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SIGN CHANGES OF THE ERROR TERM IN WEYL’S LAW

FOR HEISENBERG MANIFOLDS

KAI-MAN TSANG AND WENGUANG ZHAI

Abstract. Let R(T ) be the error term in Weyl’s law for the (2l+ 1)-dimen-
sional Heisenberg manifold (Hl/Γ, gl). In this paper, several results on the sign
changes and odd moments of R(t) are proved. In particular, it is proved that for

some sufficiently large constant c, R(t) changes sign in the interval [T, T+c
√
T ]

for all large T . Moreover, for a small constant c1 there exist infinitely many

subintervals in [T, 2T ] of length c1
√
T log−5 T such that ±R(t) > c1tl−1/4

holds on each of these subintervals.

1. Introduction

Let (M, g) be a closed n-dimensional Riemannian manifold with metric g and
Laplace-Beltrami operator Δ. Let N(t) denote its spectral counting function, which
is defined as the number of the eigenvalues of Δ not exceeding t. Hörmander [13]
proved that Weyl’s law

(1.1) N(t) =
vol(Bn)vol(M)

(2π)n
tn/2 +O(t(n−1)/2)

holds, where vol(Bn) is the volume of the n-dimensional unit ball.
Let

R(t) = N(t)− vol(Bn)vol(M)

(2π)n
tn/2.

Hörmander’s estimate (1.1) in general is sharp, as the well-known example of the
sphere Sn with its canonical metric shows [13]. However, it is a very difficult
problem to determine the optimal bound of R(t) in any given manifold, which
depends on the properties of the associated geodesic flow. Many improvements
have been obtained for certain types of manifolds; see [1, 2, 3, 4, 7, 10, 14, 17, 20,
22, 25, 29, 30, 31].

1.1. Weyl’s law for T
2: The Gauss circle problem. The simplest compact

manifold with integrable geodesic flow is the 2-torus T2 = R
2/Z2. The exponential

functions e(mx + ny)(m,n ∈ Z) form a basis of eigenfunctions of the Laplace
operator Δ = ∂2

x+∂2
y , which acts on functions on T

2. The corresponding eigenvalues

are 4π2(m2 + n2),m, n ∈ Z. The spectral counting function

NI(t) = {λj ∈ Spec(Δ) : λj ≤ t}
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is equal to the number of lattice points of Z2 inside a circle of radius
√
t/2π. The

well-known Gauss circle problem is the study of the properties of the error term of
the function NI(t).

In this case, formula (1.1) becomes

(1.2) NI(t) =
t

4π
+O(t1/2),

which is the classical result of Gauss. Let RI(t) denote the error term in (1.2).
Many authors improved the upper bound estimate of RI(t). The latest result is due
to Huxley [14], which reads

RI(t) � t131/416 log26947/8320 t.(1.3)

Hardy [11] conjectured that

(1.4) RI(t) � t1/4+ε.

Cramér [5] proved that

lim
T→∞

T−3/2

∫ T

1

|RI(t)|2dt = C, C =
1

6π3

∞∑
n=1

r2(n)

n3/2
,

which is consistent with Hardy’s conjecture. Here r(n) denotes the number of ways
in which n can be written as a sum of two squares.

Ivić [15] first used the large value technique to study the higher power moments
of RI(t). He proved that the estimate∫ T

1

|RI(t)|Adt � T 1+A/4+ε(1.5)

holds for each fixed 0 ≤ A ≤ 35/4. The value of A for which (1.5) holds is closely
related to the upper bound of RI(t). If we insert the estimate (1.3) into Ivić’s
machinery, we get that (1.5) holds for 0 ≤ A ≤ 262/27.

The first author [28] studied the third and the fourth moments of RI(t). He
proved the following two asymptotic formulas:∫ T

1

R3
I(t)dt = c3T

7/4 +O(T 7/4−1/14+ε),(1.6)

∫ T

1

R4
I(t)dt = c4T

2 +O(T 2−1/23+ε),(1.7)

where c3 and c4 are explicit constants.
In [30], the second author proved by a unified method that the asymptotic for-

mula

(1.8)

∫ T

1

Rk
I (t)dt = ckT

1+k/4 +O(T 1+k/4−δk+ε)

holds for 3 ≤ k ≤ 9, where ck and δk > 0 are explicit constants.

1.2. Weyl’s law for (2l+ 1)-dimensional Heisenberg manifold. Let l ≥ 1 be
a fixed integer and (Hl/Γ, g) be a (2l + 1)-dimensional Heisenberg manifold with
a metric g. When l = 1, Petridis and Toth [25] proved that R(t) = O(t5/6 log t)
for a special metric. Later in [4] this bound was improved to O(t119/146+ε) for all
left-invariant Heisenberg metrics. For l > 1 Khosravi and Petridis [20] proved that
R(t) = O(tl−7/41) holds for rational Heisenberg manifolds. In both [4] and [20] they
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THE ERROR TERM IN WEYL’S LAW FOR HEISENBERG MANIFOLDS 2649

first established a ψ-expression of R(t) and then used the van der Corput method
of exponential sums. Substituting Huxley’s result of [14] into the arguments of [4]
and [20], we can get that the estimate

(1.9) R(t) = O(tl−77/416(log t)26947/8320)

holds for all rational (2l + 1)-dimensional Heisenberg manifolds.
It was conjectured that for rational Heisenberg manifolds, the pointwise estimate

(1.10) R(t) � tl−1/4+ε

holds, which was proposed in Petridis and Toth [25] for the case l = 1 and in
Khosravi and Petridis [20] for the case l > 1. As an evidence of this conjecture,
Petridis and Toth proved the following L2 result:∫

I3

∣∣∣∣N(t; �u)− 1

6π2
vol(M(�u))t3/2

∣∣∣∣
2

d�u ≤ Cδt
3/2+δ

for the 3-dimensional Heisenberg manifold H1, where N(t; �u) is the counting func-
tion for H1 with the metric

g(�u) =

⎛
⎝ u−1

1 0 0
0 u−1

2 0
0 0 u−1

3

⎞
⎠

for any �u = (u1, u2, u3) ∈ I3, and I = [1− ε, 1 + ε]. They also proved

1

T

∫ 2T

T

∣∣∣∣N(t)− 1

6π2
vol(M)t3/2

∣∣∣∣ dt � T 3/4.

Now let M = (Hl/Γ, gl) be a (2l+ 1)-dimensional Heisenberg manifold with the
metric

gl :=

(
I2l×2l 0
0 2π

)
,

where I2l×2l is the identity matrix.
Khosravi and Toth [21] proved that

(1.11)

∫ T

1

R(t)2dt = C2,lT
2l+1/2 +O(T 2l+1/4+ε),

where C2,l is an explicit constant.
Khosravi [19] proved that the asymptotic formula

(1.12)

∫ T

1

R3(t)dt = C3,lT
3l+1/4 +O(T 3l+3/14+ε)

is true for some explicit constant C3,l.
In [32] the second author proved that the asymptotic formula

(1.13)

∫ T

1

Rk(t)dt = Ck,lT
k(l−1/4)+1 +O(T k(l−1/4)+1−ηk+ε)

holds true for any 3 ≤ k ≤ 9, where Ck,l and ηk > 0 are explicit constants.
Recently, Nowak [23, 24] proved that the estimate

lim sup
t→∞

R(t)

tl−1/4ωl(t)
> 0
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holds with

ωl(t) =

{
(log t)1/4, if l is even,
(log2 t log3 t)

1/4, if l is odd,

where logr t = log logr−1 t, log1 t = log t.

Notation. For a real number t, let [t] denote the integer part of t, {t} = t− [t], ‖t‖ =
min({t}, 1−{t}), e(t) = e2πit. ε always denotes a sufficiently small positive constant.
R,Z,N denote the set of real numbers, the set of integers, and the set of positive
integers, respectively. d(n) denotes the Dirichlet divisor function. Throughout this
paper, L always denotes log T.

2. Sign changes of R(t)

From now on, we always suppose that R(t) denotes the error term in Weyl’s law
for the (2l + 1)-dimensional Heisenberg manifold (Hl/Γ, gl).

In [12], Heath-Brown and the first author studied the sign changes of the error
term RI(t). They proved that for a suitable constant C > 0, RI(t) changes sign

on the interval [T, T + C
√
T ] for every sufficiently large T. Here the length

√
T is

almost best possible since they proved that in the interval [T, 2T ] there are many

subintervals of length �
√
T log−5 T such that RI(t) does not change sign in any

of these subintervals.
In this paper we shall show that similar results hold for R(t). More precisely, we

have the following theorems.

Theorem 1. Let c1 > 0 be a sufficiently small constant and c2 > 0 be a sufficiently
large constant. For any real-valued function g(t) satisfying |g(t)| ≤ c1t

l−1/4, the

function R(t) + g(t) changes sign at least once in the interval [T, T + c2
√
T ] for

every sufficiently large T . In particular, there exist t1, t2 ∈ [T, T + c2
√
T ] such that

R(t1) ≥ c1t
l−1/4
1 and R(t2) ≤ −c1t

l−1/4
2 .

Theorem 2. There exist three positive absolute constants c3, c4, c5 such that, for
any large parameter T , there are at least c3

√
T log5 T disjoint subintervals of length

c4
√
T log−5 T in [T, 2T ] such that ±R(t) > c5t

l−1/4 whenever t lies in any of these
subintervals. We also have the estimate

meas{t ∈ [T, 2T ] : ±R(t) > c5t
l−1/4} � T.

Remark 1. Our proof of Theorem 2 is a variant of the proof of Theorem 2 in Section
3 of [12]. However, our approach can prove that R(t) (respectively −R(t)) has large

values on long intervals of length �
√
T log−5 T.

As an application of Theorem 2, we study the Ω-result of the error term in the
asymptotic formula (1.13) for odd k. For any integer k ≥ 2, define

Fk,l(T ) :=

∫ T

1

Rk(t)dt− Ck,lT
k(l−1/4)+1.

We then have the following

Theorem 3. The estimate

Fk,l(T ) = Ω(T k(l−1/4)+1/2 log−5 T )

holds for any fixed odd integer k ≥ 3.
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THE ERROR TERM IN WEYL’S LAW FOR HEISENBERG MANIFOLDS 2651

Remark 2. The results of [32] show that (1.13) should be true for any integer k ≥ 3.
However, up to the present we can only prove it for 3 ≤ k ≤ 9. Theorem 3 provides
an Ω-result for any odd k ≥ 3.

The corresponding result on RI(t) proved in [12] can be improved slightly via
the same approach. We state it as the following theorem.

Theorem 4. There exist three positive absolute constants c6, c7, c8 such that, for
any large parameter T , there are at least c6

√
T log3 T disjoint subintervals of length

c7
√
T log−3 T in [T, 2T ] such that ±RI(t) > c8t

1/4 whenever t lies in any of these
subintervals. We also have the estimate

meas{t ∈ [T, 2T ] : ±RI(t) > c8t
1/4} � T.

Remark 3. By Theorem 4, the argument of Theorem 3 proves that the formula∫ T

1

Rk
I (t)dt = ckT

1+k/4 +Ω(T (k+2)/4 log−3 T )

holds for any odd integer k ≥ 3.
For the error term Δ(x) in the divisor problem, the asymptotic formula (see [28]

and [30])

(2.1)

∫ T

1

Δk(x)dx = CkT
k/4+1 +O(T k/4+1−ηk)

holds for any integer 3 ≤ k ≤ 9, where Ck and ηk are explicit constants. In [16],
Ivić and the second author proved the estimate∫ T

1

Δk(x)dx− CkT
k/4+1 = Ω(Gk+1(T ) log−1 T )

for any k ≥ 2, where

G(x) = (x log x)1/4(log log x)
3
4 (2

4/3−1)(log log log x)−5/8

is the Ω-estimate of Δ(x) proved by Soundararajan [26]. In view of the work in
[12], the proof of Theorem 3 implies that, for any odd integer k ≥ 3, the estimate
Ω(Gk+1(T ) log−1 T ) can be substantially improved to Ω(T (k+2)/4 log−5 T ). A sim-
ilar result also holds for E(t), the error term in the mean square of the Riemann
zeta-function ζ(s) over the critical line.

3. Background of Heisenberg manifolds

and the analogue Voronoi formula for R(2πx)

In this section, we first review some background of Heisenberg manifolds. The
reader can refer to [6], [9], [27] for more details.

3.1. Heisenberg manifolds. Suppose x ∈ R
l is a row vector and y ∈ R

l is a
column vector. Define

γ(x, y, t) =

⎛
⎝ 1 x t

0 Il y
0 0 1

⎞
⎠ , X(x, y, t) =

⎛
⎝ 0 x t

0 0 y
0 0 0

⎞
⎠ .

The (2l + 1)-dimensional Heisenberg group Hl is defined by

Hl = {γ(x, y, t) : x, y ∈ R
l, t ∈ R},
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and its Lie algebra is

Hl = {X(x, y, t) : x, y ∈ R
l, t ∈ R}.

We say Γ is a uniform discrete subgroup of Hl if Hl/Γ is compact. A (2l + 1)-
dimensional Heisenberg manifold is a pair (Hl/Γ, g) for which Γ is a uniform discrete
subgroup of Hl and g is a left Hl-invariant metric.

For every l-tuple r = (r1, r2, · · · , rl) ∈ N
l such that rj |rj+1 (j = 1, 2, · · · , l − 1),

let rZl denote the l-tuple x = (x1, x2, · · · , xl) with xj ∈ rjZ. Define

Γr = {γ(x, y, t) : x ∈ rZl, y ∈ rZl, t ∈ Z}.

It is clear that Γr is a uniform discrete subgroup of Hl. According to Theorem
2.4 of [9], the subgroup Γr classifies all the uniform discrete subgroups of Hl up
to automorphisms. Thus (see [9], Corollary 2.5) given any Riemannian Heisenberg
manifoldM = (Hl/Γ, g), there exists a unique l-tuple r as before and a left-invariant
metric g̃ on Hl such that M is isometric to (Hl/Γ, g̃). So (see [9], 2.6(b)) we can
replace the metric g by φ∗g, where φ is an inner automorphism such that the direct
sum split of the Lie algebra Hl = R

2l⊕Z is orthogonal . Here Z is the center of the
Lie algebra and

R
2l =

⎧⎨
⎩
⎛
⎝ 0 x 0

0 0 y
0 0 0

⎞
⎠ : x, y ∈ R

l

⎫⎬
⎭ .

With respect to this orthogonal split of Hl the metric g has the form(
h 0
0 g2l+1

)
,

where h is a positive-definite 2l × 2l matrix and g2l+1 > 0 is a real number.
The volume of the Heisenberg manifold is given by

vol(Hl/Γ, g) = |Γr|
√
det(g)

with |Γr| = r1r2 · · · rl for r = (r1, r2, · · · , rl).

3.2. The spectrum of Heisenberg manifolds. Let Σ be the spectrum of the
Laplacian on M = (Hl/Γ, gl), where the eigenvalues are counted with multiplicities.
According to [9] (p. 258), Σ can be divided into two parts, Σ1 and Σ2, where Σ1 is
the spectrum of 2l-dimensional torus and Σ2 contains all eigenvalues of the form

2πm2 + 2πm(2n1 + · · ·+ 2nl + l),m ∈ N, nj ∈ N ∪ {0},

each eigenvalue counted with the multiplicity 2ml.

3.3. The Voronoi-type formula for R(2πx). In [32] the second author proved
an analogue Voronoi formula for R∗(x) := R(2πx). Suppose T ≥ 10 is a large
parameter, L = log T . Suppose T ≤ x ≤ 2T,H ≥ T , and J = [(L − logL)/2 log 2].
Then we have

R∗(x) =
22−lxl−1/4

(l − 1)!π

∑
1≤n≤H2(22J+1+1/2)

τl(n;H,T )

n3/4
cos

(
2π

√
xn− π

4

)
(3.1)

+O(T l−1/2G(x) + T l−1/2L2),
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where

τl(n;H,T ) : =
∑

n=h(2r−h),1≤h≤H

h≤r≤h(22J+1+1/2)

e(lh/2)h1/2

(2r − h)1/2

(
1− h

2r − h

)l−1

,(3.2)

G(x) =
∑

m≤
√
2T

min

(
1,

1

H‖ x
2m − m

2 + l
2‖

)
.(3.3)

We note that if n ≤ TL−1, then

(3.4) τl(n;H,T ) = τl(n) :=
∑

n=h(2r−h)

h≤r

e(lh/2)h1/2

(2r − h)1/2

(
1− h

2r − h

)l−1

.

Remark 3.1. There is an error in the definition of τl(n) in [32], where the important
condition h ≤ r was omitted.

Remark 3.2. The term T l−1/2L2 in (3.1) reads as T l−1/2L3 in Proposition 6.1 of
[32]. However, by a little more analysis in Section 6.2 of [32], we see that T l−1/2L3

can be replaced by T l−1/2L2.

4. Proof of Theorem 1

In this section we prove Theorem 1. We follow the approach of [12].
Let n0 denote the smallest integer n such that τl(n) �= 0. From the definition of

τl(n) it is easy to see that n0 = 1 if l = 1 and n0 = 3 if l > 1, and indeed

τl(n0) =

{
−1, if l = 1,
e(l/2)31/2−l2l−1, if l > 1.

Suppose |g(t)| ≤ c1t
l−1/4. Let

R∗∗(t) = t−(2l−1/2)(R(2πt2) + g(2πt2)), t ≥ 1,(4.1)

and define

Kζ(u) := (1− |u|)(1 + ζ sin 2πα
√
n0u), u ≥ 1,(4.2)

where ζ = 1 or −1 and α > 2 is a large constant.
It is easy to see that Theorem 1 follows from Lemma 4.1 below.

Lemma 4.1. Suppose T ≥ 10 is a large parameter. Then for each
√
T ≤ t ≤

√
2T ,

we have ∫ 1

−1

R∗∗(t+ αu)Kζ(u)du = − ζ21−lτl(n0)

(l − 1)!πn
3/4
0

sin(2π
√
n0t−

π

4
) +O(α−1)(4.3)

+O(t−(2l−1/2) sup
|u|≤1

|g(2π(t+ αu)2)|+ t−1/2 log2 t).
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Proof. From (3.1) and the definition of n0 we have

t−(2l−1/2)R∗(t2) =
22−l

(l − 1)!π

∑
n0≤n≤H2(22J+1+1/2)

τl(n;H,T )

n3/4
(4.4)

× cos
(
2πt

√
n− π

4

)
+O(t−1/2G1(t) + t−1/2 log2 t),

G1(t) =
∑

m≤
√
2T

min

(
1,

1

H‖ t2

2m − m
2 + l

2‖

)
.(4.5)

We first estimate the integral
∫ 1

−1
G1(t+ αu)du. It is well known that

(4.6) min(1,
1

H‖r‖ ) =
∞∑

h=−∞
a(h)e(hr)

with

a(0) � logH

H
, a(h) � min(

logH

H
,
H

h2
), h �= 0.

Thus we have∫ 1

−1

G1(t+ αu)du =

∞∑
h=−∞

a(h)
∑

m≤
√
2T

e

(
ht2

2m
− hm

2
+

hl

2

)
(4.7)

×
∫ 1

−1

e

(
2htαu+ hα2u2

2m

)
du

�
√
T |a(0)|+

∞∑
h=1

|a(h)|
∑

m≤
√
2T

m

htα

�
√
TH−1 log2 H,

where the first derivative test was used.
Let

Jζ(α, t, n) :=

∫ 1

−1

cos(2π(t+ αu)
√
n− π

4
)Kζ(u)du.

Then we have

Jζ(α, t, n) = J1 − J2 + J3 − J4,(4.8)

where

J1 = cos(2πt
√
n− π

4
)

∫ 1

−1

(1− |u|) cos(2παu
√
n)du,

J2 = sin(2πt
√
n− π

4
)

∫ 1

−1

(1− |u|) sin(2παu
√
n)du,

J3 = ζ cos(2πt
√
n− π

4
)

∫ 1

−1

(1− |u|) cos(2παu
√
n) sin(2πα

√
n0u)du,

J4 = ζ sin(2πt
√
n− π

4
)

∫ 1

−1

(1− |u|) sin(2παu
√
n) sin(2πα

√
n0u)du.

It is easy to see that J2 = J3 = 0. By the first derivative test we get that

J1 � α−1n−1/2.(4.9)
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For J4 we have

J4 =
ζ

2
sin(2πt

√
n− π

4
)

∫ 1

−1

(1− |u|)

×
(
cos(2πα(

√
n−√

n0)u)− cos(2πα(
√
n+

√
n0)u)

)
du.

So by the first derivative test again we get

J4 =

{
− ζ

2 sin(2π
√
n0t− π

4 ) +O(α−1), if n = n0,
� α−1n−1/2, if n �= n0,

which combining (4.8) and (4.9) gives

Jζ(α, t, n) =

{
− ζ

2 sin(2π
√
n0t− π

4 ) +O(α−1), if n = n0,

� α−1n−1/2, if n �= n0.
(4.10)

From (4.4), (4.5), (4.7) and (4.10) we get (taking H = T 2)

∫ 1

−1

R∗∗(t+ αu)Kζ(u)du

(4.11)

=
22−l

(l − 1)!π

∑
n0≤n≤H2(22J+1+1/2)

τl(n;H,T )

n3/4
Jζ(α, t, n)

+O(t−(2l−1/2) sup
|u|≤1

|g(2π(t+ αu)2)|+ T 1/2H−1L2 + t−1/2 log2 t)

= − ζ21−lτl(n0)

(l − 1)!πn
3/4
0

sin(2π
√
n0t−

π

4
) + O(α−1) +

∑
n0+1≤n≤H2(22J+1+1/2)

|τl(n)|
αn5/4

+O(t−(2l−1/2) sup
|u|≤1

|g(2π(t+ αu)2)|+ t−1/2 log2 t)

= − ζ21−lτl(n0)

(l − 1)!πn
3/4
0

sin(2π
√
n0t−

π

4
) + O(α−1)

+O(t−(2l−1/2) sup
|u|≤1

|g(2π(t+ αu)2)|+ t−1/2 log2 t). �

5. The mean value of R(t) in short intervals

Suppose T ≥ 10 is a large parameter, 1 ≤ h ≤ 1
2

√
T . In this section we shall

estimate the integral

I(T, h) =

∫ T

1

(R(x+ h)−R(x))2dx,

which would play an important role in the proof of Theorem 2. This type of integral
was studied for the error term in the mean square of ζ(1/2 + it) by Good [8] and
for the error term in the Dirichlet divisor problem by Jutila [18]. Our approach is
based on Jutila [18], but with some modifications.

Without loss of generality, we shall estimate the integral

(5.1) I∗(T, h) =

∫ T

1

(R∗(x+ h)−R∗(x))2dx,
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where R∗(x) was defined in (3.1). We shall prove the following

Lemma 5.1. The estimate

(5.2) I∗(T, h) � T 2lh log3
√
T

h
+ T 2lL4

holds uniformly for 1 ≤ h ≤ 1
2

√
T .

Remark. Lemma 5.1 is also true for I(T, h).

Proof. Write

I∗(T, h) =

∫
1

+

∫
2

,(5.3)

where ∫
1

:=

∫ 100max(h2,T 2/3)

1

(R∗(x+ h)−R∗(x))2dx,

∫
2

:=

∫ T

100max(h2,T 2/3)

(R∗(x+ h)−R∗(x))2dx.

From (1.11) we have∫
1

� h2(2l+1/2) + T
2
3 (2l+1/2) � T 2lh.(5.4)

In order to bound
∫
2
, we first estimate the integral

J(U, h) =

∫ 2U

U

(R∗(x+ h)−R∗(x))2dx, 100max(h2, T 2/3) ≤ U ≤ T.

In (3.1) we use U in place of T and then take H = U100, J = [(logU −
log logU)/2 log 2]. Let z := min(εUh−1, U log−1 U). Define

R1(x) :=
22−lxl−1/4

(l − 1)!π

∑
1≤n≤z

τl(n)

n3/4
cos

(
2π

√
nx− π

4

)

R2(x) :=
22−lxl−1/4

(l − 1)!π

∑
z≤n≤H2(22J+1+1/2)

τl(n;H,T )

n3/4
cos

(
2π

√
nx− π

4

)
.

Then we have

(5.5) R∗(x) = R1(x) +R2(x) +O(U l−1/2G2(x) + U l−1/2 log2 U),

where

G2(x) :=
∑

m≤
√
2U

min

(
1,

1

H‖ x
2m − m

2 + l
2‖

)
.

From (6.30) of [32] we have

(5.6)

∫ 2U

U

|R2(x)|2dx � U2l+1/2z−1/2 log3 z.

Lemma 6.1 of [32] implies that (trivially G2(x) �
√
U)

(5.7)

∫ 2U

U

|U l−1/2G2(x)|2dx � U2l−1/2

∫ 2U

U

G2(x)dx � U2l−99 logH.
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Let

M(x) = R2(x) +O(U l−1/2G2(x) + U l−1/2 log2 U).

Then (5.6) and (5.7) implies∫ 2U

U

|M(x)|2dx � U2l+1/2z−1/2 log3 z + U2l log4 U(5.8)

� h1/2U2l log3 z + U2l log4 U.

Now we estimate
∫ 2U

U
(R1(x + h) − R1(x))

2dx. From the definition of R1(x) we
have

R1(x+ h)−R1(x) = F1(x) + F2(x),(5.9)

where

F1(x) =
22−l

(l − 1)!π

(
(x+ h)l−1/4 − xl−1/4

) ∑
1≤n≤z

τl(n)

n3/4

× cos
(
2π

√
n(x+ h)− π

4

)
� hx−1|R1(x+ h)|,

F2(x) =
22−l

(l − 1)!π
xl−1/4

∑
1≤n≤z

τl(n)

n3/4

×
(
cos

(
2π

√
n(x+ h)− π

4

)
− cos

(
2π

√
nx− π

4

))
.

For the mean square of F1(x) we have

(5.10)

∫ 2U

U

|F1(x)|2dx � h2U−2U2l+1/2 � hU2l.

We write

F 2
2 (x) = F21(x) + F22(x),(5.11)

where

F21(x) =
24−2l

(l − 1)!2π2
x2l−1/2

∑
1≤n≤z

τ2l (n)

n3/2

×
(
cos

(
2π

√
n(x+ h)− π

4

)
− cos

(
2π

√
nx− π

4

))2

,

F22(x) =
24−2l

(l − 1)!2π2
x2l−1/2

∑
1≤m �=n≤z

τl(m)τl(n)

(mn)3/4

×
(
cos

(
2π

√
m(x+ h)− π

4

)
− cos

(
2π

√
mx− π

4

))
×
(
cos

(
2π

√
n(x+ h)− π

4

)
− cos

(
2π

√
nx− π

4

))
.

By writing

cos
(
2π

√
n(x+ h)− π

4

)
− cos

(
2π

√
nx− π

4

)

=
1∑

j=0

(−1)j+1 cos
(
2π

√
n(x+ jh)− π

4

)
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we get

F22(x) =
24−2lx2l−1/2

(l − 1)!2π2

1∑
j1=0

1∑
j2=0

(−1)j1+j2
∑

1≤m �=n≤z

τl(m)τl(n)

(mn)3/4

× cos
(
2π

√
m(x+ j1h)−

π

4

)
× cos

(
2π

√
n(x+ j2h)−

π

4

)
.

By the elementary formula

cos a cos b =
cos(a− b) + cos(a+ b)

2

we have

F22(x) = F221(x) + F222(x),(5.12)

where

F221(x) =
23−2lx2l−1/2

(l − 1)!2π2

1∑
j1=0

1∑
j2=0

(−1)j1+j2
∑

1≤m �=n≤z

τl(m)τl(n)

(mn)3/4

× cos
(
2π

√
m(x+ j1h)− 2π

√
n(x+ j2h)

)
,

F222(x) =
23−2lx2l−1/2

(l − 1)!2π2

1∑
j1=0

1∑
j2=0

(−1)j1+j2
∑

1≤m �=n≤z

τl(m)τl(n)

(mn)3/4

× sin
(
2π

√
m(x+ j1h) + 2π

√
n(x+ j2h)

)
.

Let

g±(x) = 2π
√
m(x+ j1h)± 2π

√
n(x+ j2h).

By the power series expansion

(5.13) (1 + t)1/2 = 1 +
∞∑
v=1

dvt
v (|t| ≤ 1/2)

we get that

g±(x) = 2π
√
x(
√
m±

√
n) + 2π

∞∑
v=1

dvh
v

xv−1/2
(
√
mjv1 ±

√
njv2 ),

which implies

|g′±(x)| � x−1/2|
√
m±

√
n| (m �= n)

by noting that m,n ≤ εUh−1. By the first derivative test we have∫ 2U

U

F221(x)dx � U2l
∑

1≤m �=n≤z

|τl(m)τl(n)|
(mn)3/4|√m−√

n|(5.14)

� U2l
∑

1≤m �=n≤z

d(m)d(n)

(mn)3/4|
√
m−

√
n|

� U2l log4 z,

where in the last step we have used the well-known estimate∑
1≤m �=n≤y

d(m)d(n)

(mn)3/4|
√
m−

√
n| � log4 y, y ≥ 10.
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We also have

∫ 2U

U

F222(x)dx � U2l
∑

1≤m �=n≤z

|τl(m)τl(n)|
(mn)3/4|√m+

√
n|(5.15)

� U2l
∑

1≤m<n≤z

d(m)d(n)

m3/4n5/4

� U2l log3 z,

by the well-known estimate
∑

n≤y d(n) � y log y.

From (5.12), (5.14) and (5.15) we have

∫ 2U

U

F22(x)dx � U2l log4 z.(5.16)

By using the formulas

cosu− cos v = −2 sin(
u+ v

2
) sin(

u− v

2
)

and

sin2 u = (1− cos 2u)/2

we have

∫ 2U

U

F21(x)dx(5.17)

=
26−2l

(l − 1)!2π2

∑
1≤n≤z

τ2l (n)

n3/2

∫ 2U

U

x2l− 1
2 sin2

(
π
√
n(x+ h) + π

√
nx− π

4

)

× sin2
(
π
√
n(x+ h)− π

√
nx

)
dx = S1 − S2,

for instance, where

S1 =
25−2l

(l − 1)!2π2

∑
1≤n≤z

τ2l (n)

n3/2

∫ 2U

U

x2l− 1
2 sin2

(
π
√
n(x+ h)− π

√
nx

)
dx,

S2 =
25−2l

(l − 1)!2π2

∑
1≤n≤z

τ2l (n)

n3/2

×
∫ 2U

U

x2l− 1
2 sin

(
2π

√
n(x+ h) + 2π

√
nx

)
sin2

(
π
√
n(x+ h)− π

√
nx

)
dx.

For each n ≤ z, let Ln(t) =
∫ t

U
x2l−1/2 sin

(
2π

√
n(x+ h) + 2π

√
nx

)
dx. By the

first derivative test

(5.18) Ln(t) � U2ln−1/2, U ≤ t ≤ 2U.
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So by partial summation∫ 2U

U

x2l− 1
2 sin

(
2π

√
n(x+ h) + 2π

√
nx

)
sin2

(
π
√
n(x+ h)− π

√
nx

)
dx

=

∫ 2U

U

sin2
(
π
√
n(x+ h)− π

√
nx

)
dLn(x)

= Ln(2U) sin2
(
π
√
n(2U + h)− π

√
2nU

)
−
∫ 2U

U

Ln(x) sin
(
π
√
n(x+ h)− π

√
nx

)
cos

(
π
√
n(x+ h)− π

√
nx

)

×
(

π
√
n√

x+ h
− π

√
n√
x

)
dx

� U2ln−1/2 + hU2l−1/2.

Thus we get

S2 �
∑

1≤n≤z

τ2l (n)

n3/2
(U2ln−1/2 + hU2l−1/2) � U2l + hU2l−1/2 � U2l.(5.19)

By (5.13) we have

π
√
n(x+ h)− π

√
nx =

πh
√
n

2
√
x

+O(
h2

√
n

x3/2
),

which implies that

sin2
(
π
√
n(x+ h)− π

√
nx

)
= sin2

πh
√
n

2
√
x

+O(
h2

√
n

x3/2
).

Thus

S1 =
25−2l

(l − 1)!2π2

∑
1≤n≤z

τ2l (n)

n3/2

∫ 2U

U

x2l− 1
2 sin2

πh
√
n

2
√
x

dx(5.20)

+O

⎛
⎝ ∑

1≤n≤z

|τ2l (n)|
n3/2

∫ 2U

U

x2l− 1
2
h2

√
n

x3/2
dx

⎞
⎠

=
25−2l

(l − 1)!2π2

∑
1≤n≤z

τ2l (n)

n3/2

∫ 2U

U

x2l− 1
2 sin2

πh
√
n

2
√
x

dx

+O

⎛
⎝h2U2l−1

∑
1≤n≤z

|τ2l (n)|
n

⎞
⎠ .

Since |τl(n)| ≤ d(n), we have the estimate

(5.21)
∑
n≤y

τ2l (n) �
∑
n≤y

d2(n) � y log3 y (y ≥ 2),

which immediately implies that

(5.22) h2U2l−1
∑

1≤n≤z

τ2l (n)

n
� h2U2l−1 log4 z � hU2l−1/2 log4 U.
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From (5.21) we can get∑
1≤n≤z

τ2l (n)

n3/2

∫ 2U

U

x2l− 1
2 sin2

πh
√
n

2
√
x

dx(5.23)

�
∑

1≤n≤z

d2(n)

n3/2

∫ 2U

U

x2l− 1
2 min

(
1,

h2n

x

)
dx

� h2U2l−1/2
∑

1≤n≤U/h2

d2(n)

n1/2
+ U2l+1/2

∑
U/h2<n≤z

d2(n)

n3/2

� hU2l log3
U

h2
� hU2l log3

√
U

h
.

Combining (5.20), (5.22) and (5.23) we get

(5.24) S1 � hU2l log3
√
U

h
,

which together with (5.17) gives

(5.25)

∫ 2U

U

F21(x)dx � hU2l log3
√
U

h
.

From (5.9)-(5.11), (5.16) and (5.25) we get

(5.26)

∫ 2U

U

(R1(x+ h)−R1(x))
2dx � hU2l log3

√
U

h
+ U2l log4 z.

Now combining (5.5), (5.8) and (5.26) we get

J(U, h) � hU2l log3
√
U

h
+ U2l log4 U,

which immediately implies that

(5.27)

∫
2

� hT 2l log3
√
T

h
+ T 2l log4 T

via a splitting argument. Finally Lemma 5.1 follows from (5.3), (5.4) and (5.27). �

6. Proof of Theorem 2

In this section we shall prove Theorem 2. Our approach is a variant of the proof
of Theorem 2 of [12].

Define

R+(t) =

{
R(t), if R(t) > 0,
0, otherwise

and

R−(t) = |R(t)| −R+(t).

We first prove the following two lemmas.

Lemma 6.1. The estimate

(6.1)

∫ 2T

T

R2
±(t)dt � T 2l+1/2

holds.
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Proof. From (1.11) and (1.13) with k = 4, we get by Hölder’s inequality that

T 2l+1/2 �
∫ 2T

T

R2(t)dt ≤
(∫ 2T

T

|R(t)|dt
)2/3 (∫ 2T

T

R4(t)dt

)1/3

≤
(∫ 2T

T

|R(t)|dt
)2/3

T 4l/3.

Thus

(6.2)

∫ 2T

T

|R(t)|dt � T l+3/4.

From (3.1) and Lemma 6.1 of [32], it is easy to verify that

∫ 2T

T

R(t)dt � T l+1/2L2,

which implies

(6.3)

∫ 2T

T

R±(t)dt � T l+3/4

in view of (6.2). By (6.3) and Cauchy-Schwarz’s inequality, it follows that

T l+3/4 �
(∫ 2T

T

dt

)1/2 (∫ 2T

T

R2
±(t)dt

)1/2

� T 1/2

(∫ 2T

T

R2
±(t)dt

)1/2

,

which immediately implies Lemma 6.1. �

Lemma 6.2. Suppose 2 ≤ H ≤
√
T . Then

∫ 2T

T

max
h≤H

(R±(t+ h)−R±(t))
2dt � HT 2l log5 T.

Proof. It is easy to verify that

|R±(t+ h)−R±(t)| ≤ |R(t+ h)−R(t)|,

so it is sufficient to prove the estimate

(6.4) I =

∫ 2T

T

max
h≤H

(R(t+ h)−R(t))2dt � HT 2l log5 T.

Write

H = 2λb
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such that λ ∈ N and 1 ≤ b < 2. Similar to the argument of the proof of Lemma 2
of [12], we can deduce by using Lemma 5.1 that

I � λ
∑
μ≤λ

∑
0≤ν<2μ

∫ 2T+ν2λ−μb

T+ν2λ−μb

|R(t+ 2λ−μb)−R(t)|2dt+ T 2l log2 T

� λ
∑
μ≤λ

∑
0≤ν<2μ

(T 2l2λ−μb log3 T + T 2l log4 T )

� λ
∑
μ≤λ

(T 2l2λb log3 T + 2μT 2l log4 T )

� λ2HT 2l log3 T + λHT 2l log4 T

� HT 2l log5 T,

namely (6.4) holds. �

Now we finish the proof of Theorem 2. For any function P (t) and Q(t), if

ω(t) = P 2(t)− 4max
h≤H

(P (t+ h)− P (t))2 −Q2(t) > 0,

then

|P (t)| ≥ 2max
h≤H

|P (t+ h)− P (t)|

and

|P (t)| ≥ |Q(t)|.
The first inequality implies, for any 0 ≤ h ≤ H,

P (t)− 1

2
|P (t)| ≤ P (t+ h) ≤ P (t) +

1

2
|P (t)|,

and hence P (t+ h) has the same sign as P (t). Moreover, by the second inequality
above we get

|P (t+ h)| ≥ 1

2
|P (t)| ≥ 1

2
|Q(t)|.

Now take P (t) = R±(t) and Q(t) = δtl−1/4 for a sufficiently small δ > 0. By
Lemma 6.1 and Lemma 6.2 we get∫ 2T

T

ω(t)dt � T 2l+1/2 − O(HT 2l log5 T )−O(δ2T 2l+1/2)(6.5)

� T 2l+1/2

by taking H = δ
√
T log−5 T . Let S = {t ∈ [T, 2T ] : ω(t) > 0}. By (6.5), the

Cauchy-Schwarz inequality and (1.13) with k = 4 we get

T 2l+1/2 �
∫ 2T

T

ω(t)dt ≤
∫

S

ω(t)dt ≤
∫

S

R2
±(t)dt

≤ |S |1/2
(∫ 2T

T

R4(t)dt

)1/2

� |S |1/2T 2l.

Thus we get

|S | � T.

This completes the proof of Theorem 2.
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Remark for Theorem 4. The proof of Theorem 4 is the same except that we use
log3 T instead of log5 T. Here log3 T appears since for RI(t) we can prove that the
estimate

(6.6)

∫ T

1

(RI(t+ h)−RI(t))
2dt � hT log

√
T

h
+ TL logL

holds for 1 ≤ h ≤
√
T/2, which implies that the log5 T in Lemma 6.2 can be

replaced by log3 T if we have RI(t) in place of R(t).

7. Proof of Theorem 3

In this section we prove Theorem 3. Suppose k ≥ 3 is a fixed odd integer and T
is a large parameter. Define

δ =

{
−1, if Ck,l ≥ 0,
1, if Ck,l < 0,

where Ck,l is defined in the formula (1.13).
By Theorem 2, let t ∈ [T, 2T ] such that

δR(u) > c5t
l−1/4, u ∈ [t, t+H],

with H = c4
√
T log−5 T. Then

ck5Htk(l−1/4) <

∫ t+H

t

δkRk(u)du = δk
∫ t+H

t

Rk(u)du

= Ck,lδ
k
(
(t+H)k(l−1/4)+1 − tk(l−1/4)+1

)
+ δk (Fk,l(t+H)−Fk,l(t))

= Ck,lδ
k(k(l − 1/4) + 1)Htk(l−1/4) +O(H2tk(l−1/4)−1)

+ δk (Fk,l(t+H)−Fk,l(t)) .

Hence we get

(7.1) δk (Fk,l(t)− Fk,l(t+H)) < Bk,lHtk(l−1/4)
(
1 +O(HT−1)

)
,

where

(7.2) Bk,l = Ck,lδ
k(k(l − 1/4) + 1)− ck5 ≤ −ck5 < 0.

From (7.1) and (7.2) we have

|Fk,l(t)−Fk,l(t+H)| � Htk(l−1/4),

and Theorem 3 hence follows.
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