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AUTOMORPHISM GROUPS OF SPACES
OF MINIMAL RATIONAL CURVES
ON FANO MANIFOLDS OF PICARD NUMBER 1

JUN-MUK HWANG AND NGAIMING MOK

Abstract

Let X be a Fano manifold of Picard number 1 and M an irreducible
component of the space of minimal rational curves on X. It is a nat-
ural problem to understand the extent to which the geometry of X is
captured by the geometry of M. In this vein we raise the question
as to whether the canonical map Auto(X) — Auto(M) is an isomor-
phism. After providing a number of examples showing that this may
fail in general, we show that the map is indeed an isomorphism un-
der the additional assumption that the subvariety of M consisting of
members passing through a general point z € X is irreducible and of
dimension > 2.

1. Introduction

Let X be a Fano manifold of Picard number 1 embedded in a projective
space Py. Suppose that X is covered by lines and let M be an irreducible
component of the Hilbert scheme of lines covering X. For x € X, let us denote
by M* C M the subscheme consisting of members of M passing through z.
By the condition that X has Picard number 1, the cardinality §(M¥) of the
underlying variety M?® is strictly bigger than 1 for general © € X (e.g. by
[HMT], Proposition 13]). Aut,(X), the identity component of the automor-
phism group of X, acts naturally on M. This gives a natural homomorphism
Auty(X) — Auto(M). From §(M®*) > 2, this homomorphism is injective. It
is very natural to ask when these two groups are isomorphic. Let us examine
a few examples.

Example 1. When X =P,, =Py, M is just the Grassmannian Gr(2, n+1)
of 2-planes in C"*! and M? is isomorphic to P,,_; for each x € X. It is well
known that Aut,(P,) = Aut,(Gr(2,n + 1)).
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As a matter of fact, the same holds for the family of lines lying on a
Grassmannian under the Pliicker embedding, and also for many rational ho-
mogeneous spaces. However, this is not always true:

Example 2. For the three-dimensional smooth hyperquadric X, the space
M of lines on X is isomorphic to P3 and M® = P;. Thus Aut,(X) =
PSO(5,C), while Aut,(M) = PSL(4,C). Another homogeneous example is
the following. The exceptional simple Lie group G2 has two simple roots, a
long root o; and a short root os. There are three parabolic subgroups up to
conjugacy: P, associated to g;, Ps associated to o, and the Borel subgroup B.
Let X = G3/P;, Q = G2/Ps, and F = Go/B. There are natural projections
p:F — X and p: F — @ induced by the inclusions B C P, B C Ps. Both
1 and p are Pi-bundles. It turns out that fibers of p are sent to curves on
X which are lines under the minimal projective embedding of X and in fact
all lines on X arise this way. Thus @ is naturally isomorphic to the Hilbert
scheme M of lines on X. It is well known that @ is isomorphic to the five-
dimensional smooth hyperquadric. Since p is a P1-bundle, M?* 2= Py for each
x € X. In this case, Aut,(X) = Gg, while Aut,(M) = PSO(7,C).

Example 3. Let Aq,..., 242 € C be 2g + 2 distinct points and B the
hyperelliptic curve of genus g branched at these points. Consider two hyper-
quadrics

2g+2

i=1

2g+2

(D NXP=0)

in Pggy1. Desale and Ramanan ([DR]) have shown that the variety of (g — 2)-
dimensional planes in the intersection Q1 N Qg is isomorphic to SUp(2; 1), the

Q>

moduli space of stable bundles of rank 2 with a fixed determinant of degree 1
on B, and the variety of (g—1)-dimensional planes in Q; NQz is isomorphic to
the Jacobian Jacg. When g = 3, the 5-dimensional Fano variety X = Q1NQ2
has M = SUpg(2;1). For general x € X, M¥ is isomorphic to the complete
intersection of two quadrics in P4. In this case, Aut,(X) = {1} = Aut,(M)
by [NRL Theorem 1 (a)]. On the other hand, when g = 2, M = Jacp for the
3-dimensional Fano variety X = Q1 N Qs. For a general point z € X, M” is
isomorphic to the intersection of two conics in Py, namely, M? consists of 4
points. In this case, Aut,(X) = {1} while Aut,(M) = Jacp.

Example 4. Let X be the smooth Fano threefold defined as the codimen-
sion-3 linear section of the Grassmannian Gr(2,5) of 2-planes in C® under the
Pliicker embedding. By [MU]|, X is a smooth equivariant compactification of
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SL(2,C) modulo the octahedral group and Aut,(X) = PSL(2,C). A line
corresponds to the orbit of the Cartan subgroup of SL(2,C). The space M
of all lines lying on X is isomorphic to Py ([Is| II1.1.6]); thus Aut,(M) =
Aut,(P2) = PSL(3,C). M? is finite.

We list the above examples with the dimension of M® at general x € X:

| X [Ex. 1| BEx. 2[Ex. 3,g=3 | Ex. 3,g=2| Ex. 4|
dim(M?) n—1] 1 2 0 0
Aut,(X) = Aut,(M)? || Yes. | No. Yes. No. No.

Note that Aut,(X) = Aut,(M) when dim(M?) > 2 in the above table. Our
main result says that this is true in general, with one additional assumption,
the irreducibility of M<*. In fact, we will prove this for general Fano manifolds
of Picard number 1 where minimal rational curves play the role of lines.

Theorem 1. Let X be a Fano manifold of Picard number 1, M an irre-
ducible component of the space of minimal rational curves on X as defined
in Section 2, and let M* be the subset consisting of members of M passing
through a general point v € X. If M* is irreducible and dim(M?®) > 2, then
Aut,(X) = Aut,(M).

The definition of M given in Section 2 follows that of [Ko|. There is a
natural morphism M — Chow(X) which is the normalization of its image
MChow  The natural inclusions

Auto(X) C Auto (M) ¢ Aut, (M)

show that the statement of Theorem 1 holds when the space of minimal ra-
tional curves is understood as a subvariety of Chow(X). Let M he the
corresponding subvariety in the Hilbert scheme. Then the natural morphism
M, ppChow ig birational. Denoting the normalization of M7 by

]\m, we have the following inclusions:
Auto(X) C Auto(MT™) ¢ Auty(MHT) ¢ Aut,(M).

Thus the statement of Theorem 1 holds when the space of minimal rational
curves is understood in the sense of Hilbert scheme.

Note that dim(M?)+ 2 is the anti-canonical degree of the minimal rational
curves. So the condition dim(M?*) > 2 is satisfied if the index of X is > 4.
When X C Py and members of M are lines of Py, the tangent morphism
Te + M® — PT,(X) assigning a line through x to its tangent vector at z, is
an embedding because a line is determined by its tangent vector. Since M®
is smooth for general x € X (cf. Section 2), we see that M7 is irreducible if
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dim(M®) > 1 dim(P7,(X)). Thus

Corollary 1. Let X C Py be a Fano manifold of Picard number 1 cov-
ered by lines and M an irreducible component of the Hilbert scheme of lines
covering X. If Kx'' = O(k) with k > dlmT(X) + 2, then Aut,(X) = Aut,(M).

For a smooth complete intersection X of multi-degree (dy, ...,dx) in Py,
X is covered by lines if N — Zle d; > 1 (e.g. [Kd, V. 4.10]). In this case, the
image of the tangent morphism 7,,(M?®) C PT,(X) is a complete intersection
of dimension N —1— Ele d; for a general point x € X. In fact, the equations
defining C, arise from [SR], 1.3.1, equation (3)] when X is a hypersurface. The
equations defining C, for a smooth complete intersection are obtained by
repeating the calculation for the hypersurface case. Thus

Corollary 2. Let X be a smooth complete intersection of multi-degree
(diy...,dg) in Pn. If N — Zle d; > 3, then the identity component of the
automorphism group of the Hilbert scheme of lines on X is isomorphic to that
of X.

Theorem 1 is a direct consequence of the following local Torelli type re-
sult. The statement below is somewhat sketchy. See Section 4 for the precise
statement.

Theorem 2. Let w : X — A be a reqular family of Fano manifolds of
Picard number 1 over the unit disc. Assume that the collection of a component
My of the space of minimal rational curves on the fibers X; of m for t € A
form a flat family ¢ : M — A and for each t € A and a general point x; € X4,
M’ is irreducible and of dimension > 2. If there exists a family of biregular
morphisms g: : Mo — My with go = Id, then {g:} is induced by a family of
biregular morphisms fy : Xo — X¢ with fo = Id.

The proof of Theorem 2 is obtained by a study of special subvarietes in M,
corresponding to points of X;. The condition dim(M}) > 2 is needed in the
Kodaira vanishing of the cohomology of a natural line bundle. One technical
difficulty arises from the possibility of singularity for minimal rational curves.
To handle this difficulty, we need Kebekus’ result ([Ke]) about singularity of
minimal rational curves through a general point of X. For the case when X
is covered by lines or conics under a projective embedding, this problem does
not arise and our proof can be considerably shortened.

From the examples we examined, the condition dim(M?*) > 2 is a necessary
condition. But the irreducibility of M% is satisfied in our examples as long
as dim(M?) > 1. We are not aware of any example X and M for which
dim(M?*) > 1 for general z € X but M?* is not irreducible. In this sense, the
irreducibility condition on M® may eventually be removable in the statement
of Theorem 1 and Theorem 2, although it is essential in the proof presented
below.
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2. Spaces of minimal rational curves

Let X be a Fano manifold of Picard number 1. Choose a component H of
the space Homy,;, (P, X') parametrizing morphisms from P; to X which are
birational over their images, such that

(i) the images of elements of H cover a dense open subset of X;

(ii) for an element h € H, the degree of h*K)_(1 is minimal among all
possible choices of H satisfying (i).

From (i), a general element of H is free, namely, the locally free sheaf
R*T(X) on P; is semi-positive. Let H/7®® be the open subset of H corre-
sponding to free rational curves. The scheme H is smooth at each point
[h] € H/e¢ because H'(P1,h*T(X)) = 0 and the tangent space of H at [h]
is naturally isomorphic to H°(Py, h*T(X)). The group Aut(P;) acts on H.
Under this action, H has a structure of Aut(P;)-principal bundle over an irre-
ducible quasi-projective variety M which is a component of RatCurves™(X),
the normalization of the subvarieties in Chow(X) corresponding to rational
curves of X ([Kol I1.2.15]). We call M a minimal dominating component
of RatCurves” (X) and members of M minimal rational curves. The subset
M/Iree ¢ M corresponding to H/7¢ is Zariski open and smooth. The tangent
space of M at a point corresponding to [h] € H/7°¢ is naturally isomorphic to
the quotient

H(P1,h*T(X))/H(P1,T(Py))
where T'(Py) is regarded as a subsheaf of h*T'(X) by the differential of h.

Let o € P; be a marked base point and Aut(Py,0) the subgroup of
Aut(Py) consisting of automorphisms fixing o. For a general point z of X
let H* be the subscheme of H corresponding to elements of H sending o
to . Then H* C H/7¢. Since h*T(X) is a semi-positive bundle on Pj,
HY(Py,h*T(X) ® m,) = 0 for any [h] € H”, where m, is the maximal ideal
at 0. Thus H? is smooth and the tangent space at a point [h] € H” is naturally
isomorphic to H°(P1, h*T(X) ® m,).

By the natural action of Aut(Pi,0) on H”*, H* has a structure of
Aut(Pq, o)-principal bundle over a smooth quasi-projective variety M* with
finitely many components ([Kd, 11.2.16, 11.3.11.5]). The minimality of the
degree of h*K;(1 in the choice of H implies that M?* is a projective variety.
The tangent space of M® at a point corresponding to [h] € H® is naturally
isomorphic to the quotient

H(P1,h"T(X)®@m,)/H(P1,T(P1) ® m,).
Although H* is a submanifold of H, the induced morphism n : M* —

MIree © M is not necessarily an embedding. Let us see at what point 7 is
not injective. Two elements hi,ho € H* are sent to the same point in M if
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and only if they have the same image in X. If they are different as elements
of M?, hi(o) = ha(0) = x must correspond to a multiple point of the image
C := h1(P1) = h2(P2) and an analytic neighborhood of 0 € Py is sent to
different branches of C' at = by h1 and hs.

Proposition 1. The morphism 1 : M* — MI7¢¢ is an immersion for a
general point x € X.

Proof. Since H® C H/7*¢ is an embedding, 7 is an immersion at [h] € M®
if the Aut(Pq)-orbit of [h] slices H* along the Aut(P;,0)-orbit of [h] in a
transversal way. This is equivalent to

HY(Py, T(P1)) N H(P1,*"T(X)®m,) = H°(Py,T(P1)®m,).

This is precisely the case if h: Py — X is an immersion at 0. Thus Proposi-
tion 1 follows from the following result of S. Kebekus. O

Proposition 2 ([Kel Theorem 3.3 and 3.4]). If v € X is general, any
[h] € H* is an immersion at o, i.e., hhT,(P1) # 0. Furthermore, the tangent
morphism 1, : M* — PT,(X) defined by 7,([h]) = h.T,(P1) is a finite
morphism over its image.

The restriction of the universal Pi-bundle Univ'“(X) — RatCurves"(X)
to M gives the universal P;-bundle p : # — M with a natural morphism
U — X. Furthermore, there exists a natural morphism U : P; x H — U so
that po U = u o ps where ps : P; X H — H is the projection and u : H — M
is the quotient by Aut(P;) ([Kol II.2.15]):

U

PixH — U
lp2 lP
H 2 M.

Let j : H® — U be the restriction of U(o,*) : H — U. This descends to
t: M* — U which is injective. The composition po¢: M® — M is exactly
the immersion 7 in Proposition 1. It follows that ¢ is an embedding and we
can identify M?® with the submanifold ¢(M?®) in Y. Then the restriction of p :
U — M to t(M?) coincides with 7 in Proposition 1. Under this identification,
M?® = p~1(z). In the following, by T'(U) and T(M), we denote the tangent
bundles of the smooth parts of & and M, respectively.

Proposition 3. Let L be the line subbundle of T(U) defined by the relative
tangent vectors of the Pi-bundle p : Ud — M. Then L' restricted to M?® is
ample.

Proof. By the definition of the tangent morphism 7, : M* — PT,(X) in
Proposition 2, L restricted to M® is equivalent to the pull-back of the tauto-
logical line bundle O(—1) on PT,(X) by 7. Since 7, is finite by Proposition
2, L1 is ample on M?. (|
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Proposition 4. On M?, we have the following short exact sequence
0—L—O"—n'T(M)/T(M*) — 0

where T (M%) is regarded as a subbundle of p*T' (M) by the immersion n :
M* — M.
Proof. By the definition of L, we have the following exact sequence on U:

0 —L—TU)— p'T(M)— 0.

Let Npsecy be the normal bundle of M* in U. Restricting the above sequence
to M® and quotienting out by T(M*), we get

0— L — Npyecy — n'T(M)/T(M*) — 0.

Since Nz« cy is a trivial bundle, we get the desired sequence. g

3. Spaces of immersed subvarieties

Let Y be an irreducible quasi-projective variety. An irreducible projective
subvariety Z C Y is called an immersed subvariety if Z lies in the smooth
locus of Y, its normalization Z is smooth and the normalization morphism
v : Z — Z is unramified. The set of immersed subvarieties of Y form a
subscheme Immy of the Hilbert scheme of Y. Let 6 : W — Immy be the
universal family. Given a subscheme V' C Immy, the restriction of 8 to V will
be denoted by 0y : Wy — V.

Take the underlying reduced varieties of all the schemes involved and regard
Wy and V as varieties. Let ¢ : Wv — Wy be the normalization of Wy .
Then a general fiber of 6y o ¢ gives the normalization of the corresponding
fiber of 6y : Wy — V by Seidenberg’s theorem (e.g. [BS| Theorem 1.7.1]).
In particular, there exists a nonempty open subvariety V' of V so that we
have a simultaneous normalization of fibers of 8y : Wy — V’. Thus there
exists a natural stratification of Immy into countably many subschemes so
that over each stratum the universal family can be simultaneously normalized
in the above sense. We will call this SN-stratification (SN standing for
“simultaneous normalization”).

For an immersed subvariety v : Z — Z C Y, the quotient v*T(Y)/T(Z) is
a vector bundle on Z, which will be denoted by N 4. Here T'(Y) means the
tangent bundle of the smooth locus of Y.

Proposition 5. For an immersed subvariety Z CY of a quasi-projective
variety Y, let Z be its normalization and S the SN-stratum of Immy con-
taining the point [Z]. Then dim(S) < dim HO(Z, Ny).
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Proof. Let Ws — S be the simultaneous normalizations of the universal
family over §. To prove the claimed inequality, we may assume that [Z] is
a general point of S, by the upper-semi-continuity of dim H O(Z ,N,) as Z
varies.

By the natural morphism p : W — Y associated to the universal family,
Ws — 8 can be viewed as a deformation of the morphism v : Z — Y in the
sense of [Ho]. We have the Kodaira-Spencer map defined in section 1 of [Ho]

k:Tiz(S) — H(Z,Ny),

which must be injective because [Z] is general in S. O

Let us apply the above discussions to the case Y = M, a minimal dominat-
ing component of RatCurves” (X) for a Fano manifold X of Picard number 1.
Assume that M?* is irreducible for general x € X. Let p: U - M, p: U — X
be the universal family morphisms. Restricting to a Zariski dense open subset
X' C X, we may assume that p' : U|x, — X’ is a smooth morphism with
connected fibers whose fibers over z € X’ correspond to M*. By shrinking
X' if necessary, we may assume that p gives an immersion of each fiber of p’
into M/7¢¢ by Proposition 1. Thus we have, by a simultaneous normalization,
a morphism o : X’ — Imm; defined by

o(x) := [the image of M in M].

By shrinking X further, we can assume that o(X") lies in a single SN-stratum
S of Immyy and p' : U|x — X' is the pull-back of the simultaneous normal-
ization of the universal family over S.

Proposition 6. If dim(M?®) > 1, the morphism o : X' — S defined above
is generically injective.

Proof. Suppose o(z1) = o(x2) for general 1 # x2 in X’. This means
that M* = M?®2. Thus we have a positive dimensional family of rational
curves belonging to M in X passing through z1 and z2. Such a family must
degenerate to a reducible curve passing through x; and z2 by bend-and-break
([Kd, I1.5]). This is a contradiction to the minimal degree condition (ii) in
the choice of H. O

Proposition 7. Suppose dim(M?*) > 2. Then o : X' — S is birational.

Proof. By Proposition 6, it suffices to show that dim(S) < n := dim(X).
By Proposition 5, it is enough to show that for a general fiber F of p/ : U|x: —
X', dim H°(F, Np) = n. F is an irreducible component of M? for a general
z € X. From Proposition 4,

0 — H°(F,L) — H°(F,0") — H°(F,Np) — H'(F,L) — ---

But from the assumption that dim(F) > 2, by Kodaira’s Vanishing Theo-
rem for negative line bundles we get H'(F,L) = 0 = H(F, L) because L~!
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is ample on M? by Proposition 3. It follows that h°(F, Nr) = h°(F,O")
=n. O

For a general h € M, let S* C S be the subscheme consisting of members
of § passing through h. From Proposition 7, the following is evident.

Proposition 8. For a general member h: P — X of M,

S = closure of U [M7]

general zeh(Py)

where [M¥®] denotes the point of S corresponding to the immersed image of
M?® in M. Moreover, under the birational map o : X — S of Proposition 7,
o(h(Py1)) = S" for general h € M.

4. Proof of Theorem 2

We can state Theorem 1 in a precise form as follows.

Theorem 1. Let X be a Fano manifold of Picard number 1 and M a
minimal dominating component of RatCurves™(X). Suppose for a general
x € X, M” is irreducible and of dimension > 2. Then Aut,(X) = Aut,(M).

Theorem 1 is a direct consequence of the following Theorem 2, applied to
the case X = X x A and M = M x A.

Theorem 2. Let w : X — A be a reqular family of Fano manifolds of
Picard number 1 over the unit disc. Assume that there exists a component of
Homy;, (P1, X) which gives a flat family of projective varieties ) : M — A so
that My := 1~ 1(t) is a minimal dominating component for X; := w1(t) for
eacht € A. Suppose M is irreducible of dimension > 2 for a general x; € X,
for all t € A. If there exists a family of bireqular morphisms g : Mo — M,
with go = Id. Then {g:} is induced by a family of biregular morphisms f; :
Xo — X with fo =1d.

Proof. The biregular morphism ¢, induces a biregular morphism gy
Immpz, — Immys, which preserves the SN-stratifications. Let S; be the corre-
sponding stratum of Immy, arising from X; for each ¢ € A. By Proposition 7,
we have the following sequence of birational maps:

-1
Loz Gt .
X() —O>S();>Stt—>Xt.
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Let f; : Xg — X; be the birational map which is the composition of the above,
namely, f; = 0;1 o g« 0 0¢. For a general member h : P; — X of My,

fe(h(P1)) = 07 (gex(o0(h(P1))))

(
= Y(g:+(SE)) by Proposition 8
1 (Stgf(h))
Y(o¢(g:(h)(P1))) by Proposition 8
(h)(P1)

Oy
0y
O
Oy
gt

where the image under a rational map means the strict image. Thus the
birational map f; : Xg — X; sends members of My to members of M; and
vice versa. It follows that f; can be extended to a biregular morphism from
X to X; by the following proposition, which is equivalent to Proposition 4.4
in [HM2]. We reproduce the proof for the readers’ convenience. O

Proposition 9. Let X1, X5 be two Fano manifolds of Picard number 1. Let
My resp. My be a minimal rational component on X1 resp. Xo. Let & : X7 —
X5 be a birational map sending general members of My to general members
of Ms and vice versa. Then ® can be extended to a bireqular morphism.

Proof. We denote by B C X the subvariety on which & fails to be a local
biholomorphism.

First assume that B is of codimension > 2. Since X; and X, are Fano
we may choose k large enough so that both K)_(f and K;(f are very am-
ple. Let s be a pluri-anticanonical section on X5 in T'(Xo, K;(f) Then ®*s
is a well-defined pluri-anticanonical section on X; — B. It extends across
B under the assumption that B is of codimension > 2. It follows that ®
induces a linear monomorphism ¢ : F(XQ,K)_(f) — F(Xl,K)_(f) and hence
a linear isomorphism ¢* : I‘(Xl,K;(f)* — I‘(XQ,K;(;C)* by taking adjoints.
Identifying X; resp. X, as a complex submanifold of PF(Xl,K)_(f)* resp.
PI'(Xo, K)}f)*, ® is nothing other than the restriction of the projectivization
[¢*] : P(D(X1, Kx7)*) = P(I'(X2, K¥)*) to X1, thus a biholomorphism.

Now suppose B has an irreducible component R of codimension 1 in X.
The strict image ®(R) has codimension > 2 in X’. Since X; has Picard
number 1, all M;-curves intersect R. Thus their images under ® will intersect

®(R). But these images are general Ms-curves by assumption, a contradiction
to [Ko, I1.3.7]. O
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