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1 Introduction

Asset allocation is one of the key research areas in finance. The classical ap-

proach of identifying the optimal portfolio for investors is to fix the risk and

maximize the expected return or fix the required expected return and mini-

mize the risk. Starting from the well known paper of Markowitz [1], variance

or standard derivation of the portfolio return is considered as the measure of

risk and mean-variance approach is a popular way to find the optimal portfolio.

Many papers have used this criterion to identify the optimal investment strat-

egy, including Zhou and Li [3], Li and Ng [4], Chen et al. [5]. There are other

approaches developed in the literature, including the utility function approach.

Samuelson [6] applies the concept of utility function and considers the problem

of optimal consumption and terminal wealth in asset allocation in a discrete

model. Merton [2] extends the idea in Samuelson [6] to a continuous model.

Merton [7] introduces an extra state variable in the market and identifies the

resultant hedging demand in the optimal portfolio. Gennotte [8] studies the

effects of estimation error in market parameters on asset allocation. Bawa [9],

Harlow [10] and Sing and Ong [11] consider the downside risk of the portfolio.

Li et al. [12] consider the dynamic portfolio selection problem using the safety-

first approach. In this approach, the investors pay more attentions on the large

loss which is modelled by a power function called lower partial moments on

loss. Longstaff [13] maximizes the expected utility of the investors in an illiquid

market. Bertsimas et al. [14] use shortfall as a risk measure and study the asset

allocation problem. Li and Ng [4] extend the mean-variance approach to a mul-

tiperiod model and obtain the explicit form of the optimal investment strategy.

Chen et al. [5] use this framework to deal with an asset-liability management

problem.

Coherent risk measure suggested by Artzner et al. [15] becomes more and

more popular in the area of risk management. Yang and Siu [16] and Elliott
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et al. [17] modify the probability measure to obtain a coherent measure of risk

using generalized scenario expectation by considering the worst scenario and

apply this in the area of risk management. The key concept of this coherent

risk measure is to adjust the probability measure so that the worst market

scenario is identified. Similar ideas are also used in Siu and Yang [18] and

Gianin [19]. Unlike Value-at-Risk (VaR) which is a quantile of the loss, this

measure is coherent and thus it is subadditive and consistent with the concept of

diversification. In this paper, the loss based on this worst scenario expectation,

instead of variance, is used as the measure of risk for a portfolio. In the area

of risk management, the portfolio is known and so the worst scenario measure

together with the expected loss can be identified directly. However, in asset

allocation problem, the optimal strategy is the object that we want and it is

unknown. It depends on the measure of risk which is determined by the worst

scenario measure; at the same time, the worst scenario measure depends on the

composition of the portfolio. Their interaction makes the optimal allocation

problem more challenging.

When the return of the assets follows a normal distribution, it is natural

that investors determine their optimal portfolio with information of risk and

return of the assets, where risk is usually considered to be equivalent to the

volatility of the assets. However, in general, what investors concern is loss and

gain of money. They are happy to take an asset with high volatility if the high

volatility comes from price appreciation. That is the reason why downside risk

measures like semi-variance, shortfall, VaR and conditional tail expectation are

introduced to measure the investment risk. Moreover, investors have their own

idea on the return and risk, and thus the future price of assets, especially for

the traders, analysts, economists and experienced investors. They identify the

uncertainty based on the market information and select their optimal portfolio

in a more conservative and more personal approach. Gennotte [8] gives a very

inspiring study in this topic. Using the market data like volatility of the assets
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directly in asset allocation after personal adjustment makes more sense and is

more practical. In this paper we bring the investors’ knowledge into the model.

The set of probability measures is now adjusted according to the investors’ view

on the assets, so using worst scenario expectation to represent the risk is more

sound.

In this paper, we study the interaction between asset allocation and worst

scenario expected loss using a constrained multiobjective optimization approach.

We formulate the problem, simplify the required equations and solve the asset

allocation problem in a simple market in Section 2. In Section 3, we consider

a more general condition and apply our approach to an incomplete market.

More economic interpretations of the results are shown in Section 4 and simple

numerical examples are given in Section 5. The solution of the optimal asset

allocation problem is found to be mathematically simple and consistent with

the mean-variance and utility maximization approach.

2 Problem Formulation

We assume that there are n+1 assets and n sources of Brownian motion risk in a

complete market. Under the real probability measure P , which reflects the mar-

ket information used by the investors, we denote Si(t) and µi(t) the price and the

expected rate of return for the ith asset at time t. Let (Ω,F , P, {Ft}t∈[0,T ]) be a

filtered probability space, Z(t) = (Z1(t), Z2(t), . . . , Zn(t))′ be the n-dimensinoal

standard Brownian motion under this filtered probability space, and Z ′ denote

the transpose of Z. Let L2
F (0, T ; Rn) be the set of square integrable, Rn-valued

stochastic process adapted to the filtration {Ft}t∈[0,T ]. Let S0 be the risk free

asset and r0(t) be the risk free interest rate, we have

dS0(t) = r0(t)S0(t)dt.
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We also have

dSi(t) = Si(t)[µi(t)dt+ σi(t)dZ(t)], (1)

where σi(t) is the ith row of the matrix σ(t) which summarizes the correlation

between the rate of return of the risky assets and the Brownian motion risks. We

denote S(t) := (S1(t), S2(t), . . . , Sn(t))′ and µ(t) := (µ1(t), µ2(t), . . . , µn(t))′.

σ(t) satisfies the following condition in this complete market,

||σ(t)|| > ε ∀t ∈ [0, T ] (2)

for some ε > 0.

At time t, let x(t) be the total wealth of the investor, Ni(t) be the number

of shares of asset i held by the investor and ui(t) be the investor’s position

of asset i. Similarly, we denote N(t) := (N1(t), N2(t), . . . , Nn(t))′ and u(t) :=

(u1(t), u2(t), . . . , un(t))′. Then,

ui(t) = Ni(t)Si(t) ∀i (3)

for all time t, if 1n is the n-dimensional column vector (1, 1, . . . , 1)′ and define

µ̃(t) := µ(t)− r0(t)1n as the risk premium rate of the risky assets, we have,

x(t) = N0(t)S0(t) +N ′(t)S(t)

dx(t) = N0(t)dS0(t) +N ′(t)dS(t)

= N0(t)r0(t)S0(t)dt+
n∑

i=1

Ni(t)Si(t) [µi(t)dt+ σi(t)dZ(t)]

= r0(t)x(t)dt+
n∑

i=1

ui(t) [(µi(t)− r0(t))dt+ σi(t)dZ(t)]

= [r0(t)x(t) + u′(t)µ̃(t)]dt+ u′(t)σ(t)dZ(t). (4)

Investors want to have some profit, at least, expect some profit from the
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market when they are bearing the risk of the market. They think that with their

knowledge and insight on the assets in the market, they are able to have a return

higher than the risk free interest rate. However, the real return of the risky assets

is stochastic. The investors have some ideas on the asset values in the market,

but they are not sure whether the information they obtained from the market

and their estimation of asset values are correct or not. They are conservative

on their own evaluation on the assets’ return in the market. Therefore, they

consider a range of worst scenarios in order to identify the potential risk of the

portfolio due to their misunderstanding on the economic environment. A range

of conservative probability measures can be used where the size of the set of

measures depends on the investors’ degree of conservativeness. We assume that

the set of measure is Q. The relative entropy of Q ∈ Q and P is

KL(Q,P ) :=
∫
dQ

dP
ln
dQ

dP
dP ≤ K ∀Q ∈ Q. (5)

The relative entropy measures the deviation of the real distribution from expec-

tation. The parameter K depends on the investors’ confidence on the available

information and their opinions on the market when they make an investment

decision.

In most of the researches on asset allocation or risk, they use standard de-

viation and variance of the rate of return of the assets as the measure of risk.

Recently, coherent measure of risk has caught much attention because it is con-

sistent with various investment concepts and relatively robust. In this paper,

we define the risk measure as the potential loss (deviation from expectation) of

the portfolio due to incorrect judgement on the assets’ return and it is equal to

EP (x(T ))− min
Q∈Q

EQ(x(T )). (6)

Similar definition of risk measure can be found in Yang and Siu (2001), Elliott
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et al. (2008). Suppose aQ(t) := (aQ
1 (t), aQ

2 (t), . . . , aQ
n (t))′, let

dQ

dP
:= exp

(∫ T

0

(aQ)
′
(t)dZ(t)− 1

2

∫ T

0

(aQ)
′
(t)aQ(t)dt

)
.

Without loss of generality, we write aQ(t) as a(t). We letB0(t) := S0(T )/S0(t) =

exp(
∫ T

t
r0(s)ds). By Girsanov theorem,

EP (x(T )) = x(0) exp

(∫ T

0

r0(t)dt

)
+
∫ T

0

B0(t)u′(t)µ̃(t)dt (7)

EQ(x(T )) = x(0) exp

(∫ T

0

r0(t)dt

)
+
∫ T

0

B0(t)u′(t)(µ̃(t) + σ(t)a(t))dt.(8)

The risk measure can be simplified as

− min
Q∈Q

∫ T

0

B0(t)u′(t)σ(t)a(t)dt. (9)

Note that KL(Q, P ) := maxQ∈QKL(Q,P ) ≤ K.

Using Lagrange principle, the constrained minimization problem above can

be modified and we can find the optimal Q (i.e. a) and the loss (risk measure)

by considering a new problem. For some ω̄ > 0,

min
Q∈Q

[∫ T

0

B0(t)u′(t)σ(t)a(t)dt+ ω̄(KL(Q,P )−K)

]
.

However, our goal is not just finding the worst scenario but using this worst

scenario to determine the risk level and identify the optimal portfolio strategy.

The investors try to maximize their wealth based on their information but at

the same time control the exposure to risk as they are not totally confident on

themselves due to the risk of the investment and the uncertainty of information.
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The problem now we are considering is

Maximize EP (x(T ))

such that EP (x(T ))− min
Q∈Q

EQ(x(T )) ≤ L,

and KL(Q, P ) ≤ K

where x satisfies (4) and u ∈ L2
F (0, T ; Rn).

Later, we implicitly assume that x follows the dynamic of equation (4) and u is

integrable and adapted to the filtration. L is the maximum amount of expected

loss that the investor willing to endure for his portfolio and it reflects the degree

of risk aversion of the investor. Here, L is taken as an absolute amount but

it can also depend on investor’s wealth level, x. If the investor has a constant

absolute risk aversion utility function, L is a constant and independent of x; if

the investor is constant relative risk aversion, we can take L as the proportion

of wealth. In this case, we let l be the maximum expected proportional loss

that the investor can tolerate in the worst scenario, and now u can be viewed as

the proportion of wealth in the risky assets. We can also choose L proportional

to T if the investor expects a constant risk exposure at every instant and so

risk tolerance level increases linearly with time. The risk characteristic of the

investors controls the level of risk and the composition of their portfolio.

Our optimal asset allocation problem can be written as

Maximize EP (x(T ))

such that min
Q∈Q

[∫ T

0

B0(t)u′(t)σ(t)a(t)dt+ ω̄(KL(Q,P )−K)

]
≥ −L.

We apply the theory of multiobjective optimization. As the set Q is convex and

the loss constraint is linear with respect to the composition of portfolio, we can

modify this constrained optimization problem into a single objective problem

and the new objective function is the weighted average of the objectives of
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original problems. Similar applications can be found in Li and Ng (2000), Zhou

and Li (2000). We let U = L2
F (0, T ; Rn), the problem is further modified and

becomes

max
u∈U

[
EP (x(T )) + λ

(
min
Q∈Q

∫ T

0

B0(t)u′(t)σ(t)a(t)dt+ ω̄(KL(Q,P )−K) + L

)]

where λ > 0. With the expression of dQ
dP , we can obtain the KL(Q,P ) using the

definition in equation (5),

KL(Q,P ) =
∫
dQ

dP
ln
dQ

dP
dP

=
∫ (∫ T

0

a′(t) (dZ(t)− a(t)dt+ a(t)dt)− 1
2

∫ T

0

a′(t)a(t)dt

)
dQ

=
1
2

∫ T

0

a′(t)a(t)dt.

Now, we focus on the optimal strategy and the corresponding worst scenario

probability measure and ignore the constant and irrelevant terms. By using

equation (7) and (8), the problem is simplified to

max
u∈U

[∫ T

0

B0(t)u′(t)µ̃(t)dt+ λ

(
min
Q∈Q

∫ T

0

B0(t)u′(t)σ(t)a(t)dt

+ω̄
(1

2

∫ T

0

a′(t)a(t)dt−K
)

+ L

)]
.

The optimal strategy and the corresponding worst scenario probability measure

can be obtained by considering this minimax problem, with ω = λω̄, we let

H(u, a) := min
Q∈Q

max
u∈U

[∫ T

0

B0(t)u′(t)µ̃(t)dt

+λ
∫ T

0

B0(t)u′(t)σ(t)a(t)dt+
ω

2

∫ T

0

a′(t)a(t)dt

]
,

h(t;u, a) := B0(t)u′(t)µ̃(t) + λB0(t)u′(t)σ(t)a(t) +
ω

2
a′(t)a(t). (10)
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For simplicity, we drop the time parameter t and write h(t;u, a) as h(u, a). We

differentiate h(u, a) with respect to u and a. For all t ∈ [0, T ], we obtain

∂h(u, a)
∂u′

= B0µ̃+ λB0σa,
∂h(u, a)
∂a

= λB0u
′σ + ωa′.

For the optimal strategy u∗ and worst scenario a∗, we have

µ̃+ λσa∗ = 0, λB0u
∗′σ + ωa∗′ = 0.

Together with the constraints of the original problem, we have

a∗ = − 1
λ
σ−1µ̃

λ =

√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K
, (11)

and so

a∗ = −
√

2K∫ T

0
µ̃′σ−1′σ−1µ̃dt

σ−1µ̃. (12)

We can also find ω and u∗,

ω =
λL

2K
=

L

2K

√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K
, (13)

u∗ =
−L

2KB0
σ−1′a∗

= L
σ−1′σ−1µ̃

2KB0


√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K

−1

. (14)

After finding a∗ and u∗, we can obtain the expected absolute risk premium,

∫ T

0

B0u
∗′µ̃dt = L

√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K
. (15)
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The expected absolute risk premium enjoyed by the investor is proportional to

their accepted amount of risk and for the uncertainty constraint K,

∂(
∫ T

0
B0u

∗′µ̃dt)
∂K

=
−L
2K

√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K

=
−1
2K

∫ T

0

B0u
∗′µ̃dt.

To interpret the solutions obtained above, we can make use of the basic

concept in pricing and risk management and the risk neutral probability measure

Q̃. As σ summarizes the Brownian motion risks of the risky assets, σ−1 is the

collection of portfolios with exactly one unit of a particular Brownian motion

risk. Therefore, σ−1µ̃ is the risk premium rate of the Brownian motion risk.

Under risk neutral probability measure Q̃,

u′µ̃+ u′σã = 0 ∀u, t

ã = −σ−1µ̃ so,

KL(Q̃, P ) =
1
2

∫ T

0

µ̃′σ−1′σ−1µ̃ dt.

It is the term that appears in the expression of λ, ω, a∗ and u∗. The price of

wealth risk for the investor is

Expected Return
Potential Loss

=
λL

L
= λ

=

√∫ T

0
µ̃′σ−1′σ−1µ̃dt

2K

=

√
KL(Q̃, P )

K
. (16)

The price of wealth risk in the current model follows inverse square law ofK, K is

the information uncertainty parameter. The more confidence the investors have

on their estimation and the available information, the higher the expected profit
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they can enjoy. When K = KL(Q̃, P ), one dollar risk faced by the investors

provides them with expected profit of one dollar exactly.

We note that KL(Q̃, P ) = 1
2

∫ T

0
ã′ãdt. If K < KL(Q̃, P ), the risk neutral

probability measure is not in Q and the return of the risky asset is higher than

the risk free rate in the worst scenario (assuming that risk premium rate is

positive). The expected gain from investment is higher than the expected loss

due to investor’s uncertainty even in the worst scenario. When K > KL(Q̃, P ),

the risk neutral probability measure is now in Q, in this case, investors are

more uncertain about their estimation on the return of the risky assets. They

are more conservative and they are going to reduce the amount of risky assets

in the portfolio. They still invest in the risky asset as they believe that, in

average, the risky assets can bring them a higher return than risk free asset,

and they try to maximize this extra gain up to a risk level that they cannot

tolerate. However, the risk premium (measured by expected asset appreciation)

they have is now lower than the risk of expected loss they bear. This shows

an interesting relationship between the pricing measure and the optimal asset

allocation.

We assume that σ is constant over time, all the n Brownian motion risks are

equivalent and they have the same risk premium rate, denote it by µ̄. Let Q̄ be

the risk neutral probability measure for this risk premium structure, then the

optimal portfolio and the optimal total investment in risky asset are

u∗ = L
σ−1′σ−11n

2KB0

√1′nσ−1′σ−11nT

2K

−1

,

u∗′1n =
L

B0T

√
1′nσ−1′σ−11nT

2K

=
L

B0T

√
KL(Q̄, P )
µ̄2K

.

We can see that the demand of risky assets by different investors and hence the
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whole market depends on the loss that investors are willing to bear and their

discreetness on investment. Therefore, when the risk appetite of the market

increases or the investors are more confident about the market information,

the demand and thus the price of the risky assets increase. The expected risk

premium at expiration earned at each time point is a constant and equal to

u∗′(µ̄1n)B0 =
L

T

√
KL(Q̄, P )

K
.

3 Different Understandings on Risks and Incom-

plete Markets

People can have different knowledge on different risks in the market. For exam-

ple, an FX trader is more confident on predicting the interest rate trend than

the oil price. For common investors, the risks of different sources with the same

level of volatility are equivalent as they do not have any specific knowledge or

confidence when facing any particular risk. For them, risk is volatility. However,

for insiders or those experts in some areas of investment, finance, economy, prop-

erties and etc, they know more about some assets in the market, and they have

their own ideas on investments. Even some assets seem to be highly volatile,

they believe that the error of their estimation on the value of the assets and the

real risk (not referring to volatility but losing money) is small. If these investors

have different degrees of uncertain on the risks, the Brownian motion risks are

not equivalent for them. They can use their knowledge and level of confidence

on the estimations of the risk in the worst scenario (probability measure) in

order to find their optimal strategy.

In this section we also discuss the market incompleteness. If the number of

assets is greater than the number of the sources of risks, in a market with no

arbitrage, there are some redundant assets and the portfolio construction can
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be done by removing all the redundant assets and we know that the optimal

portfolio is no longer unique. If the number of assets is smaller than the number

of risks, the market is incomplete and we have to do a little more in order to

obtain the optimal portfolio.

Let w(t) := (w1(t), w2(t), . . . , wn(t))′ be the adjustments of the investor’s

relative confidence on the estimation of risks, and diag(w) be the diagonal matrix

with vector w as its principle diagonal. We suppose that w > 0 and the new

problem becomes

Maximize EP (x(T ))

such that EP (x(T ))− min
Q∈Q

EQ(x(T )) ≤ L,

and
∫ T

0

a′(t)diag(w(t))a(t)dt ≤ K.

Similar to the calculation in the previous section, it can be simplified as follows,

Maximize
∫ T

0

B0(t)u′(t)µ̃(t)dt

such that min
Q∈Q

∫ T

0

B0(t)u′(t)σ(t)a(t)dt ≥ −L,

and
∫ T

0

a′(t)diag(w(t))a(t)dt ≤ K,

and the optimization problem becomes

max
u∈U

[∫ T

0

B0(t)u′(t)µ̃(t)dt+ λ

(
min
Q∈Q

∫ T

0

B0(t)u′(t)σ(t)a(t)dt+

ω̄
(∫ T

0

a′(t)diag(w(t))a(t)dt−K
)

+ L

)]
.

Since we want to extend our study to an incomplete market, we propose that

there are m risky assets and n sources of risks, where m ≤ n. Then, for all
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t ∈ [0, T ],

µ̃(t), u(t) ∈ Rm, σ(t) ∈ Rm×n, w(t), a(t) ∈ Rn.

We assume

G(u, a) := min
Q∈Q

max
u∈U

[∫ T

0

B0(t)u′(t)µ̃(t)dt+ λ

∫ T

0

B0(t)u′(t)σ(t)a(t)dt

+ ω

∫ T

0

a′(t)diag(w(t))a(t)dt

]
,

g(t;u, a) := B0(t)u′(t)µ̃(t) + λB0(t)u′(t)σ(t)a(t) + ωa′(t)diag(w(t))a(t).

(17)

Again, we suppress the time parameter t if there is no ambiguity, and differ-

entiate g(u, a) with respect to u and a, for all t ∈ [0, T ], we obtain,

∂g(u, a)
∂u

= B0µ̃+ λB0σa,
∂g(u, a)
∂a

= λB0u
′σ + 2ωa′diag(w).

The optimal strategy u∗ and worst scenario a∗ satisfy, for all t ∈ [0, T ],

µ̃+ λσa∗ = 0, λB0u
∗′σ + 2ωa∗′diag(w) = 0.

Together with the constraint equations, when m = n, we can apply the previous

result by replacing a∗ by diag(
√
w)a∗, σ by σdiag(

√
w)−1 and ω by 2ω, where
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√
w := (

√
w1,
√
w2, . . . ,

√
wn)′. We have

λ =

√∫ T

0
µ̃′σ−1′diag(w)σ−1µ̃dt

K
,

a∗ = −σ−1µ̃


√∫ T

0
µ̃′σ−1′diag(w)σ−1µ̃dt

K

−1

, (18)

ω =
L

2K

√∫ T

0
µ̃′σ−1′diag(w)σ−1µ̃dt

K
,

u∗ = L
σ−1′diag(w)σ−1µ̃

KB0


√∫ T

0
µ̃′σ−1′diag(w)σ−1µ̃dt

K

−1

. (19)

However, if m < n, we cannot use inverse matrix to obtain the solution directly.

As we have discussed above, we can focus on the market without redundant

assets (if there is a redundant asset, we can substitute its replicating portfolio

in optimal allocation and the resultant portfolio will still be optimal) and σ

satisfies

||σ(t)σ′(t)|| > ε ∀t ∈ [0, T ] (20)

for some ε > 0. Inspired by the results in the case of m = n, we have

λ =

√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K
,

ω =
L

2K

√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K
,
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and,

u∗ = L
(σdiag(w)−1σ′)−1

µ̃

KB0


√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K

−1

, (21)

a∗ =
−λ
2ω

(diag(w))−1σ′u∗

= −(diag(w))−1σ′(σdiag(w)−1σ′)−1µ̃


√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K

−1

.

(22)

It can be easily shown that expressions above satisfy the optimal equations

and constraint equations, hence, they are the optimal portfolio and the corre-

sponding worst scenario. We also have one important result, adjustment on the

relative entropy can be transformed to adjustment on volatilities for the corre-

sponding risks in asset allocation problem. Hence, the investors’ confidence on

the assets’ return can be summarized using adjusted volatilities.

4 Efficient Frontier

To illustrate the relationship between our approach and the mean-variance ap-

proach, we study the efficient frontier in our model. Now, rather than taking

the 0th asset as the risk free asset, we assume that it is also a risky asset and

its price process satisfies

dS0(t) = S0(t)[µ0(t)dt+ σ0(t)dZ(t)].

Similar to the setting in the previous section, we consider a market with

n Brownian motions and m + 1 assets. We let µ̂(t) := µ(t) − µ0(t)1n and

σ̂i(t) := σi(t) − σ0(t). We assume n ≥ m, ||σ̂(t)σ̂′(t)|| > ε for all t ∈ [0, T ] and
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some ε > 0. The wealth process becomes

dx(t) = (x(t)− u′(t)1m)(µ0(t)dt+ σ0(t)dZ(t))

+
n∑

i=1

ui(t)
(
µi(t)dt+ σi(t)

)
dZ(t)

= (x(t)µ0(t) + u′(t)µ̂(t))dt+ (x(t)σ0(t) + u′(t)σ̂(t)) dZ(t). (23)

We try to obtain the optimal portfolio by studying the asset allocation problem,

let B(t) := exp(
∫ T

t
µ0(s)ds). The problem becomes

Maximize
∫ T

0

B(t)u′(t)µ̂(t)dt

such that min
Q∈Q

∫ T

0

B(t) (u′(t)σ̂(t)a(t) + x(t)σ0(t)a(t)) dt ≥ −L,

and
∫ T

0

a′(t)diag(w(t))a(t)dt ≤ K.

We assume that the investors have constant relative risk aversion and L is

proportional to the wealth of the investors. Then, we let l be the maximum

expected proportional loss that the investor can tolerate in the worst scenario.

The problem is changed to

Maximize
∫ T

0

B(t)u′(t)µ̂(t)dt

such that min
Q∈Q

∫ T

0

B(t) (u′(t)σ̂(t)a(t) + σ0(t)a(t)) dt ≥ −l,

and
∫ T

0

a′(t)diag(w(t))a(t)dt ≤ K,

and now u is understood as the proportion, but not the amount, of wealth the
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investors put in the m assets. We assume

F (u, a) := min
Q∈Q

max
u∈U

[∫ T

0

B(t)u′(t)µ̂(t)dt+ λ

∫ T

0

B(t)
(
u′(t)σ̂(t)

+σ0(t)
)
a(t)dt+ ω

∫ T

0

a′(t)diag(w(t))a(t)dt

]
,

f(t;u, a) := B(t)u′(t)µ̂(t) + λB(t)(u′(t)σ̂(t) + σ0(t))a(t)

+ωa′(t)diag(w(t))a(t).

Again, we omit the time parameter t and we have

∂f(u, a)
∂u

= Bµ̂+ λBσ̂a,
∂f(u, a)
∂a

= λB(u′σ̂ + σ0) + 2ωa′diag(w).

Solving the equations, we have,

λ =

√∫ T

0
µ̂′(σ̂diag(w)−1σ̂′)−1

µ̂dt

K
,

ω =
l

2K

√∫ T

0
µ̂′(σ̂diag(w)−1σ̂′)−1

µ̂dt

K
,

a∗ =
−(diag(w))−1σ̂′(σ̂diag(w)−1σ̂′)−1µ̂

λ
, (24)

u∗ = (σ̂diag(w)−1σ̂′)
−1
(

lµ̂

λKB
− σ̂diag(w)−1σ′0

)
. (25)

To study the relationship between expected value and variance of the return rate,

we consider w = In. The expected rate of return R of the optimal portfolio is

u∗′µ̂+ µ0 =
l

λKB
µ̂′(σ̂σ̂′)−1

µ̂− σ0σ̂
′(σ̂σ̂′)−1

µ̂+ µ0, (26)

and the variance V of the rate of return is

(σ0 + u′σ̂)(σ0 + u′σ̂)′

= σ0σ
′
0 − σ0σ̂

′(σ̂σ̂′)−1
σ̂σ0

′ +
(

l

λKB

)2

µ̂′(σ̂σ̂′)−1
µ̂. (27)
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Therefore, the minimum variance frontier is

V = σ0σ
′
0 − σ0σ̂

′(σ̂σ̂′)−1
σ̂σ0

′ +
(R− (µ0 − σ0σ̂

′(σ̂σ̂′)−1
µ̂))2

µ̂′(σ̂σ̂′)−1
µ̂

, (28)

and the upper part of the minimum variance frontier is the efficient frontier.

Obviously, when σ0 = 0 and µ0 = r0, the efficient frontier is equivalent to the

Capital Market Line.

When n = m, there are m + 1 assets in the market while there are only

n sources of risks. Asset 0 is redundant and can be replicated by a portfolio

formed by the m risky assets. The minimum variance frontier becomes

V =
(R− (µ0 − σ0σ̂

−1µ̂))2

µ̂′(σ̂σ̂′)−1
µ̂

.

The market is completed by the risky assets and the price of return rate risk

is equal to
√
µ̂′(σ̂σ̂′)−1

µ̂. The risk free return of the market emerges and it is

equal to µ0 − σ0σ̂
−1µ̂.

When n > m, even in the case of n = m+ 1, we are not necessarily able to

construct a risk free portfolio with non zero investment. The minimum variance

portfolio is at the point where

V = σ0σ
′
0 − σ0σ̂

′(σ̂σ̂′)−1
σ̂σ0

′, R = µ0 − σ0σ̂
′(σ̂σ̂′)−1

µ̂.

5 Numerical Examples and Illustrations

We consider two simple numerical examples here to illustrate the idea of this

model. We first assume that it is a complete market with three risky assets

and three sources of Brownian motion risk. The investor has the following risk
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preference, information and ideas on the three assets,

σ =


0.1 0.15 0.1

0.2 0.05 0.2

0.25 0.1 0.1

 µ̃ =


10%

13%

13%

 l = 0.5 K = 6 r0 = 0.05.

in an one-year period. We now try to find the distribution of the investor’s

wealth in various assets.

Using the parameters given in equation above, we have

σ−1 =


−4.0000 −1.3333 6.6667

8.0000 −4.0000 0.0000

2.0000 7.3333 −6.6667

 σ−1µ̃ =


29.33%

28.00%

28.67%

 λ = 0.1434.

With λ, we can obtain the optimal investment strategy and the corresponding

worst scenario measure

u∗(0) =


0.4535

0.1634

0.0123

 a∗ =


−2.0461

−1.9531

−1.9996

 B0u
∗′µ̃ = 7.17%.

The result shows that the investor places 45.35%, 16.34% and 1.23% of his

wealth on three risky assets correspondingly at time 0. The remaining wealth

will be put in risk free asset. He can obtain an extra 7.17% expected rate of

return from the risky assets at time 1 in addition to the risk free rate. We can

see that the risk premiums of different sources of risk are similar to each other,

a∗ is negative and proportional to the risk premium. The worst situation occurs

when the asset with the higher expected return gives a poorer result because a

profit-seeking investors should invest more on this asset.

If one more Brownian motion risk is introduced into the market, the market

is no longer complete and we try to use the approach in previous section to find
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the optimal portfolio. For a one-year investment plan, we assume that the new

market condition is

σ =


0.1 0.15 0.1 0.1

0.2 0.05 0.2 0.1

0.25 0.1 0.1 0.1

 µ̃ =


10%

13%

13%

 l = 0.5 K = 4.

Further, suppose w = (0.3, 0.3, 0.3, 0.1)′, we obtain

λ = 0.1087 u∗(0) =


0.1277

0.1711

0.1285

 a∗ =


−2.2181

−1.1372

−1.6777

−3.5940

 B0u
∗′µ̃ = 5.44%.

From the selection of w, we know that the investor in this example is more

uncertain about the information of the market data comparing to that in the

previous example, especially for the new Brownian risk. However, we cannot

compare the discreetness of the investors in these two examples because they

are of two different markets and the definitions of K are not the same. With the

introducing of the new source of risk, the investor distributes his wealth more

evenly on three risky assets, 12.77%, 17.11%, 12.85% of the investor’s total

wealth are invested in three risky assets, respectively, at time 0. The remaining

capital is invested in risk free asset. The worst scenario puts more emphasis

on the risk that investor feels less confident about the information. The risk

premium rate can be enjoyed by the investor over the year is 5.44%.

We assume Σ is the covariance matrix of the return rate of the assets, it is

symmetric and given by

Σ = σσ′, ∀t ∈ [0, T ]. (29)

If the investors have no preference on the sources of risks, we recall that the
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optimal risky portfolio u∗ has the following expression,

u∗ = L
(σσ′)−1

µ̃

KB0


√∫ T

0
µ̃′(σσ′)−1

µ̃dt

K

−1

= L
Σ−1µ̃

λKB0
. (30)

The optimal asset allocation among the risky assets in this model is linear with

respect to the product of the inverse of the covariance matrix of the assets

and the risk premiums of the Brownian motion risks. It is consistent with

the existing results on asset allocation problems obtained by Duffie [20] using

maximum utility criterion and Zhou and Li [3] using mean-variance approach.

Therefore, the ratios of the risky assets in the optimal portfolios under all these

models are the same. The size of the risky portfolio is proportional to the

amount of risk L that the investor is willing to take. It parallels the idea of

leverage.

In previous sections, we use the amount of expected gain and the expected

worst scenario loss as the measure of return and risk, respectively. We now

consider the relationship between the expected rate of return and the volatility

of the optimal portfolio. Again, u is now taken as the proportion of wealth for

different risky assets. Then, the risk premium rate (real rate of return of the

portfolio) is equal to

µ̃′u∗ = l
µ̃′(σdiag(w)−1σ′)−1

µ̃

KB0


√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K

−1

.
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The volatility of the portfolio is

√
u∗′σσ′u∗ =

l

KB0

√
µ̃′(σdiag(w)−1σ′)−1

σσ′(σdiag(w)−1σ′)−1
µ̃

√∫ T

0
µ̃′(σdiag(w)−1σ′)−1

µ̃dt

K

−1

.

We can obtain the price of return rate risk of the investor from

µ̃′(σdiag(w)−1σ′)−1
µ̃√

µ̃′(σdiag(w)−1σ′)−1
σσ′(σdiag(w)−1σ′)−1

µ̃
.

The demand of the assets depends on the investors’ confidence on the informa-

tion. The low demand of the assets which are considered more uncertain by the

investors results in a low asset price, but at the same time a higher expected re-

turn. For those agents who are more confident on these assets, they invest more

in these assets (relative to others) and enjoy a higher expected return (more

precisely, a higher return-risk ratio). Therefore, for long term investment, in-

vestors should try to pay attention to those assets which are considered to be

more uncertain by the investors. The higher return-risk ratio might also attract

more investors to analyze these assets. Competition among the investors can

reduce the information uncertainty for those assets.

If all investors in the market have no preference on the sources of risks,

w = 1n and diag(w) = In, the market price of risk becomes
√
µ̃′(σσ′)−1

µ̃ and

it is the slope of the Capital Market Line in the model. The investors form their

optimal portfolio using the risk free asset and the market portfolio according

to their risk preference and it is the idea of Mutual Fund Theorem. However,

if the investors are allowed to have different views and preferences on different

risks, the price of risks for the investors are different, and investors select risky

portfolios with different compositions. They do not necessarily invest in the

market portfolio as it is no longer efficient for them from their point of view.
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For investors with different levels of confidence on various sources of risks,

w is introduced to reflect the degree of confidence on the estimation of risk.

This model is typically useful for this kind of investors, especially when they

want to find the optimal strategy in an incomplete market. The worst scenario

helps prevent exposing to excessive risk while their portfolio can still benefit

from their insight on the market. When the investors are uncertain on their

understanding of some risks, the worst scenario expectation approach makes

these risks relatively worse than others and protects the investors from model

and information uncertainty.

6 Conclusions

In this paper, we have applied the concept of coherent risk measure and in-

formation uncertainty in asset allocation and used them as the criterion for

obtaining the optimal portfolio. In the proposed worst scenario approach, in-

stead of just using the volatility, expected rate of return of the assets and the

risk preference of the agents, the knowledge and information of investors on

the market are now brought into consideration in the process of the optimal

investment strategy determination. The investors invest more in the assets that

they are more confident on their future price and enjoy a higher expected re-

turn under a preferred risk level controlled by assets’ volatility and information

uncertainty. This approach is rational, simple and at the same time consistent

with the current asset allocation models. From the results obtained, we have

identified a special relationship between the pricing measure and the optimal

asset allocation. We also find that the levels of confidence (or uncertainty) on

different sources of risk can be understood as adjustments on volatilities in asset

allocation problem and therefore the optimal strategy is mathematically sim-

ple and easy to obtain. In the last art of the paper, we have applied the risk

measure approach in incomplete markets and the optimal investment strategy
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is identified.
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