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Abstract Combination of surface mechanical attrition treatment (SMAT) and 

co-rolling is a promising experimental methodology to design metals with high 

strength and high ductility. Recent results have revealed that brittle nanograined 

interface layer (NGIL) can enhance the ductility of the co-rolled SMATed stainless 

steel (SS). In the present study, the cohesive finite element method is used to show 

that the SS ductility is significantly enhanced with the increase of fracture toughness 

of coarse-grained layers and failure strain of NGIL. However the ductility will not 

increase if the NGIL thickness goes beyond 60 μm. 
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1. Introduction 

Among the newly-developed experimental approaches to design structural 

materials with both high strength and high ductility [1-7], one of the most promising 

techniques is believed to be a combination of surface mechanical attrition treatment 

(SMAT) and co-rolling, which can produce large-scale laminated nanostructured 

materials for structural applications [6,7]. Through SMAT, a nano-crystalline surface 

with 10-50 μm thickness can be generated for various metals to enhance their yield 

stress and fatigue life without altering their chemical compositions [8-11]. When such 

SMATed metals are placed on top of each other and then warm rolled, the process 

produces the co-rolled SMATed metals. This approach of combining SMAT with 

warm co-rolling has been successfully applied to generate laminated nanostructured 

304 stainless steels (SS). The tensile experimental specimen of such SS with a length 

20 mm and a width 1.8 mm in Refs. [6,7] is illustrated in Fig. 1a. Its yield stress has 

been found to reach 878 MPa and its failure strain 48%, which is three times that of 

the work-hardened steel with the same yield stress [6,7]. In the recent work by Guo et 

al. [12], the cohesive finite element method (CFEM) was employed to correlate the 

ductility of the co-rolled SMATed 304SS with the critical energy release rate of 

nanograined interface layer (NGIL). The simulation results showed that under 

external tensile load the brittle NGIL developed high density of microcracks, and this 

in turn toughened the co-rolled SMATed 304SS. This toughening mechanism was a 

direct reflection of the non-local cracking model suggested in [6,7]. In addition to the 
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energy release rate of NGIL, other factors could also affect the overall failure strain of 

the co-rolled SMATed 304SS. In this paper we will focus on how this important 

property is affected by 

i) the failure strain of the NGIL, 

ii) the fracture toughness, KIC, of the coarse-grained layer (CGL), and 

iii) the NGIL thickness. 

It turns out that each of these parameters can have significant influence on the 

ductility of the material. 

 

2. The cohesive finite element method 

The cohesive finite element method (CFEM) and the eXtended finite element 

method (XFEM) have both proven to be effective tools in investigating the fracture 

process of structural materials. They produce similar crack speeds and crack paths, 

but at present the XFEM encounters some difficulties in modeling spontaneous 

multiple crack initiation, branching, and coalescence [13]. As most of the microcracks 

in NGILs are transverse cracks normal to the tensile direction [7,12] and our focus is 

on both nucleation and propagation of these multiple microcracks, not just on keeping 

track of a single crack, the CFEM is a more appealing approach. The CFEM allows 

the damage initiation/evolution and fracture processes to be modeled explicitly. It has 

been widely used to investigate both brittle and ductile fracture [14-18]. In the 

framework of CFEM, two approaches - intrinsic and extrinsic - are available when the 
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damage initiation site or the crack path is not known a priori. The intrinsic CFEM 

embeds the cohesive elements along boundaries of volumetric elements as part of the 

physical model [14], while the extrinsic CFEM, based on an extrinsic fracture 

initiation criterion, inserts the cohesive elements into the model as fracture develops 

[15]. The intrinsic CFEM has several advantages in model implementation and results 

interpretation [16]. This approach will be adopted in this investigation. 

Many cohesive laws, which specify the constitutive relationships between 

interfacial traction and separation, have been developed for different conditions [17]. 

A bilinear cohesive law with two parameters, the cohesive strength 
maxT  and the 

cohesive fracture energy cohG , is widely used for its simplicity (Fig. 1b). Here 
maxT  

is the stress at which the damage initiates. The cohesive energy, 
cohG , is the external 

energy supply required to create and fully break a unit surface area of the cohesive 

element; it is given by the area under the cohesive law, i.e., 

 coh max0 d 0.5
f

fm
mG T T


    , where T  is an effective traction,   an effective 

separation, and f

m  the critical crack opening after which the traction becomes zero 

and the cohesive element totally fails. Near and inside the NGIL, the quadratic strain 

criterion for damage initiation and evolution is especially suitable to account for the 

multiaxial stress state and will be adopted for the entire specimen. From the view 

point of stiffness reduction, damage associated with the cohesive surface separation 

can also be defined in this context [19]. 

The co-rolled SMATed 304SS contains two phases, namely, the CGL with a 
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mean grain size of several microns and the NGIL with a mean grain size of about 50 

nm. An analysis configuration with a length 1 mm and a width 0.9 mm is shown in 

Fig. 1c, and the fine structured FEM cross-triangular meshes with uniform size 10 by 

10 μm  is shown in Fig. 1d. Unless otherwise stated, the thickness of the NGIL is 

taken as 40 μm, the same as that in experimental investigation [6,7]. Constitutive 

parameters for the bulk and cohesive elements of the co-rolled SMATed 304SS are 

listed in Table 1. The isotropic, elasto-plastic constitutive relations are applied to both 

phases. The density, Young’s modulus E, Poisson’s ratio  , and flow stress for the 

two phases are the same as those in Ref. [12], where the flow stress of the CGL was 

measured directly and that of the NGIL was estimated from experimental results of 

the SMATed austenitic SS316L in Ref. [11]. The critical energy release rate of the 

CGL, 
IcG , is obtained from  2 2

Ic Ic 1G K E   in terms of its fracture toughness 
IcK , 

which is taken as, unless otherwise stated, 100 mMPa . The cohesive strength of the 

NGIL can be calibrated at different failure strain. To simulate the effects of cohesive 

strength and the critical energy release rate of the boundary between CGL and NGIL, 

two types of conditions are considered in CFEM calculations: i) a tough boundary 

which implies that its cohesive parameters are the same as those of the CGL, and ii) a 

brittle boundary which implies that its cohesive parameters are the same as those of 

the NGIL. These parameters are also listed in Table 1. 
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Table 1. Constitutive parameters for bulk and cohesive elements of co-rolled SMATed 

304SS 

Compound Density  3kg/m  Yield stress E  GPa    maxT  cohG  

 Coarse-grained layer 8000 0  200 0.29 mT  IcG  

Nanograined interface layer 8000 '
0  200 0.29 '

mT  
'
IcG  

Tough boundary … … … … mT  IcG  

Strong boundary … … … … '
mT  

'
IcG  

 

3. Results and discussion 

Within the above-developed framework, we have investigated the effects of (i) 

the failure strain of the NGIL, (ii) the fracture toughness of the CGL, and (iii) the 

thickness of the NGIL on the overall failure strain of the co-rolled SMATed 304SS. 

In applying CFEM to ductile materials, plastic deformation and damage process 

tend to compete with each other so that the failure strain of the material is a natural 

outcome of the combined effects of bulk constituent response, interfacial behavior, 

and applied load. Therefore, the cohesive strength can be calibrated by comparing the 

simulation with experimental results. It has been confirmed that the failure strain is 

sensitive to the ratio of the cohesive strength to the yield stress of ductile materials 

[12,18]. The failure strain of the NGIL in [6,7] has been estimated to be about 3.26% 

[12], about the same value for the nanocrystalline 316L austenitic SS [11]. Its effect 

on the overall failure strain of the co-rolled SMATed 304SS is now of interest. Here 
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the critical energy release rate of the NGIL is taken as 60 Jm
-2

 [12]. The cohesive 

strength of the NGIL, '
mT  (a prime indicates that the quantity is associated with the 

NGIL while unprimed values refer to the CGL), is calibrated as 1.89 GPa, which 

represents 1.479 times of its yield stress '
0  when its failure strain is 3.26%, as 

illustrated in Fig. 2. Similarly, the cohesive strength of the NGIL is calibrated as 1.75 

GPa, which represents 1.369 times of its yield stress '
0 , when its failure strain is 

2.5%. This implies that when the critical energy release rate is fixed, the cohesive 

strength increases with the failure strain. 

With the calibrated cohesive strength of the NGIL, simulations are carried out at 

two levels of CGL cohesive strength ( mT =1.87 0  and 1.94 0  with 0  its yield 

stress) and for two types of boundaries (tough and strong boundaries). Figs. 3a-b 

shows the simulated stress-strain curves for the co-rolled SMATed 304SS when the 

failure strains of NGIL are 2.5% and 3.26%, respectively. The experimental result in 

Ref. [7] is also plotted alongside for comparison. The scattered nature of the curves 

indicates that both the cohesive strength level of the CGL and the boundary type play 

significant role in the deformation process. The smallest overall failure strain in each 

figure is always associated with the case of smaller CGL cohesive strength (1.87 0 ). 

More importantly, it is observed that, when the failure strain of the NGIL increases 

from 2.5% to 3.26%, the largest overall failure strain of the specimen can increase 

from 45% to 51%, gaining significant ductility. 

In this laminated system the CGL effectively serves as the substrate for the NGIL, 
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so an investigation on the effect of its fracture toughness on the overall failure strain 

can provide insights into whether the combination of SMAT and co-rolling can 

toughen other types of SS as well. We used the same parameters as those in Fig. 3b, 

but with two different values of IcK  for CGL, 80 and 120 mMPa , to investigate. 

The results are shown in Fig. 4a and b, respectively. It can be seen from Figs. 4a and 

3b that all four overall failure strains increases substantially as IcK  increases from 

80 to 100 mMPa . It can be found in Figs. 3b and 4b that the largest overall failure 

strain has minor increase as IcK  changes from 100 to 120 mMPa  while all four 

overall failure strains reach a level of 44-52%. 

The dependence of the overall failure strain on the thickness of the NGIL 

deserves careful investigation because extensive trials on different NGIL thickness 

will cost tremendous experimental efforts in SMAT and co-rolling processes. To 

uncover this effect, we use the same NGIL cohesive strength as those in Figs. 3a and b, 

but this time with the NGIL thickness 60 μm. The corresponding results are shown in 

Fig. 5a and b, respectively, with the same NGIL failure strains, 2.5% and 3.26%. A 

direct comparison between Figs. 5a-b and Figs. 3a-b shows that the ductility of the 

co-rolled SMATed 304SS has significantly decreased at this large NGIL thickness. At 

an even larger thickness, 80 μm, the largest overall failure strain is found to remain 

relatively unchanged, but the smallest overall failure strain (the shortest curve) 

actually decreases from 26% to 20%. One is led to conclude that, even though 

introduction of the NGIL is beneficial to the overall ductility of the co-rolled SMATed 
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SS, a too-large thickness can become detrimental. 

A closer look at Fig. 5 further indicates that the cohesive strength level of the 

CGL has a larger influence on the overall failure strain than the boundary type. This is 

evident from the fact that the one with the slightly larger cohesive strength (1.94 0 ) 

has larger overall failure strain than the one with the smaller cohesive strength 

(1.87 0 ). In addition, we could also see from Figs. 5a-b that, with the change of 

failure strain of the NGIL from 2.5% to 3.26% and '
mT  from 1.369 '

0  to 1.479 '
0 ,  

the strain level at which incipient damage initiates increases from less than 4% to 

around 6%, and the associated stress drop in the stress-strain curves also becomes 

more pronounced.  

The change of the overall ductility is closely associated with the damage process 

of NGIL. To explore this issue further, we check the deformation process and 

concentrate on the nucleation and propagation of multiple microcracks in this layer. 

Figs. 6a-c illustrate the damage distribution in the co-rolled SMATed 304SS with the 

overall strain 0.12 for the cases of larger cohesive strength (1.94 0 ) and tough 

boundary, with the NGIL thickness 40, 60, and 80 μm, respectively. For better 

illustration, horizontal dashed lines are used to indicate the location of the deformed 

NGILs. Due to the intrinsically brittle nature of the NGIL, it can be seen from Fig. 6 

that the size of damaged zones, i.e., the length of transverse microcracks, is relatively 

easy to reach the level of the NGIL thickness. As a result, the SS with thick NGILs 

will have longer microcracks, compared with the SS with thin NGILs. This explains 
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the observed substantial decrease in the ductility of the SS when the NGIL thickness 

increases from 40 to 60 μm. In addition to the requirement that microcracks must be 

sufficiently dense as proposed in Guo et al. [12], these simulations indicate that 

microcrack features have to be tiny in order to be effective to enhance the ductility of 

the SS. 

The co-rolled SMATed 304SS specimens in above simulations are without any 

pre-crack. We have also conducted some simulations of the co-rolled SMATed 304SS 

specimen with a pre-crack, which is 10 μm long and located in center of the NGIL. 

We use the same NGIL cohesive strength as those in Figs. 3b (and also 5b), where '
mT  

is 1.479 '
0  when its failure strain is 3.26%. Figs. 7a-c show the corresponding 

simulated stress-strain curves for the co-rolled SMATed 304SS pre-cracked specimen, 

with the NGIL thickness 40, 60 and 80 μm, respectively. It can be found that the 

largest overall failure strain decreases markedly from 32% in Fig. 7a to 24% in Fig. 

7b when the NGIL thickness increases from 40 to 60 μm, and further decreases to 8% 

in Fig. 7c with the NGIL thickness 80 μm. Although the pre-crack in the NGIL has the 

same initial length, its length can reach the level of the NGIL thickness, that is, the 

pre-crack can penetrate the entire NGIL easily. Therefore, a pre-crack is more 

detrimental in the thick NGIL than in the thin one. In this indirect way we have also 

confirmed our above finding that the overall failure strain can decrease substantially if 

the NGIL thickness increases beyond certain limit. 
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4. Conclusions 

In this study we have employed an intrinsic CFEM framework, which has the 

capability of resolving the initiation and evolution of multiple microcracks, to study 

the influence of multiple factors on the overall failure strain of the co-rolled SMATed 

304SS. It is found that the cohesive strength level of the CGL has a larger influence 

on the overall failure strain than the type of interface boundary. When the critical 

energy release rate of the NGIL is constant, the ductility of the SS can be enhanced 

with increased NGIL failure strain and CGL fracture toughness. On the other hand, 

thick NGIL is found to be detrimental to the SS ductility. Thus to enhance the SS 

ductility, the microcracks not only need to be sufficiently dense but also adequately 

small, and this requires comparatively thinner NGILs. Since comprehensive 

experimental investigations on these multiple factors are expensive to carry out and 

thus not particularly feasible, this systematic simulation could provide significant 

insights into the complex nature of the deformation process until failure. The obtained 

results can also serve as a guideline for future experimental investigations on SMAT 

and the co-rolling technique.  
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Captions: 

Fig. 1. (color online) (a) (not to scale) Experimental specimen with a length 20 mm 

and a width 1.8 mm in Refs. [6,7], (b) a bilinear cohesive law, (c) analysis 

configuration with a length 1 mm and a width 0.9 mm, and (d) cross-triangular 

meshes with uniform size 10 by 10 μm . 

 

Fig. 2. (color online) Calibrated cohesive strength of the NGIL with energy release 

rate 60 Jm
-2

 and tensile failure strain 3.26%. 

 

Fig. 3. (color online) Effects of failure strain of NGIL on the overall ductility. It is (a) 

2.5% and (b) 3.26% ((b) taken from [12]). Calculation was made with NGIL thickness 

40 m as in experiment. 

 

Fig. 4. (color online) Effects of fracture toughness of CGL on the overall ductility. 

ICK
 
is (a) 80 mMPa  and (b) 120 mMPa . These two figures are to be compared 

with the figure in Fig. 3b where ICK
 
is 100 mMPa . 

 

Fig. 5. (color online) Simulated stress-strain curves for the co-rolled SMATed 304SS 

at NGIL thickness 60 μm, with failure strains in (a) 2.5% and in (b) 3.26%. These two 

figures are to be compared with those in Figs. 3a and b, to see that this larger NGIL 

thickness leads to a lower overall failure strain. Note that the experimental curve [7] is 
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associated with the specimen with NGIL of 40 μm thickness. 

 

Fig. 6 (color online) Damage distribution in the co-rolled SMATed 304SS with the 

overall strain 0.12 for the case of larger cohesive strength (1.94 0 ) and tough 

boundary with the NGIL thickness (a) 40, (b) 60, and (c) 80 μm. 

 

Fig. 7. (color online) Effects of the NGIL thickness on the overall ductility of a 

pre-cracked specimen. The thicknesses are 40, 60, and 80 μm in (a), (b), and (c), 

respectively.   
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Fig. 5 
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