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FOR FREE ASSOCIATIVE ALGEBRAS

VESSELIN DRENSKY AND JIE-TAI YU

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We develop a new method to deal with the Cancellation Con-
jecture of Zariski in different environments. We prove the conjecture for free
associative algebras of rank two. We also produce a new proof of the conjecture
for polynomial algebras of rank two over fields of zero characteristic.

1. Introduction and main results

There is a famous

Conjecture 1.1 (Cancellation Conjecture of Zariski). Let R be an algebra over
a field K. If R[z] is K-isomorphic to K[x1, . . . , xn], then R is isomorphic to
K[x1, . . . , xn−1].

Conjecture 1.1 was proved for n = 2 by Abhyankar, Eakin and Heizer [1], and
Miyanishi [10]. For n = 3, the conjecture was proved by Fujita [5], and Miyanishi
and Sugie [11] for zero characteristic, and by Russell [12] for arbitrary fields K. For
n ≥ 4, the conjecture remains open to the best of our knowledge. See [4, 6, 7, 8, 9,
14] for Zariski’s conjecture and related topics.

Denote by A ∗ B the free product of two K-algebras A and B. In view of
Conjecture 1.1, it is natural and interesting to raise

Conjecture 1.2 (Cancellation Conjecture for Free Associative Algebras). Let R
be an algebra over a field K. If R ∗K[z] is K-isomorphic to K〈x1, . . . , xn〉, then R
is K-isomorphic to K〈x1, . . . , xn−1〉.

In this paper we develop a new method based on the conditions of algebraic
dependence, which can be used in different environments. In particular, by this
method we prove Conjecture 1.2 for n = 2:

Theorem 1.3. Let R be an algebra over an arbitrary field K. If R ∗ K[z] is K-
isomorphic to K〈x, y〉, then R is K-isomorphic to K[x].
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We also produce a new and simple proof for Conjecture 1.1 for n = 2 in the zero
characteristic case [1]:

Proposition 1.4. Let R be an algebra over a field K of zero characteristic. If R[t]
is K-isomorphic to K[x, y], then R is isomorphic to K[x].

2. Preliminaries

Call a set of elements of an associative K-algebra algebraically dependent over
K if the K-subalgebra generated by the elements is not free on that generating set.
To prove the main results, we need well-known necessary and sufficient conditions
for algebraic dependence.

Lemma 2.1. Let K be an arbitrary field, f , g ∈ K〈x1, . . . , xn〉. Then f and g are
algebraically dependent over K if and only if [f, g] = 0, where [f, g] = fg − gf is
the commutator of f and g.

See Corollary 6.7.4, p. 338, Cohn [3].

Lemma 2.2. Let K be a field of zero characteristic, f , g ∈ K[x1, . . . , xn]. Then
f and g are algebraically dependent over K if and only if Jxi,xj

(f, g) = 0 for all
1 ≤ i < j ≤ n, where Jxi,xj

(f, g) is the Jacobian determinant of f and g with
respect to xi and xj.

See, for instance, Jie-Tai Yu [15], for a proof.
We also need a description of the subset of all elements of a polynomial or a

free associative algebra which are algebraically dependent on a fixed element. The
following result is due to Bergman [2]. See also Cohn [3].

Lemma 2.3. Let K be an arbitrary field, f ∈ K〈x1, . . . , xn〉 − K, C(f) the set
of all g ∈ K〈x1, . . . , xn〉 such that [f, g] = 0. Then C(f) = K[u] for some u ∈
K〈x1, . . . , xn〉.

For polynomial algebras, the analogue of the above result has been obtained by
Shestakov and Umirbaev [13]:

Lemma 2.4. Let K be a field of zero characteristic, f ∈ K[x1, . . . , xn] − K, C(f)
the set of all g ∈ K[x1, . . . , xn] such that Jxi,xj

(f, g) = 0 for all 1 ≤ i < j ≤ n.
Then C(f) = K[u] for some u ∈ K[x1, . . . , xn].

3. Proofs of the main results

Proof of Theorem 1.3. Let R ∗ K[z] ∼= K〈x, y〉. The endomorphism of R ∗ K[z]
taking z to 0 and acting as the identity on R is not one-to-one. Hence the images v
and w of the generators x, y under that endomorphisms are algebraically dependent
over K. Obviously R is generated by v, w. By Lemma 2.1, it is easy to deduce
that any element f = f(v, w) ∈ R and v are algebraically dependent over K. By
Lemma 2.1 and Lemma 2.3, R ⊂ K[u] for some u ∈ R ∗ K[z]. Write u = u0 + u1,
where u0 ∈ R, u1 contains only monomials occurring in u with z-degree at least 1.
For any f ∈ R, f = h(u) = h(u0 + u1), h is a polynomial over K in one variable.
Substituting z = 0, f = h(u0). Therefore, R ⊂ K[u0]. Now K[u0] ⊂ R ⊂ K[u0].
This forces R = K[u0]. Therefore, R is K-isomorphic to K[x]. �
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Proof of Proposition 1.4. As R[z] is K-isomorphic to K[x, y], it is easy to deduce
that R has a transcendence degree 1 over K. Therefore, there exists a g ∈ R − K
such that for all f ∈ R, f and g are algebraically dependent over K. By Lemma
2.2 and Lemma 2.4, R ⊂ K[u] for some u ∈ R[t]. Write u = u0 +u1, where u0 ∈ R,
u1 contains only monomials occurring in u with z-degree at least 1. For any f ∈ R,
f = h(u) = h(u0 + u1), h is a polynomial over K in one variable. Substituting
z = 0, f = h(u0). Therefore, R ⊂ K[u0]. Now K[u0] ⊂ R ⊂ K[u0]. This forces
R = K[u0]. Therefore, R is K-isomorphic to K[x]. �
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MR1423629 (97m:14042)

[8] L. Makar-Limanov, P. van Rossum, V. Shpilrain, and J.-T. Yu, The stable equivalence
and cancellation problems, Comment. Math. Helv. 79 (2004), 341–349. MR2059436
(2005d:14094)

[9] A. A. Mikhalev, V. Shpilrain, and J.-T. Yu, Combinatorial Methods: Free Groups, Polynomi-
als and Free Algebras, CMS Books in Mathematics, Springer, New York, 2004. MR2014326
(2004k:01001)

[10] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math. 10 (1973), 617–624.
MR0337957 (49:2726)

[11] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto
Univ. 20 (1980), 11–42. MR564667 (81h:14020)

[12] P. Russell, On affine-ruled rational surfaces, Math. Ann. 255 (1981), 287–302. MR615851
(82h:14024)

[13] I. P. Shestakov and U. U. Umirbaev, Poisson brackets and two-generated subalgebras of rings
of polynomials, J. Amer. Math. Soc. 17 (2004), 181–196. MR2015333 (2004k:13036)

[14] V. Shpilrain and J.-T. Yu, Affine varieties with equivalent cylinders, J. Algebra 251 (2002),
295–307. MR1900285 (2003b:14076)

[15] J.-T. Yu, On relations between Jacobians and minimal polynomials, Linear Algebra Appl.
221 (1995), 19–29. MR1331786 (96c:14014)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0306173
http://www.ams.org/mathscinet-getitem?mr=0306173
http://www.ams.org/mathscinet-getitem?mr=0236208
http://www.ams.org/mathscinet-getitem?mr=0236208
http://www.ams.org/mathscinet-getitem?mr=800091
http://www.ams.org/mathscinet-getitem?mr=800091
http://www.ams.org/mathscinet-getitem?mr=1790619
http://www.ams.org/mathscinet-getitem?mr=1790619
http://www.ams.org/mathscinet-getitem?mr=531454
http://www.ams.org/mathscinet-getitem?mr=531454
http://www.ams.org/mathscinet-getitem?mr=1852308
http://www.ams.org/mathscinet-getitem?mr=1852308
http://www.ams.org/mathscinet-getitem?mr=1423629
http://www.ams.org/mathscinet-getitem?mr=1423629
http://www.ams.org/mathscinet-getitem?mr=2059436
http://www.ams.org/mathscinet-getitem?mr=2059436
http://www.ams.org/mathscinet-getitem?mr=2014326
http://www.ams.org/mathscinet-getitem?mr=2014326
http://www.ams.org/mathscinet-getitem?mr=0337957
http://www.ams.org/mathscinet-getitem?mr=0337957
http://www.ams.org/mathscinet-getitem?mr=564667
http://www.ams.org/mathscinet-getitem?mr=564667
http://www.ams.org/mathscinet-getitem?mr=615851
http://www.ams.org/mathscinet-getitem?mr=615851
http://www.ams.org/mathscinet-getitem?mr=2015333
http://www.ams.org/mathscinet-getitem?mr=2015333
http://www.ams.org/mathscinet-getitem?mr=1900285
http://www.ams.org/mathscinet-getitem?mr=1900285
http://www.ams.org/mathscinet-getitem?mr=1331786
http://www.ams.org/mathscinet-getitem?mr=1331786


3394 VESSELIN DRENSKY AND JIE-TAI YU

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia,

Bulgaria

E-mail address: drensky@math.bas.bg

Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China

E-mail address: yujt@hkucc.hku.hk

E-mail address: yujietai@yahoo.com

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


	1. Introduction and main results
	2. Preliminaries
	3. Proofs of the main results
	4. Acknowledgments
	References

