
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 9, OCTOBER 2008 2813

� and Mixed �� Stabilization and
Disturbance Attenuation for Differential
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Abstract—Repetitive processes are a distinct class of two-dimen-
sional systems (i.e., information propagation in two independent
directions) of both systems theoretic and applications interest. A
systems theory for them cannot be obtained by direct extension of
existing techniques from standard (termed 1-D here) or, in many
cases, two-dimensional (2-D) systems theory. Here, we give new
results towards the development of such a theory in � and mixed

� settings. These results are for the sub-class of so-called
differential linear repetitive processes and focus on the funda-
mental problems of stabilization and disturbance attenuation.

Index Terms—Differential linear repetitive processes, � and
mixed � control, linear matrix inequalities.

I. INTRODUCTION

R EPETITIVE processes are a distinct class of 2-D systems
of both system theoretic and applications interest. The

unique characteristic of such a process is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed fi-
nite duration known as the pass length. On each pass an output,
termed the pass profile, is produced which acts as a forcing func-
tion on, and hence contributes to, the dynamics of the next pass
profile. This, in turn, can lead to oscillations which increase
in amplitude in the pass-to-pass direction where this instability
cannot be analyzed using 1-D systems theory, i.e., the stability
property cannot be characterized by 1-D systems stability tests.

To introduce a formal definition, let denote the pass
length (assumed constant). Then, in a repetitive process the pass
profile , , generated on pass acts as a forcing
function on, and hence contributes to, the dynamics of the next
pass profile , , .

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example,
the references cited in [13]). Also, in recent years applications
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have arisen where adopting a repetitive process setting for
analysis has distinct advantages over alternatives. Examples
of these so-called algorithmic applications include classes of
iterative learning control (ILC) schemes (see, for example,
[7]) and iterative algorithms for solving nonlinear dynamic
optimal control/optimization problems based on the maximum
principle [12]. In the case of iterative learning control for the
linear dynamics case, the stability theory for differential (and
discrete) linear repetitive processes is one method which can
be used to undertake a stability/convergence analysis of a
powerful class of such algorithms and thereby produce vital
design information concerning the trade-offs required between
convergence and transient performance (see, for example, [8]).

Attempts to stabilize and/or meet performance specifications,
such as the level of disturbance attenuation, for these processes
using standard (or 1-D) systems theory/algorithms fail (except
in a few very restrictive special cases) precisely because such
an approach ignores their inherent 2-D systems structure, i.e.,
information propagation occurs from pass-to-pass and along a
given pass. Also, the initial conditions are reset before the start
of each new pass and the structure of these can be somewhat
complex. For example, if they are an explicit function of points
on the the previous pass profile then this alone can destroy sta-
bility. In seeking a rigorous foundation on which to analyze such
features, it is natural to attempt to exploit structural links which
exist between these processes and other classes of 2-D linear
systems.

The case of 2-D discrete linear systems recursive in the pos-
itive quadrant , , (where and denote
the directions of information propagation) has been the sub-
ject of much research effort over the years using, in the main,
the well-known Roesser and Fornasini Marchesini state-space
models. More recently, productive research has been reported
on and approaches to analysis and design—see, for ex-
ample, [3] and [16].

A critical feature of repetitive processes is that information
propagation in one of the independent directions, along the pass,
only occurs over a finite duration—the pass length. Also, the
boundary conditions are reset before the start of each new pass
and, as noted above, the structure of these is crucial in terms of
stability. Moreover, in this paper we consider so-called differ-
ential linear repetitive processes where information propagation
along the pass is governed by a matrix differential equation. The
systems theory for 2-D discrete linear systems is therefore not
applicable.

Stability is obviously a prerequisite in any application of these
processes and if it is not present then it must be established by
suitable input action constructed using current and/or previous
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pass information. In which context, it is possible to use feedback
action on the current pass and/or feedforward action from the
previous pass (or passes). The critical role of the previous pass
profile dynamics means that the use of current pass action alone
is not enough and it must be augmented by feedforward action
(from the previous pass). This approach has been the subject of
significant research effort and results are beginning to emerge
on how to undertake design in the presence of uncertainty. For
example, [9] and [11] give preliminary results in an setting.

In this paper, we develop a substantial body of new results in
an setting and show how they can be combined with
results to produce a potentially very powerful mixed
approach. We begin in the next section by giving the necessary
background results.

Throughout this paper, the null matrix and the identity ma-
trix with appropriate dimensions are denoted by 0 and , re-
spectively. Moreover, (respectively, ) denotes a real
symmetric positive definite (respectively, semi-definite) matrix.
Similarly, (respectively, ) denotes a real symmetric
negative definite (respectively, semi-definite) matrix. We also
require the following signal space definition. Finally, ( ) is used
to denote the transpose of block entries in LMIs.

Definition 1: Consider a vector sequence de-
fined over the real interval and the nonnegative in-
tegers , which is written as Then,
the norm of this vector sequence is given by

and this sequence is said to be a member of ,
or for short, if .

II. PRELIMINARIES

The most basic form of the state-space model for a differential
linear repetitive process over , , is

(1)

Here, on pass , is the state vector, is the
pass profile vector and is the vector of control inputs.

To complete the process description, it is necessary to specify
the boundary conditions i.e., the state initial vector on each pass
and the initial pass profile (i.e., on pass 0). Except where stated
otherwise, these are taken to be zero here.

The stability theory [13] for linear repetitive processes is
based on an abstract model in a Banach space setting which
includes a large number of such processes as special cases.
In this setting, a bounded linear operator mapping a Banach
space into itself describes the contribution of the previous
pass dynamics to the current one and the stability conditions
are described in terms of properties of this operator. Noting
again the unique feature of these processes, i.e., oscillations
that increase in amplitude from pass-to-pass (the direction
in the notation for variables used here), this theory is based
on ensuring that such a response cannot occur by demanding
that the output sequence of pass profiles generated has
a bounded input bounded output stability property defined in
terms of the norm on the underlying Banach space.

In fact, two distinct forms of stability can be defined in this
setting which are termed asymptotic stability and stability along
the pass, respectively. The former requires this property with re-
spect to the (finite and fixed) pass length and the latter uniformly,
i.e., independent of the pass length. Asymptotic stability guar-
antees the existence of a so-called limit profile defined as the
strong limit as of the sequence and for the pro-
cesses under consideration here this limit profile is described by
a 1-D differential linear systems state-space model with state
matrix . Hence, it is possible for
asymptotic stability to result in a limit profile which is unstable
as a 1-D differential linear system, e.g., , ,

, , , , where is a
real scalar. Stability along the pass prevents this from happening
by demanding that the stability property be independent of the
pass length, which can be analyzed mathematically by letting

.
It is of interest to relate this theory to a physical example

in the form of long-wall coal cutting where the pass profile is
the thickness (relative to a fixed datum) of the coal left after
the cutting machine has moved along the pass length, i.e., the
coal face. The stability problem here is caused by the machine’s
weight as it rests of the previous pass profile during the cutting
of the next pass profile. The undulations caused can be very
severe and result in productive work having to stop to enable
them to be removed. Asymptotic stability here means that after
a sufficient number of passes have elapsed the profile produced
on each successive pass is the same, i.e., convergence in the pass
to pass (i.e., ) direction and this converged value is the limit
profile. However, this limit profile can contain growth along it,
i.e., nonconvergence in the direction.

Several equivalent sets of conditions for stability along the
pass are known but here the starting point is the 2-D transfer-
function matrix description of the process dynamics, and hence
the 2-D characteristic polynomial. Since the state on pass 0 plays
no role, it is convenient to relabel the state vector as

(keeping of course the same interpretation). Also, define
the pass-to-pass shift operator as applied, e.g., to as
follows:

and for the along the pass dynamics we use the Laplace trans-
form variable , where it is routine to argue that finite pass length
does not cause a problem provided the variables considered are
suitably extended from to , and here we assume that
this has been done.

Let and denote the results of applying these
transforms to the sequences and , respectively. Then,
the process dynamics can be written as

where the 2-D transfer-function matrix is given by

and the 2-D characteristic polynomial by
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It has been shown elsewhere [13] that stability along the pass
holds if, and only if

(2)

in .
This last condition clearly requires that all eigenvalues of

the matrix have modulus strictly less than unity which is
the necessary and sufficient condition for asymptotic stability.
Under this condition, the sequence of pass profiles generated
will converge to the limit profile which is described by a 1-D
discrete linear time invariant state-space model with state ma-
trix . As the simple example given
above illustrates, however, it is not guaranteed that this limit pro-
file will have even the most basic property of stability, i.e., all
eigenvalues of have strictly negative real parts. This is due to
the finite pass length, over which duration even an unstable 1-D
linear system can only produce a bounded output in response to
a bounded input.

If the possibility of a limit profile with unstable along the pass
dynamics must be completely excluded, then asymptotic sta-
bility must be strengthened, where an obvious intuitive require-
ment is that the matrix (which governs the dynamics produced
along a given pass) be stable in the sense that all its eigenvalues
have strictly negative real parts. Again, however, the simple ex-
ample given above shows that in general this is not enough to
prevent a limit profile with unstable along the pass dynamics.
Missing from a stability analysis is an explicit requirement on
the coupling between the previous pass profile and current pass
state vectors (and hence the current pass profile) which is sup-
plied by (2). In effect, stability along the pass demands the exis-
tence of a limit profile with uniformly bounded (with respect to
the pass length ) along the pass dynamics and mathematically
this can be treated by letting in analysis.

Consider now, for simplicity, the single-input single-output
case with zero input and pass state initial vector on each pass.
Then, and hence asymptotic stability de-
mands that the sequence formed from the initial value of the
pass profile on each pass does not become unbounded. Also

and therefore, under asymptotic stability and the condition that
all eigenvalues of the matrix have strictly negative real parts,
stability along the pass requires that each frequency component
of the initial profile (and hence on each subsequent pass) is at-
tenuated from pass-to-pass. Note also that asymptotic stability
is a necessary condition for stability along the pass.

Stability along the pass treats the process as evolving over
the complete positive quadrant, i.e., both and are of un-
bounded duration whereas in application lies in the finite in-
terval . Hence, there may be individual cases when
stability along the pass is too strong. A similar situation can also
arise in the case of 2-D discrete linear systems including those
described by the well-known Roesser and Fornasini state-space
models. This has led to the concept of so-called strong practical
stability [1] for this case that can also be extended to the pro-
cesses considered here. In this paper, however, we focus on the
general case and hence the interest is in the stability along the
pass.

In this paper, the interest is in the basic systems theoretic
property of how to characterize, at the level of computation, a
stable along the pass example, including how to stabilize an un-
stable example. The condition of (2) is difficult to test and also
(despite the fact that it can be reformulated to allow the use of
Nyquist diagram based tests) it does not form a basis for the
design of compensators to guarantee this fundamental property.
This, in turn, has led to the emergence of LMI-based conditions
which can then be used in this vital role. Here, we will use this
route and start from a Lyapunov function as summarized next.
The results obtained are sufficient but not necessary and hence
are conservative to some extent. They are, however, computa-
tionally feasible and this is their major applications oriented in-
terest.

Consider the following candidate Lyapunov function for pro-
cesses described by (1):

(3)

for some and , and associated increment

(4)

where

Lemma 1: [4] A differential linear repetitive process de-
scribed by (1) is stable along the pass if

(5)

Lemma 2: [4] A differential linear repetitive process de-
scribed by (1) is stable along the pass if there exist matrices

and such that the following LMI holds:

(6)

As in 1-D systems theory, the choice of Lyapunov function is
not unique, but the one here has intuitive appeal in the sense
that it is the sum of quadratic terms in the current pass state and
previous pass profile vectors, respectively. In particular, noting
again the unique characteristic, i.e., oscillations in the pass to
pass direction, we have that the first term is related to the condi-
tion on the state-space model matrix (which clearly governs
the dynamics produced along any pass ( direction of informa-
tion propagation) and the second to the effects of the contri-
bution of the previous pass profile ( direction of information
propagation).

Some application areas will clearly require the design of com-
pensators which guarantee stability along the pass and also have
the maximum possible disturbance attenuation. The relevance
of rejecting the effects of disturbances on measurements (and
subsequent computations) of variables is well founded physi-
cally by noting the conditions in which such examples have to
operate, e.g., in long-wall coal cutting and iterative learning con-
trol applications, such as using a gantry robot to synchronously
place objects on a chain conveyor [2].
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This paper considers this key problem area in an and
frameworks starting from the following process state-space

model over ,

(7)

where the vectors , and are defined as in
(1), and are disturbance vectors. Two
cases will be considered here, one is when the disturbance is
impulsive and the other when it is of finite energy (taken as be-
longing to ). (The boundary conditions are as per the distur-
bance free case.) Also, it is easy to conclude that stability along
the pass of such a process is again governed by (2). Mathemat-
ically, we use the norm for impulsive inputs and norm
to measure the performance objective which is the attenuation
of the effects of and . These are introduced next.

It is important to note that the norm of the 2-D transfer-
function matrix here can be only defined if there is no direct cou-
pling between the impulsive input signal and the pass profile on
any pass. Hence, in common with the 1-D linear system case
where norm is only defined for strictly proper systems, we
set when computing norm of the 2-D transfer-func-
tion matrix between and and set for norm of
the 2-D transfer-function matrix between and . Therefore,
the norm is always defined and never infinite.

A differential linear repetitive process described by (7) is said
to have disturbance attenuation (or norm bound)
if it is stable along the pass and

(8)

In effect, this is a worst case bound as it corresponds to a bound
on the maximum peak gain of the 2-D frequency response be-
tween and and is given, with denoting the maximum
singular value of its matrix argument, by

where

(9)

i.e., the 2-D transfer-function matrix between these two vec-
tors. This result invokes Parseval’s theorem for 2-D signals. The
proof of this for the 2-D discrete case can be found in, for ex-
ample, [6] and in the Appendix we give the proof for the con-
tinuous-discrete signal case which is needed here. (This proof
is for the scalar case with an obvious extension to vectors.)

Another commonly used performance measure for analysis
and synthesis is the norm. It is widely recognized that
norm is a useful tool to optimize the transient behavior of a
system. In this paper, we will minimize norm of the 2-D

transfer-function matrix between and , i.e.,

(10)

to reduce the pass profile energy in response to impulse distur-
bances or the variance against white noise disturbances.

Consider the state-space model (7). Then, the main goal in
this paper is to guarantee stability along the pass process and
achieve the required performance specifications, as defined in
terms of the and norms as appropriate. We will seek
to do this by assuming that all entries in the current pass state
vector are available for measurement. Then, (noting again the
critical role of the previous pass profile vector and hence the
weakness of current pass action alone) the following control law
can be defined which is termed static since it has no internal
dynamics:

(11)

where and are appropriately dimensioned matrices to
be designed. If the current pass state vectors are not available
for measurement we still can use this method accompanied by
a state observer.

In general, the model available for design will only be an
approximation to the process dynamics. Hence, we also deal
here with robustness, where as in the 1-D linear systems case
we assume that the unmodeled dynamics lie within well-defined
model classes (or assumptions). Here, we consider the following
two.

1) Norm-bounded uncertainty model: Here, we assume that
the uncertainty present can be modeled as additive per-
turbations to the nominal process state-space model ma-
trices. In particular, noting from (2) that stability along
the pass is defined in terms of the so-called augmented
nominal plant matrix

we say that a process is subject to so-called
norm-bounded uncertainty if its augmented plant
matrix, denoted by here, can be written in the form

(12)

Here, and are some known constant matrices, and
is an unknown constant matrix which satisfies

(13)

2) Polytopic uncertainty model: Here, we assume that is
only known to lie in a given fixed polytope of matrices
described by

(14)
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where Co denotes the convex hull. In particular, for
, can be written as

Uncertainties satisfying either of these models are termed ad-
missible.

Now we are in a position to state the problems solved in this
paper.

The problem.
Given a disturbance attenuation level , find (11) such that
stability along the pass holds for the controlled process and
also

where denotes the 2-D transfer-function matrix
between and .
The robust problem.
Given an uncertain process and disturbance attenuation
level , find (11) such that stability along the pass holds
for the controlled process and

for admissible uncertainties.
The mixed problem.
Given the disturbance attenuation level , find (11) such
that stability along the pass holds for the controlled process
and also

and the quantity

is minimized.

III. AND NORMS AND STABILITY ALONG THE PASS

A. Norm

We will first state the following known result on computing
an upper bound on the norm as an LMI constraint.

Lemma 3: [10] A differential linear repetitive process de-
scribed by (7) is stable along the pass and has disturbance
attenuation if there exist matrices , and

such that

(15)

where , ,
and

(16)

This result is the so-called bounded real lemma for differential
linear repetitive processes. Note also that the matrix has no
influence on the result (but is needed in its proof). Hence, it can
be deleted to give the following result.

Lemma 4: [10] For some prescribed , suppose that
there exist matrices , and such that the following
LMI holds for a differential linear repetitive process described
by (7)

(17)

Then, this process is stable along the pass and also
.

Motivated by 1-D system theory, where the norm is used
as a measure of system robustness, the above result has the fol-
lowing interpretation. Keeping the norm of the controlled
process 2-D transfer-function matrix from to below the level

guarantees that the process under consideration is robust to
unstructured perturbations of the form

This means that choosing a lower value of reduces the ro-
bustness to unmodeled dynamics (as measured in this way) and
vice-versa.

B. Norm

In the 1-D linear systems case, the norm coincides with
the total output energy in the impulse response. Moreover, this
observation leads immediately to algorithms for computing this
norm from the state-space model. Next we develop an LMI (and
hence state-space-based) method for computing the norm
for the differential linear repetitive processes considered here.

Consider first a single input stable along the pass process
(note again that this property can be analyzed mathematically
by letting the pass length ) described by (1) with zero
boundary conditions. Also, let the vector denote
the response of the system at pass due to an impulse applied
to the th input channel at , i.e.,

for
for

(18)

where is the Dirac delta function and is the th standard
basis vector in . Then, following the definition of the norm
for 1-D systems, where it is a measure of the energy ( norm)
in the impulse response, the norm of a process of the form
considered here is given by

(19)
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Next, introduce the following matrices

(20)

and vectors

(21)

Then

for
otherwise

(22)

and the process impulse response , , is

for
othewise (23)

where denotes th column of the matrix .
The following is the first major result of this paper and gives

a sufficient condition for stability along the pass together with
an upper bound on the norm of the 2-D transfer-function
matrix (between control and pass profile ).

Theorem 1: A differential linear repetitive process described
by (7) is stable along the pass and has norm bound ,
i.e., , if there exist matrices and

such that the following LMIs hold:

(24)
and

(25)

Proof: Clearly, the LMI (24) can be rewritten as

(26)
Also, since the second term on the left-hand side of (26) is non-
negative definite, it follows immediately that

and hence, by the LMI of (6), stability along the pass holds.
Next, we show that the prescribed performance bound
holds.

To proceed, we again use a Lyapunov approach and introduce

(27)

and hence

Next, using the notation introduced in (21) we can write

where , . Also, since the
process is stable along the pass then and

. Furthermore, we have that

Hence, taking into account the zero boundary conditions the
following holds:

On the other hand, it is easy to see that

and

Now, based on (22) it can be verified that
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and

Thus

(28)

Next, based on (19) and (23), we have that

(29)

and hence, on using (28)

Routine manipulations now show that the above equation is
equivalent to

(30)

where

and , , and are
any given matrices of the required dimensions. Also, it follows
immediately from (25) that and an obvious applica-
tion of the Schur’s complement formula to (the right-hand side
of) yields (24) (where we have also made use of the fact that

). Also, if (24) holds, then and these facts
together imply that . However, by as-
sumption and hence and the proof is complete.

Remark 1: Based on the above derivations, it can be seen
that the norm can be used as a tool to optimize the transient
behavior of the process by suitably choosing the columns of the
matrix .

Remark 2: The norm bound here can be minimized using
the following linear objective minimization algorithm

subject to and (31)

Remark 3: The analysis of this section assumed zero
boundary conditions. If these are in fact nonzero then (22) and
(23) become

for

otherwise

and

for
otherwise

respectively. Obviously, nonzero boundary conditions introduce
the terms and at . With these ad-
justments, the analysis follows exactly as for the case of zero
boundary conditions.

IV. STABILIZATION

In this section, we solve the problem of designing (11) to en-
sure stability along the pass plus a given level of disturbance at-
tenuation as measured by the norm. Hence, we can consider
the process state-space model (7) with the disturbance input
vector deleted.

Application of (11) (with in the process state–space
model) results in the controlled process state-space model

(32)

and hence the 2-D transfer-function matrix between the distur-
bance vector and the current pass profile is given by

The following result gives a solution to the this problem with a
design algorithm.

Theorem 2: The process (32) is stable along the pass and has
prescribed disturbance attenuation bound if there
exist matrices , , , and such that the
LMI (33), shown at the bottom of the next page, holds together
with the LMI, and

(34)
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where is an additional symmetric matrix of compatible di-
mensions. If these conditions hold, the control law matrices
and are given by

(35)

Proof: Applying Theorem 1 to (32) yields the fol-
lowing sufficient condition for stability along the pass,
as shown by (36) at the bottom of the page, where

. Now set
, , and pre- and post-multiply

both sides of this last inequality by
to obtain (37), as shown at the bottom of the page, where

. Next, make
use of the following change of variables and

to yield (33). Also, in this case the inequality (25)
becomes

(38)

which is equivalent to (34). To see this, first note that this last
expression is equivalent to

and also

This guarantees that the constraint (34) is satisfied when (38)
holds and the proof is complete.

Remark 4: The disturbance rejection bound in the LMI
of (34) can be minimized by using linear objective minimization
algorithm

subject to and (39)

V. STABILIZATION IN THE PRESENCE OF UNCERTAINTY

In this section, the aim is to design (11) to ensure stability
along the pass of a process with uncertainty in its state-space
model description and a guaranteed bound on disturbance re-
jection as measured by the norm. The analysis will make
use of the following well known result.

Lemma 5: [5] Let , be real matrices of appropriate
dimensions. Then, for any matrix satisfying and a
scalar the following inequality holds:

Clearly, it is not necessary to assume that both the state and pass
profile vectors have the same type of uncertainty associated with
them. Here, we assume that the former is subject to polytopic
uncertainty (i.e., the matrices , , and of the state-space
model (1) are only known to lie in a given fixed polytope of
matrices) as described by (14) i.e.,

(40)

(33)

(36)

(37)
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The current pass profile updating equation in (1) is assumed to
be subject to norm-bounded uncertainty as defined by (12) and
(13), i.e.,

(41)

where

(42)

and the matrix satisfies (13).
Now we have the following result which gives an existence

condition for a solution to the design problem here.
Theorem 3: Suppose that (11) is applied to a differential

linear repetitive process described by (7) (with the disturbance
vector deleted) in the presence of uncertainty which satisfies
(40) and (42). Then, the resulting controlled process is stable
along the pass for all admissible uncertainties and has prescribed

disturbance attenuation if there exist matrices
, , , , and and a scalar , such that the

LMIs (34) and (43), as shown at the bottom of the page,are fea-
sible and where

If these conditions hold, the control law matrices and are
again given by (35).

Proof: An important property of LMIs is that they form a
convex constraint on the decision variables vector. This means
that any convex combination of solutions taken from a feasible
set of LMIs is also a solution. Hence, in case of uncertainty
modeled with a polytopic model [see (14)], we only need to find
a solution for all vertices of the polytope to obtain this for all
elements of the uncertainty set.

Given this fact and the conditions of Theorem 2, it follows
immediately that the second equation at the bottom of the
page holds, and the remaining difficulty is that the matrices

are unknown and hence underlying LMI
cannot be solved. To overcome this, i.e., to find an LMI problem
formulation, rewrite the second term as

where , .
Use (in an obvious manner and hence the details are omitted)

of the result of Lemma 5 followed by application of the Schur’s
complement formula now gives (43) and the proof is complete.

Remark 5: This last result is based on choosing a single Lya-
punov function for both the and criteria. In the 1-D
systems case, this is a well-known procedure termed the “Lya-
punov shaping paradigm” in the literature [14].

VI. MIXED ANALYSIS

In this section, we address the question of when can (11) be
designed for processes described by (7) to minimize the
norm from to , denoted here by , and keep the

norm from to , denoted here by , below
some prescribed level. Note also that if only is present then
this problem reduces to the problem already solved in this
paper. Similarly, if only is present, then we obtain the
problem solved in [10]. Hence, the problem here has a solution
if the inequalities (36), (25), and the first equation shown at the

(43)
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bottom of the page, hold for some , , ,
and .

The main problem now is that we cannot linearize simulta-
neously the terms , and , . This can be
overcome by enforcing and (at the possible
expense of increased conservativeness). Under these assump-
tions, the following result provides the LMI condition for mixed

control design.
Theorem 4: Suppose that (11) is applied to a differential

linear repetitive process described by (7). Then, the resulting
controlled process is stable along the pass and has prescribed

and norms bounds and , respectively, if
there exist matrices , , , , and such that
the LMIs (33), (34), and (44) shown at the bottom of the page
hold. Also, if this is the case the control law matrices and

are given by (35).
Proof: This follows immediately from the results given or

referenced above and hence the details are omitted.
Remark 6: The special case of (11) which minimizes the

norm of the resulting 2-D transfer-function matrix from to
and keeps the of that from to under some prescribed
level , can be found using the following convex optimization
procedure:

subject to and (45)

Remark 7: It is important to note that by adjusting we can
trade off between and performance. Hence, a tradeoff
curve allows the designer to choose (11) as an appropriate com-
promise between robustness (measured with norm) and
performance (measured with norm).

VII. ALTERNATIVE SOLUTION

Here, we solve the problem in the presence of uncer-
tainty based on the solution to the mixed problem.
This allows us to cope with uncertainty under an perfor-
mance constraint, and hence we can immediately proceed to
solve the problem for differential linear repetitive processes

in the case when the matrices , , , and are subject to
norm-bounded uncertainty [see (12) and (13)].

Consider therefore a differential linear repetitive process over
, , with state-space model

(46)

where again , , , and represent admissible
uncertainties, and it is assumed that they can be written in the
form

(47)

where , , , and are known constant matrices and
is an unknown matrix with constant entries which satisfies

(13). The design parameter here can be considered as a term
available for use to attenuate the effects of the uncertainty.

It is a well-known fact in the 1-D linear systems case that
linear fractional transformations (LFT) provide a general frame-
work design in the presence of (certain types of) uncertainty.
The basic use of an LFT (see, for example, [17]) is to isolate the
uncertainty and represent it as interconnection of the nominal
process with uncertainty block—see Fig. 1 (where LRP denotes
an uncertainty free differential linear repetitive process of the
form considered here).

Application of this technique to the process model of (46)
(with the current pass input terms deleted as they do not have
uncertainty associated with them) gives

(44)
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Fig. 1. LFT of the process with uncertainty.

Now, substituting the third equation into the last one in the above
set of four and solving for gives

The process model (46) can be rewritten in the form of (7) as

(48)

where

and clearly is required for well-possed-
ness of the feedback interconnection. In particular, setting

in (48) gives this property and hence

which is of the form (46). Hence, on applying (11) we have

(49)

and if the matrices describing the uncertainty can be written in
the form (47) we have the following result.

Theorem 5: Suppose that (11) is applied to a differential
linear repetitive process described by (46) with uncertainty
structure satisfying (47) and (13). Then, the resulting controlled

process is stable along the pass and has prescribed norm
bound if there exist matrices , , , ,
and such that the LMIs (33) and (34) of Theorem 2 hold
together with

(50)

where .
Also, if these conditions hold, control law matrices and

are given by (35).
Proof: Introduce the matrices

Then, from the associated Lyapunov function (interpret (3), (4)
and Lemma 1), it follows immediately that a process described
by (48) is stable along the pass if there exist matrices ,

, and such that the following LMI holds:

where , , .
An obvious application of the Schur’s complement formula to
this last expression now yields the equation shown at the bottom
of the page.

Now make an obvious application of the result of
Lemma 5, and pre- and post-multiply the outcome by

. Also, introduce the no-
tation , , and then an obvious
application of the Schur’s complement formula gives the
equation shown at the bottom of the next page, where

.
Note that this last condition is not linear in , , , ,

and . However, this difficulty can be avoided by employing
the following transformations. First, pre- and post-multiply the
last expression by and finally set

, , , to
obtain (50).
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Remark 8: Design to minimize and keep the norm of the
2-D transfer-function matrix from to below some prescribed
level can be undertaken using the following linear objective
minimization procedure:

subject to and

which, due to the presence of the term in the uncertainty
model of (47), provides the essential advantage of allowing us to
extend the uncertainty boundaries, i.e., increase the robustness.

The last result (i.e., the LMI (50)) shows that there exists a
link between robust stabilization of processes described by
(48) and mixed stabilization of processes described
by (7). This means that the same control law solves the mixed

and robust problems.
To see this, assume that and apply the same trans-

formation used to obtain (44) from (15) where the matrices ,
and of (16) are now given by

This link can also be established using the Lyapunov stability
condition of Lemma 1. In particular from (13)

and hence, assuming , we have

which can be rewritten as

Hence, the inequality

(51)

can hold only if the term , i.e., stability along
the pass holds. Also, this inequality can be regarded as arising
from the associated Hamiltonian for differential linear repetitive
processes—see [10] for further details (in addition to its use in
the analysis in this chapter). Moreover, if (51) holds then
the process is stable along the pass and the norm from

to is kept below the prescribed level . Finally, routine
manipulations establish the link between robust control and

control detailed above.

VIII. CONCLUSION

This paper has developed substantial new results on the con-
trol of differential linear repetitive processes which are a distinct
class of 2-D linear systems of both systems theoretic and appli-
cations interest. These results show that it is possible to define an

norm for these processes which has a well-defined physical
basis. It has been shown that stability along the pass can be ex-
pressed in terms of the norm and that a control law activated
by a linear combination of the current pass state vector and the
previous pass profile can be designed with a prescribed degree of
disturbance attenuation. Moreover, this setting allows us to con-
sider the more realistic case when the disturbance vector varies
from pass-to-pass as opposed to previous work [15] where it
was necessary to assume that the disturbances considered were
constant from pass-to-pass (but full decoupling as opposed to
attenuation was possible).

It has also been shown how these results can be com-
bined with those (partially) obtained previously to provide a
mixed setting for analysis and compensator design in
the presence of uncertainty and disturbances. Overall, these re-
sults represent a very significant step towards a complete sys-
tems theory with implementable design algorithms for the pro-
cesses considered. An obvious next stage is to consider design
to meet detailed performance specifications.

APPENDIX

PROOF OF THE PARSEVAL’S THEOREM

Lemma 7:

(52)
where and

is the double or hybrid (continuous-discrete) Fourier transform
of the signal sequence .

Proof: First note that by a double inverse Fourier trans-
form, i.e.,
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we have

where

The right-hand side in this last expression can be rewritten as

where

which is the Fourier transform and the proof is
complete.

In this paper, we assume that is normalized to unity and
hence .
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