PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 10, October 2008, Pages 3391–3394 S 0002-9939(08)09111-9 Article electronically published on May 22, 2008

A CANCELLATION CONJECTURE FOR FREE ASSOCIATIVE ALGEBRAS

VESSELIN DRENSKY AND JIE-TAI YU

(Communicated by Birge Huisgen-Zimmermann)

ABSTRACT. We develop a new method to deal with the Cancellation Conjecture of Zariski in different environments. We prove the conjecture for free associative algebras of rank two. We also produce a new proof of the conjecture for polynomial algebras of rank two over fields of zero characteristic.

1. Introduction and main results

There is a famous

Conjecture 1.1 (Cancellation Conjecture of Zariski). Let R be an algebra over a field K. If R[z] is K-isomorphic to $K[x_1, \ldots, x_n]$, then R is isomorphic to $K[x_1, \ldots, x_{n-1}]$.

Conjecture 1.1 was proved for n=2 by Abhyankar, Eakin and Heizer [1], and Miyanishi [10]. For n=3, the conjecture was proved by Fujita [5], and Miyanishi and Sugie [11] for zero characteristic, and by Russell [12] for arbitrary fields K. For $n \geq 4$, the conjecture remains open to the best of our knowledge. See [4, 6, 7, 8, 9, 14] for Zariski's conjecture and related topics.

Denote by A * B the free product of two K-algebras A and B. In view of Conjecture 1.1, it is natural and interesting to raise

Conjecture 1.2 (Cancellation Conjecture for Free Associative Algebras). Let R be an algebra over a field K. If R * K[z] is K-isomorphic to $K\langle x_1, \ldots, x_n \rangle$, then R is K-isomorphic to $K\langle x_1, \ldots, x_{n-1} \rangle$.

In this paper we develop a new method based on the conditions of algebraic dependence, which can be used in different environments. In particular, by this method we prove Conjecture 1.2 for n=2:

Theorem 1.3. Let R be an algebra over an arbitrary field K. If R * K[z] is K-isomorphic to $K\langle x,y\rangle$, then R is K-isomorphic to K[x].

The research of the second author was partially supported by an RGC-CERG Grant.

©2008 American Mathematical Society

Received by the editors June 9, 2006, and, in revised form, July 14, 2006, and October 31, 2006.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 16S10; Secondary 13B10, 13F20, 14R10, 16W20

Key words and phrases. Cancellation Conjecture of Zariski, algebras of rank two, polynomial algebras, free associative algebras, centralizers, Jacobians, algebraic dependence.

The research of the first author was partially supported by the Grant MI-1503/2005 of the Bulgarian National Science Fund.

We also produce a new and simple proof for Conjecture 1.1 for n=2 in the zero characteristic case [1]:

Proposition 1.4. Let R be an algebra over a field K of zero characteristic. If R[t] is K-isomorphic to K[x,y], then R is isomorphic to K[x].

2. Preliminaries

Call a set of elements of an associative K-algebra algebraically dependent over K if the K-subalgebra generated by the elements is not free on that generating set. To prove the main results, we need well-known necessary and sufficient conditions for algebraic dependence.

Lemma 2.1. Let K be an arbitrary field, $f, g \in K\langle x_1, \ldots, x_n \rangle$. Then f and g are algebraically dependent over K if and only if [f,g] = 0, where [f,g] = fg - gf is the commutator of f and g.

See Corollary 6.7.4, p. 338, Cohn [3].

Lemma 2.2. Let K be a field of zero characteristic, $f, g \in K[x_1, ..., x_n]$. Then f and g are algebraically dependent over K if and only if $J_{x_i,x_j}(f,g) = 0$ for all $1 \le i < j \le n$, where $J_{x_i,x_j}(f,g)$ is the Jacobian determinant of f and g with respect to x_i and x_j .

See, for instance, Jie-Tai Yu [15], for a proof.

We also need a description of the subset of all elements of a polynomial or a free associative algebra which are algebraically dependent on a fixed element. The following result is due to Bergman [2]. See also Cohn [3].

Lemma 2.3. Let K be an arbitrary field, $f \in K\langle x_1, \ldots, x_n \rangle - K$, C(f) the set of all $g \in K\langle x_1, \ldots, x_n \rangle$ such that [f, g] = 0. Then C(f) = K[u] for some $u \in K\langle x_1, \ldots, x_n \rangle$.

For polynomial algebras, the analogue of the above result has been obtained by Shestakov and Umirbaev [13]:

Lemma 2.4. Let K be a field of zero characteristic, $f \in K[x_1, \ldots, x_n] - K$, C(f) the set of all $g \in K[x_1, \ldots, x_n]$ such that $J_{x_i, x_j}(f, g) = 0$ for all $1 \le i < j \le n$. Then C(f) = K[u] for some $u \in K[x_1, \ldots, x_n]$.

3. Proofs of the main results

Proof of Theorem 1.3. Let $R * K[z] \cong K\langle x,y \rangle$. The endomorphism of R * K[z] taking z to 0 and acting as the identity on R is not one-to-one. Hence the images v and w of the generators x,y under that endomorphisms are algebraically dependent over K. Obviously R is generated by v,w. By Lemma 2.1, it is easy to deduce that any element $f = f(v,w) \in R$ and v are algebraically dependent over K. By Lemma 2.1 and Lemma 2.3, $R \subset K[u]$ for some $u \in R * K[z]$. Write $u = u_0 + u_1$, where $u_0 \in R$, u_1 contains only monomials occurring in u with z-degree at least 1. For any $f \in R$, $f = h(u) = h(u_0 + u_1)$, h is a polynomial over K in one variable. Substituting z = 0, $f = h(u_0)$. Therefore, $R \subset K[u_0]$. Now $K[u_0] \subset R \subset K[u_0]$. This forces $R = K[u_0]$. Therefore, R is K-isomorphic to K[x].

Proof of Proposition 1.4. As R[z] is K-isomorphic to K[x,y], it is easy to deduce that R has a transcendence degree 1 over K. Therefore, there exists a $g \in R - K$ such that for all $f \in R$, f and g are algebraically dependent over K. By Lemma 2.2 and Lemma 2.4, $R \subset K[u]$ for some $u \in R[t]$. Write $u = u_0 + u_1$, where $u_0 \in R$, u_1 contains only monomials occurring in u with z-degree at least 1. For any $f \in R$, $f = h(u) = h(u_0 + u_1)$, h is a polynomial over K in one variable. Substituting z = 0, $f = h(u_0)$. Therefore, $R \subset K[u_0]$. Now $K[u_0] \subset R \subset K[u_0]$. This forces $R = K[u_0]$. Therefore, R is K-isomorphic to K[x].

4. Acknowledgments

The authors are grateful to the Beijing International Center for Mathematical Research for their warm hospitality during the authors' visit when this work was carried out. They also would like to thank L. Makar-Limanov and V. Shpilrain for stimulating discussions, and an anonymous referee for very helpful comments and suggestions.

References

- S. S. Abhyankar, P. Eakin, W. J. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342. MR0306173 (46:5300)
- [2] G. M. Bergman, Centralizers in free associative algebras, Trans. Amer. Math. Soc. 137 (1969), 327–344. MR0236208 (38:4506)
- [3] P. M. Cohn, Free Rings and Their Relations, 2nd edition, London Mathematical Society Monographs 19, Academic Press, Inc., London, 1985. MR800091 (87e:16006)
- [4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, Birkhäuser-Verlag, Basel-Boston-Berlin, 2000. MR1790619 (2001j:14082)
- [5] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 106–110. MR531454 (80i:14029)
- [6] S. Kaliman and M. Zaidenberg, Families of affine planes: The existence of a cylinder, Michigan Math. J. 49 (2001), 353–367. MR1852308 (2002e:14106)
- [7] H. Kraft, Challenging problems on affine n-spaces, Astérisque 237 (1996), 295–317.
 MR1423629 (97m:14042)
- [8] L. Makar-Limanov, P. van Rossum, V. Shpilrain, and J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341–349. MR2059436 (2005d:14094)
- A. A. Mikhalev, V. Shpilrain, and J.-T. Yu, Combinatorial Methods: Free Groups, Polynomials and Free Algebras, CMS Books in Mathematics, Springer, New York, 2004. MR2014326 (2004k:01001)
- [10] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math. 10 (1973), 617–624. MR0337957 (49:2726)
- [11] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11–42. MR564667 (81h:14020)
- [12] P. Russell, On affine-ruled rational surfaces, Math. Ann. 255 (1981), 287–302. MR615851 (82h:14024)
- [13] I. P. Shestakov and U. U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181–196. MR2015333 (2004k:13036)
- [14] V. Shpilrain and J.-T. Yu, Affine varieties with equivalent cylinders, J. Algebra 251 (2002), 295–307. MR1900285 (2003b:14076)
- [15] J.-T. Yu, On relations between Jacobians and minimal polynomials, Linear Algebra Appl. 221 (1995), 19–29. MR1331786 (96c:14014)

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

 $E\text{-}mail\ address: \verb|drensky@math.bas.bg||$

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, HONG KONG SAR, CHINA

 $E\text{-}mail\ address{:}\ \mathtt{yujt@hkucc.hku.hk}$ $E\text{-}mail\ address{:}\ \mathtt{yujietai@yahoo.com}$