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New integrability case for the Riccati equation

M. K. Mak∗ and T. Harko†

Department of Physics and Center for Theoretical and Computational Physics,
The University of Hong Kong, Pok Fu Lam Road, Hong Kong, P. R. China

A new integrability condition of the Riccati equation dy/dx = a(x)+ b(x)y+ c(x)y2 is presented.
By introducing an auxiliary equation depending on a generating function f(x), the general solution
of the Riccati equation can be obtained if the coefficients a(x), b(x), c(x), and the function f(x)
satisfy a particular constraint. The validity and reliability of the method are tested by obtaining the
general solutions of some Riccati type differential equations. Some applications of the integrability
conditions for the case of the damped harmonic oscillator with time dependent frequency, and for
solitonic wave, are briefly discussed.
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I. INTRODUCTION

The Riccati equations, of the type

dy

dx
= a(x) + b(x)y + c(x)y2, (1)

where a, b, c are arbitrary real functions of x, with a, b, c ∈ C∞(I), defined on a real interval I ⊆ ℜ [1, 2], find
surprisingly many applications in physics and mathematics. For example, supersymmetric quantum mechanics [3],
variational calculus [4], nonlinear physics [5], renormalization group equations for running coupling constants in
quantum field theories [6, 7], thermodynamics [8], the formulation of Newton’s law [9], the dynamical rate equations
for physical processes driven by a combination of diffusive growth [10], obtaining analytical solutions to the (3+1)-
dimensional Gross-Pitaevskii equation in the presence of chirp and for different diffraction and potential functions [11],
and the study of the cubic nonlinear Ginzburg-Landau equations [12] are just a few topics where Riccati equations
play a key role. One of the main reason for their importance in physical applications is that a change of function turns
the Riccati equation into a linear second-order differential equation, that stands as basic mathematical background for
many areas of physics. Group theoretical methods, which are very useful for a better understanding of the properties
of the Riccati equation, and a discussion of the integrability conditions from a group theoretical perspective can be
found in [13]. From a group theoretical point of view the nonlinear superposition principle also arises in a simple way.
Since the Riccati equation is a widely studied nonlinear equation, knowing that the physical system under consider-

ation can be brought into Riccati form has certainly many advantages in the investigation of its properties. If one or
two particular solutions ypi (x), i = 1, 2 of the Riccati equation are known, the equation may be solved by quadratures
[1, 2].
A number of solutions of the Riccati equation can be obtained by assuming that the coefficients a(x), b(x), and c(x)

satisfy some particular constraints. Thus, if the coefficients a, b, c, defined and continuous in some interval I ⊂ ℜ,
are related as

a+ b+ c =
d

dx
log

α

β
− α− β

αβ
(αc− βa) , (2)

with α(x) and β(x) properly chosen functions differentiable in I, such that αβ > 0, then the Riccati equation is
integrable by quadratures [14]. If c(x) ≡ 1 and the functions a(x) and b(x) are polynomials satisfying the condition

∆ = b2(x)− 2
db(x)

dx
− 4a(x) ≡ constant, (3)

then

y1(x) = −

[

b(x) +
√
∆
]

2
, (4)
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and

y2(x) = −

[

b(x) −
√
∆
]

2
, (5)

are both solutions of the Riccati equation [1, 2]. Note that the choices c(x) ≡ 1 and b(x) and c(x) being of polynomial
form are restrictive conditions of the method [1, 2]. If we know three particular solutions ypi (x), i = 1, 2, 3, then the
Riccati equation can be solved without quadratures [1, 2].
It is the purpose of the present paper to introduce a new integrability case for the Riccati equation. By introducing

an auxiliary equation depending on a generating function f(x), the general solution of the Riccati equation can be
obtained if the coefficients a(x), b(x), c(x), and the function f(x) satisfy a particular constraint. The validity and
reliability of the method are tested by obtaining the general solutions of some Riccati type differential equations.
Some applications of the integrability conditions for the case of the damped harmonic oscillator with time dependent
frequency, and for solitonic wave, are briefly discussed.
The present paper is organized as follows. The integrability condition for the Riccati equation is obtained in

Section II. Some specific examples of the integrability condition obtained by fixing the functions b(x), c(x) and f(x)
are shown in Section III. Some integrable Riccati equations with fixed a(x), b(x) and f(x) are presented in Section IV.
The physical applications of the method are briefly outlined in Section V. We conclude our results in Section VI.

II. THE INTEGRABILITY CONDITION FOR THE RICCATI EQUATION

From an algebraic point of view Eq. (1) is a quadratic equation in y. We consider that its particular solutions yp±(x)
can be represented as

yp±(x) =
−b(x)±

√

f(x)

2c (x)
, (6)

where we have introduced the new function f(x) ∈ C∞(I), defined as

f (x) = b2 (x)− 4c (x)

[

a (x) − dy

dx

]

. (7)

The requirement that yp±(x) as defined in Eq. (6) is a solution of the Riccati Eq. (1), restricts the expression of a(x)
to the form

a(x) =
d

dx

[

−b(x)±
√

f(x)

2c(x)

]

+
b2(x) − f(x)

4c(x)
. (8)

By substituting a(x) given by Eq. (8) into Eq. (1), we obtain an auxiliary Riccati equation of the form

dy

dx
=

d

dx

[

−b(x)±
√

f(x)

2c(x)

]

+
b2(x) − f(x)

4c(x)
+ b(x)y + c(x)y2, (9)

where f(x) is a solution generating function to the auxiliary Riccati Eq. (9). Therefore we obtain the following
Theorem The general solution of Eq. (9) with particular solutions given by Eq. (6) is represented by

y±(x) = e±
∫ √

f(x)dx

[

−
∫

c(x)e±
∫ √

f(x)dxdx+ C±

]−1

+

[

−b(x)±
√

f(x)

2c(x)

]

, (10)

where C± is an arbitrary integration constant.
Hence by fixing the functional forms of the functions b(x), c(x) and f(x), we can obtain the general solution of the

Riccati Eq. (9) with a(x) given by Eq. (8). Alternatively, by fixing the functional forms of the functions a(x), b(x)
and f(x), we can obtain the general solution of the Riccati Eq. (9), with c(x) given by Eq. (8).
In the case c(x) ≡ 1 and f(x) ≡ ∆ = constant, from Eq. (8) we reobtain the integrability condition given by Eq. (3).
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III. GENERATING SOLUTIONS OF THE RICCATI EQUATION BY FIXING b(x), c(x) AND f(x)

A. Solutions with f(x) ≡ 0

In the case f(x) ≡ 0 Eq. (8) becomes

a(x) =
d

dx

[

−b(x)

2c(x)

]

+
b2(x)

4c(x)
, (11)

and from Eq. (10) it follows that the Riccati Eq. (9) satisfying the condition given by Eq. (11) has the general solution

y(x) =

[

−
∫

c(x)dx + C

]−1

+

[

−b(x)

2c(x)

]

. (12)

Thus by giving the functional form of the two functions b(x) and c(x) the general solutions of the Riccati equation
can be obtained.

1. Example 1.

The coefficients in the Riccati equation

dy

dx
=

1

4
e(β−α)xxm−n−1

[

−2m+ 2n+ x
(

eβxxm + 2α− 2β
)]

+ eβxxmy + eαxxny2, (13)

where α, β, n, m are arbitrary real constants, satisfy Eq. (11). The equation has the particular solution

yp(x) = −1

2
e(β−α)xxm−n, (14)

and the general solution of Eq. (13), which follows from Eq. (12), is given by

y(x) =
1

xn+1 (−αx)
−1−n

Γ(1 + n,−αx) + C
− 1

2
e(β−α)xxm−n, (15)

where Γ(a, z) =
∫∞

z ta−1e−tdt is the incomplete gamma function [15].

2. Example 2.

The Riccati equation with Bessel Jn(x) function coefficients, given by

dy

dx
=

x−α+β−1
{

2xJm−1(x)Jn(x) + Jm(x)
[

2(−m+ n+ α− β)Jn(x) + x
(

xβJn(x)
2 − 2Jn−1(x)

)]}

4Jm(x)2
+

xβJn(x)y + xαJm(x)y2, (16)

where α, β, m, and n, are arbitrary real constants, has the particular solution

yp(x) = −xβ−αJn(x)

2Jm(x)
. (17)

The general solution of Eq. (16) is given by

y(x) = −xβ−αJn(x)

2Jm(x)
+

1

C − 2−m−1xm+α+1Γ
[

1
2 (m+ α+ 1)

]

1F̃2

[

1
2 (m+ α+ 1);m+ 1, 12 (m+ α+ 3);−x2

4

] , (18)

where Γ(z) =
∫∞

0 tz−1e−tdt is the Euler gamma function, and pF̃q (a; b; z) = pFq (a; b; z) / [Γ (b1) ....Γ (bq)] is the
regularized generalized hypergeometric function [15].
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B. Solutions with f(x) ≡ constant

By choosing f(x) ≡ K2 ≡ constant, with K ∈ ℜ, Eq. (8) becomes

a(x) =
d

dx

[

−b(x)±K

2c(x)

]

+
b2(x) −K2

4c(x)
, (19)

and from Eq. (10) it follows that the general solution of the Riccati Eq. (9) satisfying the condition given by Eq. (19)
is represented by

y±(x) = e±Kx

[

−
∫

c(x)e±Kxdx+ C±

]−1

+

[

−b(x)±K

2c(x)

]

. (20)

1. Example 3.

The Riccati equation

dy

dx
=

1

4
e−αxx−n−1

{

eβxxm
[

−2m+ 2n+ x
(

eβxxm + 2α− 2β
)]

−K2x∓ 2K(n+ αx)

}

+

eβxxmy + eαxxny2, (21)

has the particular solution

yp±(x) =
1

2
e−αxx−n

(

±K − eβxxm
)

. (22)

The general solution of Eq. (21) is given by

y±(x) =
1

2
x−ne−αx

(

±K − eβxxm
)

+
e±Kx

xn+1 [−x(±K + α)]−n−1 Γ [n+ 1,−x(±K + α)] + C±

.

(23)

2. Example 4.

The Riccati equation

dy

dx
=

1

4
e−αx csc(nx)

{

eβx

[

sin(mx)

(

2α− 2β + 2n cot(nx) + eβx sin(mx)

)

− 2m cos(mx)

]

∓

K [±K + 2α+ 2n cot(nx)]

}

+ eβx sin(mx)y + eαx sin(nx)y2, (24)

has the particular solution

yp±(x) =
1

2
e−αx csc(nx)

[

±K − eβx sin(mx)
]

. (25)

The general solution of Eq. (24) is given by

y±(x) =
1

2
e−αx csc(nx)

[

±K − eβx sin(mx)
]

+
e±Kx

C± − e(±K+α)x[(±K+α) sin(nx)−n cos(nx)]
K2±2αK+n2+α2

. (26)
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C. Solutions with arbitrary function f(x)

We choose f(x) = b2(x), that is, b(x) = ±
√

f(x). In this case the Riccati Eq. (9) becomes

dy

dx
= b(x)y + c(x)y2, (27)

with the general solution obtained with the use of Eq. (10) given by

y(x) = e
∫
b(x)dx

[

−
∫

c(x)e
∫
b(x)dx + C

]−1

. (28)

The same result can be obtained by directly solving the Bernoulli type Eq. (27).

1. Example 5.

The Riccati equation

dy

dx
=

1

4
x−n−1

[

−2(m− n)xm + x2m+1 − x2 + (1− 2n)
√
x
]

+ xmy + xny2, (29)

has the particular solution

yp(x) =
1

2
x−n

(√
x− xm

)

, (30)

corresponding to f(x) = x. The general solution of Eq. (29) is given by

y(x) =
1

2

(√
x− xm

)

x−n +
e

2x3/2

3

(

2
3

)(1−2n)/3
xn+1

(

−x3/2
)− 2

3 (n+1)
Γ
[

2(n+1)
3 ,− 2x3/2

3

]

+ C
. (31)

2. Example 6.

The Riccati equation,

dy

dx
=

1

4
x−n−1

[

−
(

xn+1 + 2m− 2n
)

xm + x2m+1 + (m− n)x(m+n)/2

]

+ xmy + xny2, (32)

has the particular solution

yp(x) =
1

2
x−n

[

x(m+n)/2 − xm
]

, (33)

corresponding to f(x) = b(x)c(x) = xm+n. The general solution of Eq. (32) is given by

y(x) =
1

2

[

x(m+n)/2 − xm
]

x−n +
e

2x1+(m+n)/2

m+n+2

C −
∫

e
2x1+(m+n)/2

m+n+2 xn dx
. (34)

IV. GENERATING SOLUTIONS OF THE RICCATI EQUATION BY FIXING a(x), b(x) AND f(x)

Integrating Eq. (8) we obtain

c±(x) =
1

2
I±(x)

[

b(x)∓
√

f(x)
]

[

−
∫

a(x)I±(x)dx + k±

]−1

, (35)



6

where k± is an arbitrary integration constant, and

I±(x) = exp

{

−1

2

∫

[

b(x)±
√

f(x)
]

dx

}

. (36)

With this form of c(x) the Riccati Eq. (1) can be written as

dy

dx
= a(x) + b(x)y +

1

2
I±(x)

[

b(x)∓
√

f(x)
]

[

−
∫

a(x)I±(x)dx + k±

]−1

y2. (37)

Then the general solution to Eq. (37) is

y±(x) =
e±

∫ √
f(x)dx

− 1
2

∫

I±(x)
[

b(x)∓
√

f(x)
]

[

−
∫

a(x)I±(x)dx + k±
]−1

e±
∫ √

f(x)dxdx+ C±

−

I−1
± (x)

[

−
∫

a(x)I±(x)dx + k±

]

. (38)

3. Example 7.

The Riccati equation

dy

dx
=

α

xm
+

β

xm
y +

β2x−m

4α+ 2kβe
βx1−m

2(1−m)

y2, (39)

where k ∈ ℜ is a constant, whose coefficients satisfy the condition given by Eq. (35) with f(x) ≡ 0, has the particular
solution

yp(x) = −2α

β
− ke

βx1−m

2(1−m) . (40)

The general solution of Eq. (39) is given by

y(x) = −2α

β
− ke

βx1−m

2(1−m) +
4(m− 1)αxm

2(m− 1)

[

2Cα+ β log

(

2α+ kβe
βx1−m

2(1−m)

)]

xm + β2x

. (41)

4. Example 8.

The Riccati equation

dy

dx
= xm/2ex/2 +

m

x
y +

1

2
x−1−m/2e−x/2y2, (42)

whose coefficients satisfy the condition given by Eq. (35) with f(x) ≡ 1, a(x) = I−1
± (x), and k = m, respectively, has

the particular solution

yp(x) = −mxm/2ex/2. (43)

The general solution of Eq. (42) is given by

y(x) = xm/2ex/2(x−m) +
ex

1
2x

−m/2Em/2+1 (−x/2) + C
, (44)

where En(z) is the exponential integral function En(z) =
∫∞

1 e−zt/tndt.
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5. Example 9.

The Riccati equation

dy

dx
=

β

x
+

α

x
y +

α2 − 1

2
[

2βx+ (α+ 1)kx
α+3
2

]y2, (45)

whose coefficients satisfy the condition given by Eq. (35) with f(x) = x−2, has the particular solution

yp(x) =
α
[

(α+ 1)kx
α+1
2 + 2β

]

1− α2
. (46)

The general solution of Eq. (45) is given by

y(x) = − 2β

α+ 1
− kx

α+1
2 − 4βx

(α2 − 1)x 2F1

[

2
α+1 , 1;

α+3
α+1 ;−

(α+1)kx
α+1
2

2β

]

− 4Cβ

, (47)

where 2F1(a, b; c; z) is the hypergeometric function.

V. APPLICATIONS IN PHYSICS

In the following we consider two physical application of the new integrability conditions for the Riccati equation

A. The damped time-dependent harmonic oscillator

Many natural processes can be modeled in the classical regime by the motion of a damped particle in a time-
dependent harmonic potential, described by the equation [16]

ẍ+ γ(t)ẋ+ ω2(t)x = 0, (48)

where a dot denotes the derivative with respect to the time t, x(t) is the position of the particle, γ(t) is the damping
function, and ω2(t) is the time dependent angular frequency, respectively. Riccati parameter families of damping
modes, related to the Newtonian free damping ones by means of Wittens supersymmetric scheme were considered in
[18]. This procedure leads to one parameter families of transient modes for each of the three types of free damping,
corresponding to a particular type of anti-restoring acceleration. The Ermakov-Lewis procedure was applied to the
one-parameter damped modes introduced in [18] in [19].

By introducing the transformation u = ẋ/x, x(t) = x0 exp
[

∫ t

0 u (t
′) dt′

]

, where x0 = x (0), Eq. (48) can be

transformed into a Riccati type equation, given by

u̇ = −ω2(t)− γ(t)u− u2. (49)

Eq. (49) has three general solutions, corresponding to three different constraints imposed on the damping and
angular frequency functions. If the two functions ω(t) and γ(t) satisfy the condition

ω2(t) =
γ̇(t)

2
+

γ2(t)

4
, (50)

the general solution of Eq. (49) is given by

u(t) = −γ(t)

2
+

1

C + t
. (51)

The integration constant C can be determined from the initial condtion u(0) = ẋ(0)/x(0) = v0/x0, where v0 is the
initial velocity of the particle. Therefore the integration constant is

C =
2x0

2v0 + γ0x0
, (52)
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where γ0 = γ(0). The general solution of Eq. (48) is given by

x(t) = x0

(

1 +
t

C

)

exp

[

−1

2

∫ t

0

γ (t′) dt′
]

. (53)

If the condition

ω2(t) =
γ̇(t)

2
+

γ2(t)−K2

4
, (54)

is satisfied, where K is a constant, the general solution of Eq. (49) is given by

u±(t) = −
[

γ(t)±K

2

]

+
exp (±Kt)

C± ± (1/K) exp(±Kt)
, (55)

and the general solution of Eq. (48) is given by

x± (t) =
x0

(C± ±K−1)
e−(1/2)

∫
t′

0
γ(t′)dt′

(

C±e
∓Kt/2 ±K−1e±Kt/2

)

. (56)

For this case the value of the integration constant C± is

C± =
2x±0

2v±0 + (γ0 ±K)x±0
∓K−1, (57)

where u±0 = v±0/x±0. Finally, if there is a function f(t) so that the condition

ω2(t) =
d

dt

[

γ(t)±
√

f(t)

2

]

+
γ2(t)− f(t)

4
, (58)

holds for all t, then the general solution of Eqs. (49) and (48) are given by

u±(t) = e±
∫ √

f(t)dt

[
∫

e±
∫ √

f(t)dtdt+ C±

]−1

−
[

γ(t)±
√

f(t)

2

]

, (59)

and

x±(t) = x±0 exp

[
∫ t

0

u± (t′) dt′
]

, (60)

respectively, where x±0 is an integration constant.
In order to obtain the values of the arbitrary integration constants for the solutions given by Eqs. (59) and (60)

from the initial conditions x±(0) = x±0 and ẋ±(0) = v±0, and from the initial values of the functions f(t) and γ(t),

we denote
∫
√

f(t)dt = F (t), and
∫

e±F (t)dt = ±G(t), respectively. The initial values of these functions at t = 0
are F (0) = F0, and G(0) = G0. The t = 0 value of f(t) is f(0) = f0. Then the values of the arbitrary integration
constants C± can be obtained as

C± = e±F0

(

v±0

x±0
+

γ0 ±
√
f0

2

)−1

∓G0. (61)

B. Solitons

Second order partial differential equations of the form

b (x, t)
∂2Ψ(x, t)

∂x2
+ a (x, t)

∂Ψ(x, t)

v∂t
+ V (x, t) Ψ (x, t) = 0, (62)

where v is a constant, and a, b, V are arbitrary functions of the coordinates x and t, are used for the description of a
large variety of physical models. Of particular importance are the so-called soliton (solitary wave) solutions [20, 21],
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in which the dependence of the wave function Ψ (x, t) is assumed to be of the form Ψ (x, t) = Ψ (vt− x) = Ψ (ξ).
Therefore solitons can be obtained as solutions of the second order ordinary differential equation

b (ξ) Ψ′′ (ξ) + a (ξ)Ψ′ (ξ) + V (ξ)Ψ (ξ) = 0, (63)

where a prime denotes the derivative with respect to ξ. By dividing this equation with b(ξ) 6= 0, and denoting
γ (ξ) = a (ξ) /b (ξ) and ω2 (ξ) = V (ξ) /b (ξ), Eq. (63) takes the form of Eq. (48), the equation of motion of the
damped time dependent harmonic oscillator,

Ψ′′ (ξ) + γ (ξ)Ψ′ (ξ) + ω2 (ξ)Ψ (ξ) = 0. (64)

Therefore all the results of the previous subsection can be applied to the case of the solitons, leading to the possibility
of constructing explicit exact solitonic solutions for the wave-type equations of mathematical physics.

VI. CONCLUSIONS

A new method to generate analytical solutions of the Ricacti equation was presented. The method is based on
the correspondence between the initial Riccati equation and a more general equation containing a solution generating
function f(x). If the coefficients of the Riccati equation and the function f(x) satisfy one differential and one integral
constraints, the general solution of the Riccati equation can be explicitly obtained. The method was illustrated by
obtaining the general solution for a number of specific Riccati type equations, with coefficients satisfying the required
integrability condition. Some physical applications of the integrability method were considered, by explicitly obtaining
several classes of general solutions for the harmonic damped oscillator with time dependent frequency. The possibility
of obtaining soliton type solutions of the second order partial differential equations was also briefly considered.
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