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We present multiple-image encryption (MIE) based on compressive holography. In the encryption, a ho-
lographic technique is employed to record multiple images simultaneously to form a hologram. The two-
dimensional Fourier data of the hologram are then compressed by nonuniform sampling, which gives rise
to compressive encryption. Decryption of individual images is cast into a minimization problem. The
minimization retains the sparsity of recovered images in the wavelet basis. Meanwhile, total variation
regularization is used to preserve edges in the reconstruction. Experiments have been conducted using
holograms acquired by optical scanning holography as an example. Computer simulations of multiple
images are subsequently demonstrated to illustrate the feasibility of the MIE scheme. © 2012 Optical
Society of America
OCIS codes: 060.4785, 090.1995, 090.1760, 100.3020, 100.3190.

1. Introduction

Optics-based methods take advantage of processing
two-dimensional (2D) data in parallel and have been
studied in the context of optics and information se-
curity. Among the many proposed techniques, one
of the prominent optical techniques is double random
phase encryption [1–3]. The system adopts two ran-
dom phase masks to encrypt the input image into
stationary white noise. However, in the last decade,
optical encryption systems have been evolving into
multiple-image encryption (MIE), which attracts

much attention nowadays owing to economic mem-
ory occupation and efficient transmission via a net-
work. Compared with single-image encryption, MIE
encodes several images into a single encrypted file
[4–7]. Wavelength multiplexing has been used in
the context of MIE [5]. The ultimate encrypted image
was synthesized by superimposing individual en-
crypted image together. This encryption strategy was
time-consuming and sensitive to the cross-talk effect.
MIE based on a frequency shift was also proposed to
encode images in either the Fourier or fractional
Fourier domain. The technique is good at encoding
multiple images, but high-frequency contents of
the images have to be discarded due to downsize
cropping of the spectrum in order to utilize the
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algorithm effectively [4,8]. MIE based on the frac-
tional Fourier transform (FT) using different frac-
tional orders [6] has been used, but the method is
time-consuming as it produces initial phase terms
by iterations.

Holography was also involved in image encryp-
tion because of the inherent capability of recording
images into a hologram. A hologram can preserve the
image content by its complex Fresnel zone patterns,
and the encryption procedure can be performed by
real optical systems [7,9–12]. Holographic techni-
ques have been used to encrypt a single image or
a three-dimensional (3D) object. However, hologram
data are not only complex but also occupy muchmore
memory than does the original image. A plethora of
publications in the past decade have dealt with the
encryption of holograms [13–16]. Investigations of
encrypted holograms using compressive sensing,
however, have not been explored to the best of our
knowledge. In this paper, we believe we present
the first work dealing with MIE by compressive ho-
lography. In order to achieve an efficient MIE, we uti-
lize optical scanning holography (OSH) to encrypt
multiple images and introduce compressive sensing
(CS) to perform compressive encryption. Decryption
is treated as a minimization problem.

In the encryption process by OSH, a hologram is
recorded to encode the information of multiple
images. A nonuniform sampling is then applied on
the Fourier result of the hologram to produce the
compressed hologram. Subsequently, decryption is
expressed as a minimization problem [17–20]. In
the CS framework, the solution to the problem pre-
serves the sparsity of the images as well as fidelity by
an l2-norm constraint. As the encryption/decryption
process handles natural images, total-variation reg-
ularization is added to preserve edges. Finally, the
decryption process ensures images are recovered
with edges preserved.

In what follows, we will first present the methodol-
ogy in Section 2. It starts with the model of MIE by
OSH, discusses the compression of the encrypted
hologram by CS, and finally moves to the minimiza-

tion problem of the decryption of images. Section 3
describes two experiments: the first one deals with
optical experiments on the encryption of hologram
data of two images, and the other one works on
the simulation of a multiple-image hologram. Con-
cluding remarks are summarized in Section 4.

2. Methodology

A. Optical Scanning Holography

OSH records the holographic information of a 3D
object on a 2D hologram by 2D optical heterodyne
scanning. The technique was pioneered by Poon [21].
A standard experimental setup is shown in Fig. 1. A
laser at temporal frequency ω goes into the system. It
is split by a beam splitter (BS1) into two optical
beams. One beam passes through the mirror (M1),
the pupil [l1�x; y�], and the lens (L1). The other beam
is frequency-shifted by an acousto-optical frequency
shifter (AOFS) to frequency ω� α. The frequency-
shifted optical beam is then propagating through
the mirror (M2), the pupil [l2�x; y�], and the lens
(L2) successively as shown in Fig. 1. The two optical
beams are then combined by a beam splitter (BS2)
and controlled by the x-y scanner to scan an object
at z away from the scanning system. The scattered
and diffracted light from the object is collected by
lens L3 and converged onto a photodetector (PD),
which records the optical information of the object
and converts it into an electronic signal. The post-
processing unit processes the electronic signal and
generates scanned information of the object in a com-
puter [22]. If the pupil functions l1�x; y� and l2�x; y�
are of the form of an open mask and a pin hole,
respectively, what is being processed and stored in
a computer are two digital holograms [23].

B. Compressive Sensing

CS brings a novel technique to image compression. It
is based on the inherent sparsity of images and can
recover compressed images with desirable quality
from much fewer compressed data. In our case, the
technique will be applied to the hologram captured

Fig. 1. Standard experimental setup of OSH.
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by the OSH system. Before that, there is a need to
explain CS concisely.

Suppose there is an image, S, to be compressed. It
is of size N ×N. The image is organized into a vector
in the lexicographical order, s ∈ RN2 . To implement
CS on the vector is to design a sensing operator,
which makes a projection of the vector from RN2 to
RM . Given the sensing operator Φ ∈ RM×N2 and
M ≪ N2, Φs will achieve the compression of the
vector s from RN2 to RM. That is,

g � Φs: (1)

Equation (1) conducts the sensing projection to
achieve a compression of the data. The next step is
to recover the image from the compressed data, g.
In compressive sensing, there are two sufficient con-
ditions to guarantee that there is an optimal recon-
struction of the original image. The first one is the
transform sparsity, which requires that the sparsity
of the image is exposed under a transform, such as a
bounded variation and wavelet transform. For exam-
ple, the wavelet transform realizes the sparse image
representation and can be denoted by Ψ, that is, x �
ΨHs produces the sparse vector x from a vector s.
Here the superscriptH denotes the Hermitian trans-
pose. The second sufficient condition is that the sen-
sing operator and the sparse representation operator
satisfy the restricted isometry property,

�1 − ϵ�‖x‖2
2 ≤ ‖ΦΨx‖2

2 ≤ �1� ϵ�‖x‖2
2: (2)

Here ‖ · ‖2 stands for the l2-norm of a vector, and ϵ is
close to zero. Using the above condition, Zhang, Lam,
and Poon pioneered CS in the context of holography
[17]. There are a few pairs of transform operators
that satisfy the condition. Among the many pairs,
the Fourier-wavelet pair is suitably chosen for the
MIE application. While the FT works as the sensing
operator, the wavelet transform reveals the sparsity
of the image. In the setting, reconstruction is ob-
tained by minimizing

f �x� � λ‖x‖1 �
1
2
‖g −ΦΨx‖2

2; (3)

where ‖x‖1 � P
i jxij is the l1-norm, which measures

the number of nonzero entries of the vector x, and λ is
the regularization parameter, which tunes the bal-
ance between the fidelity and regularization in the
reconstruction.

C. Compressive Hologram of Multiple Images

The transfer function of the OSH system has been
expressed as [23,24]

H�kx; ky� � exp
�
−jz
2k0

�k2x � k2y�
�
: (4)

Here z stands for the distance between the object
and the holographic recording system, and k0 is the

wavenumber. Suppose an image is s�x; y� and its FT
is S�kx; ky�. The hologram measured by OSH can be
represented by [23]

c�x; y� � F−1
xy fS�kx; ky�H�kx; ky�g: (5)

Here F−1
xy f·g denotes the inverse FT operation. Sup-

pose the 3D FT of an object is Q̂�kx; ky; kz�. The FT
of the hologram, C�kx; ky�, is shown to be related to
the 3D FT of the object as [25]

C�kx; ky� � Q̂�kx; ky;−�kz − k0��

� Q̂
�
kx; ky; k0 −

��������������������������
k20 − k2x − k2y

q �
: (6)

In words, the samples of C�kx; ky� comprise points
equidistant from the point �0; 0; k0� in the 3D spatial
frequency domain, as shown in Fig. 2. Hence the data
of the FT hologram represent a particular sampling
of the 3D FT of the original object, and the FT result
of a multiple-image hologram is equivalent to the
partial Fourier data of these multiple images located
at different places.

In order to perform CS of the hologram c�x; y�, sam-
pling is applied on the FT result of the hologram.
However, the sampling scheme should be designed
particularly as the information distribution in the
spatial frequency domain is nonuniform. If sampling
is uniform, it fails to record sufficient information for
subsequent reconstruction [26]. For well-designed
sampling, more data should be measured around the
origin, while less are picked out on the periphery.
Thus the sampling pattern on the Fourier plane
should appear as shown in Fig. 3, in which white
points represent positions of sampled data. Note that
the sampling pattern does not work on the 3D Four-
ier domain but on the 2D FT result of the hologram.
A sampling ratio is defined as the number of sam-
pling points divided by the number of overall resol-
vable points. Figure 3 shows a sampling pattern with
the sampling ratio of 25%. The sampling pattern is
gradually less dense from the center to the periphery.

D. Quantization of the Hologram

The hologram can be stored as a signed IEEE 64-bit
(8-byte) double-precision floating-point number.
Compared with two 8-bit gray-scale bitmap images,

Fig. 2. Fourier data of a hologram, C�kx; ky�, exhibited in the 3D
Fourier domain [25].
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the size of hologram data are quadruply increased
because of the double data type, 64∕�8 × 2� � 4. In or-
der to obtain a compressed hologram, not only do
we need to employ sampling, but we should also
consider quantization, which reduces the precision
of the data. There are four choices: double, int32,
int16, and int8. The last three types represent
integer 32-bit, integer 16-bit, and integer 8-bit and
occupy 4, 2, and 1 byte(s), respectively. So the quan-
tization and compressive sensing ratio (QCSR) can
be calculated as

QCSR � Compressed-DataSize
Original-ImageSize

� 2rq
l

: (7)

Here l is the number of images in the encryption, r is
the sampling ratio, and q is the bytes occupied by the
data type used. Because a hologram is stored in real
and imaginary parts, a factor of 2 is multiplied in
Eq. (7). Both the quantization and sampling rate give
rise to compressive hologram data. The peak signal-
to-noise ratio (PSNR) of the recovered image is mea-
sured to evaluate reconstruction with regard to the
QCSR:

PSNR � 10 log10

�
1

MSE

�
; (8)

with the MSE, denoting the mean square error, given
by

MSE � 1
N ×N

XN
i�1

XN
j�1

�p̂i;j − pi;j�2: (9)

Here p̂ stands for the original image, and p is the
recovered image. They are of the size N ×N.

E. Discrete Wavelet Transform

As the wavelet transform is used to sparsify an image
in the work, here is a short introduction about the
transform. A one-dimensional discrete wavelet
transform (DWT) is adopted to illustrate the trans-
form. Two-dimensional DWTof an image is described
in a block diagram.

A DWT decomposes a signal into two parts,
approximation and details, by the following pair:

Xu;v �
X∞
n�−∞

x�n�ϕu;v�n� and

Du;v �
X∞
n�−∞

x�n�ψu;v�n�:
(10)

Here Xu;v and Du;v are referred to as the approxima-
tion coefficients and detail coefficients at scale and
location indices �u; v�, respectively. Function ϕu;v�n�
is called the scaling function and performs as a
low-pass filter to obtain an approximation of the
original signal, x�n�. It is defined as ϕu;v�n� �
2−u∕2ϕ�2−un − v� based on the father scaling function,
ϕ�n�. Function ψu;v�n� is the wavelet function and
works as a high-pass filter to obtain details of the sig-
nal, given by ψu;v�n� � 2−u∕2ψ�2−un − v� based on the
mother wavelet function, ψ�n�. A Daubechies wavelet
is often used in image processing, but it is not possi-
ble to write down in closed form. Nevertheless, the
father scale function and mother wavelet function
of Daubechies D5 can be drawn. As shown in Fig. 4,
the blue dashed curve is the wavelet function and the
green curve is the scaling function. The index num-
ber, D5, refers to the number 5 of coefficients in the
wavelet.

An example of the diagram of the decomposition
of an image by the Daubechies D5 is shown in Fig. 5.
The original image of Lena is of the size of 256 × 256.
The rows of the image are convolved with ϕ�n� and
ψ�n�, and the image is decomposed into horizontal
approximation and horizontal detail at first. Then
the horizontal approximation is decomposed further
into the approximation and vertical detail by ϕ�n�

Fig. 3. Sampling pattern on the Fourier plane with sampling
ratio of 25%.

Fig. 4. (Color online) Daubechies D5 wavelet.
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and ψ�n� operated on columns, while the horizontal
detail is decomposed into horizontal detail and
diagonal detail also by ϕ�n� and ψ�n� operated on
columns. The four resulting subimages, that is, ap-
proximation, horizontal detail, vertical detail, and
diagonal detail, compose the result of the decomposi-
tion at level 1. The whole process is also shown in the
lower row of Fig. 5, where the four subimages are ar-
ranged in the four quadrants in the decomposition
and represented by LL, HL, LH, and HH, respec-
tively. L and H stand for going through low-pass
ϕ�n� and high-pass filter ψ�n� for the corresponding
subimages. For example, the left upper quadrant is
denoted as LL because the original image is pro-
cessed by ϕ�n� twice.

A decomposition at level 2 is operated on the ap-
proximation subimage, that is, on the quadrant
LL. It separates the subimage into smaller subi-
mages with approximation and three details similar
to what is shown in level 1. A final result arising from
the decomposition at level 3 is shown at the right
lower corner of Fig. 5. Decomposition at level k
means the further decomposition of the approxima-
tion subimage at the level of k − 1.

F. Decryption Model

Because the OSH system is linear and space-
invariant, the model of encryption could then be con-
structed as

c � As; (11)

where c and s are vectors denoting the compressed
FT hologram and the original images in the lexico-

graphical order, respectively. A is a matrix operator,
which stands for sensing using OSH in this applica-
tion. As we employ FT to compress the hologram, the
model will be

~c � FAs: (12)

Here F denotes the FT operator.
Natural images possess significant sparsity under

a wavelet basis. Let us take an example of the Lena
image of the size 256 × 256. Under the Daubechies
D5 wavelet decomposition at level 3, the distribution
of its coefficients is shown in Fig. 6(a). Here red lines
indicate level 1, yellow lines show level 2, and green
lines correspond to level 3. A 3D view of the decom-
position results is shown in Fig. 6(b), where the x and
y axes correspond to the vertical and horizontal
directions in Fig. 6(a). Here we set the origin of
Fig. 6(b) at the left upper point of Fig. 6(a). The z axis
indicates the value of decomposition coefficients. We
observe that values of most of the coefficients, espe-
cially within the gray part of Fig. 6(a), are around
zero, and these coefficients are significantly sparse.
Figure 6(c) shows the coefficients of the Cameraman
image under the same decomposition. The sparsity of
coefficients demonstrates that the wavelet basis is
an appropriate sparsity operator on natural images.
Note that the Daubechies wavelet is not an exclusive
choice for the application. Other kinds of wavelets
are feasible as needed because the sparsity of natural
images happens under most wavelets [27].

Referring to the CS theory, the pair of Fourier and
wavelet basis is incoherent [28], which guarantees a

Fig. 5. (Color online) Diagram of the wavelet decomposition of Lena. The upper row shows the block diagram of the decomposition at level
1, and the lower row shows the process and results at level 1 (middle figure) and level 3 (figure on the right side).
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reconstruction from the compressed FT signal by
l1-norm minimization under the wavelet basis.
Hence the decryption problem can be solved by
l1-norm minimization of

f �x� � α‖Ψx‖TV � β‖x‖1 �
1
2
‖~c − FAΨx‖2

2: (13)

Here ‖ · ‖TV is the total variation (TV) regularization
and

‖q‖
TV

�
X
i;j

����������������������������������������������������������������
�qi�1;j − qi;j�2 � �qi;j�1 − qi;j�2

q
: (14)

Due to the nondifferentiability of the Euclidean norm
at the origin, we will take an approximated TV as
follows:

‖q‖
TV

�
X
i;j

���������������������������������������������������������������������������
�qi�1;j − qi;j�2 � �qi;j�1 − qi;j�2 � ξ2

q
:

(15)

Here ξ is a small positive parameter. Apart from
the consideration of sparsity and fidelity for a given
reconstruction, TV regularization preserves edges of
the recovered image while suppressing any spurious
high-frequency components. After setting up the cost
function, fixed-point iteration is employed to extract
a solution for the problem.

3. Experiments

Two experiments were conducted to evaluate the per-
formance of reconstruction under the compression of
a hologram captured by OSH and of a hologram of
multiple images in simulations. Simulation results
are useful to the evaluation of the performance
by PSNR.

A. MIE by OSH

In the first experiment, hologram data are measured
by a physical OSH system as shown in Fig. 1. The
hologram is derived from “star” and “heart” symbols

positioned at 0.97 m and 1.17 m from the focal spot of
lens L1, respectively. The two sections are located as
shown in Fig. 7 (abridged sketch of the scanning part
in the OSH system shown in Fig. 1). The scanner pro-
jects the combined beam of the laser onto the two sec-
tions. The beam passes through the two sections
successively, and then the transmitted light is col-
lected by a photodetector, which generates a scanned
electrical signal. The electrical signal is then pro-
cessed to obtain the holographic signal of the two
scanned sections. Finally the holographic signal is
stored in a computer as a complex hologram. The
complex hologram is of the size 500 × 500 pixels
with a pixel size of 20 μm× 20 μm. The complex
hologram’s real and imaginary parts are shown in
Figs. 8(a) and 8(b), respectively. Then a sampling
mask such as that shown in Fig. 3 is applied to
the FT result of the hologram to obtain the com-
pressed hologram data. Again, the sampling rate is
at 0.25, which means we take 1 out of 4 data points
from the hologram, and sampling is nonuniform, as
mentioned before.

Reconstruction of the compressed hologram is im-
plemented according to Eq. (13). Reconstructed sec-
tions are shown in Fig. 9, in which subfigures (a) and

Fig. 6. (Color online) (a) Level 3 decomposition of Lena. (b), (c) Top view of the wavelet coefficient distribution in 3D view for Lena and
Cameraman, respectively.

Fig. 7. Abridged sketch of the “star” and “heart” sections scanned
in the OSH system.
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(b) are sections recovered without compression using
inverse imaging as in [17] directly. As the reconstruc-
tion shows, the “star” and “heart” are well recovered
and there is little perceptible defocus noise left. The
result verifies the reconstruction method, which
works effectively to extract sections from the holo-
gram while suppressing the defocus noise.

Reconstruction is also applied to a compressed
hologram, in which the QCSR � 0.25 and the quan-
tization is int8. Figures 9(c) and 9(d) show sections
extracted from the hologram. Comparing the results
in Figs. 9(a) and 9(b) with those in Figs. 9(c) and 9(d),
we observe that the reconstruction of the com-
pressed hologram also makes sections be recovered

Fig. 8. (a) Real part and (b) imaginary part of the hologram.

Fig. 9. (a), (b) Reconstructions of different sections are shown in by the inverse imaging method. (c), (d) Corresponding reconstructed
sections with quantization � int8, QCSR � 0.25.
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clearly with defocus noise suppressed and gives the
hologram data compressed quarterly.

B. Holographic Encryption of Multiple Images

In the previous optical experiment, it is worthwhile
to note that the hidden images, “star” and “heart,”
are quite intuitive and are nonoverlapping. In what
follows, we perform computer simulations using the
principle of OSH for multiple natural images to test
the feasibility of our proposed algorithm.

For overlapping images, it is necessary to involve
preprocessing to handle the intensity distribution
of each section of the image. Otherwise, sections
adjacent to the scanner would block the beam from
projecting on sections far away. We propose using
a wavelet transform for preprocessing to decompose
images and reduce overlapped information. Here the
Daubechies D5 wavelet is chosen as it is good at pick-
ing up details in an image. After a three-level wave-
let transform, low-frequency data with much
information are arranged at the left upper corner
(LL subimage) while high-frequency data are at
the right lower corner (HH subimage) but with less
information (see Fig. 5). Then we exchange the two
quadrants, LL and HH, with each other so that
the coefficients at the low-frequency part at level 3
are scanned in the center, as shown in Fig. 10(a),

to avoid the aliasing at boundaries in the scanning.
Next, coefficients of the second, third, and fourth sec-
tions are rotated by 90°, 180°, and 270°, respectively,
to overcome overlapping. The effect of rotation is
obvious in Fig. 10(c), in which low-frequency contents
of each section occupy a quarter of the whole plane
with less overlapping with others. The rotation
reduces the overlapped information significantly.
Finally, these organized coefficients are scanned by
the OSH system as shown in Fig. 10(b). Figure 10(c)
is the enlarged four decompositions collapsed onto a
single plane to illustrate the nonoverlapping of
the subimages. Note that although preprocessing
is involved in the generation of a hologram, the cri-
tical part of the encryption is implemented by the
OSH system and the preprocessing helps the beam
to project onto all sections.

The hologram is shown in Fig. 11, where Fig. 11(a)
is the real part and Fig. 11(b) is the imaginary part.
The quantization of the hologram is set to int8
and the sampling rate is 50%. According to Eq. (7),
the QCSR � 0.5×1×2

4 � 0.25.
The reconstruction is carried out on the hologram.

The third row of Fig. 12 shows reconstructed images
from the compressed hologram. Compared with the
original images shown in the first row of Fig. 12,
the main information captured by these images is

Fig. 10. (Color online) (a) DWT results showing LL and HH have been exchanged in location. (b) Scanning four level-3 decompositions by
the OSH system. (c) The four subimages are collapsed onto a single plane to illustrate the nonoverlapping of the subimages.

Fig. 11. Hologram of four images: (a) real part and (b) imaginary part.
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reconstructed. The PSNR is close to or more than
20 dBm in the reconstruction. Comparing these
images with those in the second row of Fig. 12 from
the noncompression hologram, PSNR is decreased
but major edges are preserved for objects in these
images. This demonstrates that the reconstruction
works to decrypt multiple images from a compressed
hologram by OSH.

4. Conclusions

We investigate both the compression and encryption
of multiple images. MIE is achieved by the OSH sys-
tem. The hologram with encrypted information is
further explored with CS theory to achieve a com-
pressed encryption, owing to the fact that the FT
of the hologram corresponds to the 3D FT of the
images at different places. The implementation of
CS with the sparsity of natural images under a
wavelet basis not only generates a compressed holo-
gram but also ensures a decryption with desirable
quality. The whole scheme of the encryption/
decryption of multiple images is verified by two ex-
periments using real OSH data and simulated
four-image hologram data. Their results are consis-
tent and demonstrate that the reconstruction meth-
od works well to decrypt multiple images from a
compressed hologram recorded by the OSH system.
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Science Foundation of China (nos. 81101082,
61121061), the National Basic Research Program

of China (973 Program, no. 2007CB311203), and
the 111 Project (no. B08004).

References
1. P. Refregier and B. Javidi, “Optical image encryption based on

input plane and Fourier plane random encoding,” Opt. Lett.
20, 767–769 (1995).

2. T.-C. Poon, T. Kim, and K. Doh, “Optical scanning crypto-
graphy for secure wireless transmission,” Appl. Opt. 42,
6496–6503 (2003).

3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption
by double-random phase encoding in the fractional Fourier
domain,” Opt. Lett. 25, 887–889 (2000).

4. Z. Liu, Y. Zhang, H. Zhao, M. A. Ahmad, and S. Liu, “Optical
multi-image encryption based on frequency shift,” Optik 122,
1010–1013 (2011).

5. G. Situ and J. Zhang, “Multiple-image encryption by wave-
length multiplexing,” Opt. Lett. 30, 1306–1308 (2005).

6. Z. Liu and S. Liu, “Double image encryption based on iterative
fractional Fourier transform,” Opt. Commun. 275, 324–329
(2007).

7. X. F. Meng, L. Z. Cai, M. Z. He, G. Y. Dong, and X. X. Shen,
“Cross-talk free image encryption and watermarking by
digital holography and random composition,” Opt. Commun.
269, 47–52 (2007).

8. S. L. Diab, “Developing an algorithm for compression, multi-
plexing and enhancement of multiple images,” Opt. Laser
Technol. 43, 838–847 (2011).

9. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B.
Javidi, “Optical techniques for information security,” Proc.
IEEE 97, 1128–1148 (2009).

10. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and
B. Javidi, “Three-dimensional imaging and processing
using computational holographic imaging,” Proc. IEEE 94,
636–653 (2006).

11. S. Soontaranon and J. Widjaja, “Holographic image encryp-
tion by using random phase modulation of plane wave,”
Opt. Lasers Eng. 48, 994–999 (2010).

12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted
holographic data storage based on orthogonal-phase-code
multiplexing,” Appl. Opt. 34, 6012–6015 (1995).

Original 
images (a–d) 

Reconstructed 
images with 

QCSR = 1 by 
inverse 

imaging (e–h)

PSNR(dB) 28.81 24.54 32.60 25.50 

Reconstructed 
images with 

QCSR = 0.25
(i–l) 

PSNR(dB) 22.10 19.12 19.83 20.10 

Fig. 12. Original and reconstructed images in the experiment.

1008 APPLIED OPTICS / Vol. 51, No. 7 / 1 March 2012



13. P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C.
Poon, “Low-complexity compression of holograms based
on delta modulation,” Opt. Commun. 284, 2113–2117
(2011).

14. W.-C. Su, C.-C. Sun, Y.-C. Chen, and Y. Ouyang, “Duplication
of phase key for random-phase-encrypted volume holograms,”
Appl. Opt. 43, 1728–1733 (2004).

15. C.-C. Sun and W.-C. Su, “Three-dimensional shifting selectiv-
ity of random phase encoding in volume holograms,” Appl.
Opt. 40, 1253–1260 (2001).

16. C. Denz, K. O. Mueller, F. Visinka, and T. T. Tschudi, “Digital
volume holographic data storage using phase-coded multi-
plexing,” Proc. SPIE, 142–147 (1999).

17. X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of
sectional images in holography using inverse imaging,” Opt.
Express 16, 17215–17226 (2008).

18. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw,
“Three-dimensional microscopy and sectional image recon-
struction using optical scanning holography,” Appl. Opt. 48,
H113–H119 (2009).

19. X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, and T.-C. Poon, “Blind
sectional image reconstruction for optical scanning hologra-
phy,” Opt. Lett. 34, 3098–3100 (2009).

20. J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhance-
ment in optical scanning holography with a dual-wavelength
laser source,” Appl. Opt. 50, H285–H296 (2011).

21. T.-C. Poon, “Scanning holography and two-dimensional image
processing by acousto-optic two-pupil synthesis,” J. Opt. Soc.
Am. A 2, 521–527 (1985).

22. T.-C. Poon and G. Indebetouw, “Three-dimensional point
spread functions of an optical heterodyne scanning image
processor,” Appl. Opt. 42, 1485–1492 (2003).

23. T. C. Poon, Optical Scanning Holography with MATLAB
(Springer-Verlag, 2007).

24. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.
(Roberts & Co., 2005).

25. X. Zhang and E. Y. Lam, “Edge-preserving sectional image
reconstruction in optical scanning holography,” J. Opt. Soc.
Am. A 27, 1630–1637 (2010).

26. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel
holography,” J. Display Technol. 6, 506–509 (2010).

27. L. He and L. Carin, “Exploiting structure in wavelet-based
Bayesian compressive sensing,” IEEE Trans. Signal Process.
57, 3488–3497 (2009).

28. E. Candès and J. Romberg, “Sparsity and incoherence in
compressive sampling,” Inverse Probl. 23, 969–985 (2007).

1 March 2012 / Vol. 51, No. 7 / APPLIED OPTICS 1009


