellation

V=V xV = {AB|A € Vl,B S Vg}

IV. GEOMETRICAL DESIGN OF UNITARY CONSTELLATIONS WITH
GOOD DIVERSITY

For low-dimensional constellations, one may further specify the gen-
erators in the proposed structure. Observe that for both forms of weak
group constellations in Theorem 3.7, one can always assume A is diag-
onal. In the sequel, we design codes using the second form and further
assume that B is real orthogonal, i.e., we consider the following two-di-
mensional constellation

sy fakpk g _ et 0
V={A"B A_<0 6l.y),
B=( % ST o1 L-11 @
—Ssin z COS Z .

There are several ways to design constellations with good diversity
from this specific structure. A natural idea is to do brute-force search
using fine step size. Another approach is to design the constellation
with the help of geometrical intuition. Note that a 2 X 2 complex ma-
trix can be viewed as a vector in C*. In this context, A and B can be
viewed as “rotation transforms” (induced by regular matrix multiplica-
tion) acting on C*. A constellation of the form (4.1) can be viewed as a
set of rotated vectors under the transforms A*B* & =0,1,..., L—1.
Intuition tells us that good constellations can be found if the rotation
angle is symmetrical. Based on that idea and assuming that x, y, z are
the multiples of 27/ L, we found a lot of good codes resulting from this
geometrical symmetry (see the tables in Section V).

The two-dimensional constellation design has been studied in [17].
In that paper, Liang et al. proposed very interesting parametric codes
and many codes with excellent diversity were found. The codes shown
in [17] can be achieved by our design as well. In fact, most of Liang’s
codes belong to a special form of our parameterization (4.1). To the
best of our knowledge, most of our codes shown on the website [6] are
the best codes ever found or never found before.

Example 4.1: A very interesting code with 120 elements is found
using this approach

w/30¢
) : e 0
V= {AkBk|A = < 0 6117r/30i> >

B Coaw/4 sinw/4 k=0.1.....119}.
—sinw/4 cosw/4 -
_ _ 1,/6=vE . :
It can be checked that [[V = Y}V = ; >, i.e., the di-

versity product and the diversity sum are identical to the ones of the
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Comparisons of Four Constellations
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Fig. 2. Two-dimensional weak group constellations and group constellation.
TABLE II TABLE III
WEAK GROUP CONSTELLATION DP DISTANCE SPECTRUM WEAK GROUP CONSTELLATION DS DISTANCE SPECTRUM
distance | distribution
0.3090 360
0.3136 430 distance [ distribution
0.3895 480 0.3090 120
0.3931 1440 0.4402 240
0.4402 240 0.5000 120
0.5000 120 0.5023 480
0.5878 120 0.5457 240
0.6360 1440 0.5878 120
0.6787 480 0.6367 480
0.7071 600 0.6502 240
0.8090 360 0.7071 3000
0.8430 480 0.7598 240
0.8660 120 0.7711 240
0.8979 240 0.8090 120
0.9511 120 0.8380 240
1 60 0.8647 480
0.8660 120
0.8979 240
0.9511 120
S L (Fs)-constellation. We simulated the performance of this code and 1 60

compared it with the performance of the S L2 (Fs5)-constellation. To
our great surprise, our new code performed considerably better than
the S L, (Fs5)-constellation. The constellation V with sphere decoding
outperformed the S L2 (F5)-constellation by about / dB (see Fig. 2).
As the SNR goes higher, the two curves are coming closer though.

In order to understand the difference in the performance of the two
seemingly similar constellations, we investigated the distance spectrum
for the diversity product (DP) and diversity sum (DS) for each of the
constellations. In Tables II and III, we provide the number of pairs of
codewords, which have a certain distance. As we explained before, for
a unitary constellation with L elements, L(L — 1)/2 distance calcula-
tions may produce distances with multiplicities. For example, consider

V as above, 360 out of 7140 pairs of elements have distance 0.3090
(see DP distance spectrum in Table II) .

One can check that the DP distance spectrum of the .S L2 (F5)-con-
stellation is identical to the DS distance spectrum. Table IV shows that
the DS distance spectrum for the S L2 (F5)-constellation has denser
small distance distribution compared to DS spectrum of our constella-
tion and this explains the considerable worse performance of this con-
stellation in our simulations.

Although we have concentrated so far on the design of two-dimen-
sional constellations there is actually no restriction with our approach.
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TABLE IV
S L5 (F5)-CONSTELLATION DP (AND DS) DISTANCE SPECTRUM
distance | distribution
0.3090 720
0.5000 1200
0.5878 720
0.7071 1800
0.8090 720
0.8660 1200
0.9511 720
1 60

A similar “rotation” idea can be applied to other low-dimensional con-
stellation designs. For instance, we can make further specifications to
a three-dimensional weak group constellations

cosr sinz 0
V={A*B" A= —sinz cosz 0
0 0 eV
e 0 0
B=10 cosw sinw |, k=0,1,...,L—1}.
0 —sinw cosw

where =, y, z, w is assumed to take the multiple of 27/ L. Apparently,
algebraic design based on geometrical symmetry can be applied to any
other structure as well. For instance consider the following specified
structures:

: "0
= {A*Bla=(° |
v=isla= (5
Ccos z

B:< ,
—sin z

where we can take x, y to be multiple of 27 /p and z to be multiple of
2 /q. Some of the two-dimensional geometrically found constellations
will be listed together with those numerically found in Tables V and VI.
We also refer to [6] for the designed low-dimensional constellations
from these approaches.

sin z

cos z

V. NUMERICAL DESIGN OF CONSTELLATIONS WITH GOOD DIVERSITY

In order to numerically design constellations, it will be necessary
to have a good parameterization for the set of unitary constellations
having size L, operating with }/ transmit antennas. In this section, we
show how one can use the classical Cayley transform and Simulated
Annealing algorithm to obtain such a parameterization.

A. Cayley Transformation

There are several ways to represent a unitary matrix in a very explicit
way. One elegant way makes use of the classical Cayley transforma-
tion. In order for the correspondence to be self-contained we provide a
short summary. More details are given in [21, Sec. 22] and [10].

Definition 5.1: For acomplex M x M matrix Y which has no eigen-
values at —1, the Cayley transform of Y is defined to be

Y'=(I+Y)'I-Y)

where [ is the M x M identity matrix.

Note that (I 4+ Y") is nonsingular whenever Y has no eigenvalue at
—1. One immediately verifies that (Y °)° = Y. This is in analogy to

the fact that the linear fractional transformation f(z) = H_; has the
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property that f(f(z)) = z. Recall that a matrix M is skew-Hermitian
whenever A* = —A. The set of M x M skew-Hermitian matrices
forms a linear subspace of CM*V = R2M* having real dimension
M? . The main property of the Cayley transformation is summarized in
the following theorem (see, e.g., [10], [21]).

Theorem 5.2: When A is a skew-Hermitian matrix then (I 4+ A) is
nonsingular and the Cayley transform V' := A€ is a unitary matrix. On
the other hand, when V' is a unitary matrix which has no eigenvalues
at —1 then the Cayley transform V¢ is skew-Hermitian.

This theorem allows one to parameterize the open set of U (M) con-
sisting of all unitary matrices whose eigenvalues do not include —1
through the linear vector space of skew-Hermitian matrices. Most op-
timization methods require us to consider the neighborhood of one ele-
ment in U (M), Therefore, the Cayley transformation is very important
for the numerical design of constellations because it makes the local
topology of U (M) clear.

B. Simulated Annealing (SA) Algorithm

In our numerical experiments we have considered several methods.
Because there are a large number of target functions, the best known
optimization algorithms such as Newton’s methods [4], [19] and the
Conjugate Gradient method [4], [19] are difficult to implement. Sur-
prisingly, the Simulated Annealing (SA) algorithm turned out to be
very practical for this problem. For more details about this algorithm,
we refer the reader to [1], [25], [20]. Our implementation of the algo-
rithm can be summarized in the following way: one can find a sample
program on our website [6].

1) Choose a proposed algebraic structure for the constellation.

2) Generate initial generators of the whole constellation. One can
either take an existing constellation as the start point or just take
the initial point randomly.

3) First apply Cayley transform to the old unitary constellation to ob-
tain the corresponding skew-Hermitian constellation, then select
a new skew-Hermitian constellation in the neighborhood of the
old skew-Hermitian constellation according to Gaussian distribu-
tion (with decreasing variances as the algorithm progresses). Next
apply Cayley transform again to the new skew-Hermitian constel-
lation to obtain the new unitary constellation.

4) Calculate the diversity product (or sum) of the newly constructed
constellation.

5) If the new constellation has better diversity product (or sum),
then accept the new constellation. If not, reject the new constel-
lation and keep the old constellation (or accept it according to
Metropolis’s criterion [18]).

6) Check the stopping criterion, if satisfied, then stop, otherwise go
to 2) and continue the iteration.

Example 5.3: As we mentioned before, one can either choose an
existing constellation as the starting point for our numerical method
or just take the initial point randomly. In the sequel, we use the group
constellation G'21,4 in [23]

,k=0,1,...,20,1=0,1,2}.

~a
(e~ en)
[ew]

0.3851.

One can verify that [] Vi
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Comparison of Different Dimensional Constellation
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Fig. 3. Performance of different dimensional constellations with the same rate.

It seems that G214 is already a very good constellation, our algo-
rithm only improves a little (see V- below). However, one can check
for most of the cases, the algorithm will improve much compared to
the original group constellation

Vo ={A"B'|k=0,1,...,20, 1 =0,1,2},

where we get the matrices at the bottom of the page. One verifies that
[TV2 = 0.3874.

Example 5.4: Note that codes based on the proposed structure are
flexible and can be optimized for dimension and any SNR efficiently in
the same way as for extreme SNR cases. Fig. 3 shows the comparison
of three constellations with different dimensions with two receiver an-
tennas.

The first one is a two-dimensional constellations with three elements
(R = 0.7925) and optimal diversity product (.8660 and optimal di-
versity sum 0.8660. The second constellation is a three-dimensional
constellation which has five elements (R = 0.7740) with diversity
product 0.7183 and diversity sum 0.7454. The third constellation is a
four-dimensional one consisting of nine elements (R = 0.7925) with
diversity product 0.5904 and diversity sum 0.6403. Here based on the

structure A* B we used Simulated Annealing to optimize the constel-
lation at 6 dB to obtain the last two constellations.

In [9], packing problems on compact Lie groups are analyzed and the
upper bound for the diversity sum and the diversity product are derived.
Fig. 4 shows the limiting behavior of the two numerically found dimen-
sional structured constellations compared to the upper bound. One can
check [6] for the comparisons for other dimensions.

C. Constellations With Large Diversity

In Tables V and VI we list the best two-dimensional constellations
we found with the techniques described in Sections IV and V. (For re-
sults on the higher dimensional unitary constellation design, one can
check the web site [6].) The tabulated constellations have some of the
best diversity sums and diversity products published so far. All the con-
stellations searched by SA were based on the A* B* structure. For con-
stellations with L elements and parameters x, y, z being multiples of
2w/ L, they are found by geometrical methods using the parameteriza-
tion (4.1). For constellations with L elements and parameters x, y, z
being decimals, they are found by brute force with step size 0.1000
based on the same parameterization (4.1).

0.9415 4 0.3155 % ¢

A =1 0.0160 — 0.0555 * i
0.0579 + 0.0855 * 4

0.0175 4 0.0095 * 4

B = 0.0086 + 0.0100 = 4

—0.4836 + 0.8750 1

0.0573 — 0.0222 x ¢

0.4005 + 0.9136 4

—0.0312 — 0.0099 * 1
0.9997 + 0.0111 %
—0.0082 + 0.0040 * ¢
0.0004 —

0.0496 + 0.0882 x ¢

0.0326 — 0.0212 x ¢

0.1384 — 0.9844 x4
0.0079 + 0.0042 * i
0.9999 + 0.0036 = 7

0.0198 ¢  —0.0045 — 0.0126 *
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Fig. 4. Two-dimensional weak group constellations and upper bound.

TABLE V
DIVERSITY PRODUCT OF TWO-DIMENSIONAL CONSTELLATION BASED ON WEAK GROUP STRUCTURE
Nyunber of | Diversity Product Codes and Comments

2 1 z=m,y=mn,z =0 (optimal)

3 V3/2 x = 27m/3,y = 2r/3, 2 = 0 (optimal)

4 0.7831 z = 0.6000, y = 6.0000, z = 4.4000

5 \/5/8 z=2n/5,y =8n/5,z = 4r/5 (optimal)
8 0.7071 T = 2.3562,y = 3.9270, 2 = 4.7124

9 0.6524 SA searched code

10 0.6124 z=2r/5,y=8xn/5,z=n/5

16 V2/2 x=7/4,y=>5n/4,2=137/8

17 0.5255 SA searched code

18 0.5207 SA searched code

19 0.5128 SA searched code

20 0.5011 x = 1.6500, y = 3.7500, z = 4.0500

24 0.5000 =n/12,y =57/12,z2 = /2

37 0.4461 @ =27/37,y = 61/37, = = 12137

39 0.3984 x =8n/39,y = 347 /39, z = 367/39

40 0.3931 2 = 31/10,y = 117/10, z = 37/4

55 0.3874 z = 2n /55,y = 6871/55,z = 6m/11

57 0.3764 x =27 /57,y = 40w /57, 2 = 487 /57

75 0.3535 x =2n /75,y = 98n /75, z = 967 /75

85 0.3497 z = 267 /85,y = 947 /85, 2 = 187 /17
91 0.3451 x =2r /91,y = 1287 /91, z = 427 /91
96 0.3192 z=Tr/16,y = 297/16,z = 7 /6
105 0.3116 x = 27/105,y = 687/105, z = 847 /105
120 0.3090 x=m/30,y =117/30,z = 7 /4
135 0.2869 x =27 /135,y = 287 /135, z = 687 /135
145 0.2841 2 =27 /145,y = 647 /145, z = 767 /145
165 0.2783 x =2m/33,y =20m/33,z =2xn/5
203 0.2603 x = 27 /203,y = 2907 /203, z = 707 /203
225 0.2499 x = 827 /225,y = 1187 /225, z = 1267 /225
217 0.2511 x =27 /217,y = 2507 /217, z = 1687 /217
225 0.2499 = 8271 /225,y = 1187 /225, z = 1267 /225
240 0.2239 x=n/40,y = 97 /40,z = 7/6
273 0.2152 x =27 /273,y = 2087 /273, = = 1427 /273
295 0.2237 x = 147 /295,y = 1047 /295, z = 227 /59
297 0.1910 x = 2427 /297,y = 5487 /297, z = 547w /297
299 0.1858 w = 87/299, y = 2207/299, = = 187/299
300 0.1736 z =7/150,y = 517 /150, 2 = 57/6




IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 8, AUGUST 2006

TABLE VI

nellmber of Codes and Comments

DIVERSITY SUM OF TWO-DIMENSIONAL CONSTELLATION BASED ON WEAK GROUP STRUCTURE
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ey Diversity Sum
2 1 z=m,y=m,z =0 (optimal)
3 V3/2 z =2m/3,y = 27/3,z = 0 (optimal)
5 5/8 x=27n/b,y =8n/5,z = 4rn/5 (optimal)
9 3/4 x=107/9,y = 47 /3, z = 47 /9 (optimal)
16 V2/2 x=7/4,y =57/4,z = 137/8 (optimal)
18 0.6614 =479,y =27/3,2 =Tn/9
20 0.6338 SA searched code
22 0.6154 SA searched code
24 0.6124 x=7/6,y=n/4,z=>5n/12
28 0.5996 x=3n/8,y=mn/2,z=2r]T
30 0.5934 z=4r /15,y = 7/3,2 = Tx /15
32 0.5734 SA searched code
39 0.5726 = 147/39,y = 407 /39, = = 187 /39
40 0.5499 x =371/20,y = Tr/20,z = 37 /10
42 0.5371 v =4rn /T,y =137/21,z = 7/3
45 0.5342 z=2n/9,y=4n/9,z = 14x/15
52 0.5332 x=m/13,y = 2n /13,2 = 97/26
60 0.5000 x =7/15,y = 4n /15, z = 3w /10
64 0.4852 x =3r/16,y = 537/32,z = 557/32
75 0.4850 2 = 321/75,y = 147 /75,2 = 2/75
85 0.4540 x=27/17,y = 8x /17,2 = 147 /85
95 0.4418 z = 67/19,y = 27/95, 2 = 367/95
105 0.4295 x =27 /105,y = 167 /105, = = 287 /105
106 0.4161 7= 27/53,y = 137/53, 2 = 121/53
120 0.4156 z=n/10,y =7/6,z = 5n/4
123 0.4077 x = 1887 /123,y = 387 /123, 2z = 1827 /123
130 0.4071 x =267/65,y = 5n/13,z = 2r /13
133 0.3971 x = 27 /133,y = 2127 /133, z = 2067 /133
145 0.3949 x = 1387 /145,y = 227 /145, z = 407 /29
150 0.3758 x=m7/15,y =8x /75,2 = 197 /75
155 0.3823 Z=2n/5,y = 267/31, 2 = 587 /31
160 0.3802 x = 697/80,y = 597 /80, 2z = 377 /20
165 0.3760 x = 247 /165,y = 267/165, 2 = 347 /165
180 0.3636 z=7/9,y=97Tr/90,z = 1277 /90
208 0.3501 v =7/13,y = 87/13, = = 657 /104
220 0.3459 x=197/11,y = 1637 /110, z = 1217 /110
240 0.3371 x = T717/120,y = 117 /10, z = 1877 /120
248 0.3291 x =1037/124,y = 397 /31, =z = 1797 /124
276 0.3237 x = 237 /138,y = 157 /69, = = 67 /69
300 0.3126 x=n/75,y = 17n /150, z = 97 /25

D. General Form Constellation Numerical Design

As first illustrated in [16], one can construct 7" x M unitary constel-
lations by using the first M columns of 1" x T unitary constellations.
With this idea, the techniques used above for square unitary constella-
tions can also be applied to design general form unitary constellations..
For simplicity, we describe the idea with the assumption 7' = 2M and
consider the following structure:

Il/[

AFB
{ 0

AeU(T),B=< > k=0,1,....,L —1}.

One can check that at most 2L — 1 distance calculations are needed to
derive the diversity product (sum) with this algebraic structure. We list
some of the numerically found nonsquare constellations in Table VII.
More results can be found in [6].

VI. FAST DECODING OF THE STRUCTURED CONSTELLATION

The complexity of ML decoding for unitary space—time constella-
tions increases exponentially with the number of antennas or the trans-
mission rate. This will preclude its practical use for high transmission
rates or for a large number of antennas. Basically our structured con-
stellations can convert the ML decoding to lattice decoding naturally,
consequently, they admit fast decoding algorithms.

TABLE VII
DIVERSITY PRODUCT AND DIVERSITY SUM FOR NON-SQUARE
CONSTELLATIONS (T" = 5, M = 2)

Size DP Size DS
3 0.8527 3 0.8693
4 0.8152 4 0.8589
5 0.7171 5 0.8243
6 0.7668 6 0.7976
7 0.7493 7 0.7960
8 0.7418 8 0.7844
9 0.7183 9 0.7659
10 0.6608 10 0.7737
20 0.6240 20 0.7243
30 0.5985 30 0.6837
40 0.5552 40 0.6576
50 0.5556 50 0.6392
60 0.5088 60 0.6237
90 0.4487 90 0.5775
300 | 0.3563 300 | 0.4369
600 | 0.2821 600 | 0.3687
900 | 0.2472 900 | 0.3358
3000 | 0.1867 3000 | 0.2461
6000 | 0.1545 6000 | 0.2163
9000 | 0.1296 9000 | 0.1874
10000 | 0.1426 10000 | 0.1735

The principle of sphere decoding [5] is as follows: instead of doing
an exhaustive search over all the lattice points, one can limit its search
area to a sphere with given radius V/C centered at received point. One
can check the complexity of this approach in [5] and in [11].
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We will use the A® B structure to describe how one can apply the
sphere decoding algorithm for demodulation based on our constella-
tions. Suppose A has Schur decomposition

A =Udiag (e, e"2, ... " “M)[*
similarly assume

B = Bdiag (e'"1,¢'%2,...,¢'"PM) B,

Consider unitary differential modulation [13] and denote with X, the
received signal at time block 7. The ML demodulation algorithm in-
volves the following minimization problem:

(k1) = arg min [| X, — A*B'X, |,

Algebraically one can check the equation at the top of the page. So
every entry of X, — A¥B'X ., is a linear combination of trigono-
metric functions cos or sin in the variables %, I, which can be viewed as
lattice points. As demonstrated in [15] and [11], the whole demodula-
tion task has been converted to a least-squares problem. Consequently,
our structured constellation will admit the sphere decoding algorithm.
In [15], a detailed study of the sphere decoding algorithm applied to
constellations from Sp(2) was undertaken.

The complexity (either upper bound or average complexity) of
sphere decoding will depend on the dimension of the lattice. This will
make the weak group structure A* B¥ more remarkable, because in
this case, the algorithm requires considering finding the closest point
in a one-dimensional lattice, which is very simple.

In [3], a very interesting fast demodulation approach is proposed
for diagonal space—time constellations. The authors use numerical ap-
proximation and the Lenstra—Lenstra—Lovdsz (LLL) basis reduction
technique to reduce the decoding complexity. Note that a constellation
with the weak group structure A* essentially is a diagonal constella-
tion (straightforward Schur decomposition will show this), therefore,
the same technique can be applied to this structure. Most importantly,
some other algebraic structures can employ the techniques as well. For
instance, consider the A*B'C™ structure. If we let I go over a large
interval and let k, m stay within a small interval, the structure will be-
come “almost” diagonal. For efficient decoding, one only has to do
exhaustive search for &, m and apply the techniques for diagonal con-
stellations to decode {. Although the decoding complexity will increase
a little, our experiments show the performance will output the diagonal
one remarkably. Exactly the same “almost” diagonal idea can be ap-
plied to other proposed structures.

VII. CONCLUSION AND FUTURE WORK

The diversity product and the diversity sum for unitary constella-
tions are studied from the analysis of the limiting behavior. We pro-
pose algebraic structures, which are suitable for constructing a unitary
space—time constellation and feature fast decoding algorithms. Based
on the presented structure. we construct unitary constellations using ge-
ometrical symmetry and numerical methods. For two dimensions, most
of our codes are better or equal to the currently existing ones. For higher
dimensions, many codes with excellent diversity are found, which were
never found before. Future work may involve analyzing the geometric
aspects (such as geodesics, gradients, and Hessians of the functions,

etc.) on U (M) or the complex Stiefel manifold. Using the optimization
techniques on Riemmannian manifold to optimize the distance spec-
trum of a unitary constellation to further search for good-performing
constellations is under close investigation as well.
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On the Dimensions of Certain LDPC Codes Based on
g-Regular Bipartite Graphs

Peter Sin and Qing Xiang

Abstract—An explicit construction of a family of binary low-density
parity check (LDPC) codes called LU(3, ¢), where ¢ is a power of a prime,
was recently given. A conjecture was made for the dimensions of these
codes when ¢ is odd. The conjecture is proved in this note. The proof
involves the geometry of a four-dimensional (4-D) symplectic vector space
and the action of the symplectic group and its subgroups.

Index Terms—Generalized quadrangle, incidence matrix, low-density
parity check (LDPC) code, symplectic grou.

I. INTRODUCTION

Let V' be a four-dimensional (4-D) vector space over the field F', of ¢
elements. We assume that V' has a nonsingular alternating bilinear form
(v,v") and denote by Sp(V') the group of linear automorphisms of V'
which preserve this form. We choose a symplectic basis eg, €1, €2, €3
of V', with (e;,es—;) = 1,fori = 0,1.

Let P = P(V) be the set of points of the projective space of V.
A subspace of V' is said to be totally isotropic if (v,v') = 0 when-
ever v and v’ are both in the subspace. Let L denote the set of totally
isotropic two-dimensional (2-D) subspaces of V', considered as lines in
P. The pair (P, L), together with the natural relation of incidence be-
tween points and lines, is called the symplectic generalized quadrangle.
Except for in the appendix, the term “line” will always mean an element
of L. It is easy to verify that (P, L) satisfies the following quadrangle
property. Given any line and any point not on the line, there is a unique
line which passes through the given point and meets the given line.

Now fix a point py € P and a line {; € L through po. We can
assume that we chose our basis so that po = (eo)} and o = {eco,e1).
For p € P, denote by pt the set of points on lines through p; p’ €
pL if and only if the subspace of V' spanned by p and p’ is isotropic.
Consider the set Py = P\ pi of points not collinear with po, and the
set L of lines which do not meet {o. Then we can also consider the
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incidence systems (Pi, L), (P, L), and (P, L). Let M(P, L) and
M (P, L) be the binary incidence matrices of the respective incidence
systems, with rows indexed by points and columns by lines. The rows
and columns of M (P, L) have weight ¢ + 1 and, as a consequence of
the quadrangle property, those of M (P;, L) have weight q.

If ¢ is odd we know by Theorem 9.4 of [1] that the 2-rank of M (P, L)
is (¢° + 2¢° + ¢ + 2)/2. Here we prove the following theorem.

Theorem 1.1: Assume ¢ is a power of an odd prime. The 2-rank of
M(Py, L) equals (¢* + 2¢® — 3¢ 4+ 2)/2.

In [2], a family of codes designated LU(3, ¢) was defined in the fol-
lowing way. Let P* and L™ be sets in bijection with F',®, where ¢ is
any prime power. An element (a,b,c) € P* is incident with an ele-
ment [z, y, z] € L* if and only if

y=ar+b and z=ay+ c. 1
The binary incidence matrix with rows indexed by L™ and columns in-
dexed by P* is denoted by H (3, ¢) and the two binary codes having
H (3, ¢) and its transpose as parity check matrices are called LU(3, )
codes. The name comes from [3], where the bipartite graph with parts
P* and L* and adjacency defined by the (1) had been studied previ-
ously.

It is not difficult to show that the incidence systems (P;, L1) and
(P*, L") are equivalent. A detailed proof is given in the Appendix.
Thus, M (P, L) is a parity check matrix of the LU(3, ¢) code given
by the transpose of H (3, ¢) and Theorem 1.1 has the following imme-
diate corollary.

Corollary 1.2: If ¢ is a power of an odd prime, the dimension of
LU(3,q)is (¢° —2¢° + 3¢ — 2)/2.

The corollary was conjectured in [2]. There it was established that
this number is a lower bound when ¢ is an odd prime.

II. RELATIVE DIMENSIONS AND A LOWER BOUND FOR LU(3, ¢)

In this section ¢ is an arbitrary prime power.

Let F»[P] be the vector space of all F,-valued functions on P. We
can think of such a function as a vector in which the positions are in-
dexed by the points of P, and the entries are the values of the function
at the points. For p € P, the characteristic function Y/, is the vector
with 1 in the position with index p and zero in the other positions. The
set of all characteristic functions of points forms a basis of F»[P]. Let
{ € L. Tts characteristic function x, € F4[P] is the function which
takes the value 1 at the ¢ + 1 points of ¢ and zero at all other points.
The subspace of F»[P] spanned by all the x is the F»-code of (P, L),
denoted by C'( P, L). One can think of C'( P, L) as the column space of
M(P, L). For brevity, we will sometimes blur the distinction between
lines and their characteristic functions and speak, for instance, of the
subspace of F',[ P] spanned by a set of lines. Let C'( P, L1 ) be the sub-
space of Fo[ P] spanned by lines in L; . Let C'( P, L1) denote the code
of (P, L), viewed as a subspace of F»>[P], and let C'(P1, L) be the
larger subspace of F»[P;] spanned by the restrictions to P; of the char-
acteristic functions of all lines of L.

Consider the natural projection map

wp, t Fo[P] — Fy[P] )
given by restriction of functions. Its kernel will be denoted by ker 7p, .

Let Z C C(P,Ly) be a set of characteristic functions of lines in
L, which maps bijectively under 7 p, to a basis of C'(P;, L1 ). Let X
be the set of characteristic functions of the ¢ + 1 lines of L through
po and let Xo = X \ {x¢,}. Finally, choose any ¢ lines of L which
meet {y in the ¢ distinct points other than po and let Y be the set of
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