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We perform first-principles calculation to investigate the dynamic conductance of
atomic wires of the benzenedithiol (BDT) as well as carbon chains with different
length in contact with two Al(100) electrodes (Al-Cn-Al). Our calculation is based
on the combination of the non-equilibrium Green’s function and the density func-
tional theory. For ac conductance, there are two theories that ensures the current
conservation: (1). the global formula which is a phenomenological theory that parti-
tions the total displacement current into each leads so that the current is conserved.
(2). the local formula which is a microscopic theory that includes Coulomb interac-
tion explicitly so that the current is conserved automatically. In this work, we use
the local formula to calculate the dynamic conductance, especially the emittance. We
give a detailed comparison and analysis for the results obtained from two theories.
Our numerical results show that the global formula overestimates the emittance by
two orders of magnitude. We also obtain an inequality showing that the emittance
from global formula is greater than that from local formula for real atomic structures.
For Al-Cn-Al structures, the oscillatory behavior as the number of carbon chain N
varies from even to odd remains unchanged when local formula is used. However, the
prediction of local formula gives rise to opposite response when N is odd (inductive-
like) as compared with that of global formula. Therefore, one should use the local
formula for an accurate description of ac transport in nanoscale structures. In addition,
the ‘size effect’ of the ac emittance is analyzed and can be understood by the kinetic
inductance. Since numerical calculation using the global formula can be performed in
orbital space while the local formula can only be used in real space, our numerical re-
sults indicate that the calculation using the local formula is extremely computational
demanding. Copyright 2011 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [doi:10.1063/1.3673566]

I. INTRODUCTION

Quantum transport in nanostructures under ac bias has been the subject of intense studies
both experimentally and theoretically.1–12 Ac response is of fundamental interest because it can
probe the charge distribution and the dynamics of the system. In addition, the frequency introduces
another energy scale into the problem. So far, ac has been studied for a variety of systems including
normal quantum dot systems1, 3, 8 as well as normal superconducting hybird system.6 When the
strongly electron-electron interaction is included, an exact solution of ac has been obtained in
the Kondo regime.5 In addition to frequency-dependent current, transient current4 and photon-
assisted shot noise2, 7 have also been investigated. At low frequencies, the dynamic response of a
quantum capacitor can be described by a quantum capacitance in series with a charge-relaxation
resistance.9 For a conductor that allows single-channel transmission, the charge-relaxation resistance
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was predicted to be half of the resistance quanta9, 10 and was confirmed experimentally.11 Due to
the existence of quantum inductance, the current accumulates a phase and lags behind the voltage
leading to a negative capacitance.12

In the theoretical treatment, the current is usually defined in terms of conduction current, i.e.,
I c
α = dqα/dt , where qα is the charge flowing into the α lead. From the continuity equation

∑
α I c

α +
dQ/dt = 0 we see that the conduction current I c

α is a conserved quantity only in the case of dc. Under
the ac bias, however, the conduction current is not a conserved quantity anymore. The displacement
current I d

α due to the charge pileup dQ/dt inside the scattering region becomes important and must be
considered. The problem of current conserving can be solved by partitioning the total displacement
current

∑
α I d

α = dQ/dt into each lead giving rise to a conserved total current Iα = I c
α + I d

α . The
current partition at small bias was achieved by Büttiker et al.13 using the scattering matrix approach,
and was extended to the situation far from equilibrium using non-equilibrium Green’s function
(NEGF) method.14 This formalism ensures both the the current conserving condition as well as the
gauge-invariant condition which says that the current of a multi-probe system remains the same if all
the bias are shifted by the same amount. Therefore, this formula has been used in most of the recent
ab-initio calculations for real atomic structures,15–17 and some interesting results have been obtained.
Since the Coulomb interaction giving rise to the displacement current is not considered explicitly,
the above formalism is phenomenological in nature. In the present paper we call this formula the
‘global’ formula since the displacement current is expressed in terms of global quantities such as
the scattering matrix.

Despite its success, it is pointed out that in the global formula, the dynamic conductance at
general frequency Gαβ (ω) was only treated at level of current partition.18 The reason is that only a
formal definition of Gαβ was presented in the linear-response theory19 and the Coulomb interaction
was only implicitly introduced. In order to fill this gap, a microscopic theory for ac transport was
developed by using the non-equilibrium Green’s function theory18 (in the present paper we call this
formula ‘local’ because the displacement is considered in every point in real space). In this new
theory, the Coulomb interaction treated at Hartree level is taken into account explicitly, and the
predicted ac current also satisfies the current conserving and gauge-invariant conditions. Because
the global and the local formulae are expressed in NEGF, both can be used to combine with the
density-functional theory(DFT)20 to perform ab initio calculation for realistic atomic structures.

In the present paper, we investigate the frequency dependent conductance of nano-devices using
NEGF+DFT method. In particular, we compare dynamic conductance especially the ac emittance
calculated from the global and the local formulae. We find that in general the global formula
overestimate the emittance by two orders of magnitude. For the atomic structure of carbon chain
coupled with two Al leads Al-Cn-Al, our results show that the qualitative features are the same
for oscillatory behavior using global and local formulae. However, they predict different dynamical
response behavior of the system when the number of carbon chain is odd. The rest of the paper is
organized as follows. In Sec. II, we briefly review the global and the local formula for the dynamical
conductance and the ac emittance. In Sec. III, we compare the numerical results obtained by both
formulae, and make some analysis. A ‘size effect’ of the numerical result is reported in Sec. IV along
with a brief summary, and the conclusions are given in Sec. V. The atomic unit is used throughout
this paper unless otherwise stated.

II. REVIEW OF TWO DIFFERENT FORMULAE

In this section, we present a review of global and the local formulae for the dynamical conduc-
tance as well as the ac emittance. We avoid going through every detail of the derivation, but only
stress some of the key points that worth noticing.

A. Global formula

The global formula for the ac conductance was firstly proposed by Büttiker et al.13 using the
scattering matrix approach, and reformulated by Wang et al.14 using NEGF. Following the procedure
of the latter work, the starting point is the expression of the particle current or conduction current4, 21
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I c
α inside each probe. In the small bias limit, the corresponding conductance of this particle current

reads

Gc
αβ(ω) = −

∫
dE

2π

f − f̄

ω
Tr[−i(Ḡr − Ga)�αδαβ

+ Ḡr�βGa�α], (1)

where Gr is the equilibrium Green’s function and Ḡr = Gr (E + ω); �α is the linewidth function
defined as �α = i[�r

α − �a
α] (�r

α and �a
α are retarded and advanced self-energy of lead α) describing

the coupling strength between the α lead and the scattering region; f is the Fermi distribution function
and f̄ = f (E + ω). We point out that in the expression given above, the wideband approximation
has been used so that terms involving ∂E�r, a are neglected.

Due to the charge accumulation, the particle conductance does not conserve the current and
violates gauge invariance. That the particle current alone is not a conserved quantity means that∑

α Gc
αβ �= 0, or equivalently, I c

α do not sum up to zero. Their sum is equal to the time rate of change
of charge Q stored inside the device dQ/dt. In the frequency space, we have:∑

α

I c
α(ω) = iωQ(ω). (2)

In order to solve the current conserving problem, one can partition this total displacement
current into each leads9 by using iωQ(ω) = ∑

β Gd
β , where

Gd
β = −i

∫
dE

2π
Tr[Ḡr�βGa( f − f̄ )] (3)

can be viewed as the displacement current, up to a multiple coefficient. Next, by carefully enforcing
the gauge-invariant condition

∑
βGαβ = 0, one obtains the final expression of the ac conductance:

Gαβ(ω) = Gc
αβ (ω) − Gd

β(ω)

∑
γ Gc

αγ (ω)∑
γ Gd

γ (ω)
. (4)

As we mentioned before, Eq.(4) is called the global formula for ac conductance in the present
paper. All the first principles quantum transport calculations for ac conductance through atomic
junctions are based on this formula. However, the main problem of the global formula is that the
Coulomb potential is not explicitly dealt with, but only implicitly introduced by enforcing the gauge-
invariant condition. Both current-conserving and gauge-invariant are just necessary conditions, and
we indeed have other choices. The local formula presented in the next subsection is an example.
This formula is a microscopic theory and the Coulomb potential is taken into account explicitly.

B. Local formula

The local formula was derived in detail in Ref. 18. In the wide-band limit, the frequency-
dependent ac conductance can be written as18

Gαβ(ω) = Gc
αβ − iω

∫
dE

2π
Tr

[
�αḠr uβ(ω)Ga

] f − f̄

ω
. (5)

Here uα is the characteristic potential that satisfies the following Poisson like equation

∇2uα(ω, x)=−4π
dnα(ω, x)

dE
+4π

dn(ω, x)

dE
uα(ω, x), (6)

where we have used the Thomas-Fermi approximation9 and the frequency-dependent injectivity
dnα(ω, x)/dE is defined as10, 12

dnα(ω, x)

dE
=

∫
dE

2π

f − f̄

ω
[Ḡr

0�αGa
0]xx , (7)
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In principle, Eq.(5) can be used in the ab initio transport calculations for the atomic structures,
but we have to solve several Poisson equations with complicated boundary conditions to get uβ(ω)
for each lead. To further simplify Eq.(5), we use quasi-neutrality approximation, i.e. ∇2uα(ω, x)
= 0, then the dynamic conductance becomes

Gαβ(ω)=Gc
αβ(ω)−iωTr

[
dn̄α(ω, x)

dE

dnβ(ω, x)

dE
/

dn(ω, x)

dE

]
, (8)

where dn(ω, x)/dE = ∑
αdnα(ω, x)/dE, and the frequency-dependent emissivity is defined as

dn̄α(ω, x)

dE
=

∫
dE

2π

f − f̄

ω
[Ga

0�αḠr
0]xx , (9)

which is equal to the injectivity in the absence of magnetic field and spin-orbit interaction.
Eq.(8) is the expression which is going to be used in our ab initio transport calculation. This

equation was derived from the microscopic theory, with three approximations, namely, the wide-
band limit, the Thomas-Fermi and the quasi-neutrality. As we can see from Eq.(8), the dynamic
conductance is also presented as the conductance of the particle current plus a correction term,
structurally very similar to the global formula Eq.(4). The emittance calculation on mesoscopic
disordered systems show that qualitatively different behaviors can be obtained for average emittance
using two different formulae.22 The following analysis and the calculations in Sec. III will further
illustrate how different the results can be from these two formulae.

C. AC emittance

In the low frequency limit, the dynamic conductance can be expanded in terms of frequency ω

as following:23

Gαβ(ω) = G0,αβ − iωEαβ + ω2 Kαβ + O(ω3), (10)

where G0, αβ is the dc conductance; Eαβ is called the emittance which characterizes the phase
difference between the current and voltage at low frequency;24 Kαβ describes the low frequency
dynamic dissipation.

Before further discussions, we note that there is a sign difference between Eq.(1) and the
one derived by Büttiker,13 where the particle conductance was called the equilibrium admittance.
This can be checked by using the Fisher-Lee relation25, 26 s(E) = −I + i

√
�Gr (E)

√
�. The sign

difference is due to definitions of the direction of positive current. In all the previous equations, the
current Iα in the lead α is defined as the rate of change of the charge in the lead, which is the same as
that of Datta21 while differs by a sign from that of Büttiker.13 However, in the following parts of our
paper where we discuss the response of the system due to the external bias especially the imaginary
part of the dynamic conductance, we shall adopt the definition of Büttiker for the capacitive-like or
inductive-like responses.

Expanding the particle conductance to the first order of ω, we obtain the corresponding emit-
tance,

Ec
αβ = Tr

[
dnαβ

dE

]
, (11)

where dnαβ /dE is the partial density of states defined as27

dnαβ

dE
= 1

2π
Re(δαβGr�αGr + iGr�βGa�αGr ), (12)

the sum of whose second index gives the zero-frequency injectivity, i.e.,
∑

βdnαβ /dE = dnα/dE.
The emittance of the atomic systems given by the global formula Eq.(4) is

Eglobal
αβ = Ec

αβ − Tr[dn̄α/dE]Tr[dnβ/dE]

Tr[dn/dE]
, (13)
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where dn/dE = ∑
αdnα/dE is the total local density of states, while the emittance derived from the

local formula Eq.(8) has the form

Elocal
αβ = Ec

αβ − Tr

[
(dn̄α/dE)xx (dnβ/dE)xx

(dn/dE)xx

]
. (14)

Eq.(13) and Eq.(14) look very similar, especially in the case when there is no magnetic field or
spin-orbit coupling so that dn̄α/dE = dnα/dE .

As we can see, the emittance takes the form of the particle emittance minus a correction term
due to Coulomb interaction which is positive definite. For the two-probe systems, where α, β can
only take L (left) or R (right), and dn/dE = dnL/dE + dnR/dE, the physical meaning of the emittance
can be understood by using the scattering matrix theory, where the local partial density of states
(LPDOS) at zero temperature can be well estimated by9

Tr

[
dnαβ

dE

]
= 1

4π i
Tr

[
s†
αβ(E)

dsαβ(E)

dE
− c.c.

]
. (15)

Now we consider the case α = L and β = R. If the system is non-transmissive, then |sLR| and
hence Tr[dnLR/dE] is nearly zero giving rise to a negative emittance ELR due to the correction part.
In another word, ELL is positive showing a capacitive-like dynamic response. On the other hand, if
the system is highly transmissive such that sLL is nearly zero we have Tr[dnLL/dE] is negative again
due to the correction term. In this case, dynamical response of the system is inductive-like.24

Here for two-probe systems without magnetic field or spin-orbit coupling, we show that there
is an inequity between the global emittance and the local one. Now we concentrate on the LR
component of both emittance, and their difference is

Elocal
L R − Eglobal

L R = Tr[dnL/dE]Tr[dnR/dE]

Tr[dn/dE]
−Tr

[
(dnL/dE)xx (dnR/dE)xx

(dn/dE)xx

]
.

Using the fact that (dnα/dE)xx are all real non-negative numbers, we can show the difference is
always non-negative. To simplify the notation, we denote a(x) = (dnL/dE)xx and b(x) = (dnR/dE)xx,
then what we have to prove is∫

adx
∫

bdx −
∫

ab

a + b
dx

∫
(a + b)dx � 0.

By using ab/(a + b) = a − a2/(a + b), the left hand side of the above equation can be rearranged as∫
(a + b)dx

∫
a2/(a + b)dx − (

∫
adx)2, which is obviously non-negative due to the Cauchy-Schwartz

inequity28 |∫ f(x)g(x)dx|2 ≤ ∫ |f(x)|2dx
∫ |g(x)|2dx. Hence Elocal

L R is always greater than or equal to
Eglobal

L R , other components for the emittance hold the same or the opposite inequity due to ELL

= −ELR = −ERL = ERR, e.g., Elocal
L L � Eglobal

L L . Incidentally, the inequity reduces to an equality if
and only if dnL/dE = dnR/dE everywhere in space, which hardly happens.

III. NUMERICAL RESULTS

In this section, we calculate the dynamic conductance, especially the emittance for some atomic
structures, using both the global formula Eq.(4) and (13) and the local formula Eq.(8) and (14).
First we benchmark the results for the Al-Cn-Al system, then we concentrate on the Al-BDT-Al
system. We use the state-of-the-art first-principles quantum transport package MATDCAL29, 30 where
DFT is carried out within the formalism of the Keldysh non-equilibrium Green’s function, and a
linear combination of the atomic orbitals (LCAO) basis set31 is employed to numerically solve the
Kohn-Sham (KS) equations. The exchange-correlation interaction is treated at the LDA level and
a nonlocal norm conserving pseudo-potential32 is used to define the atomic core. The Hamiltonian
of the atomic-structure system is determined by DFT, and the non-equilibrium transport properties
are determined by NEGF. Real space numerical techniques are used in our calculation, and the
NEGF-DFT self-consistent is carried out until the numerical tolerance is less than 10−4.
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FIG. 1. The schematic structure of Al-C6-Al system. An atomic wire with six carbon atoms (gray) is sandwiched between
two semi-infinite atomic Al electrodes (pink). The Al electrodes extended to ±∞ along (100) direction.
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FIG. 2. The LL component of emittance calculated by both the global formula and the local formula for the Al-Cn-Al system,
n = 4, 5, · · ·, 9. The simulation box includes the carbon chain and 16 layers of buffering aluminum. In the figure, the ‘global
emittance’ which means the emittance calculated by the global formula is plotted in blue, while the ‘local emittance,’ the
emittance calculated by the local formula is plotted in green.

A. Benchmark calculation for the Al-Cn-Al system

Up to now, the only ac calculation using MATDCAL is done by Wang et al.,17 using the global
formula for the dynamic conductance, where they found that the dynamic conductance exhibits
an oscillatory behavior as the number of carbon atoms varies. In this subsection, we calculate the
emittance given by the global and the local formulae, not only to show their differences, but also to
check whether the emittance given by the local formula also has such an oscillatory behavior.

The Al-Cn-Al structure is depicted in Fig.(1). Here we restate the parameters used in the
calculation.17 The number of carbon atoms varies from four to nine while the configuration of Al
atomic electrodes is fixed that the distance of the neighboring aluminum layer is 3.826 a.u.. The
distance between the neighboring carbon atom is 2.5 a.u. while the distance between the end carbon
atom and the Al electrode is 3.78 a.u.. The scattering region has been chosen as the carbon chain
plus 16 buffer layers of aluminum, each side 8 layers. In our calculation, we always assume small
bias and small frequency, neglecting the structure deformation caused by ac current.

The calculated results for the emittance are shown in Fig.(2). What we have calculated is the LL
component of the emittance, and other components can be trivially obtained. As we can see, the LL
component of the emittance calculated from the global formula is much larger than that from the
local formula (we have used different vertical axe for results from different formula).

Downloaded 27 Nov 2012 to 147.8.230.103. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
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FIG. 3. The schematic structure of Al-BDT-Al system. The leads are two semi-infinite atomic Al electrodes (pink) along
(100) direction. In between is a benzenedithiol (BDT) including two sulfur atoms (yellow), four hydrogen atoms (white) and
six carbon atoms (carbon). The 2D-structure BDT lies in the (110) plane of the aluminum.

From this figure several observations are in order. First of all, the value of ELL calculated from the
local formula is always smaller than of global formula as expected from the inequality we derived.
Secondly, the local formula also gives an oscillatory behavior for the emittance as the number of
carbon atoms N varies similar to the results obtained from the global formula. Thirdly, it is interesting
to note that the local formula predicts a sign change for the emittance when the number of carbon
atoms N is odd. Therefore the emittance ELL is positive (the system responses capacitively-like)
when N is even, while when N is odd it becomes negative (the response is inductive-like). However,
the results from the global formula show that the system gives capacitive-like response regardless
of parity of N.

Here we point out that the numerically computational costs for using the two formulae are not
comparable. In Eq.(13), the trace for those LPDOS can be evaluated naturally in the space of atomic
orbitals which is very efficient. In Eq.(14), however, we have to calculate the emissivity or the
injectivity at every point in the real space. In order to do so, we have to use the detailed information
of those atomic orbitals to perform a projection from the orbital space to the real space, which is
very time consuming and is the bottleneck of calculation.

To summarize the benchmark calculation in this subsection, we have shown comparing with the
emittance evaluated from the global formula for the Al-Cn-Al system, the emittance calculated by
the local formula gives a similar oscillatory behavior as the number of carbon atoms varies, but the
values and the computational costs are quite different.

B. Al-BDT-Al system

Taking the benzenedithiol (BDT) as the scattering center, the conductance of gold-
benzenedithiol(BDT)-gold molecular junctions has been extensively studied since 199733 and the
simulation has been done by Ning et al.34 which all focused on dc properties. In this subsection, we
systematically study the ac conductance and the ac emittance for the system in which the scattering
center is BDT but the leads are replaced by aluminum for simplicity.

Fig.(3) depicts the schematic Al-BDT-Al structure that we considered. The system parameters
are listed below. The aluminum electrodes are extended along (100) direction and the distance of
the neighboring layer is 3.826 a.u., as same as in Al-Cn-Al. The BDT lies in the (110) plane of the
aluminum, and its structure comes from the experiment.35 The distance from the aluminum electrode
to the edged sulfur atom is 3.056 a.u.. In our calculation, like before, 16 aluminum buffer layers
have been included in the scattering region, each side having 8 layers.

For this structure, firstly, we calculate both the dynamic conductance Eq.(4) and (8), and their cor-
responding emittance Eq.(13) and (14). The imaginary part of the dynamic conductance Im[GLL(ω)]
are compared with −ωELL in the frequency domain from 0 to 50THz in Fig.(4). Although it is
known that it may be difficult to check the results experimentally when the frequency approaches
to 10THz,17 the imaginary part of the dynamical conductance seems to be fully contributed by the
emittance up to 50THz for both the global and the local formulae. In spite of the linear behavior of
Im[GLL(ω)], we also see that ELL calculated by the global formula is two orders of magnitude larger
than that from the local formula, explicitly, Eglobal

L L = 93.88 and Elocal
L L = 0.6929.

The real part of the dynamic conductances Re[GLL(ω)] are also calculated, shown in Fig.(5).
When the frequency goes to zero, both Re[Gglobal

L L (ω)] and Re[Glocal
L L (ω)] approach to the same dc

value which comes from the particle current only. Using the binomial fitting, the parameter KLL
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FIG. 4. The imaginary part of the LL component of the dynamic conductance Im[GLL(ω)] calculated by either the global
or the local formula (red dots), comparing with −ωELL (blue lines) from 0 to 50THz. The linear behavior of the imaginary
part of the dynamic conductance even holds up to 50THz, and the slope is none other than the negative of its corresponding
emittance.

defined in Eq.(10) can be found as K global
L L = 8.776 × 103a.u. and K local

L L = 79.54a.u., and other
components are trivially obtained from KLL = −KLR = −KRL = KRR. We see that the absolute value
of Kαβ calculated from the global formula is also about two orders of magnitude larger than that
calculated from the local formula, just like the emittance, showing that the local formula predicts a
slower varying of both the imaginary and the real part of the dynamic conductance as the frequency
increases from zero.

Now getting back to the ac emittance, we study the behavior of the emittance as when the Fermi
level shifts. Numerically, if the Fermi level is shifted by �E, what we only have to do is to change
f = f(E − Ef) to f = f(E − Ef − �E) in every formula related to f and f̄ . The results are shown in
Fig.(6), which can be analyzed with the help of the inset of Fig.(6) depicting Tr[dn/dE] as a function
of �E. As we can see from the figure, the emittance given from the global formula has similar
behavior as the total density of states while the local result does not.

IV. SIZE EFFECT

This section is devoted to what we call size effect of the numerical results, which may be first
noticed by Büttiker.23 In the theoretical view, this effect seems trivial, but it worths noticing for both
the computational and the experimental physicists.

The origin of the ‘size effect’ for the emittance comes from the fact that the Coulomb interaction
is considered only in the scattering region. Specifically, to compute emittance we have to evaluate
a trace over quantities related to the LPDOS. Theoretically, one can assume that the trace over the
space containing the scattering center only (e.g. the BDT in the Al-BDT-Al system), but there exists
a subtle difference when one performs an ab initio transport calculation. Actually, in the ab initio
calculation for a two-probe atomic-wire structure, the effect of semi-infinite electrodes is accounted
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FIG. 5. The real part of the LL component of the dynamic conductance Re[GLL(ω)] (a.u.) calculated by either the global
or the local formula. The frequency domain ranges from 0 to 50THz. Both of the curves show a binomial behavior, with a
vanishing slope near zero frequency. Re[Gglobal

L L (ω)] varies faster than Re[Glocal
L L (ω)] as the frequency increases.

FIG. 6. The LL component of emittance calculated by both the global formula (blue dots) and the local formula (green
triangles) for the Al-BDT-Al system, against the shifted Fermi level from -1eV to 1eV. The inset is the global total density of
states as a function of the shift of the Fermi level, which behaves more similarly to the global result than to the local result.
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for by the self-energy. However, part of the electrode (the buffer layer) has to be included in the
scattering region. These buffer layers are used to screen the effect of scattering center such that at the
boundary of the scattering region, both the Coulomb potential and the wave function can smoothly
match those of the electrodes. This is so called screening approximation in NEGF+DFT scheme.
After convergence, the trace is taken over the scattering region rather than the scattering center. If
we only calculate the dc properties of a system, the trace over the scattering region and that over the
scattering center should not affect the transmission coefficient which is the most important physical
quantity in dc case, because the static Coulomb interaction has been included both in the scattering
center as well as in the electrodes. However, when one calculates the ac conductance and traces over
different sizes, the results could be different — that is why we always address how many buffer
layers have been included in the scattering region in the previous sections. As an example, for the
result of the Al-Cn-Al system shown in Fig.(2), the global results simply reproduce Wang’s work,17

but the values of the emittance will change drastically as the number of buffer layers is increased
or decreased. This is because the emittance describes the phase between current and voltage. In
general, emittance can give capacitive-like behavior or inductive-like behavior depending whether
the system is transmissive or not. If more buffer layers are added in the simulation box, the electron
will accumulate more phase. As a result, kinetic inductance of the device increases and this in turn
affects the emittance.

For the Al-BDT-Al system, we investigate the numerical results as the size varies, beginning
from dc case, which can be viewed as the zero-frequency limit of ac case. From either Eq.(4) or
Eq.(8), we have

Gdc
αβ = 1

2π
Tr[Gr

0�βGa
0�α − Gr

0�Ga
0�αδαβ]. (16)

In a two probe system, we have Gdc
L R = 1/(2π )TL R , where T is the transmission function defined

as Tαβ = Tr[�αGr
0�βGa

0] calculated at the Fermi level. In Fig.(7), we plot the transmission function
TLR for the Al-BDT-Al system as the function of the shifted Fermi level for different numbers of
buffer layers included in the scattering region. The collapse of these lines show that the ‘size effect’
does not affect the transmission function at all, even if the Fermi level is shifted.

However, the situation becomes very different if we calculate the emittance, shown in Fig.(8)
where both the global formula and the local formula are used. The ‘size effect’ is clearly exhibited in
this figure. Besides, the behaviors of the calculated emittance from two formulae versus the number
of the buffer layers are also different. As we can see from the figure, as the number of buffer layers
varies, ELL calculated from both formulae remain positive. However, the global formula seems to
predict an increasing behavior for ELL as the number of buffer layers increases while the result
given by the local formula seems to give an oscillatory behavior with the amplitude decreasing. It
is interesting to ask whether the value of Elocal

L L will change sign if when number of buffer layers
included in the scattering region becomes very large. This question is difficult to answer for the
real atomic system. Numerically, the calculation suffers from both the computational time and the
convergence problem as the scattering region becomes large. Physically, we know that there are seven
transverse modes in the aluminum electrodes, so it is difficult to explain these features. However,
we may get some insight from exactly solvable model. To appreciate the ‘size effect,’ we consider
a 1D toy model from the textbook.26

The toy model is a 1D wire (single mode) having two scatterers separated by a distance d,
thus the scattering potential is U(x) = U0[δ(x) + δ(x − d)]. Numerically, we assume U0 = 9eVÅ,
d = 50Å and the effective mass of the electron is m = 0.07, and the ‘emittance’ is calculated at
the energy E = 0.5eV by both the global and the local formulae. The results are shown in Fig.(9),
showing that when the scattering region increases, the emittance shows a generally linear property
with periodically oscillations.

Such behavior of the emittance as size varies can be appreciated by using the representation of
the scattering matrix. Suppose the scattering matrix of the double-well with no buffer layer is s0, so
if we include buffer layers with total length by L, both sides of well having L/2, the scattering matrix
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FIG. 7. The transmission function TLR for the Al-BDT-Al system calculated at different energy. There are five lines
representing different numbers of buffer layers that are included in the scattering region, and these lines collapse to a single
curve.
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FIG. 8. The LL component of emittance calculated by both the global formula (blue dots) and the local formula (green
triangles) for the Al-BDT-Al system, against the number of buffer layers included in simulation box. It seems the one
calculated by the global formula shows the generally linear behavior while the one calculated by the local formula shows the
oscillatory behavior.
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becomes

s =
[

0 eikL/2

eikL/2 0

]
⊗ s0 ⊗

[
0 eikL/2

eikL/2 0

]
(17)

where k = √
2m E is the wave vector and ⊗ is the symbol to combine scattering matrices. The

transmission function will not be changed because sLR and s0LR only differ by a phase, while TLR

= |sLR|2. However, if we consider the emittance Eq.(13) or Eq.(14), we find that the emittance is
closely related to the LPDOS, hence the behavior of the LPDOS will determine the behavior of
the emittance. From Eq.(15), we see that the LPDOS given by s0 and s should be different. The
general linear behavior of the emittance comes from the derivative that ∂E eikL/2 ∼ 1

2 ikLeikL/2/m,
and the period of the oscillation is 2π /k = 65.555Å, shown in Fig.(9). Besides, the local formula
Eq.(14) implies an additive property for the length of extension. In our 1D model, if the length of
extension is increased by one period (i.e., each side extends by a half period), it contributes to Elocal

L R
by a constant, which is about −2.7432a.u.. This constant is determined by the energy at which the
emittance is calculated and the potential profile of both the ‘lead’ and the scattering center. We
note that this additive property for the local formula also holds for the realistic system, but similar
arguments can not be made for the global formula. To summarize the ‘size effect,’ we have shown
that this effect comes from the kinetic inductance. This effect does not affect the dc transmission
function but critically affects the ac emittance.

V. CONCLUSION

In this paper, we have investigated the dynamical conductance of atomic junctions from first
principles using NEGF+DFT method. We have used the expression of dynamical conductance
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derived from microscopic theory that explicitly includes Coulomb interaction (local formula). In
particular, we have calculated the dynamical conductance as well as emittance for the Al-Cn-Al and
the Al-BDT-Al atomic systems. As a benchmark calculation, we have also calculated the emittance
using phenomenological theory using current partition (global formula). For both Al-Cn-Al and
Al-BDT-Al systems, our results show that the global formula overestimate the emittance by almost
two orders of magnitude. Both global and local formulae give the same oscillatory behavior when
the number of carbon chain N changes from odd to even. However, the microscopic theory predicts
different response when N is odd (inductive-like) or even (capacitive-like) while the results of
phenomenological theory give capacitive-like response for all carbon chains. Since the emittance
characterize the phase accumulated in the scattering region, its value depends on the system size or
the buffer layers of the leads which contributes via kinetic inductance. Finally, we emphasize that
although a better theory (microscopic theory) is available to calculate the ac conductance of atomic
systems the calculation is very costly due to the fact that it has to be performed in real space.
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27 T. Gramespacher and M. Büttiker, Phys. Rev. 56, 13026 (1997).
28 J. Micheal Steele, in The Cauchy-Schwartz Master Class: an Introduction to the Art of Mathematical Inequalities, Ch. 1.
29 D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Phys. Rev. Lett 96, 166804 (2006).
30 D. Waldron, V. Timoshevskii, Y. Hu, K. Xia, and H. Guo, Phys. Rev. Lett. 97, 226802 (2006).
31 P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B 53, R10441 (1996); J. M. oler, E. Artacho, J. D. Gale, A. Garcia,

J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
32 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
33 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
34 Z. Ning, W. Ji, H. Guo, arXiv:0907.4674v2 (2009).
35 H. Song et al., Nature, 462, 1039 (2009).

Downloaded 27 Nov 2012 to 147.8.230.103. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
See: http://creativecommons.org/licenses/by/3.0/

http://dx.doi.org/10.1103/PhysRevLett.78.1536
http://dx.doi.org/10.1103/PhysRevLett.78.1536
http://dx.doi.org/10.1038/27617
http://dx.doi.org/10.1103/PhysRevLett.72.538
http://dx.doi.org/10.1103/PhysRevLett.72.1076
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevLett.77.1821
http://dx.doi.org/10.1103/PhysRevB.54.7366
http://dx.doi.org/10.1103/PhysRevLett.80.2437
http://dx.doi.org/10.1103/PhysRevB.61.12643
http://dx.doi.org/10.1088/0953-8984/5/50/017
http://dx.doi.org/10.1103/PhysRevLett.97.206804
http://dx.doi.org/10.1126/science.1126940
http://dx.doi.org/10.1103/PhysRevB.75.155336
http://dx.doi.org/10.1103/PhysRevLett.70.4114
http://dx.doi.org/10.1103/PhysRevLett.82.398
http://dx.doi.org/10.1103/PhysRevB.72.195324
http://dx.doi.org/10.1063/1.2798751
http://dx.doi.org/10.1103/PhysRevB.79.155117
http://dx.doi.org/10.1103/PhysRevB.79.195315
http://dx.doi.org/10.1103/PhysRevB.57.9108
http://dx.doi.org/10.1103/PhysRevB.63.245407
http://dx.doi.org/10.1103/PhysRevB.63.121104
http://dx.doi.org/10.1103/PhysRevB.51.7632
http://dx.doi.org/10.1088/0957-4484/19/43/435402
http://dx.doi.org/10.1103/PhysRevB.23.6851
http://dx.doi.org/10.1103/PhysRevB.56.13026
http://dx.doi.org/10.1103/PhysRevLett.96.166804
http://dx.doi.org/10.1103/PhysRevLett.97.226802
http://dx.doi.org/10.1103/PhysRevB.53.R10441
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1126/science.278.5336.252
http://dx.doi.org/10.1038/nature08639

