

© ACM (2012). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version is published in Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA 2012), ACM, New
York, NY (2012).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISSTA'12, July 15–20, 2012, Minneapolis, MN, USA.
Copyright 2012 ACM 978-1-4503-1454-1/12/07... $10.00.

Postprint of article in Proceedings of the 2012 International Symposium on Software Testing and Analysis
(ISSTA 2012), ACM, New York, NY (2012)

CARISMA: a Context-sensitive Approach to Race-condition
sample-Instance Selection for Multithreaded Applications

Ke Zhai
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

kzhai@cs.hku.hk

Boni Xu
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

bnxu@cs.hku.hk

W. K. Chan
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T. H. Tse
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

ABSTRACT
Dynamic race detectors can explore multiple thread schedules of a
multithreaded program over the same input to detect data races.
Although existing sampling-based precise race detectors reduce
overheads effectively so that lightweight precise race detection
can be performed in testing or post-deployment environments,
they are ineffective in detecting races if the sampling rates are
low. This paper presents CARISMA to address this problem.
CARISMA exploits the insight that along an execution trace, a
program may potentially handle many accesses to the memory
locations created at the same site for similar purposes. Iterating
over multiple execution trials of the same input, CARISMA
estimates and distributes the sampling budgets among such
location creation sites, and probabilistically collects a fraction of
all accesses to the memory locations associated with such sites for
subsequent race detection. Our experiment shows that, compared
with PACER on the same platform and at the same sampling rate
(such as 1%), CARISMA is significantly more effective.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers, run-
time environments; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools.

General Terms
Reliability, Experimentation, Verification.

Keywords
Concurrency, Data Races, Sampling, Bug Detection

1. INTRODUCTION
A multithreaded program may produce a large number of thread
interleaving sequences even for the same input. Various concur-
rency bugs (such as data races and atomicity violations) still exist
in heavily-tested real-world programs such as Eclipse [2], MySQL
[21], and Firefox [21]. A (data) race condition [27] refers to
multiple accesses from different threads to the same memory loca-
tion in an unsynchronized way, and at least one of them is a write.
Data races may not result in program failures, but their presence
often indicates other concurrency errors in the same programs
[2][21][23]. As such, it is essential to detect them.

During any execution, accesses to a shared memory location
can be in a race. A data race may only occur in some specific but
not all thread-scheduled conditions, and the number of threads that
would trigger such specific conditions is not known in advance.
This adds further challenges to data race detection.

In general, static analyses can provide thorough code coverage
and often result in no false negatives, but they still have limitations
such as producing false positives and being less scalable than their
dynamic counterparts in handling large-scale programs [11][25].
Manually removing false positives is tedious because developers
need to examine the code to identify the genuine ones (even though
they may apply heuristic classification techniques first) [8]. Many
model checking approaches [12][14] have been proposed, but they
are still unable to scale well to handle large programs.

Many dynamic race detectors [5][13][17] are precise by moni-
toring actual program executions and tracking the happen-before
relations [20] among threads, shared locations, and locks. However,
they still incur significant overheads [9] and cannot scale up to
handle large-scale programs that involve many shared locations or
many accesses to shared locations in their executions [2][26].
Depending on the tradeoff between detection effectiveness and
slowdown overheads in their design, techniques of this kind may
produce some or no false positives as well as some or no false
negatives. However, even the most efficient precise data race
detector still incurs significant overheads (such as 8x slowdown in
an experiment with FASTTRACK [9] for Java programs).

A promising approach that explores the above tradeoff is
sampling. For instance, LITERACE [23] uses a code-partitioning
strategy that keeps two copies of every function F of a program —
the first one only samples the synchronization events of F, and the

2

second one samples the synchronization as well as the memory
access events of F. For each function, LITERACE sets up a thread-
local burst-sampling strategy [13] to decide which of the two
copies should be invoked by the corresponding thread. With such a
design, for functions that have been relatively more frequently
invoked by a thread, the memory access events in the function will
be sampled less often. However, for functions such as one that
processes a large array of data for example, LITERACE may sample
excessively. On the other hand, PACER [2] uses a global execution-
time sampling strategy. It divides an execution into a consecutive
series of sampling and non-sampling periods. During a sampling
period, all synchronization and memory access events are sampled,
whereas in a non-sampling period, the first read and the first write
access events of a shared location are sampled only if the location
has been sampled in a prior sampling period in the same execution.
By so doing, PACER can detect races so long as at least one of the
involved concurrent accesses is in a sampling period. Their empiri-
cal study [2] shows that the technique can significantly reduce the
slowdown overheads.

A common limitation of the above techniques is that although
existing sampling-based precise data race detectors such as PACER
[2] and LITERACE [23] can effectively reduce overheads so that
lightweight precise race detection can be performed efficiently in
testing or post-deployment environments, they are ineffective in
detecting races when the sampling rates are low. Our insight is that
along an execution trace, a program may potentially handle numer-
ous accesses to the memory locations created at the same site for
the same purpose. These race detection techniques have not
exploited the “similarity” among shared locations (such as manipu-
lating objects in the same class hierarchy in Java, or elements in the
same array or linked list). Intuitively, they may perform redundant
memory access sampling, which lowers their chance of detecting
rare data races.

In this paper, we present CARISMA, which exploits the above-
mentioned insight. CARISMA works over a sequence of execution
trials. In the first phase, given a particular sampling rate ,
CARISMA adaptively estimates the sampling budgets for individ-
ual contexts (i.e., memory location creation sites) by carrying
forward a set of statistics collected from the first m execution
trials to the (m+1)-th trial so that all particular contexts can be
evenly sampled as much as possible. In the second phase,
CARISMA probabilistically determines whether to sample an
entity in a particular context. In our experiment on a suite of nine
benchmarks, we find that (1) CARISMA is significantly more
effective than PACER; (2) CARISMA incurs 80% less runtime
overhead than FASTTRACK running on the same platform at a
sampling rate of 1%; and (3) CARISMA retains a detection rate of
10% at a low sampling rate of 0.01%, which is encouraging.

This paper makes the following contributions: (a) proposing the
first budget balancing approach, CARISMA, for memory access
sampling for data race detection; (b) formulating three levels of
sampling granularities for concurrency bug detection; and (c) pre-
senting an experiment that validates CARISMA extensively.

The rest of the paper is organized as follows: Section 2
introduces a motivating example. Section 3 presents CARISMA.
Section 4 presents an evaluation of CARISMA. We then review
related work in Section 5, and conclude the paper in Section 6.

2. MOTIVATING EXAMPLE
We motivate our work by an example shown in Figures 1 and 2.
Figure 1 lists an Account class of a banking system with two
subtypes: general and savings accounts (created by the methods
createGeneral() and createSavings(), respectively), which
are differentiated by the value of isSavings. Both subtypes

support money deposits, but only savings accounts offer interest.
The two operations are implemented by the methods deposit()
and creditInterest(), respectively. To make our presentation
more concise, we also use the shorthand CLS-A to denote the
Account class, and Stm-1 and Stm-2 to denote the statements in
lines 13 and 16 of the code, respectively.

1
2
3
4
5
6

7
8
9

10
11
12
13

14
15
16

17
18

public class Account { // denoted as CLS-A
 boolean isSavings;
 double balance = 0.0;
 Account(boolean b) { isSavings = b; }
 boolean IsSavings() { return isSavings; }
 synchronized void deposit(double x) {
 // denoted by dep()
 balance += x;
 }
 void creditInterest(double r) {
 // denoted by cre()
 balance *= (1 + r); // thread-unsafe
 }
 static Account createGeneral() {
 return new Account(false);
 // denoted by Stm-1
 }
 static Account createSavings() {
 return new Account(true);
 // denoted by Stm-2
 }
}

Figure 1. Example of a banking system.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

public class AccountTest {
 Account[] a = new Account[9];
 Thread t1 = new Thread() { // thread t1
 public void run() {
 for (int i = 0; i < 9; i++)
 a[i].deposit(1.0);
 }
 };
 Thread t2 = new Thread() { // thread t2
 public void run() {
 for (int i = 0; i < 9; i++)
 if (a[i].IsSavings())
 a[i].creditInterest(0.1);
 }
 };
 // The thread is denoted by tmain with type Thd-M
 public void testCase() {
 for (int i = 0; i < 8; i++)
 a[i] = Account.createGeneral();
 a[8] = Account.createSavings();
 t1.start(); t2.start();
 t1.join(); t2.join();
 }
}

Figure 2. A test case of the banking system.

The keyword “synchronized” is missing from the declaration
of the method creditInterest(). Figure 2 shows a test case
that reveals a failure. This test case simulates a real-life situation
that the number of general accounts is much larger than the number
of savings accounts. The test case initializes eight general accounts
(a[0]–a[7]) and one savings account (a[8]).

After initialization, the test case starts two threads, t1 and t2.
Thread t1 models daily deposit transactions where deposits are
made to both types of accounts, and thread t2 models the interest
payment transactions where only savings accounts receive interests.
Consider an execution trace for the test case, as illustrated in the
first two columns of Table 1. The execution sequence of the
methods of the nine objects is shown from top to bottom. The
execution first invokes deposit() of a[0]–a[4], then t2 calls
creditInterest() of a[8], and finally t1 calls deposit() of
a[5]–a[8]. In the course of the execution, because no lock
protects any memory access in creditInterest(), the invoca-

3

Table 1. Comparison among different sampling techniques

Sample Execution
LITERACE PACER CARISMA

Sampled?
Sampled?
(Sampling

Rate)

Sampled?
(Sampling

Rate)
Thread
t1

Thread
t2

In
C1?

In
C2?

dep0() yes ● ○ (0.4) ○ (0.25)
dep1() yes ● ○ (0.4) ○ (0.25)
dep2() yes ○ (0.4) ○ (0.25)
dep3() yes ● ○ (0.4) ○ (0.25)
dep4() yes ○ (0.4) ○ (0.25)

 cre8() yes ● ○ (0.4) ●
dep5() yes ○ (0.4) ○ (0.25)
dep6() yes ● ○ (0.4) ○ (0.25)
dep7() yes ○ (0.4) ○ (0.25)
dep8() yes ○ (0.64) ●

Count: 8 2

Expected No. of
Accesses Sampled: 5

4 .24
(=0.4×9+0.64)

4
(=2+0.25×8)

Detection Rate: 0% 42.4% 100%
Notes:
(1) depi() and crei() refer to a[i].deposit() and

a[i].creditInterest(), respectively, in Figure 2.
(2) A filled dot (“●”) refers to a sampling rate of 100%.
(3) A hollow dot (“○”) refers to sampling with a probability of r indicated

in the brackets that follow.
(4) The two shaded method invocations lead to a data race in the

example.

tion of creditInterest() by t2 may result in a data race on the
field a[8].balance with the concurrent invocation of the method
deposit() on a[8] by t1.

LITERACE samples either all data accesses in a method instance
or none of them. It must sample the first creditInterest()
instance. If it could evenly sample 40% of all deposit() instances,
it would achieve on average a detection rate of 40%.

In reality, however, LITERACE uses an adaptive bursty tracing
strategy proposed in [13] to sample each method executed by the
same thread. It gradually lowers the probability of sampling the
same method. For the sake of illustration, in the example, we set
LITERACE to skip 0, 1, 2, …, subsequent accesses of the method
after the 1st, 2nd, 3rd, …, accesses to the same method,
respectively. Hence, LITERACE samples 4 out of 9 deposit()
invocations of the execution trace as shown in Table 1. Thus, it
samples a total of 5 out of 10 accesses. Because a[8].deposit()
occurs after 8 invocations of the deposit() method in the course
of the execution, LITERACE fails to detect the race in the example.

Adjusting its configuration parameters does not generally solve
the problem, because the number of occurrences of deposit() for
the general accounts in a thread before the occurrence of
deposit() for the savings account in the same thread cannot be
precisely known in advance. (In addition, we followed Bond et al.
[2] to introduce randomness to LITERACE. We find that the prob-
ability of sampling problematic accesses can be roughly 40%.)

For the purpose of illustration, we also set PACER [2] to sample
the whole method in sampling periods and none of its content in
non-sampling periods. Column 4 shows the sampling result of
PACER (as indicated by hollow dots “○”) for a target sampling rate
of 40%. Because PACER extends its sampling period to include the
first read access and the first write access on each memory location
in subsequent non-sampling periods if the location has been
sampled in a previous sampling period, it detects the data race in
Figure 2 as long as the method a[8].creditInterest() is in a
sampling period. The probability of sampling one method is 0.4.
Hence, the probability of detecting the data race is 40% × 100% +

60% × 40% = 64%.
Unlike LITERACE and PACER, our CARISMA approach is

context-sensitive and driven by a sequence of execution trials to
achieve effective sampling across these trials. We define the
context of a memory location x as a triple threadType, dataType,
allocSite, referring, respectively, to the type of the thread that
allocates x, the data type of x, and the call site at which x is
allocated. For simplicity, we use the corresponding statement
number for allocSite. Hence, in the motivating example, two
contexts for the two respective types of accounts are C1 = Thd-M,
CLS-A, Stm-1 for general accounts and C2 = Thd-M, CLS-A,
Stm-2 for savings accounts, where Thd-M is the type of the thread
that executes method testcase() in Figure 2.

CARISMA collects the sampling statistics of each context in the
course of each execution. Between the m-th and the (m+1)-th trials,
CARISMA carries forward the accumulated statistics in the first m
execution trials to the (m+1)-th trial. It re-estimates the concentra-
tions of entities (at memory location level or memory access level)
under each context, re-estimates a budget (i.e., the total sampling
quotas) available to the (m+1)-th trial, and re-distributes the
estimated sampling quotas among different contexts for the (m+1)-
th trial based on the target sampling rate.

Suppose the following four conditions hold. (i) The target
sampling rate for CARISMA is also set to 40%. (ii) The budget for
the (m+1)-th trial is estimated to be 4. (iii) The contexts C1 and C2
have been discovered in the first m trials. (iv) Based on the first m
execution trials, C1 and C2 have been estimated to contain, on
average, 8 and 2 memory locations, respectively.

CARISMA balances the sampling budget of 4 memory loca-
tions among C1 and C2 by allocating 2 to each context. Because, on
average, C1 has been estimated to have 8 entities, the effective
sampling rate of every entity grouped under C1 is 25%. For the
same reason, CARISMA allocates a sampling rate of 100% to every
entity grouped under C2. The sampling result of CARISMA for the
(m+1)-th trial is shown in the rightmost column of Table 1. The
race is detected because it has sampled both problematic memory
accesses associated with the savings account.

CARISMA checks both contexts of memory locations more
evenly than LITERACE and PACER. Moreover, for CARISMA,
although the sampling rate for general accounts is lower, the larger
estimated population of this kind of account compensates for the
reduced rate in the long run. Hence, the overall sampling effort on
general accounts will not be significantly compromised.

We further note that if Stm-1 and Stm-2 are replaced by two
calls to the same static method that creates all account objects, C1
and C2 will merge into the same context. By adding the calling
context into the definition of a context for the example, one can
distinguish between them while our basic idea remains unchanged.

3. CARISMA
This section presents our Context-sensitive Approach to Race-
condition sample-Instance Selection for Multithreaded Applica-
tions (CARISMA).

CARISMA operates a sequence of k execution trials with a low
target sampling rate and with every context having a minimal
sampling rate . An execution trial is an attempt to produce an
execution trace. For every execution trial, CARISMA calls the
program under test (P) with the same input.

CARISMA consists of two phases. Phase 1 carries forward the
statistics collected from the first m trials to estimate the sampling
budgets for individual contexts to be used for the (m+1)-th trial.
Phase 2 actively determines whether a memory location related to
a particular context is going to be sampled.

4

Once a memory access has been sampled, CARISMA sends
this memory access to a dynamic data race detector D (such as
FASTTRACK [9]) for race detection. Note that CARISMA also sends
all lock acquisition and release events as well as all other synchro-
nization events to D.

CARISMA exploits the concept of probabilistic sampling: If a
memory location is not sampled on its first occurrence in a trial, it
discards all accesses to the memory location in that trial (to elimi-
nate the analysis conducted by D and reduce the overhead). This
is feasible because we use a context-based sampling strategy.

3.1 Context
A context models the environment that allocates a memory
location x, with the aim of grouping the set of memory locations
that a program may handle in the same way into the same context.
In this way, by sampling some but not all data accesses associated
with a particular context, a technique may sample “similar” data
accesses in a more focused manner.

For example, to allocate a set of “similar” objects, a program-
mer may write an iteration loop or a recursive call in the method
to achieve the goal of creating these objects. On the other hand, in
real-life applications, many memory locations allocated by differ-
ent types of threads are designed with different access purposes
(and different access patterns). For instance, the set of memory
locations may be created using different call stacks even though
they are created by the same method of a Java class. They should
be considered separately in the sampling process.

Hence, we define the context of a memory location x by the
triple threadType, dataType, allocSite as described in Section 2.

In the motivating example, as a thread is an object, CARISMA
uses the class signature of the thread class as threadType .	All
memory locations of both contexts C1 and C2 are allocated by the
same threadType Thd-M and of the same data type Account (CLS-
A). Their allocSites differ by the statements that allocate them:
Stm-1 for general account and Stm-2 for savings account.

Whenever a thread creates a memory location x, CARISMA
assigns a context to x. CARISMA then uses the available contexts
in the rest of the current execution and the subsequent trials.

Note that CARISMA can also use other data structures, such as
calling context [31], instead of simply the allocation statement.

3.2 Phase 1: Budget Estimation and Allocation
This section presents our budget allocation scheme and the
method used by CARISMA to carry forward statistics between
execution trials.

3.2.1 Sampling Budget Estimation
To estimate the sampling budget for the (m+1)-th trial, CARISMA
first estimates the expected number of memory locations allocated
and the expected number of memory locations under each context
in this (m+1)-th trial, which are referred as population size and
context size, respectively. We also refer to the total number of
memory locations to be targeted for sampling as the sampling
budget or simply the budget (denoted by B).

The budget B is determined by multiplying the population size
with the target sampling rate . Because is given, we only need
to estimate the population size to obtain B. The detail is as follows:

Suppose that Cid is a non-empty set of n contexts (denoted by
C1, C2, …, Cn) and we have executed the program m times (where
1 < m ≤ k). Let Pi be the context size of Ci. Let ri,j denote the
sampling rate assigned to Ci in the j-th execution trial (where j <
m) and si,j denote the number of samples under Ci collected from
this j-th execution trial.

We generally approximate each si,j by a random variable with a
binomial distribution denoted by B(Pi, ri,j) and with an expected
value E[si,j] (which is the mean of the binomial distribution
denoted by ri,jPi [19]). Our estimator for Pi is given by:

i= ∑ ,∑ , (1)

It is an unbiased estimator because:

E = E ∑ ,∑ , = ∑ E ,∑ , = ∑ ,∑ , = (2)

As such, the value of ∑ i gives an estimation of the population
size. We then set = ∙ ∑ , which hat gives an estimate of
the sampling budget for the (m+1)-th execution trial.

3.2.2 Determination of Context Sampling Rate
After estimating the sampling budget B for the (m+1)-th trial,
CARISMA proceeds to distribute B evenly among contexts so that
every context have roughly the same number of expected samples.
Note that in the same trial, all memory locations related to the
same context have the same sampling rate, but those related to dif-
ferent contexts may have different sampling rates.

We use the term context sampling budget, denoted by Bi, to
refer to the sampling budget allocated to context Ci.

CARISMA formulates the sampling budget allocation process
as a single-objective convex optimization problem that minimizes
the variances among Bi for all i, thus: min∑ −

subject to ∈ [i, i]	and ∑ =
(3)

Eqn. (3) is a classical quadratic programming problem [3] with
the constraints that the context sampling budget Bi is in the range [i, i] and the sum of all Bi’s is B. In other words, the budget
Bi should not exceed the corresponding estimated context size i
and should retain a threshold level computed by i. (Other-
wise, a context may be assigned with no budget.) The solution of
Eqn. (3) is given by: = min (max	(, i), i) (4)

where ∈ ℝ and ∑ = .	
We observe that ∑ is a piecewise-linear increasing func-

tion of “ ” with breakpoints i and i, so that the water-
filling algorithm (which runs in O (n lg n) time due to sorting,
where n is the number of contexts) [3] can be used to solve ∑ = for by increasing from min	(i) until ∑ = holds.

As such, CARISMA first computes v and then Bi for each i. To
ease our description in Section 3.3.2, we denote above water-filling
algorithm to compute v by WaterFilling(B, Cid,), where Cid
(as defined in Section 3.2.1) is the set of contexts, in which each
context Ci (for i = 1, 2, ..., n) is associated with a i.

CARISMA then uses = (5)

to compute each ri for context Ci to be used in the next execution
trial. For ease of presentation, we refer to ri as the context sampling
rate for Ci.

5

For any context Ci that has no sample collected yet (which also
applies to the very first execution of any context), CARISMA
simply lets ri be the given target sampling rate 	 .

3.2.3 Carrying Forward the Statistics
As presented in the last two subsections, CARISMA has computed
the context sampling rate for each context (and uses as default
for contexts with no information collected yet). In this subsection,
we present how CARISMA carries forward the statistics between
consecutive execution trials.

GlobalInit()

GLOBALSTATE

DYNAMICSTATE

DynamicInit() Sample() GlobalUpdate()
i > k

initialize read update

initialize update read

i ≤ k

Figure 3. State maintenance of CARISMA in Phase 1

Figure 3 depicts how CARISMA maintains its states. It first
initializes its global states (GLOBALSTATE) by calling GlobalInit().
GLOBALSTATE is the data structure that keeps the sampling
statistics to be carried forward between execution trials, while
DYNAMICSTATE is the data structure that keeps the statistics for the
current execution. Right before each execution trial on the program
under test, CARISMA calls DynamicInit() to initialize (i.e., reset)
its variable. Table 2 shows the definitions of variables for the data
structures. The column “Initial Value” shows how each variable is
initialized by GlobalInit() and DynamicInit().

Then, CARISMA proceeds to Phase 2, as shown in Figure 3. In
the course of the execution of the trial, CARISMA calls Sample()
to collect the statistics and updates DYNAMICSTATE dynamically.
After executing the program for the trial, CARISMA updates
GLOBALSTATE based on the original values of GLOBALSTATE and
the DYNAMICSTATE via the function GlobalUpdate(). If the num-
ber of execution trials is still less than k, CARISMA will start the
next one.

For ease of reference, we use the notation GLOBALSTATE.x and
DYNAMICSTATE.y to refer to the variables of GLOBALSTATE and
DYNAMICSTATE, respectively. For instance, the variable Cid of

GLOBALSTATE in Table 2 is denoted by GLOBALSTATE.Cid.
In the next subsection, we will present the procedure of

GlobalUpdate() of CARISMA after presenting the procedure
Sample() first, because the strategy used in GlobalUpdate()
depends on the strategy applied in Sample().

3.3 Phase 2: Execution Monitoring

3.3.1 Overview
In Phase 2, the procedure Sample() of CARISMA monitors the
course of program executions. It forwards all sampled events,
synchronization events, and thread management events to the
associated race detector.

As we have presented in Section 3.1, whenever a memory
location x is created, CARISMA checks whether its context Ci
exists in GLOBALSTATE, and if not, it creates a new context for x.
Then, when an access to memory location x occurs (regardless of
whether it is a read or a write), CARISMA checks whether the
access should be forwarded to the race detector D according to the
context sampling rate ri associated with context Ci. If this access
is decided to be sampled, CARISMA makes such forwarding. Also,
for every write access to memory location x, CARISMA updates
its DYNAMICSTATE to keep track of the statistics of context Ci
needed for future execution trials, in which CARISMA applies the
budget estimation for Phase 1 (see Section 3.2) that estimates both
the population size and the context sizes.

The following subsection presents three sampling strategies of
CARISMA. Their descriptions in algorithmic format will be pub-
lished in a separate report.

3.3.2 Strategies
CARISMA can be configured to use a family of strategies. Three
of them are Coarse Location Sampler (CLS), Fine Location
Sampler (FLS), and Adaptive Access Sampler (AAS). They differ
mainly in terms of the context granularity. Choosing a strategy
affects not only this phase but also Phase 1 because they affect
how CARISMA estimates the context sizes.

We first use an example to show the difference in sampling
granularity among the three strategies: Suppose that (1) is
0.3, (2) the context sizes for a given context are 4 memory loca-
tions for CLS, and 12 write operations for both FLS and AAS,
and (3) the sampling budgets for the context under the CLS, FLS,

Table 2. GLOBALSTATE and DYNAMICSTATE used by CLS, FLS and AAS ℕ denotes the set of natural numbers including zero. ℕ denotes the set of natural numbers excluding zero. bool = {false, true} is the
set of Boolean values. Instr0 is an integer constant that indicates the length of the sampling periods for memory accesses.

 Variable Type Initial Value Description CLS FLSAAS

G
LO

B
A

LS
TA

TE

Cid set of contexts ∅ Records of all contexts occurring in all prior executions.
N ℕ 1 Identity of the execution (i.e., the index of the current trial).

R Cid → [0, 1] c.
Context sampling rate ri for the context Ci in a particular execution.
We simply refer to R(i) as ri.

Rsum Cid → ℝ c.0
Mean value of the context sampling rates in all prior executions for the
same context.

Ssum Cid → ℕ c.0
Accumulated number of samples obtained for the same context in all
prior executions.

Chk0 Cid → ℕ c.0 Length of non-sampling period of memory accesses for each context.

D
Y

N
A

M
IC

 S
TA

TE

F Mem → bool x.false Record of whether the memory location has been sampled.
S Cid → ℕ c.0 Number of samples obtained in the current execution for each context.
C Mem → Cid x.null Map from a memory location to a context.

Chk Mem → ℕ x.0 Count of the length of non-sampling periods of memory accesses.
Instr Mem → ℕ x.Instr0 Count of the length of burst sampling periods of memory accesses.

6

and AAS strategies are 1 location, 3 accesses, and 3 accesses,
respectively. According to Eqn. (5), their context sampling rates
are 0.25, 0.25, and 0.25, respectively. Because 0.25 < , both
CLS and FLS set the context sampling rate to be ; whereas
AAS sets the context sampling rate back to 0.3 at the memory
location level and activates sampling at the memory access level
with a rate of 0.833 (= 0.25 ÷ 0.3). Table 3 summarizes the sam-
pling parameters computed by CARISMA in Phase 1 and Phase
2. The details of each strategy are discussed in the following
paragraphs.

Table 3. Comparison of three stratgeis of CARISMA: CLS,
FLS and AAS. We assume = 0.3 and there are three

memory accesses to each memory location.

Estimation CLS FLS AAS

P
ha

se
 1

 Context size
4 memory
locations

12 write
accesses

12 write
accesses

Context sampling budget 1 location 3 accesses 3 accesses

Computed sampling rate 25% 25% 25%

P
ha

se
 2

 Context sampling rate
(memory location level)

30% 30% 30%

Context sampling rate
(memory access level)

N/A N/A 83%

Effective sampling rate 30% 30% 25%

Coarse Location Sampler (CLS). The CLS strategy estimates
the context size and monitors memory accesses at the memory
location level for both phases. The motivating example in Section
2 illustrates this strategy. CLS works as follows:

When a memory location x is created in the course of an
execution, CLS creates a context Ci for it. It adds this context to
GLOBALSTATE.Cid if Ci does not exist in the set Cid.

CLS exploits the probabilistic sampling to conserve memory
consumption: CLS generates a random number α in the range of
[0, 1]. Because each context is associated with a context sampling
rate ri, CLS checks whether the condition ri > α holds. If so, it
sets DYNAMICSTATE.F(x) to true and increments
DYNAMICSTATE.S(Ci) by 1, indicating that one more location,
which is location x, is sampled for the current trial. If the
condition ri > α does not hold, CLS sets DYNAMICSTATE.F(x) to
false, indicating that location x will not be sampled for the current
trial.

The key design in the above procedure is that, rather than
computing whether each particular write access and each
particular read access should be sampled probabilistically, CLS
simplifies the decision procedure by probabilistically determining
whether all memory accesses of the same location should be
sampled.

Hence, when a write access or a read access event in the
course of the current execution is monitored, CLS simply checks
whether DYNAMICSTATE.F(x) has been set to true. If so, CLS
forwards the access event to the race detector D; otherwise, it
simply skips the event.

We have explained in Section 3.2.3 that the procedure of
GlobalUpdate() depends on the strategies used in Sample(). For
CLS, GlobalUpdate() works as follows:

We recall from the above paragraphs of CLS that
DYNAMICSTATE.F() and DYNAMIC-STATE.S() have maintained
the list of sampled memory locations at the end of an execution
trial. In GlobalUpdate(), for each context Ci, CLS first incre-
ments GLOBALSTATE.Rsum(Ci) by ri and GLOBALSTATE.Ssum(Ci) by

DYNAMICSTATE.S(Ci). With these two values, by Eqn. (1), CLS
computes = GLOBALSTATE.Ssum(Ci) ÷ GLOBALSTATE.Rsum(Ci).
Then, CSL computes a new budget B by Eqn. (2), v by
WaterFilling(B, Cid,), and a new context sampling rate ri by
Eqn. (5) for each context Ci. It finally adds 1 to GLOBALSTATE.N
to indicate that Phase 1 of the next trial is ready to start.

We have explained above how CLS handles memory location
creation as well as memory read and write access events, and how
it carries forward the information between two consecutive execu-
tions. We now present the second sampling strategy of CARISMA.

Fine Location Sampler (FLS). The FLS strategy is the same
as the CLS strategy except that it estimates the context size at the
memory access level (in Phase 1) but performs sampling at the
memory location level (in Phase 2). Because a memory location
may have multiple accesses, FLS is finer in granularity than CLS.
For brevity, we mainly present the similarities and differences
between CLS and FLS.

Like CLS, at the time that memory location x is created in the
course of an execution, FLS creates a context Ci for x and also
checks whether the condition ri > α holds. If so, FLS sets
DYNAMICSTATE.F(x) to true. However, FLS does not change
DYNAMICSTATE.S(Ci) as what CLS does; rather, FLS associates x
with context Ci by assigning Ci to DYNAMICSTATE.C(x). If the
condition does not hold, FLS works in the same way as CLS.

When a write access or a read access event on a memory
location x is monitored in the course of the same execution, FLS
works in the same way as CLS, except that if FLS forwards a
write access of x to the race detector D, FLS also increments
DYNAMICSTATE.S(Ci) by 1, where Ci is the context kept at
DYNAMICSTATE.C(x). The GlobalUpdate() of FLS is the same as
that of CLS.

We note that DYNAMICSTATE.S(Ci) of FLS is incremented at
the access level and restricted to count the number of write
accesses forwarded to the race detector. This is motivated by the
following two reasons: (1) Each data race must involve at least
one write access, and may not involve any read access; and (2) the
authors of [9] reported that write accesses only take up a small
proportion of all monitored operations (which is 14.5% in their
experiment), whereas read accesses take up a larger ratio (82.3%
in their experiment). Hence, recording write accesses only can
potentially alleviate CARISMA’s overhead.

Adaptive Access Sampler (AAS). The AAS strategy targets to
both estimate the context size and do sampling at the memory
access level. Its sampling strategy is more complex due to
sampling at the memory access level. AAS applies the burst-
sampling strategy, and following [13], it uses four parameters:
DYNAMICSTATE.Skip(x), DYNAMICSTATE.Smpl(x), GLOBALSTATE.
Skip0(Ci), and GLOBALSTATE.Smpl0. (We drop their prefixes in
following paragraphs to save page space.) We note that the first
two parameters are at the location level, the third is at the context
level, and the fourth is a constant.

When a memory location x is created in the course of an
execution, AAS behaves in the same way as FLS, except that if
AAS forwards the creation event to the race detector D, AAS
additionally computes Skip(x) = ⌊ rand() × (Skip0(c) + 1)	⌋, where
rand() generates a random number in the range of [0, 1]. We use
this variable Skip(x) to decide on the time to activate sampling at
the access level for the same location x. We choose the activation
condition Skip(x) = 0, and before this condition is reached, each
memory access to x is skipped, as explained as follows:

7

When a read access event on a memory location x is monitored
in the course of the current execution, AAS forwards the event to
the race detector D if both DYNAMICSTATE.F(x) is true and Skip(x)
= 0; otherwise, it skips the event.

For a write access event of x, there are three cases to consider:
(a) If DYNAMICSTATE.F(x) is false, AAS skips the event. (b) If the
event is not skipped by the first case and Skip(x) > 0, AAS
decrements Skip(x) by 1, and skips the event. (c) If the event is
still not skipped by the above two cases, AAS works identically to
FLS to forward the write access of x to the race detector D,
increments DYNAMICSTATE.S(Ci) by 1, where Ci is the context
kept at DYNAMICSTATE.C(x), and decrements Smpl(x) by 1. If this
updated Smpl(x) is 0, AAS resets Skip(x) to Skip0(Ci) and Smpl(x)
to Smpl0.

In essence, the AAS strategy samples a location if Skip(x) = 0.
The number of samples under the condition Skip(x) = 0 (which
depends on the sampling period for the location) is controlled by
Smpl(x). This sampling period of consecutive accesses is further
controlled by the two parameters Skip0(Ci) and Smpl0.

GlobalUpdate() of AAS is the same as that of FLS except
that it computes v and ri by substituting by 0 in Eqn. (4).
Moreover, AAS computes Skip0(Ci) for each context Ci as follows:
If ri ≥ , AAS sets Skip0 (Ci) = 0 so that AAS can sample all
the accesses of a location at this rate because the context is
assigned with a sampling rate larger than . If ri < , AAS
first sets ri back to	 ; then, it computes Smpl0 × (/ri − 1)
and assigns the computed value to Skip0 (Ci).

In brief, if the computed sampling rate for the context is too
small, AAS sets to sample a portion of the memory accesses of
the memory locations whose sampling rates are kept at . The
purpose of such assignment is to ensure an adequate number of
memory locations to be sampled. Following [13], we set the
Smpl0 to be 10 in our experiments.

4. EXPERIMENTATION

4.1 Implementation
CARISMA was implemented as a tool on top of the ROADRUNNER
platform [10], a published Java instrumentation framework. We
enhanced this instrumentation framework by further observing the
instantiation of objects (as required for the sampling strategies).
When an object is instantiated, CARISMA records the type of the
current thread and the relevant statement. (We use the statement
that initiates the object as the allocSite of the context.) CARISMA
uses the type of the enclosing object class together with the name
of the field to represent the data type of the field. When an object
field is accessed for the first time, CARISMA computes the
context from its type, the thread, and the statement recorded in its
enclosing object, and stores the context as a 64-bit integer in the
field’s ShadowVar [10]. For static fields, we use the type of the
thread that executes the static initializer together with the data
types of the fields as their context and ignore the allocation
statement because it is not specified in the source code.

In our implementation, we avoided using hash tables and stored
the context information directly in the objects themselves. Mean-
while, we avoided using thread-shared data structures and utilities
such as random number generators, and made them thread-local so
that there was no need to synchronize them.

4.2 Evaluation Settings
This section presents the evaluation settings for CARISMA.

Configuration. We used a Dell PowerEdge 1950 server
running on Solaris UNIX to conduct the experiment. The server
had 2 Xeon 5355 (2.66 GHz, 4-core) processors with 8 GB
memory.

Benchmarks. We used nine popular Java benchmarks in our
experiment, as shown Table 4. Each program has at least one data
race detectable by FASTTRACK [9][10] in 100 executions. They
include raytracer, a ray-tracing program [16]; tsp, a traveling
salesman problem solver [9]; mtrt, another ray-tracing program
from the SPEC JVM98 benchmarks suite [32]; jbb, the SPEC
JBB2000 business object simulator [32]; hedc, a web crawler from
ETH [9]; weblech, another open-sourced web crawler [29];
cache4j, an open-source tool for caching java objects [29]; xalan,
an XML transformer; and hsqldb, a relational database engine from
Dacapo benchmarks [6]. (We also tried to use eclipse but it could
not work correctly with ROADRUNNER, with or without CARISMA
on our server.) We used the test harnesses provided by the
benchmarks. We configured all benchmarks to run with eight
threads, except cache4j, xalan, and hsqldb for which the numbers
of threads were not configurable.

Table 4. Descriptive statistics of benchmarks

Name
Size

(LOC)
of

threads
of

locations
of

accesses
of

races
of

contexts
mtrt 3,755 8 23 M 152 M 1 474
raytracer 1,532 8 224 M 9,741 M 1 193
tsp 720 8 180 k 120 M 1 40
hedc 7,817 8 17 k 79 k 4 145
jbb 29,058 11 70 M 305 M 2 1,652
weblech 1,952 8 0.6 k 6 k 2 127
cache4j 3,930 2 46 k 711 k 2 230
xalan 345,088 9 22 M 105 M 19 2,242
hsqldb 253,044 81 13 M 302 M 18 1,288

Table 4 presents the statistics of the benchmarks. The data
shown in columns 3−5 were obtained from the original
ROADRUNNER platform [10] averaged over 100 executions. (We
followed the execution times reported in [28] for computationally
intensive programs like mtrt and raytracer.) Column 3 shows the
maximum number of live threads at any time in our experiment.
The column “# of locations” refers to the number of memory slots
(one slot from each object field) in the heap used by a program that
ROADRUNNER reported. In Java, a memory slot stores the value of
a primitive data type (such as int, float, and double) or an
object reference. Column 6 shows the number of distinct data races
that were reported by the FASTTRACK tool in the experiment.

Techniques. We evaluated the three strategies (CLS, FLS, and
AAS) of CARISMA and compared them with PACER [2] (denoted
by PCR), which is the best state-of-the-art sampling technique for
data race detection. We configured CARISMA to use FASTTRACK,
shipped with ROADRUNNER, as the associated race detector.

We implemented PACER on top of ROADRUNNER by adding the
sampling infrastructure into FASTTRACK and modifying the vector
operations [2] using the state-of-the-art epoch approach proposed
by FASTTRACK. Because ROADRUNNER did not control garbage
collection, we used a timer and synchronizations to switch between
sampling and non-sampling periods. When the signal from timer
arrives, a global flag fG was set to indicate that a sampling decision
was going to be made. Our version of PACER checked fG every time
before it processed the critical operations. If fG was not set, it
proceeded with the processing and set a thread-local flag ft, which
was unset when the processing was done; otherwise, it waited until

8

fG was unset. On the other hand, after setting fG, the callback
procedure would wait until the ft flags of all threads were unset.

Executions. The range of sampling rates we used in our
experiments is [0.0001, 1], and we set the minimum sampling rate
rmin= 0.00001 to make sure that the sample budget should cover at
least 0.001% of the context population. Strictly following the
experimental setup presented in [2], we determine the number of
executions by making the probability of detecting a race greater
than 0.95 for a given sampling rate, and limit the number of execu-
tions to be between 50 and 500. The number of execution is given
by the formula:

 = min(max(log 0.05 , 50), 500)
Table 5 shows the mean effective sampling rates (plus or minus
one standard deviation) realized by CARISMA, which are close to
the specified target sampling rate . We observe that, overall
speaking, the sampling rates for benchmarks with more memory
locations and accesses tend to be closer to and vary less.

4.3 Effectiveness of Data Race Detection
This section evaluates the effectiveness of CARISMA.

CARISMA works over a sequence of execution trials. Figure
4 shows the mean detection rates (over 100 repetitions for each of
the first 40 trials) achieved by both AAS and PACER on xalan (the
largest subject in the benchmark) at the target sampling rate of
0.01. The x-axis represents the index of the execution (starting
from zero) and the y-axis represents the average detection rate for
a given execution indexed by the x-axis. (It is not the aggregate
probability for the previous executions). In the first few trials,
AAS is less effective than PACER, but the mean effectiveness of
AAS increases over execution trials, and finally reaches a level
that is much higher than that of PACER.

Figure 5 shows a summary of the detection rates over all bench-
marks and Figure 6 shows the mean detection rates of PACER and
each strategy of CARISMA on all benchmarks. In each plot, the x-
axis is the target sampling rate and the y-axis is the race detection
effectiveness. Each point is the unweighted average over all races.
We adopt from [10] the definition of detection rate of a
strategy/technique as the ratio of (1) the mean number of detected
races per execution at target sampling rate to (2) the mean
number of races detected with = 100%.Among our three
strategies, both AAS and FLS achieve much higher detections rates
than that of CLS, and the detection rate of AAS is slightly higher
than that of FLS on all benchmarks. Both AAS and FLS use the
memory access as the granularity for the estimation of statistics,
whereas CLS uses the memory location as the granularity. We
observe that a finer granularity tends to characterize the differences
among contexts more effectively.

In six out of all benchmarks, CARISMA can detect more than
10% data races using a target sampling rate of 0.01%, except for
hedc, weblech and cache4j, which are smaller in scale than other
benchmarks in terms of the number of memory locations and the
number of accesses in the course of an execution. We have
investigated the rationale. For weblech, the detection rate of either
CLS or FLS drops quickly as the sampling rate decreases, because
there are so few memory locations to be sampled; and hence the
expected numbers of memory locations sampled in some contexts
were less than one. AAS adaptively samples memory accesses and
its line for weblech has a gentler slope than that of CLS or FLS.
Similar findings are observed on hedc and cache4j.

0 4 8 12 16 20 24 28 32 36 40

1%

10%

100%

Execution Index

D
et

ec
ti

on
R

at
e

AAS

PCR

Figure 4. Change of detection rates over first 40 executions of

xalan at =1%.

0.01% 0.1% 1% 10% 100%
0

1%

10%

100%

Target Sampling Rate

D
et

ec
ti

on
 R

at
e

AAS

FLS

CLS

PCR

Figure 5. Summary of detection rates.

We find that PACER’s mean detection rate of is only slightly
better than constant with respect to . This is because racy
memory locations are usually accessed multiple times, and if any
one of them is sampled, the race can be detected by PACER. On
average, CARISMA shows a significantly higher detection rate
than PACER.

Table 5. Mean effective sampling rates (± one standard deviation) as the percentage of memory accesses sampled

 AAS FLS CLS
 0.01% 0.1% 1% 10% 0.01% 0.1% 1% 10% 0.01% 0.1% 1% 10%

mtrt 0.009±0.003 0.10±0.01 1.1±0.2 10.2±1.1 0.011±0.004 0.09±0.03 1.0±0.3 10.0±1.1 0.009±0.002 0.09±0.04 0.8±0.2 10.9±1.0
raytracer 0.011±0.003 0.09±0.02 1.0±0.2 10.6±0.7 0.009±0.011 0.10±0.02 0.8±0.2 10.0±0.8 0.010±0.003 0.10±0.02 1.0±0.0 10.1±0.7
tsp 0.013±0.005 0.11±0.02 0.9±0.2 9.4±1.6 0.009±0.002 0.11±0.02 1.1±0.2 9.0±1.0 0.009±0.006 0.09±0.05 0.9±0.1 10.5±1.5
hedc 0.011±0.006 0.09±0.05 0.8±0.4 11.3±1.5 0.007±0.008 0.05±0.12 0.9±0.2 9.5±2.4 0.011±0.007 0.11±0.11 0.7±0.3 12.1±2.2
jbb 0.009±0.004 0.10±0.03 1.0±0.3 10.5±0.7 0.011±0.007 0.11±0.07 1.5±0.6 10.0±1.5 0.014±0.004 0.10±0.02 1.3±0.4 10.5±1.8
weblech 0.006±0.007 0.12±0.07 0.7±0.5 8.1±2.4 0.007±0.012 0.11±0.11 0.9±0.7 11.0±1.5 0.010±0.007 0.13±0.06 0.8±0.2 10.0±1.6
cache4j 0.012±0.004 0. 08±0.03 0.9±0.2 9.6±1.2 0.012±0.004 0. 08±0.02 1.2±0.2 9.5±1.0 0.007±0.006 0.13±0.03 0.9±0.2 10.0±1.0
xalan 0.010±0.003 0.12±0.04 1.0±0.3 11.9±0.6 0.013±0.003 0.09±0.06 1.2±0.2 9.4±1.2 0.011±0.005 0.09±0.03 0.9±0.1 10.0±1.4
hsqldb 0.011±0.004 0.09±0.03 1.1±0.4 9.2±1.3 0.006±0.004 0.10±0.04 1.4±0.4 10.2±1.5 0.010±0.003 0.11±0.04 1.0±0.4 9.8±1.2
Average: 0.010±0.004 0.10±0.03 0.9±0.3 10.1±1.1 0.009±0.006 0.09±0.05 1.1±0.3 9.8±1.3 0.010±0.005 0.10±0.04 0.9±0.2 10.4±1.4

9

mtrt raytracer tsp hedc jbb weblech cache4j xalan hsqldb

0.01% 0.1% 1% 10% 100%
0

1%

10%

100%

Target Sampling Rate

D
et

ec
ti

on
 R

at
e

Detection rate of CLS

0.01% 0.1% 1% 10% 100%
0

1%

10%

100%

Target Sampling Rate

D
et

ec
ti

on
 R

at
e

Detection rate of FLS

0.01% 0.1% 1% 10% 100%
0

1%

10%

100%

Target Sampling Rate

D
et

ec
ti

on
 R

at
e

Detection rate of AAS

0.01% 0.1% 1% 10% 100%
0

1%

10%

100%

Target Sampling Rate

D
et

ec
ti

on
 R

at
e

Detection rate of PACER

Figure 6. Detection rates of various techniques.

mtrt raytracer tsp hedc jbb weblech cache4j xalan hsqldb

0% 20% 40% 60% 80% 100%

1

5

10

15

20

Target Sampling Rate

S
lo

w
d

ow
n

 F
ac

to
r

Figure 7. Slowdown vs. sampling rates for CLS.

0% 20% 40% 60% 80% 100%

1

5

10

15

20

Target Sampling Rate

Sl
ow

d
ow

n
 F

ac
to

r

Figure 8. Slowdown vs. sampling rates for FLS.

0% 20% 40% 60% 80% 100%

1

5

10

15

20

Target Sampling Rate

S
lo

w
d

ow
n

 F
ac

to
r

Figure 9. Slowdown vs. sampling rates for AAS.

at =0-100%

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

Fraction of execution

M
em

or
y

in
 u

se
 (

M
B

)

r = 100%

RR+FT

r = 20%

r = 10%
r = 1%
RR
Java

Figure 10. Memory used over one execution of xalan.

10

4.4 Time and Space Overheads of CARISMA
This section evaluates the time and space overheads of CARISMA.

Time overhead. Figures 7 to 9 show the slowdown incurred by the
three strategies of CARISMA on each benchmark for	 ranging
over [0, 100%]. All figures show that the slowdowns incurred by
CARISMA are roughly linear with respect to , although the slow-
down factors on different benchmarks vary a lot. We note that the
slowdown factor includes the execution time of the program, the
overhead incurred by the ROADRUNNER platform, the overhead
incurred by additional monitoring of memory allocations, the
overhead incurred by the sampling algorithms, and the overhead of
FASTTRACK. Working at a target sampling rate of 1%, CARISMA
incurs slowdowns by a factor of 5x on five benchmarks (mtrt,
raytracer, tsp, xalan, and jbb), which are either computation-bound
or relatively large in sizes, and can detect races with a relatively
high probability (60%). If working at a sampling rate of 100%,
CARISMA is functionally equivalent to FASTTRACK [9], which has
no sampling effort. CARISMA slows down the five programs by a
factor of 13.0x, compared with 8.5x by FASTTRACK. For the other
programs, CARISMA incurs reasonable overheads.

Note that the mean slowdown by the original ROADRUNNER
platform on compute-bound programs is 4.1x. As we have
implemented CARISMA on top of ROADRUNNER, there are many
internal operations and events in ROADRUNNER that cannot be
eliminated by sampling. For this reason, we believe that imple-
menting CARISMA within a Java virtual machine can improve the
performance further. In fact, at a sampling rate of 1%, CARISMA
can reduce 80% of the overhead incurred (from 8.5x – 4.1x = 4.4x
to 5x – 4.1x = 0.9x) by the FASTTRACK tool, which is significant.

Space overhead. By design, AAS consumes the most memory
among the three strategies. Figure 10 shows the memory space
overhead incurred by AAS on xalan. (Due to page limit, we do not
present the results on other smaller programs or the results of CLS
and FLS.) The x-axis shows the time fraction of one execution (as
we normalize the execution time to 1). For each target sampling
rate shown, we take the mean overhead over all executions. The
line Java is the memory used by executing the program directly.
The line RR is the memory used by executing the program with the
original ROADRUNNER platform. The line RR+FT is the memory
used by executing the program with FASTTRACK on top of the
original ROADRUNNER. At a sampling rate of 100%, AAS uses
more memory than FASTTRACK because AAS collects dynamic
information during an execution. At a sampling rate of 20%, AAS
uses significantly less memory than FASTTRACK. The result shows
that CARISMA can scale well with the sampling rate in terms of
memory space used, and with a low sampling rate of = 1%, its
space overhead appears to be very low.

4.5 Threats to validity
The threats to validity of the experiment can be further mitigated
by using more benchmarks with and without races, and by evaluat-
ing more aspects of the techniques, such as the use of different
numbers of threads per run, different types of contexts, and differ-
ent notions of correctness criteria (e.g., detection rate of atomicity
violations). We have referred to evaluation methodologies reported
in previous work and assured the quality of our evaluations. We
have measured the mean performance of different techniques in
terms of effectiveness as well as time and memory consumption.
Measuring the results using other metrics such as variances in
performance may produce different comparison results.

5. RELATED WORK
This section relates our work to that of others.

5.1 Sampling for Bug Detection and Testing
The work most relevant to CARISMA is LITERACE [23] and
PACER [2]. LITERACE [23] uses a code-partitioning strategy and
adaptive burst sampling to reduce sampling overheads. Bond et al.
[2] have compared LITERACE and PACER, and states that PACER

can be better than LITERACE. This paper has extensively
compared CARISMA with PACER. Cooperative Crug Isolation
(CCI) [18] samples inserted predicates according to their
characteristics to infer the locations of concurrency bugs. Unlike
CARISMA, these three techniques used neither cross-execution
budget estimation nor inter-context budget balancing.

RACEZ [30] uses a hardware performance monitor to sample
memory accesses and an (imprecise) offline lockset-based
analyzer to detect races from the collected data. Although the
overhead can be lower, hardware support cannot completely
replace software tools for two reasons: (a) hardware is less
flexible and more difficult to be adapted and applied to other
situations, and (b) hardware and software techniques are generally
complementary. The notion of even spreading of test efforts is
also explored in adaptive random testing. See, for example, Jiang
et al. [17].

5.2 Context Sensitivity
Context is a broad concept. We first review related work on its use
for concurrency bug detection. Communication contexts [22] are
proposed to record the ordering of communication events (memory
reads and writes), so that communication edges can be effectively
distinguished from one another. BREADCRUMBS [1] uses
probabilistic calling contexts, which are encoded to unique
identifiers and tagged to dynamic events. Such an identifier can be
decoded offline to give the detailed circumstances of the events in
order to facilitate debugging. MAGICFUZZER [5] uses a lightweight
indexing algorithm to compute object abstraction to confirm
deadlocks. CARISMA uses contexts to partition memory creation
environments. Smaragdakis et al. [31] discussed the use of calling
context for point-to analysis in object-oriented languages. We note
that our definition of call context is unrestricted to any specific
type, and calling context can also be use with CARISMA.

5.3 Data Race Detection
CARISMA is designed to work with dynamic data race detection
tools, most of which are based on locksets [27], happens-before
relations [20][24], or their hybrids. Lockset-based techniques
[7][8][27] verify whether program executions follow locking
disciplines [27]. They are fast and interleaving-insensitive, but
imprecise. Happens-before based detectors [4][9][26][29] can
precisely detect data races, and FASTTRACK [9] has shown a
promise that its performance can match that of lockset-based
techniques. LOFT [4] optimizes the vector clock operations on
synchronization events. Hybrid techniques such as GOLDILOCKS [7]
have been proposed, which often use locksets to reduce overheads
and happens-before-based tracking to achieve precision.
CARISMA has been tested to work well with FASTTRACK.
CARISMA requires no technique-specific information. We expect
that with slight adaptations, CARISMA can also work well with
other dynamic race detection tools like GOLDILOCKS [7].

11

6. CONCLUSION
Data race is a common problem in multithreaded programs. Each
data race is related to one memory location. In this paper, we have
proposed CARISMA, a novel context-sensitive sampling approach
to dynamic bug detection. CARISMA innovatively estimates and
balances the sample budgets among contextual groups over a
sequence of execution trials. It can be configured at various
granularity levels. The experimental results show that CARISMA
finds data races with high probability and low overheads. We also
foresee that CARISMA has the potential to support program
testing in general and integrate with other concurrency bug
analysis tools. In the future, we will generalize the approach to
deal with different types of bugs (including assertion violation,
atomicity violations, and atomic-set serializability violations) and
will develop new methods to further refine the approach.

7. ACKNOWLEDGEMENTS
This work is supported in part by the General Research
Fund of the Research Grants Council of Hong Kong
(project numbers 111410 and 717811). All correspondence
related to this paper should be addressed to Dr. W. K. Chan.

8. REFERENCES
[1] Bond, M. D., Baker, G. Z., and Guyer, S. Z. 2010. Bread-

crumbs: efficient context sensitivity for dynamic bug detec-
tion analyses. In PLDI 2010, 13–24.

[2] Bond, M. D., Coons, K. E., and McKinley, K. S. 2010.
PACER: proportional detection of data races. In PLDI
2010, 255–268.

[3] Boyd, S. and Vandenberghe, L. 2004. Convex Optimization,
Cambridge University Press.

[4] Cai, Y. and Chan, W. K. 2011. LOFT: redundant synchroni-
zation event removal for data race detection. In ISSRE 2011,
160–169.

[5] Cai, Y. and Chan, W. K. 2012. MagicFuzzer: scalable dead-
lock detection for large-scale applications. In ICSE 2012.

[6] The DaCapo Benchmark Suite. Available at
http://dacapobench.org/.

[7] Elmas, T., Qadeer, S., and Tasiran, S. 2007. Goldilocks: a
race and transaction-aware Java runtime. In PLDI 2007,
245–255.

[8] Engler, D. and Ashcraft, K. 2003. RacerX: effective, static
detection of race conditions and deadlocks. In SOSP 2003,
237–252.

[9] Flanagan, C. and Freund, S. N. 2009. FastTrack: efficient
and precise dynamic race detection. In PLDI 2009, 121–
133.

[10] Flanagan, C. and Freund, S. N. 2010. The RoadRunner
dynamic analysis framework for concurrent programs. In
PASTE 2010, 1–8.

[11] Flanagan, C., Freund, S. N., Lifshin, M., and Qadeer, S.
2008. Types for atomicity: static checking and inference for
Java. ACM TOPLAS 30 (4), 20:1–20:53.

[12] Flanagan, C. and Godefroid, P. 2005. Dynamic partial-order
reduction for model checking software. In POPL 2005,
110–121.

[13] Hauswirth, M. and Chilimbi, T. M. 2004. Low-overhead
memory leak detection using adaptive statistical profiling.
In ASPLOS-XI, 156–164.

[14] Henzinger, T. A., Jhala, R., and Majumdar, R. 2004. Race
checking by context inference. In PLDI 2004, 1–13.

[15] Jannesari, A., Bao, K., Pankratius, V., and Tichy, W. F.
2009. Helgrind+: an efficient dynamic race detector. In
IPDPS 2009, 1–13.

[16] The Java Grande Forum Benchmark Suite. Available at
http://www2.epcc.ed.ac.uk/computing/research_activities/ja
va_grande/index_1.html.

[17] Jiang, B., Zhang, Z., Chan, W. K., and Tse, T. H. 2009.
Adaptive random test case prioritization. In ASE 2009, 233–
244.

[18] Jin, G., Thakur, A., Liblit, B., and Lu, S. 2010. Instrumenta-
tion and sampling strategies for cooperative concurrency
bug isolation. In OOPSLA 2010, 241–255.

[19] Johnson, N. L., Kemp, A. W., and Kotz, S. 2005. Uni-
variate Discrete Distributions, John Wiley.

[20] Lamport, L. 1978. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM 21 (7),
558–565.

[21] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.
A., and Zhou, Y. 2007. MUVI: automatically inferring
multi-variable access correlations and detecting related
semantic and concurrency bugs. In SOSP 2007, 103–116.

[22] Lucia, B. and Ceze, L. 2009. Finding concurrency bugs
with context-aware communication graphs. In MICRO 42,
553–563.

[23] Marino, D., Musuvathi, M., and Narayanasamy, S. 2009.
LiteRace: effective sampling for lightweight data-race
detection. In PLDI 2009, 134–143.

[24] Mattern, F. 1989. Virtual time and global states of distrib-
uted systems. In Proc. International Workshop on Parallel
and Distributed Algorithms, 215–226.

[25] Naik, M., Aiken, A., and Whaley, J. 2006. Effective static
race detection for Java. In PLDI 2006, 308–319.

[26] Pozniansky, E. and Schuster, A. 2003. Efficient on-the-fly
data race detection in multithreaded C++ programs. In
PPoPP 2003, 179–190.

[27] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and
Anderson, T. 1997. Eraser: a dynamic data race detector for
multithreaded programs. ACM TOCS 15 (4), 391–411.

[28] Sen, K. 2007. Effective random testing of concurrent pro-
grams. In ASE 2007, 323–332.

[29] Sen, K. 2008. Race directed random testing of concurrent
programs. In PLDI 2008, 11–21.

[30] Sheng, T., Vachharajani, N., Eranian, S., Hundt, R., Chen,
W., and Zheng, W. 2011. RACEZ: a lightweight and non-
invasive race detection tool for production applications. In
ICSE 2011, 401–410.

[31] Smaragdakis, Y., Bravenboer, M., and Lhoták, O. 2011.
Pick your contexts well: understanding object-sensitivity. In
POPL 2011, 17–30.

[32] SPEC Benchmarks, Standard Performance Evaluation Corp-
oration. Available at http://www.spec.org/.

