
A New ILP-Based p-Cycle Construction Algorithm
without Candidate Cycle Enumeration

Abstract—The notion of p-cycle (Preconfigured Protection Cycle)
allows capacity efficient schemes to be designed for fast span
protection in WDM mesh networks. Conventional p-cycle
construction algorithms need to enumerate/pre-select candidate
cycles before ILP (Integer Linear Program) can be applied. In
this paper, we propose a new algorithm which is only based on
ILP. When the required number of p-cycles is not too large, our
ILP can generate optimal/suboptimal solutions in reasonable
amount of running time.

Keywords-Fast span protection, ILP (Integer Linear Program),
p-cycle, WDM (Wavelength Division Multiplexing).

I. INTRODUCTION
WDM (Wavelength Division Multiplexing) technology is

widely used in optical networks to fully utilize the fiber
bandwidth. Nowadays, the capacity of a WDM wavelength can
easily reach 10 Gb/s, and hundreds of wavelengths can be
multiplexed onto a single fiber for concurrent data transmission.
To minimize the amount of data loss upon an accidental failure
(such as a fiber cut), it is imperative that the network can
survive from the failure and achieve fast optical recovery.

In WDM mesh networks, p-cycle (Preconfigured Protection
Cycle) [1] can provide fast span (or link) protection with high
capacity efficiency. The idea is to organize the spare (or
backup) capacity in the network into a set of pre-cross-
connected cycles (i.e., p-cycles) to protect the working capacity
at each span. If a p-cycle traverses a particular span, then this
span is called an on-cycle span of this p-cycle. Otherwise, it is
called a straddling span if both of its two end nodes are on the
same p-cycle. We define a unity-p-cycle as a pre-cross-
connection of one unit of spare capacity (or one wavelength)
on the on-cycle spans it traverses. Each p-cycle refers to a
unity-p-cycle in this paper. Fig. 1 shows a simple network with
bidirectional fiber connections. The two spans 0–1 and 3–4 are
straddling spans of the dashed p-cycle, and all other spans are
on-cycle spans. If the on-cycle span 2–3 fails, the traffic on it
can be rerouted to the other side of the p-cycle, i.e., path 2–0–
4–1–3. If the straddling span 3–4 fails, two backup paths 3–1–4
and 3–2–0–4 are available for protection. We can see that a
straddling span is better protected than an on-cycle span,
because a p-cycle protects two units of traffic for the former
but only one unit for the latter. Although no spare capacity is
preconfigured at the straddling spans, the reserved capacity on
the p-cycle is shared to protect both on-cycle spans and
straddling spans. This leads to high capacity efficiency

comparable to a span-based mesh restoration scheme [1]. Upon
a single span failure, only the two end nodes of the failed span
are involved in real time switching. This gives a BLSR [2]
ring-like fast recovery speed.

Because of its outstanding performance on both recovery
speed and capacity efficiency, p-cycle has attracted intensive
research interests [3-14] since it was first introduced in 1998
[1]. Recently, p-cycle was also extended to path/segment
protection at the cost of slower recovery speed [15-16].

For a given network, the problem of p-cycle construction is
to find a set of p-cycles to protect the working capacity on each
span (i.e., 100% protection), and minimize the total amount of
required spare capacity. Conventional p-cycle construction
algorithms adopt a two-step approach. The first step
enumerates all distinct simple cycles [17] in the network to
form a candidate set. The second step determines an optimal
set of p-cycles from the candidate set by ILP (integer linear
program) optimization. However, the size of the candidate set
can be very large even in a small network, and it soars
exponentially as the network size increases. This makes the
algorithm very time-consuming. To address this issue, some
heuristic cycle pre-selection algorithms [18-20] are designed to
reduce the size of the candidate set, by only selecting a subset
of candidate cycles with “high merit” for ILP optimization.
Obviously, this also degrades the quality of the solution.

In this paper, we propose a new p-cycle construction
algorithm which only relies on ILP. We formulate the new ILP
in Section II, and give numerical results and discussions in
Section III. The paper is concluded in Section IV.

II. ILP FORMULATION
In our ILP, a “cycle” may actually contain one or multiple

disjoint cycles and each of them corresponds to a p-cycle. In
what follows, we use “cycle” and “p-cycle” to distinguish the
two different notions. If a span can be protected by a particular
p-cycle, we also say that it can be protected by the

This work is supported by Hong Kong Research Grant Council
Earmarked Grant HKU 7150/04E.

Bin Wu, Kwan L. Yeung, King-Shan Lui
Dept. of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong

E-mail: {binwu, kyeung, kslui}@eee.hku.hk

Shizhong Xu
School of Communication and Information Engineering

University of Electronic Science and Technology of China
Chengdu, P. R. China, 610054

E-mail: xsz@uestc.edu.cn

0 1

2 3

4

Fig. 1. An example of p-cycle protection.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2236

corresponding cycle. With the notations defined in Part A
below, we summarize the ILP in Part B, and explain the
detailed rationale in Part C.

A. Notations
J: The maximum number of cycles allowed in the solution.
j: Cycle index where j∈{1, 2, …, J}. Note that a cycle may

contain one or multiple disjoint p-cycles.
j

abe : Binary variable. It takes the value of 1 if span (a, b) is an
on-cycle span of cycle j, and 0 otherwise.

j
az : Binary variable. It takes the value of 1 if node a is on cycle

j, and 0 otherwise.
j

abχ : Binary variable. It takes the value of 1 if span (a, b) can
be protected by cycle j, and 0 otherwise.

abd : The total amount of working capacity on span (a, b) after
some routing algorithm is applied.

j
baakx),(: Binary variable. It assumes that we are checking
whether span (a, b) can be protected by cycle j. It takes
the value of 1 if there is a route on cycle j that connects
nodes a and k, and 0 otherwise.

j
ba

t
aky),(: Binary variable. It assumes that we are checking

whether span (a, b) can be protected by cycle j. For t≠b,
it takes the value of 1 if there is a route on cycle j that
connects nodes a and t, and at the same time (t, k) is an
on-cycle span of cycle j. Otherwise, it takes the value of 0.
For t=b, 0),(=j

ba
b
aky is always enforced (See (8)).

abc : The cost of adding a wavelength to span (a, b). If hop-
count is used as the cost metric, then cab=1 for each span
(a, b). Otherwise cab may include distance-related costs
such as for using amplifiers, plus the cost of any O/E and
E/O interfaces, and the amortized cost of OXCs or
wavelength converter pools.

V: The set of all the nodes in the network.
E: The set of all the spans in the network.

B. ILP Formulation
Given a network topology G(V, E), the working capacity

dab (after routing) and the cost cab for each span (a, b)∈E, the
set of p-cycles for 100% span protection can be obtained by
solving the ILP below.

1) Objective:












∑ ∑

∈j ba

j
ababec

E),(

imizemin . (1)

2) Capacity constraint:

() ,2∑ ≥−
j

ab
j

ab
j

ab deχ

.),(E∈∀ ba (2)
3) Cycle constraint:

,2
),(

j
a

ba

j
ab ze =∑

∈E

., ja ∀∈∀ V (3)
4) Protection constraint:

,1),(=j
baaax

.,),(jba ∀∈∀ E (4)

(),
2
1

),(),(
j

tk
j

baat
j

ba
t
ak exy +≤

,,),(jba ∀∈∀ E

.),(:,: EVV ∈∈∀≠∈∀ kttakk (5)

,
),(

),(),(∑
∈

≤
Ekt

j
ba

t
ak

j
baak yx

.:,,),(akkjba ≠∈∀∀∈∀ VE (6)

,1),(),(≤+ j
ba

k
at

j
ba

t
ak yy

,,),(jba ∀∈∀ E

.,:),(akatkt ≠≠∈∀ E (7)

,0
,),(

),(≤∑
≠∈ akbk

j
ba

b
aky

E

.,),(jba ∀∈∀ E (8)

,),(
j

baab
j

ab x=χ

,),(E∈∀ ba .j∀ (9)

,
),(

),(∑
∈

≤
Eta

j
at

j
baak ex

.:,,),(akkjba ≠∈∀∀∈∀ VE (10)

C. Rationale
In the above ILP, we do not know how many cycles are

sufficient for 100% span protection until a solution is obtained.
Theoretically, we can set J sufficiently large, whereas the final
solution may contain less number of cycles.

Formula (1) states the objective of minimizing the total cost
of all cycles/p-cycles. Formula (2) specifies that the set of p-
cycles must provide 100% protection for the given working
capacity dab on each span (a, b)∈E. Note that j

ab
j

ab e−χ2
denotes the number of working capacity units at span (a, b) that
can be protected by cycle j. If span (a, b) cannot be protected
by cycle j, we have 0=j

abχ , 0=j
abe and thus 02 =− j

ab
j

ab eχ .

(a)

0
1

2
3

5

6

4
0

1

2
3

5

6

4

(b)

Fig. 2. It is important to identify spans that can be properly protected.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2237

Otherwise, if it can be protected (with 1=j
abχ), it may be an on-

cycle span (with 1=j
abe) or a straddling span (with 0=j

abe).
Then, j

ab
j

ab e−χ2 takes the value of 1 for the former and 2 for
the latter.

Formula (3) requires a cycle j to have either 0 or 2 on-cycle
spans incident on any node a∈V, depending on whether node
a is on cycle j. With this constraint, multiple disjoint p-cycles
may coexist in j. Fig. 2 gives an example. We assume 1=abd
and 1=abc for every span (a, b), except c14=c25=1000. In Fig.
2a, two disjoint p-cycles coexist in j. If we cannot identify that
spans (1, 4) and (2, 5) straddle two disjoint p-cycles, they will
be mistaken as straddling spans of the same p-cycle, and thus
can be protected by cycle j in Fig. 2a. Accordingly, the total
cost is 7, instead of the correct answer 2005 in Fig. 2b (with a
single p-cycle).

In fact, it is trivial to require that only a single p-cycle
exists in j. Though this can be achieved by adding extra
constraints to the ILP, it will dramatically increase its running
time. Instead, it is necessary to distinguish straddling spans (of
a p-cycle) from spans connecting two separate p-cycles in j
(such as (1, 4) and (2, 5) in Fig. 2a). Straddling spans can be
properly protected by cycle j but spans connecting two separate
p-cycles cannot. In our ILP, this is achieved by protection
constraint 4) (i.e., (4)-(10)) using a recursive process.

To check if span (a, b) can be protected by cycle j, we can
check whether there is a route on cycle j that connects nodes a
and b. If yes, then both a and b are on the same p-cycle and
span (a, b) can be protected. For simplicity, we use “a connects
to b” to mean that the two nodes are connected by a path on
cycle j. For example, in Fig. 2a, node 0 connects to node 3, but
node 1 does not connect to node 4. In essence, checking the
connectivity of two nodes is similar to a routing process along
the cycle.

Motivated by some classic routing algorithms such as
Dijkstra’s and Floyd-Warshall algorithms [21], we can use the
recursive process formulated in (4)-(10) to achieve the above
goal. Fig. 3 shows the key idea. Checking the connectivity of
nodes a and k in Fig. 3 is equivalent to checking the
connectivity of nodes a and t because (t, k) is an on-cycle span.
Assume that (s, t) is also an on-cycle span. This further
translates to checking the connectivity of a and s, and so on. If
a and k are on the same p-cycle, this recursive process will
converge to node a which is called the root of the recursive
process.

For each span (a, b)∈E, formulas (4)-(10) check the
connectivity of nodes a and b on cycle j. Formula (4) means
that the root node a always connects to itself. Formulas (5) &
(6) are the main body of the recursive process. Specifically,

formula (5) defines j
ba

t
aky),(, which can take the value of 1

only if a connects to t (with 1),(=j
baatx) and (t, k) is an on-cycle

span of cycle j (with 1=j
tke). We call this “a connects to k via

t” for short, as shown in Fig. 3. Formula (6) says that, a can
connect to k only if there exists at least one neighbor t of k,
such that a can connect to k via t.

We now use the example in Fig. 4a to show how the
recursive process works. Our task is to check whether span (1,
4) can be protected by cycle j=1 which contains two disjoint p-
cycles. Or equivalently, whether 1

1414
1
14 x=χ (as defined in (9))

can take the value of 1. Figs. 4c-4h give the details of the
recursive process based on (5) & (6). Since 01

)4,1(
1
14 =y (because

(1, 4) is not an on-cycle span and 01
14 =e), the value of 1

)4,1(14x in
Fig. 4c depends on the values of 1

)4,1(
6
14y and 1

)4,1(
5
14y . We first

a

k
t

t is a direct neighbor of k and
(t, k) is an on-cycle span.

A p-cycle in cycle j.

Fig. 3. Node a connects to node k via its neighbor t (1),(=j
ba

t
aky).

s

1
)4,1(

5
14

1
)4,1(

6
14

1
)4,1(14 yyx +≤

()1
64

1
)4,1(16

1
)4,1(

6
14 2

1 exy +≤

1
)4,1(

4
16

1
)4,1(

5
16

1
)4,1(16 yyx +≤

()1
56

1
)4,1(15

1
)4,1(

5
16 2

1 exy +≤

1
)4,1(

6
15

1
)4,1(

4
15

1
)4,1(15 yyx +≤

()1
45

1
)4,1(14

1
)4,1(

4
15 2

1 exy +≤

Mutual reference

Mutual reference

Self-reference

0
1

2
3

5

6

4
?

×

(a)

(c)

(d)

(e)

(f)

(g)

(h)

1 connects to 4?

1 connects to 4 via 6?

1 connects to 6?

1 connects to 6 via 4?

(b)

Fig. 4. Mutual reference, self-reference and the recursive process.

0
1

2
3

5

6

4

(i)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2238

consider 1
)4,1(

6
14y . From Figs. 4d & 4e, we can see that the value

of 1
)4,1(

6
14y further depends on the values of 1

)4,1(
5
16y and 1

)4,1(
4
16y ,

because (6, 4) is an on-cycle span in Fig. 4a and thus we have
11

64 =e in Fig. 4d. However, at this point we should not refer
back to node 4 again (or 1

)4,1(
4
16y in Fig. 4e). Otherwise we will

be trapped by the logical loop shown in Fig. 4b, which is called
mutual reference between nodes 4 and 6. In such a mutual
reference, the connectivity of node pairs {1, 4} and {1, 6}
depends on each other, and thus both will be mistaken as
connected. Note that the ILP will treat any two nodes as
connected if their connectivity is undefined, because this can
help to minimize the objective in (1). Therefore, we should
prevent such mutual references, and let the nodes on the cycle
be sequentially referred to in a unidirectional manner, as shown
by the dashed arrows in Fig. 4a. This is achieved by (7) in the
ILP, which allows either j

ba
t
aky),(or j

ba
k
aty),((but not both) to

take the value of 1.
Assume 01

)4,1(
4
16 =y in Fig. 4e for avoiding the mutual

reference between nodes 4 and 6. Then, the recursive process
continues as in Figs. 4e-4h. Note that 11

56 =e in Fig. 4f and
11

45 =e in Fig. 4h (See the cycle in Fig. 4a), and we have omitted
1

)4,1(
2
15y in Fig. 4g because it equals to 0. Besides, we have

01
)4,1(

6
15 =y in Fig. 4g to avoid mutual reference between nodes

5 and 6. Finally, we can see that the value of 1
)4,1(14x in Fig. 4c

ultimately depends on its own value (i.e., 1
)4,1(14x in Fig. 4h).

We call such a logical loop as self-reference of span (1, 4), and
it should also be avoided. The physical meaning behind is as
follows. To check the connectivity of nodes 1 and 4 in Fig. 4a,
we start from node 4 and retrieve the connectivity in a
recursive manner along the cycle. We finally reach node 4
instead of node 1. Generally, it means that node 1 does not
connect to node 4, and span (1, 4) cannot be protected by the
cycle. Formula (8) in our ILP is to prevent the self-reference
problem. When we check whether span (a, b) can be protected
by cycle j, formula (8) sets 0),(=j

ba
b
aky if k (where k≠a) is a

direct neighbor of node b. This is equivalent to removing the
dashed arrow 4→5 in Fig. 4a, or set 01

)4,1(
4
15 =y in Fig. 4g,

such that the self-reference of span (1, 4) can be avoided. Note
that this is carried out only for checking the connectivity of
nodes a and b. It does not affect our analysis on the
connectivity of other node pairs.

In Fig. 4g, we have 01
)4,1(

4
15 =y to avoid self-reference of

span (1, 4), and 01
)4,1(

6
15 =y to avoid mutual reference between

nodes 5 and 6. Therefore, we get 01
)4,1(15 =x , meaning that node

1 does not connect to node 5. Recursively, we have 01
)4,1(

6
14 =y

in Fig. 4c. If 1
)4,1(

5
14y in Fig. 4c is considered, we can get

01
)4,1(

5
14 =y in a similar way. Consequently, 01

1414 =x in Fig. 4c,
and span (1, 4) cannot be protected by cycle j=1.

On the other hand, if we check whether span (1, 2) can be
protected by cycle j=1 in Fig. 4i, the connectivity of nodes 1
and 2 can be retrieved as indicated by the dashed arrows. We
can finally reach node 1, and 11

)2,1(12
1
12 == xχ is ensured by the

root definition 11
)2,1(11 =x (see formula (4)). Therefore, span (1,

2) can be protected by cycle j=1 which is also a p-cycle.
In summary, formulas (4)-(10) are used to check whether

span (a, b) can be protected by cycle j. Specifically, formula
(4) defines the root, and formulas (5) & (6) form the main body
of the recursive process. Formulas (7) & (8) are used to prevent
mutual reference and self-reference, respectively. Formula (9)
defines j

baab
j

ab x),(=χ . Finally, formula (10) says that, if there is
no on-cycle spans of cycle j incident on node a, then a does not
connect to any other node along cycle j. For the example in
Fig. 4, a final solution with a single p-cycle can be obtained in
Fig. 4i, instead of the two p-cycles in Fig. 4a.

III. NUMERICAL RESULTS AND DISCUSSION
The ILP formulated in (1)-(10) is implemented using ILOG

CPLEX 10.0 [22]. To speed up the ILP optimization, we
emphasize on finding feasible solutions instead of optimal
solutions. Specifically, we set the environment parameters of
CPLEX 10.0 as in (11) below to tighten our ILP model, and
allow more frequent heuristic processing.

1→ emphasis mip
2→ mip strategy probe
3→ mip strategy rins
3→ mip strategy heuristicfreq (11)
2→ mip cuts all
3→ mip strategy dive
3→ preprocessing symmetry

Let N=||V|| be the network size and S=||E|| be the total

Fig. 5. p-cycles for the two homogeneous networks.
(b) N=15, S=19.

(a) N=15, S=27.

Total cost = 18
Solution time = 96.31 sec

J = 3
Number of cycles = 2

2

1

0

3

4

5

6

7 8 9

10

11 12 13

14

2

1

0

3

4

5

6

7 8 9

10

11 12 13

14

Total cost = 24
Solution time = 16.97 sec

J = 3
Number of cycles = 3

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2239

number of spans in the network. The two homogeneous
networks (or flat capacity networks) in Fig. 5 (taken from [23])
are first considered, where the anticipated working capacity on
each span is the same. The homogeneous scenario corresponds
to p-cycle protection for dynamic traffic [10], or for fiber-level

protection in DWDM networks [23]. In Fig. 5, we assume that
the working capacity on each span is one unit, and hop-count is
used as the cost metric (i.e., cab=1 for each span (a, b)). The
optimal solutions returned by the ILP are also shown in Fig. 5,
where both solutions are obtained quickly for J=3. For
homogeneous networks, the required number of p-cycles is
usually small. Therefore, our ILP can return an optimal
solution rather quick.

We then consider the pan European COST 239 network in
Fig. 6. The cost of each span is defined as the Euclid distance
between its two end nodes (See Fig. 6a). The number next to
each span in Fig. 6b denotes the number of working capacity
units (i.e., dab) on that span. The optimal solution obtained is
shown in Fig. 6b, which consists of 2 p-cycles.

Examples in Figs. 7 & 8 are for capacitated networks. Fig.
7a is the traffic matrix for the capacitated pan European COST
239 network in Fig. 7b. It is obtained by dividing the traffic
matrix in [24] by 10 Gb/s. The cost of each span is the same as
in Fig. 6a. Fig. 7b shows the working capacity at each span
after shortest path routing. The solutions at different running
time are given in Fig. 7c with J=7. Particularly, the set of p-
cycles obtained after running for 3 hours are listed. The
solution has a gap of 2.10% to optimality. The network in Fig.
8a is taken from [23], where hop-count is used as the cost
metric. Our ILP returns the optimal solution [23] (listed in Fig.
8b) in just 886.53 seconds (though a gap to optimality of
3.14% is still observed after 3 hours).

One issue in our ILP is how to determine the number of
allowed cycles J. Theoretically, we can set J large enough and
the ILP can return a solution with less number of cycles. But,
the running time of our ILP is very sensitive to J, because the
number of variables and constraints will increase rapidly with
J. Note that each p-cycle can protect two units of working
capacity on a straddling span, and the ILP tends to generate p-
cycles that straddle the most-heavily-loaded span (in order to
reduce the number of required p-cycles). So intuitively, we can
set J to half of the working capacity units at the most-heavily-
loaded span, or slightly larger than that. On the other hand, if J
is too small to give a feasible solution, CPLEX can identify the
infeasibility very fast (usually in less than 1 second). If this
happens, we can slightly increase J before rerunning the ILP.

From the examples in Figs. 5-8, we can see that our ILP
returns optimal/suboptimal solutions in reasonable amount of
running time. In contrast, the candidate cycle enumeration in

Time in hours Gap to optimality p-cycles
1 32960 7.72%
2 32130 3.23%
3 31790 2.10%

Total cost

0–3–2–4–5–8–10–9–6–0
1–2–3–9–6–8–5–4–10–7–1
0–2–4–10–8–5–6–9–3–0
0–3–2–4–5–8–10–9–6–0
4–5–8–10–4
0–1–2–4–5–8–7–10–9–6–3–0
0–3–9–10–7–1–4–2–5–8–6–0

5

1

4
4

7 5 4 5

9

2
3

3

5
4

0

7 10

7

4

11

0

5

9

2
10

1

0

1 2 3

4

5 6

7
8 9

10










































0
10
210
2120
11110
111110
1112110
33341120
111211120
1113111220
11111111110

(a) Traffic matrix. (b) Working capacity on each span. (c) ILP solutions with J=7.

Fig. 7. Case study for the capacitated pan European COST 239 network.

0: Copenhagen

1: London

2: Amsterdam

3: Berlin

4: Brussels

5: Luxembourg

6: Prague

7: Paris

8: Zürich

9: Vienna

10: Milan

Span Span Cost Cost

0–1 1310 4–5 220
0–2 760 4–7 300
0–3 390 4–10 930
0–6 740 5–6 730

1–2 550 5–7 400

1–4 390 5–8 350

1–7 450 6–8 565
2–3 660 6–9 320

2–4 210 7–8 600
2–5 390 7–10 820
3–6 340 8–9 730

3–7 1090 8–10 320

3–9 660 9–10 820

(a) Span cost in kilometers.

0

1 2 3

4

5 6

7
8 9

10

2

2

2
2

2

2
2

2

2

2

2
2

1

1
1

1

1

1
1

1 1
1

1

1 2

Total cost = 7980 km
Solution time = 616.91 sec

J = 3
Number of cycles = 2

1

(b) Topology (N=11, S=26) and p-cycles.

Fig. 6. A simple example based on pan European COST 239 network.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2240

conventional p-cycle construction algorithms is much more
time-consuming. However, the complexity of our ILP is very
sensitive to the value of J. For heavily loaded networks, two
approaches can be taken to address this issue. First, we can
reduce the number of p-cycles by scaling down the traffic with
a larger bandwidth unit (e.g. combine two or more wavelengths
into a single bandwidth unit). Second, we can follow the
divide-and-conquer approach to break the set of demands into
subsets, and solve each subset separately using our ILP.

IV. CONCLUSION
We proposed a new p-cycle construction algorithm which

only relies on ILP (Integer Linear Program). Compared to the
conventional algorithms, it removes the time-consuming
process for candidate cycle enumeration and pre-selection.
When the required number of p-cycles is not too large, our ILP
can generate optimal/suboptimal solutions in reasonable
amount of running time.

REFERENCES
[1] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed

preconfiguration: ring-like speed with mesh-like capacity for self-
planning network restoration,” IEEE ICC '98, vol. 1, pp. 537-543, Jun.
1998.

[2] Huan Liu and F. A. Tobagi, “Traffic grooming in WDM/SONET BLSR
rings with multiple line speeds,” IEEE GLOBECOM '05, vol. 4, pp.
2096-2101, Dec. 2005.

[3] D. Stamatelakis and W. D. Grover, “Theoretical underpinnings for the
efficiency of restorable networks using preconfigured cycles (“p-
cycles”),” IEEE Trans. on Comm., vol. 48, no. 8, pp. 1262-1265, Aug.
2000.

[4] D. Stamatelakis and W. D. Grover, “IP layer restoration and network
planning based on virtual protection cycles,” IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1938-1949, Oct. 2000.

[5] W. D. Grover, “Mesh-Based Survivable Networks,” Upper Saddle River,
NJ: Prentice-Hall, Aug., 2003.

[6] A. Kodian, W. D. Grover, J. Slevinsky and D. Moore, “Ring-mining to
p-cycles as a target architecture: riding demand growth into network
efficiency,” in Proc. 19th Annu. Nat. Fiber Optics Engineers Conf.
(NFOEC), pp. 1543-1552, Sep., 2003.

[7] G. Shen and W. D. Grover, “Design of protected working capacity
envelopes based on p-cycles: an alternative framework for survivable
automated lightpath provisioning,” in Performance Evaluation and
Planning Methods for the Next Generation Internet, A. Girard, B. Sansò,
and F. Vazquez-Abad, Eds. Norwell, MA: Kluwer, 2005.

[8] G. Shen and W. D. Grover, “Performance of protected working capacity
envelopes based on p-cycles: fast, simple, and scalable dynamic service
provisioning of survivable services,” in Proc. Asia-Pacific Optical and

Wireless Communication Conf. (APOC), vol. 5626, pp. 519-533, Nov.
2004.

[9] D. A. Schupke, C. G. Gruber and A. Autenrieth, “Optimal configuration
of p-cycles in WDM network,” IEEE ICC '02, vol. 5, pp 2761-2765,
May 2002.

[10] Wensheng He, Jing Fang and A. K. Somani, “A p-cycle based
survivable design for dynamic traffic in WDM networks,” IEEE
GLOBECOM '05, vol. 4, pp. 1869-1873, Dec. 2005.

[11] Hong Huang and J. A. Copeland, “A series of Hamiltonian cycle-based
solutions to provide simple and scalable mesh optical network
resilience,” IEEE Communications Magazine, vol. 40, no. 11, pp. 46-51,
Nov. 2002.

[12] D. A. Schupke, “Multiple failure survivability in WDM networks with
p-cycles,” Circuits and Systems, ISCAS '03. Proceedings of the 2003
International Symposium on, vol. 3, pp. 866-869, May 2003.

[13] D. A. Schupke, “The tradeoff between the number of deployed p-cycles
and the survivability to dual fiber duct failures,” IEEE ICC '03, vol.
2, pp. 1428-1432, May 2003.

[14] A. Kodian, A. Sack and W. D. Grover, “p-cycle network design with
hop limits and circumference limits,” Broadband Networks, 2004.
BroadNets 2004. Proceedings. First International Conference on, pp.
244-253, 2004.

[15] Gangxiang Shen and W. D. Grover, “Extending the p-cycle concept to
path segment protection for span and node failure recovery,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 8, pp. 1306-
1319, Oct. 2003.

[16] A. Kodian and W. D. Grover, “Failure-independent path-protecting p-
cycles: efficient and simple fully preconnected optical-path protection,”
Journal of Lightwave Technology, vol. 23, no. 10, pp. 3241-3259, Oct.
2005.

[17] B. J. Donald, “Finding all the elementary circuits of a directed graph,”
SIAM J. Comput., vol. 4, no. 1, pp. 77-84, Mar. 1975.

[18] W. D. Grover and J. Doucette, “Advances in optical network design with
p-cycles: joint optimization and pre-selection of candidate p-cycles,” in
Proc. IEEE LEOS Summer Topicals, pp. 49-50, Jul. 2002.

[19] J. Doucette, D. He, W. D. Grover and O. Yang, “Algorithmic
approaches for efficient enumeration of candidate p-cycles and
capacitated p-cycle network design,” Design of Reliable Communication
Networks, 2003. (DRCN 2003). Proceedings. Fourth International
Workshop on, pp. 212-220, Oct. 2003.

[20] Hanxi Zhang and O. Yang, “Finding protection cycles in DWDM
networks,” IEEE ICC '02, vol. 5, pp. 2756-2760, May 2002.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ: Prentice-Hall,
1993.

[22] www.ilog.com.
[23] A. Sack and W. D. Grover, “Hamiltonian p-cycles for fiber-level

protection in homogeneous and semi-homogeneous optical networks,”
IEEE Network, vol. 18, no. 2, pp. 49-56, Apr. 2004.

[24] P. Batchelor et al., “Ultra high capacity optical transmission networks,”
Final report of action COST 239, 1999.

p-cycles
1 85 3.53%
2 85 3.53%
3 85 3.14%

Total cost

0–1–2–9–8–10–11–12–7–6–5–4–3–0

0–1–9–2–3–8–10–11–12–7–6–5–4–0
0–1–2–9–10–11–12–7–6–5–4–8–3–0

0–1–2–9–8–11–12–7–6–5–4–3–0
0–3–2–1–9–8–10–11–12–7–6–5–4–0

0–4–8–3–2–1–9–10–11–12–7–6–5–0

4–5–7–12–11–10–9–8–4

Fig. 8. A capacitated network taken from [23].

Gap to optimality Time in hours

(b) ILP solutions with J=7.

1

0

3

2

4

5 6

7
8

9

10

11 12

8
6 4

10

1

9

4

7
6

6 7

14

7

5
2

13
7

3

4

5

9

10

11

(a) Working capacity on each span.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2241

