
 

© ACM (2012). This is the author’s version of the work. It is posted here 
by permission of ACM for your personal use. Not for redistribution. The 
definitive version is published in Proceedings of the 2012 International 
Symposium on Software Testing and Analysis (ISSTA 2012), ACM, New 
York, NY (2012). 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
ISSTA'12, July 15–20, 2012, Minneapolis, MN, USA. 
Copyright 2012 ACM 978-1-4503-1454-1/12/07... $10.00. 

Postprint of article in Proceedings of the 2012 International Symposium on Software Testing and Analysis 
(ISSTA 2012), ACM, New York, NY (2012) 

CARISMA: a Context-sensitive Approach to Race-condition 
sample-Instance Selection for Multithreaded Applications 

Ke Zhai 
Department of Computer Science 

The University of Hong Kong 
Pokfulam, Hong Kong 

kzhai@cs.hku.hk 

Boni Xu 
Department of Computer Science 

The University of Hong Kong 
Pokfulam, Hong Kong 

bnxu@cs.hku.hk 

W. K. Chan 
Department of Computer Science 

City University of Hong Kong 
Tat Chee Avenue, Hong Kong 

wkchan@cityu.edu.hk 

T. H. Tse 
Department of Computer Science 

The University of Hong Kong 
Pokfulam, Hong Kong 

thtse@cs.hku.hk 

ABSTRACT 
Dynamic race detectors can explore multiple thread schedules of a 
multithreaded program over the same input to detect data races. 
Although existing sampling-based precise race detectors reduce 
overheads effectively so that lightweight precise race detection 
can be performed in testing or post-deployment environments, 
they are ineffective in detecting races if the sampling rates are 
low. This paper presents CARISMA to address this problem. 
CARISMA exploits the insight that along an execution trace, a 
program may potentially handle many accesses to the memory 
locations created at the same site for similar purposes. Iterating 
over multiple execution trials of the same input, CARISMA 
estimates and distributes the sampling budgets among such 
location creation sites, and probabilistically collects a fraction of 
all accesses to the memory locations associated with such sites for 
subsequent race detection. Our experiment shows that, compared 
with PACER on the same platform and at the same sampling rate 
(such as 1%), CARISMA is significantly more effective. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors—Debuggers, run-
time environments; D.2.5 [Software Engineering]: Testing and 
Debugging—Testing tools. 

General Terms 
Reliability, Experimentation, Verification. 

Keywords 
Concurrency, Data Races, Sampling, Bug Detection 

1. INTRODUCTION 
A multithreaded program may produce a large number of thread 
interleaving sequences even for the same input. Various concur-
rency bugs (such as data races and atomicity violations) still exist 
in heavily-tested real-world programs such as Eclipse [2], MySQL 
[21], and Firefox [21]. A (data) race condition [27] refers to 
multiple accesses from different threads to the same memory loca-
tion in an unsynchronized way, and at least one of them is a write. 
Data races may not result in program failures, but their presence 
often indicates other concurrency errors in the same programs 
[2][21][23]. As such, it is essential to detect them. 

During any execution, accesses to a shared memory location 
can be in a race. A data race may only occur in some specific but 
not all thread-scheduled conditions, and the number of threads that 
would trigger such specific conditions is not known in advance. 
This adds further challenges to data race detection. 

In general, static analyses can provide thorough code coverage 
and often result in no false negatives, but they still have limitations 
such as producing false positives and being less scalable than their 
dynamic counterparts in handling large-scale programs [11][25]. 
Manually removing false positives is tedious because developers 
need to examine the code to identify the genuine ones (even though 
they may apply heuristic classification techniques first) [8]. Many 
model checking approaches [12][14] have been proposed, but they 
are still unable to scale well to handle large programs. 

Many dynamic race detectors [5][13][17] are precise by moni-
toring actual program executions and tracking the happen-before 
relations [20] among threads, shared locations, and locks. However, 
they still incur significant overheads [9] and cannot scale up to 
handle large-scale programs that involve many shared locations or 
many accesses to shared locations in their executions [2][26]. 
Depending on the tradeoff between detection effectiveness and 
slowdown overheads in their design, techniques of this kind may 
produce some or no false positives as well as some or no false 
negatives. However, even the most efficient precise data race 
detector still incurs significant overheads (such as 8x slowdown in 
an experiment with FASTTRACK [9] for Java programs). 

A promising approach that explores the above tradeoff is 
sampling. For instance, LITERACE [23] uses a code-partitioning 
strategy that keeps two copies of every function F of a program —
the first one only samples the synchronization events of F, and the 
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second one samples the synchronization as well as the memory 
access events of F. For each function, LITERACE sets up a thread-
local burst-sampling strategy [13] to decide which of the two 
copies should be invoked by the corresponding thread. With such a 
design, for functions that have been relatively more frequently 
invoked by a thread, the memory access events in the function will 
be sampled less often. However, for functions such as one that 
processes a large array of data for example, LITERACE may sample 
excessively. On the other hand, PACER [2] uses a global execution-
time sampling strategy. It divides an execution into a consecutive 
series of sampling and non-sampling periods. During a sampling 
period, all synchronization and memory access events are sampled, 
whereas in a non-sampling period, the first read and the first write 
access events of a shared location are sampled only if the location 
has been sampled in a prior sampling period in the same execution. 
By so doing, PACER can detect races so long as at least one of the 
involved concurrent accesses is in a sampling period. Their empiri-
cal study [2] shows that the technique can significantly reduce the 
slowdown overheads. 

A common limitation of the above techniques is that although 
existing sampling-based precise data race detectors such as PACER 
[2] and LITERACE [23] can effectively reduce overheads so that 
lightweight precise race detection can be performed efficiently in 
testing or post-deployment environments, they are ineffective in 
detecting races when the sampling rates are low. Our insight is that 
along an execution trace, a program may potentially handle numer-
ous accesses to the memory locations created at the same site for 
the same purpose. These race detection techniques have not 
exploited the “similarity” among shared locations (such as manipu-
lating objects in the same class hierarchy in Java, or elements in the 
same array or linked list). Intuitively, they may perform redundant 
memory access sampling, which lowers their chance of detecting 
rare data races. 

In this paper, we present CARISMA, which exploits the above-
mentioned insight. CARISMA works over a sequence of execution 
trials. In the first phase, given a particular sampling rate , 
CARISMA adaptively estimates the sampling budgets for individ-
ual contexts (i.e., memory location creation sites) by carrying 
forward a set of statistics collected from the first m execution 
trials to the (m+1)-th trial so that all particular contexts can be 
evenly sampled as much as possible. In the second phase, 
CARISMA probabilistically determines whether to sample an 
entity in a particular context. In our experiment on a suite of nine 
benchmarks, we find that (1) CARISMA is significantly more 
effective than PACER; (2) CARISMA incurs 80% less runtime 
overhead than FASTTRACK running on the same platform at a 
sampling rate of 1%; and (3) CARISMA retains a detection rate of 
10% at a low sampling rate of 0.01%, which is encouraging. 

This paper makes the following contributions: (a) proposing the 
first budget balancing approach, CARISMA, for memory access 
sampling for data race detection; (b) formulating three levels of 
sampling granularities for concurrency bug detection; and (c) pre-
senting an experiment that validates CARISMA extensively. 

The rest of the paper is organized as follows: Section 2 
introduces a motivating example. Section 3 presents CARISMA. 
Section 4 presents an evaluation of CARISMA. We then review 
related work in Section 5, and conclude the paper in Section 6. 

2. MOTIVATING EXAMPLE 
We motivate our work by an example shown in Figures 1 and 2. 
Figure 1 lists an Account class of a banking system with two 
subtypes: general and savings accounts (created by the methods 
createGeneral() and createSavings(), respectively), which 
are differentiated by the value of isSavings. Both subtypes 

support money deposits, but only savings accounts offer interest. 
The two operations are implemented by the methods deposit() 
and creditInterest(), respectively. To make our presentation 
more concise, we also use the shorthand CLS-A to denote the 
Account class, and Stm-1 and Stm-2 to denote the statements in 
lines 13 and 16 of the code, respectively. 
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public class Account {  // denoted as CLS-A 
   boolean isSavings; 
   double balance = 0.0; 
   Account(boolean b) { isSavings = b; } 
   boolean IsSavings() { return isSavings; } 
   synchronized void deposit(double x) { 
         // denoted by dep() 
      balance += x; 
   } 
   void creditInterest(double r) { 
         // denoted by cre() 
      balance *= (1 + r);  // thread-unsafe 
   } 
   static Account createGeneral() { 
      return new Account(false); 
         // denoted by Stm-1 
   } 
   static Account createSavings() { 
      return new Account(true); 
         // denoted by Stm-2 
   } 
}

Figure 1. Example of a banking system. 
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public class AccountTest { 
   Account[] a = new Account[9]; 
   Thread t1 = new Thread() {  // thread t1 
      public void run() { 
         for (int i = 0; i < 9; i++) 
            a[i].deposit(1.0); 
      } 
   }; 
   Thread t2 = new Thread() {  // thread t2 
      public void run() { 
         for (int i = 0; i < 9; i++) 
            if (a[i].IsSavings()) 
               a[i].creditInterest(0.1); 
      } 
   }; 
   // The thread is denoted by tmain with type Thd-M 
   public void testCase() { 
      for (int i = 0; i < 8; i++) 
         a[i] = Account.createGeneral(); 
      a[8] = Account.createSavings(); 
      t1.start(); t2.start(); 
      t1.join(); t2.join(); 
   } 
} 

Figure 2. A test case of the banking system. 

The keyword “synchronized” is missing from the declaration 
of the method creditInterest(). Figure 2 shows a test case 
that reveals a failure. This test case simulates a real-life situation 
that the number of general accounts is much larger than the number 
of savings accounts. The test case initializes eight general accounts 
(a[0]–a[7]) and one savings account (a[8]). 

After initialization, the test case starts two threads, t1 and t2. 
Thread t1 models daily deposit transactions where deposits are 
made to both types of accounts, and thread t2 models the interest 
payment transactions where only savings accounts receive interests. 
Consider an execution trace for the test case, as illustrated in the 
first two columns of Table 1. The execution sequence of the 
methods of the nine objects is shown from top to bottom. The 
execution first invokes deposit() of a[0]–a[4], then t2 calls 
creditInterest() of a[8], and finally t1 calls deposit() of 
a[5]–a[8]. In the course of the execution, because no lock 
protects any memory access in creditInterest(), the invoca-
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Table 1. Comparison among different sampling techniques 

Sample Execution 
LITERACE PACER CARISMA

Sampled? 
Sampled? 
(Sampling 

Rate) 

Sampled? 
(Sampling 

Rate) 
Thread 
t1 

Thread 
t2 

In 
C1? 

In 
C2? 

dep0()  yes  ● ○ (0.4) ○ (0.25) 
dep1()  yes  ● ○ (0.4) ○ (0.25) 
dep2()  yes   ○ (0.4) ○ (0.25) 
dep3()  yes  ● ○ (0.4) ○ (0.25) 
dep4()  yes   ○ (0.4) ○ (0.25) 

 cre8()  yes ● ○ (0.4) ● 
dep5()  yes   ○ (0.4) ○ (0.25) 
dep6()  yes  ● ○ (0.4) ○ (0.25) 
dep7()  yes   ○ (0.4) ○ (0.25) 
dep8()   yes    ○ (0.64) ● 

Count: 8 2    

Expected No. of 
Accesses Sampled: 5 

4 .24 
(=0.4×9+0.64)

4 
(=2+0.25×8)

Detection Rate: 0% 42.4% 100% 
Notes: 
(1) depi() and crei() refer to a[i].deposit() and 

a[i].creditInterest(), respectively, in Figure 2. 
(2) A filled dot (“●”) refers to a sampling rate of 100%. 
(3) A hollow dot (“○”) refers to sampling with a probability of r indicated 

in the brackets that follow. 
(4) The two shaded method invocations lead to a data race in the 

example. 

tion of creditInterest() by t2 may result in a data race on the 
field a[8].balance with the concurrent invocation of the method 
deposit() on a[8] by t1. 

LITERACE samples either all data accesses in a method instance 
or none of them. It must sample the first creditInterest() 
instance. If it could evenly sample 40% of all deposit() instances, 
it would achieve on average a detection rate of 40%. 

In reality, however, LITERACE uses an adaptive bursty tracing 
strategy proposed in [13] to sample each method executed by the 
same thread. It gradually lowers the probability of sampling the 
same method. For the sake of illustration, in the example, we set 
LITERACE to skip 0, 1, 2, …, subsequent accesses of the method 
after the 1st, 2nd, 3rd,  …, accesses to the same method, 
respectively. Hence, LITERACE samples 4 out of 9 deposit() 
invocations of the execution trace as shown in Table 1. Thus, it 
samples a total of 5 out of 10 accesses. Because a[8].deposit() 
occurs after 8 invocations of the deposit() method in the course 
of the execution, LITERACE fails to detect the race in the example. 

Adjusting its configuration parameters does not generally solve 
the problem, because the number of occurrences of deposit() for 
the general accounts in a thread before the occurrence of 
deposit() for the savings account in the same thread cannot be 
precisely known in advance. (In addition, we followed Bond et al. 
[2] to introduce randomness to LITERACE. We find that the prob-
ability of sampling problematic accesses can be roughly 40%.) 

For the purpose of illustration, we also set PACER [2] to sample 
the whole method in sampling periods and none of its content in 
non-sampling periods. Column 4 shows the sampling result of 
PACER (as indicated by hollow dots “○”) for a target sampling rate 
of 40%. Because PACER extends its sampling period to include the 
first read access and the first write access on each memory location 
in subsequent non-sampling periods if the location has been 
sampled in a previous sampling period, it detects the data race in 
Figure 2 as long as the method a[8].creditInterest() is in a 
sampling period. The probability of sampling one method is 0.4. 
Hence, the probability of detecting the data race is 40% × 100%  + 

60% × 40% = 64%. 
Unlike LITERACE and PACER, our CARISMA approach is 

context-sensitive and driven by a sequence of execution trials to 
achieve effective sampling across these trials. We define the 
context of a memory location x as a triple threadType, dataType, 
allocSite, referring, respectively, to the type of the thread that 
allocates x, the data type of x, and the call site at which x is 
allocated. For simplicity, we use the corresponding statement 
number for allocSite. Hence, in the motivating example, two 
contexts for the two respective types of accounts are C1 = Thd-M, 
CLS-A, Stm-1 for general accounts and C2 = Thd-M, CLS-A, 
Stm-2 for savings accounts, where Thd-M is the type of the thread 
that executes method testcase() in Figure 2. 

CARISMA collects the sampling statistics of each context in the 
course of each execution. Between the m-th and the (m+1)-th trials, 
CARISMA carries forward the accumulated statistics in the first m 
execution trials to the (m+1)-th trial. It re-estimates the concentra-
tions of entities (at memory location level or memory access level) 
under each context, re-estimates a budget (i.e., the total sampling 
quotas) available to the (m+1)-th trial, and re-distributes the 
estimated sampling quotas among different contexts for the (m+1)-
th trial based on the target sampling rate. 

Suppose the following four conditions hold. (i) The target 
sampling rate for CARISMA is also set to 40%. (ii) The budget for 
the (m+1)-th trial is estimated to be 4. (iii) The contexts C1 and C2 
have been discovered in the first m trials. (iv) Based on the first m 
execution trials, C1 and C2 have been estimated to contain, on 
average, 8 and 2 memory locations, respectively. 

CARISMA balances the sampling budget of 4 memory loca-
tions among C1 and C2 by allocating 2 to each context. Because, on 
average, C1 has been estimated to have 8 entities, the effective 
sampling rate of every entity grouped under C1 is 25%. For the 
same reason, CARISMA allocates a sampling rate of 100% to every 
entity grouped under C2. The sampling result of CARISMA for the 
(m+1)-th trial is shown in the rightmost column of Table 1. The 
race is detected because it has sampled both problematic memory 
accesses associated with the savings account. 

CARISMA checks both contexts of memory locations more 
evenly than LITERACE and PACER. Moreover, for CARISMA, 
although the sampling rate for general accounts is lower, the larger 
estimated population of this kind of account compensates for the 
reduced rate in the long run. Hence, the overall sampling effort on 
general accounts will not be significantly compromised. 

We further note that if Stm-1 and Stm-2 are replaced by two 
calls to the same static method that creates all account objects, C1 
and C2 will merge into the same context. By adding the calling 
context into the definition of a context for the example, one can 
distinguish between them while our basic idea remains unchanged. 

3. CARISMA 
This section presents our Context-sensitive Approach to Race-
condition sample-Instance Selection for Multithreaded Applica-
tions (CARISMA). 

CARISMA operates a sequence of k execution trials with a low 
target sampling rate  and with every context having a minimal 
sampling rate . An execution trial is an attempt to produce an 
execution trace. For every execution trial, CARISMA calls the 
program under test (P) with the same input. 

CARISMA consists of two phases. Phase 1 carries forward the 
statistics collected from the first m trials to estimate the sampling 
budgets for individual contexts to be used for the (m+1)-th trial. 
Phase 2 actively determines whether a memory location related to 
a particular context is going to be sampled. 
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Once a memory access has been sampled, CARISMA sends 
this memory access to a dynamic data race detector D (such as 
FASTTRACK [9]) for race detection. Note that CARISMA also sends 
all lock acquisition and release events as well as all other synchro-
nization events to D. 

CARISMA exploits the concept of probabilistic sampling: If a 
memory location is not sampled on its first occurrence in a trial, it 
discards all accesses to the memory location in that trial (to elimi-
nate the analysis conducted by D and reduce the overhead). This 
is feasible because we use a context-based sampling strategy. 

3.1 Context 
A context models the environment that allocates a memory 
location x, with the aim of grouping the set of memory locations 
that a program may handle in the same way into the same context. 
In this way, by sampling some but not all data accesses associated 
with a particular context, a technique may sample “similar” data 
accesses in a more focused manner. 

For example, to allocate a set of “similar” objects, a program-
mer may write an iteration loop or a recursive call in the method 
to achieve the goal of creating these objects. On the other hand, in 
real-life applications, many memory locations allocated by differ-
ent types of threads are designed with different access purposes 
(and different access patterns). For instance, the set of memory 
locations may be created using different call stacks even though 
they are created by the same method of a Java class. They should 
be considered separately in the sampling process. 

Hence, we define the context of a memory location x by the 
triple threadType, dataType, allocSite as described in Section 2. 

In the motivating example, as a thread is an object, CARISMA 
uses the class signature of the thread class as threadType .	All 
memory locations of both contexts C1 and C2 are allocated by the 
same threadType Thd-M and of the same data type Account (CLS-
A). Their allocSites differ by the statements that allocate them: 
Stm-1 for general account and Stm-2 for savings account. 

Whenever a thread creates a memory location x, CARISMA 
assigns a context to x. CARISMA then uses the available contexts 
in the rest of the current execution and the subsequent trials. 

Note that CARISMA can also use other data structures, such as 
calling context [31], instead of simply the allocation statement. 

3.2 Phase 1: Budget Estimation and Allocation 
This section presents our budget allocation scheme and the 
method used by CARISMA to carry forward statistics between 
execution trials. 

3.2.1 Sampling Budget Estimation 
To estimate the sampling budget for the (m+1)-th trial, CARISMA 
first estimates the expected number of memory locations allocated 
and the expected number of memory locations under each context 
in this (m+1)-th trial, which are referred as population size and 
context size, respectively. We also refer to the total number of 
memory locations to be targeted for sampling as the sampling 
budget or simply the budget (denoted by B). 

The budget B is determined by multiplying the population size 
with the target sampling rate . Because  is given, we only need 
to estimate the population size to obtain B. The detail is as follows: 

Suppose that Cid is a non-empty set of n contexts (denoted by 
C1, C2, …, Cn) and we have executed the program m times (where 
1 < m ≤ k).  Let Pi be the context size of Ci. Let ri,j denote the 
sampling rate assigned to Ci in the j-th execution trial (where j < 
m) and si,j denote the number of samples under Ci collected from 
this j-th execution trial. 

We generally approximate each si,j by a random variable with a 
binomial distribution denoted by B(Pi, ri,j) and with an expected 
value E[si,j] (which is the mean of the binomial distribution 
denoted by ri,jPi [19]). Our estimator for Pi is given by: 

i= ∑ ,∑ ,  (1) 

It is an unbiased estimator because: 

E = E ∑ ,∑ , = ∑ E ,∑ , = ∑ ,∑ , =  (2) 

As such, the value of ∑ i gives an estimation of the population 
size. We then set = ∙ ∑ , which hat gives an estimate of 
the sampling budget for the (m+1)-th execution trial. 

3.2.2 Determination of Context Sampling Rate 
After estimating the sampling budget B for the (m+1)-th trial, 
CARISMA proceeds to distribute B evenly among contexts so that 
every context have roughly the same number of expected samples. 
Note that in the same trial, all memory locations related to the 
same context have the same sampling rate, but those related to dif-
ferent contexts may have different sampling rates. 

We use the term context sampling budget, denoted by Bi, to 
refer to the sampling budget allocated to context Ci. 

CARISMA formulates the sampling budget allocation process 
as a single-objective convex optimization problem that minimizes 
the variances among Bi for all i, thus: min∑ −   

subject to ∈ [ i, i ]	and ∑ =  
(3) 

Eqn. (3) is a classical quadratic programming problem [3] with 
the constraints that the context sampling budget Bi is in the range [ i, i ] and the sum of all Bi’s is B. In other words, the budget 
Bi should not exceed the corresponding estimated context size i 
and should retain a threshold level computed by i. (Other-
wise, a context may be assigned with no budget.) The solution of 
Eqn. (3) is given by: = min (max	( , i), i) (4) 

where ∈ ℝ and ∑ = .	
We observe that ∑  is a piecewise-linear increasing func-

tion of “ ” with breakpoints i and i, so that the water-
filling algorithm (which runs in O (n lg n) time due to sorting, 
where n is the number of contexts) [3] can be used to solve ∑ =  for  by increasing  from min	( i )  until ∑ =  holds. 

As such, CARISMA first computes v and then Bi for each i. To 
ease our description in Section 3.3.2, we denote above water-filling 
algorithm to compute v by WaterFilling(B, Cid, ), where Cid 
(as defined in Section 3.2.1) is the set of contexts, in which each 
context Ci (for i = 1, 2, ..., n) is associated with a i. 

CARISMA then uses =  (5) 

to compute each ri for context Ci to be used in the next execution 
trial. For ease of presentation, we refer to ri as the context sampling 
rate for Ci. 
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For any context Ci that has no sample collected yet (which also 
applies to the very first execution of any context), CARISMA 
simply lets ri be the given target sampling rate 	 . 

3.2.3 Carrying Forward the Statistics 
As presented in the last two subsections, CARISMA has computed 
the context sampling rate for each context (and uses  as default 
for contexts with no information collected yet). In this subsection, 
we present how CARISMA carries forward the statistics between 
consecutive execution trials. 

GlobalInit()

GLOBALSTATE

DYNAMICSTATE

DynamicInit() Sample() GlobalUpdate()
i > k

initialize read update 

initialize update  read

i ≤ k

Figure 3. State maintenance of CARISMA in Phase 1 

Figure 3 depicts how CARISMA maintains its states. It first 
initializes its global states (GLOBALSTATE) by calling GlobalInit( ). 
GLOBALSTATE is the data structure that keeps the sampling 
statistics to be carried forward between execution trials, while 
DYNAMICSTATE is the data structure that keeps the statistics for the 
current execution. Right before each execution trial on the program 
under test, CARISMA calls DynamicInit( ) to initialize (i.e., reset) 
its variable. Table 2 shows the definitions of variables for the data 
structures. The column “Initial Value” shows how each variable is 
initialized by GlobalInit( ) and DynamicInit( ). 

Then, CARISMA proceeds to Phase 2, as shown in Figure 3. In  
the course of the execution of the trial, CARISMA calls Sample( ) 
to collect the statistics and updates DYNAMICSTATE dynamically. 
After executing the program for the trial, CARISMA updates 
GLOBALSTATE based on the original values of GLOBALSTATE and 
the DYNAMICSTATE via the function GlobalUpdate( ). If the num-
ber of execution trials is still less than k, CARISMA will start the 
next one. 

For ease of reference, we use the notation GLOBALSTATE.x and 
DYNAMICSTATE.y to refer to the variables of GLOBALSTATE and 
DYNAMICSTATE, respectively. For instance, the variable Cid of 

GLOBALSTATE in Table 2 is denoted by GLOBALSTATE.Cid. 
In the next subsection, we will present the procedure of 

GlobalUpdate( ) of CARISMA after presenting the procedure 
Sample( ) first, because the strategy used in GlobalUpdate( ) 
depends on the strategy applied in Sample( ). 

3.3 Phase 2: Execution Monitoring 

3.3.1 Overview 
In Phase 2, the procedure Sample( ) of CARISMA monitors the 
course of program executions. It forwards all sampled events, 
synchronization events, and thread management events to the 
associated race detector. 

As we have presented in Section 3.1, whenever a memory 
location x is created, CARISMA checks whether its context Ci 
exists in GLOBALSTATE, and if not, it creates a new context for x. 
Then, when an access to memory location x occurs (regardless of 
whether it is a read or a write), CARISMA checks whether the 
access should be forwarded to the race detector D according to the 
context sampling rate ri associated with context Ci. If this access 
is decided to be sampled, CARISMA makes such forwarding. Also, 
for every write access to memory location x, CARISMA updates 
its DYNAMICSTATE to keep track of the statistics of context Ci 
needed for future execution trials, in which CARISMA applies the 
budget estimation for Phase 1 (see Section 3.2) that estimates both 
the population size and the context sizes. 

The following subsection presents three sampling strategies of 
CARISMA. Their descriptions in algorithmic format will be pub-
lished in a separate report. 

3.3.2 Strategies 
CARISMA can be configured to use a family of strategies. Three 
of them are Coarse Location Sampler (CLS), Fine Location 
Sampler (FLS), and Adaptive Access Sampler (AAS). They differ 
mainly in terms of the context granularity. Choosing a strategy 
affects not only this phase but also Phase 1 because they affect 
how CARISMA estimates the context sizes. 

We first use an example to show the difference in sampling 
granularity among the three strategies: Suppose that (1)  is 
0.3, (2) the context sizes for a given context are 4 memory loca-
tions for CLS, and 12 write operations for both FLS and AAS, 
and (3) the sampling budgets for the context under the CLS, FLS, 

Table 2. GLOBALSTATE and DYNAMICSTATE used by CLS, FLS and AAS ℕ  denotes the set of natural numbers including zero. ℕ  denotes the set of natural numbers excluding zero. bool = {false, true} is the 
set of Boolean values. Instr0 is an integer constant that indicates the length of the sampling periods for memory accesses. 

 Variable Type Initial Value Description CLS FLSAAS

G
LO

B
A

LS
TA

TE
 

Cid set of contexts ∅ Records of all contexts occurring in all prior executions.    
N ℕ  1 Identity of the execution (i.e., the index of the current trial).    

R Cid → [0, 1] c.  
Context sampling rate ri for the context Ci in a particular execution. 
We simply refer to R(i) as ri. 

   

Rsum Cid → ℝ c.0 
Mean value of the context sampling rates in all prior executions for the 
same context. 

   

Ssum Cid → ℕ  c.0 
Accumulated number of samples obtained for the same context in all 
prior executions. 

   

Chk0 Cid → ℕ  c.0 Length of non-sampling period of memory accesses for each context.    

D
Y

N
A

M
IC

 S
TA

TE
 

F Mem → bool x.false Record of whether the memory location has been sampled.    
S Cid → ℕ  c.0 Number of samples obtained in the current execution for each context.    
C Mem → Cid x.null Map from a memory location to a context.    

Chk Mem → ℕ  x.0 Count of the length of non-sampling periods of memory accesses.    
Instr Mem → ℕ  x.Instr0 Count of the length of burst sampling periods of memory accesses.    
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and AAS strategies are 1 location, 3 accesses, and 3 accesses, 
respectively. According to Eqn. (5), their context sampling rates 
are 0.25, 0.25, and 0.25, respectively. Because 0.25 < , both 
CLS and FLS set the context sampling rate to be ; whereas 
AAS sets the context sampling rate back to 0.3 at the memory 
location level and activates sampling at the memory access level 
with a rate of 0.833 (= 0.25 ÷ 0.3). Table 3 summarizes the sam-
pling parameters computed by CARISMA in Phase 1 and Phase 
2. The details of each strategy are discussed in the following 
paragraphs. 

Table 3. Comparison of three stratgeis of  CARISMA: CLS, 
FLS and AAS. We assume = 0.3 and there are three 

memory accesses to each memory location. 

Estimation CLS FLS AAS

P
ha

se
 1

 Context size  
4 memory 
locations 

12 write 
accesses 

12 write 
accesses 

Context sampling budget 1 location 3 accesses 3 accesses

Computed sampling rate 25% 25% 25% 

P
ha

se
 2

 Context sampling rate 
(memory location level) 

30% 30% 30% 

Context sampling rate 
(memory access level) 

N/A N/A 83% 

Effective sampling rate 30% 30% 25% 
 

Coarse Location Sampler (CLS). The CLS strategy estimates 
the context size and monitors memory accesses at the memory 
location level for both phases. The motivating example in Section 
2 illustrates this strategy. CLS works as follows: 

When a memory location x is created in the course of an 
execution, CLS creates a context Ci for it. It adds this context to 
GLOBALSTATE.Cid if Ci does not exist in the set Cid. 

CLS exploits the probabilistic sampling to conserve memory 
consumption: CLS generates a random number α in the range of 
[0, 1]. Because each context is associated with a context sampling 
rate ri, CLS checks whether the condition ri > α holds. If so, it 
sets DYNAMICSTATE.F(x) to true and increments 
DYNAMICSTATE.S(Ci) by 1, indicating that one more location, 
which is location x, is sampled for the current trial. If the 
condition ri > α does not hold, CLS sets DYNAMICSTATE.F(x) to 
false, indicating that location x will not be sampled for the current 
trial. 

The key design in the above procedure is that, rather than 
computing whether each particular write access and each 
particular read access should be sampled probabilistically, CLS 
simplifies the decision procedure by probabilistically determining 
whether all memory accesses of the same location should be 
sampled. 

Hence, when a write access or a read access event in the 
course of the current execution is monitored, CLS simply checks 
whether DYNAMICSTATE.F(x) has been set to true. If so, CLS 
forwards the access event to the race detector D; otherwise, it 
simply skips the event. 

We have explained in Section 3.2.3 that the procedure of 
GlobalUpdate( ) depends on the strategies used in Sample( ). For 
CLS, GlobalUpdate( ) works as follows: 

We recall from the above paragraphs of CLS that 
DYNAMICSTATE.F( ) and DYNAMIC-STATE.S( ) have maintained 
the list of sampled memory locations at the end of an execution 
trial. In GlobalUpdate( ), for each context Ci, CLS first incre-
ments GLOBALSTATE.Rsum(Ci) by ri and GLOBALSTATE.Ssum(Ci) by 

DYNAMICSTATE.S(Ci). With these two values, by Eqn. (1), CLS 
computes  = GLOBALSTATE.Ssum(Ci) ÷ GLOBALSTATE.Rsum(Ci). 
Then, CSL computes a new budget B by Eqn. (2), v by 
WaterFilling(B, Cid, ), and a new context sampling rate ri by 
Eqn. (5) for each context Ci. It finally adds 1 to GLOBALSTATE.N 
to indicate that Phase 1 of the next trial is ready to start. 

We have explained above how CLS handles memory location 
creation as well as memory read and write access events, and how 
it carries forward the information between two consecutive execu-
tions. We now present the second sampling strategy of CARISMA. 

Fine Location Sampler (FLS). The FLS strategy is the same 
as the CLS strategy except that it estimates the context size at the 
memory access level (in Phase 1) but performs sampling at the 
memory location level (in Phase 2). Because a memory location 
may have multiple accesses, FLS is finer in granularity than CLS. 
For brevity, we mainly present the similarities and differences 
between CLS and FLS. 

Like CLS, at the time that memory location x is created in the 
course of an execution, FLS creates a context Ci for x and also 
checks whether the condition ri > α holds. If so, FLS sets 
DYNAMICSTATE.F(x) to true. However, FLS does not change 
DYNAMICSTATE.S(Ci) as what CLS does; rather, FLS associates x 
with context Ci by assigning Ci to DYNAMICSTATE.C(x). If the 
condition does not hold, FLS works in the same way as CLS. 

When a write access or a read access event on a memory 
location x is monitored in the course of the same execution, FLS 
works in the same way as CLS, except that if FLS forwards a 
write access of x to the race detector D, FLS also increments 
DYNAMICSTATE.S(Ci) by 1, where Ci is the context kept at 
DYNAMICSTATE.C(x). The GlobalUpdate( ) of FLS is the same as 
that of CLS. 

We note that DYNAMICSTATE.S(Ci) of FLS is incremented at 
the access level and restricted to count the number of write 
accesses forwarded to the race detector. This is motivated by the 
following two reasons: (1) Each data race must involve at least 
one write access, and may not involve any read access; and (2) the 
authors of [9] reported that write accesses only take up a small 
proportion of all monitored operations (which is 14.5% in their 
experiment), whereas read accesses take up a larger ratio (82.3% 
in their experiment). Hence, recording write accesses only can 
potentially alleviate CARISMA’s overhead. 

Adaptive Access Sampler (AAS). The AAS strategy targets to 
both estimate the context size and do sampling at the memory 
access level. Its sampling strategy is more complex due to 
sampling at the memory access level. AAS applies the burst-
sampling strategy, and following [13], it uses four parameters: 
DYNAMICSTATE.Skip(x), DYNAMICSTATE.Smpl(x), GLOBALSTATE. 
Skip0(Ci), and GLOBALSTATE.Smpl0. (We drop their prefixes in 
following paragraphs to save page space.) We note that the first 
two parameters are at the location level, the third is at the context 
level, and the fourth is a constant. 

When a memory location x is created in the course of an 
execution, AAS behaves in the same way as FLS, except that if 
AAS forwards the creation event to the race detector D, AAS 
additionally computes Skip(x) = ⌊ rand( ) × (Skip0(c) + 1)	⌋, where 
rand( ) generates a random number in the range of [0, 1]. We use 
this variable Skip(x) to decide on the time to activate sampling at 
the access level for the same location x. We choose the activation 
condition Skip(x) = 0, and before this condition is reached, each 
memory access to x is skipped, as explained as follows: 
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When a read access event on a memory location x is monitored 
in the course of the current execution, AAS forwards the event to 
the race detector D if both DYNAMICSTATE.F(x) is true and Skip(x) 
= 0; otherwise, it skips the event. 

For a write access event of x, there are three cases to consider: 
(a) If DYNAMICSTATE.F(x) is false, AAS skips the event. (b) If the 
event is not skipped by the first case and Skip(x) > 0, AAS 
decrements Skip(x) by 1, and skips the event. (c) If the event is 
still not skipped by the above two cases, AAS works identically to 
FLS to forward the write access of x to the race detector D, 
increments DYNAMICSTATE.S(Ci) by 1, where Ci is the context 
kept at DYNAMICSTATE.C(x), and decrements Smpl(x) by 1. If this 
updated Smpl(x) is 0, AAS resets Skip(x) to Skip0(Ci) and Smpl(x) 
to Smpl0. 

In essence, the AAS strategy samples a location if Skip(x) = 0. 
The number of samples under the condition Skip(x) = 0 (which 
depends on the sampling period for the location) is controlled by 
Smpl(x). This sampling period of consecutive accesses is further 
controlled by the two parameters Skip0(Ci) and Smpl0. 

GlobalUpdate( ) of AAS is the same as that of FLS except 
that it computes v and ri by substituting  by 0 in Eqn. (4). 
Moreover, AAS computes Skip0(Ci) for each context Ci as follows: 
If ri ≥ , AAS sets Skip0 (Ci) = 0 so that AAS can sample all 
the accesses of a location at this rate because the context is 
assigned with a sampling rate larger than . If ri < , AAS 
first sets ri back to	 ; then, it computes Smpl0 × ( /ri − 1) 
and assigns the computed value to Skip0 (Ci). 

In brief, if the computed sampling rate for the context is too 
small, AAS sets to sample a portion of the memory accesses of 
the memory locations whose sampling rates are kept at . The 
purpose of such assignment is to ensure an adequate number of 
memory locations to be sampled. Following [13], we set the 
Smpl0 to be 10 in our experiments. 

4. EXPERIMENTATION 

4.1 Implementation 
CARISMA was implemented as a tool on top of the ROADRUNNER 
platform [10], a published Java instrumentation framework. We 
enhanced this instrumentation framework by further observing the 
instantiation of objects (as required for the sampling strategies). 
When an object is instantiated, CARISMA records the type of the 
current thread and the relevant statement. (We use the statement 
that initiates the object as the allocSite of the context.) CARISMA 
uses the type of the enclosing object class together with the name 
of the field to represent the data type of the field. When an object 
field is accessed for the first time, CARISMA computes the 
context from its type, the thread, and the statement recorded in its 
enclosing object, and stores the context as a 64-bit integer in the 
field’s ShadowVar [10]. For static fields, we use the type of the 
thread that executes the static initializer together with the data 
types of the fields as their context and ignore the allocation 
statement because it is not specified in the source code. 

In our implementation, we avoided using hash tables and stored 
the context information directly in the objects themselves. Mean-
while, we avoided using thread-shared data structures and utilities 
such as random number generators, and made them thread-local so 
that there was no need to synchronize them. 

4.2 Evaluation Settings 
This section presents the evaluation settings for CARISMA. 

Configuration. We used a Dell PowerEdge 1950 server 
running on Solaris UNIX to conduct the experiment. The server 
had 2 Xeon 5355 (2.66 GHz, 4-core) processors with 8 GB 
memory. 

Benchmarks. We used nine popular Java benchmarks in our 
experiment, as shown Table 4. Each program has at least one data 
race detectable by FASTTRACK [9][10] in 100 executions. They 
include raytracer, a ray-tracing program [16]; tsp, a traveling 
salesman problem solver [9]; mtrt, another ray-tracing program 
from the SPEC JVM98 benchmarks suite [32]; jbb, the SPEC 
JBB2000 business object simulator [32]; hedc, a web crawler from 
ETH [9]; weblech, another open-sourced web crawler [29]; 
cache4j, an open-source tool for caching java objects [29]; xalan, 
an XML transformer; and hsqldb, a relational database engine from 
Dacapo benchmarks [6]. (We also tried to use eclipse but it could 
not work correctly with ROADRUNNER, with or without CARISMA 
on our server.) We used the test harnesses provided by the 
benchmarks. We configured all benchmarks to run with eight 
threads, except cache4j, xalan, and hsqldb for which the numbers 
of threads were not configurable. 

Table 4. Descriptive statistics of benchmarks 

Name 
Size 

(LOC) 
# of 

threads
# of 

locations 
# of  

accesses 
# of 

races 
# of 

contexts
mtrt 3,755 8 23 M 152 M 1 474 
raytracer 1,532 8 224 M 9,741 M 1 193 
tsp 720 8 180 k 120 M 1 40 
hedc 7,817 8 17 k 79 k 4 145 
jbb 29,058 11 70 M 305 M 2 1,652 
weblech 1,952 8 0.6 k 6 k 2 127 
cache4j 3,930 2 46 k 711 k 2 230 
xalan 345,088 9 22 M 105 M 19 2,242 
hsqldb 253,044 81 13 M 302 M 18 1,288 

Table 4 presents the statistics of the benchmarks. The data 
shown in columns 3−5 were obtained from the original 
ROADRUNNER platform [10] averaged over 100 executions. (We 
followed the execution times reported in [28] for computationally 
intensive programs like mtrt and raytracer.) Column 3 shows the 
maximum number of live threads at any time in our experiment. 
The column “# of locations” refers to the number of memory slots 
(one slot from each object field) in the heap used by a program that 
ROADRUNNER reported. In Java, a memory slot stores the value of 
a primitive data type (such as int, float, and double) or an 
object reference. Column 6 shows the number of distinct data races 
that were reported by the FASTTRACK tool in the experiment. 

Techniques. We evaluated the three strategies (CLS, FLS, and 
AAS) of CARISMA and compared them with PACER [2] (denoted 
by PCR), which is the best state-of-the-art sampling technique for 
data race detection. We configured CARISMA to use FASTTRACK, 
shipped with ROADRUNNER, as the associated race detector. 

We implemented PACER on top of ROADRUNNER by adding the 
sampling infrastructure into FASTTRACK and modifying the vector 
operations [2] using the state-of-the-art epoch approach proposed 
by FASTTRACK. Because ROADRUNNER did not control garbage 
collection, we used a timer and synchronizations to switch between 
sampling and non-sampling periods. When the signal from timer 
arrives, a global flag fG was set to indicate that a sampling decision 
was going to be made. Our version of PACER checked fG every time 
before it processed the critical operations. If fG was not set, it 
proceeded with the processing and set a thread-local flag ft, which 
was unset when the processing was done; otherwise, it waited until 
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fG was unset. On the other hand, after setting fG, the callback 
procedure would wait until the ft flags of all threads were unset. 

Executions. The range of sampling rates we used in our 
experiments is [0.0001, 1], and we set the minimum sampling rate 
rmin= 0.00001 to make sure that the sample budget should cover at 
least 0.001% of the context population. Strictly following the 
experimental setup presented in [2], we determine the number of 
executions by making the probability of detecting a race greater 
than 0.95 for a given sampling rate, and limit the number of execu-
tions to be between 50 and 500. The number of execution is given 
by the formula: 

 = min(max( log 0.05 , 50), 500) 
Table 5 shows the mean effective sampling rates (plus or minus 
one standard deviation) realized by CARISMA, which are close to 
the specified target sampling rate . We observe that, overall 
speaking, the sampling rates for benchmarks with more memory 
locations and accesses tend to be closer to  and vary less. 

4.3 Effectiveness of Data Race Detection 
This section evaluates the effectiveness of CARISMA. 

CARISMA works over a sequence of execution trials. Figure 
4 shows the mean detection rates (over 100 repetitions for each of 
the first 40 trials) achieved by both AAS and PACER on xalan (the 
largest subject in the benchmark) at the target sampling rate   of 
0.01. The x-axis represents the index of the execution (starting 
from zero) and the y-axis represents the average detection rate for 
a given execution indexed by the x-axis. (It is not the aggregate 
probability for the previous executions). In the first few trials, 
AAS is less effective than PACER, but the mean effectiveness of 
AAS increases over execution trials, and finally reaches a level 
that is much higher than that of PACER. 

Figure 5 shows a summary of the detection rates over all bench-
marks and Figure 6 shows the mean detection rates of PACER and 
each strategy of CARISMA on all benchmarks. In each plot, the x-
axis is the target sampling rate and the y-axis is the race detection 
effectiveness. Each point is the unweighted average over all races. 
We adopt from [10] the definition of detection rate of a 
strategy/technique as the ratio of (1) the mean number of detected 
races per execution at target sampling rate  to (2) the mean 
number of races detected with  = 100%.Among our three 
strategies, both AAS and FLS achieve much higher detections rates 
than that of CLS, and the detection rate of AAS is slightly higher 
than that of FLS on all benchmarks. Both AAS and FLS use the 
memory access as the granularity for the estimation of statistics, 
whereas CLS uses the memory location as the granularity. We 
observe that a finer granularity tends to characterize the differences 
among contexts more effectively. 

In six out of all benchmarks, CARISMA can detect more than 
10% data races using a target sampling rate of 0.01%, except for 
hedc, weblech and cache4j, which are smaller in scale than other 
benchmarks in terms of the number of memory locations and the 
number of accesses in the course of an execution. We have 
investigated the rationale. For weblech, the detection rate of either 
CLS or FLS drops quickly as the sampling rate decreases, because 
there are so few memory locations to be sampled; and hence the 
expected numbers of memory locations sampled in some contexts 
were less than one. AAS adaptively samples memory accesses and 
its line for weblech has a gentler slope than that of CLS or FLS. 
Similar findings are observed on hedc and cache4j. 
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Figure 4. Change of detection rates over first 40 executions of 

xalan at =1%. 
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Figure 5. Summary of detection rates. 

We find that PACER’s mean detection rate of is only slightly 
better than constant with respect to . This is because racy 
memory locations are usually accessed multiple times, and if any 
one of them is sampled, the race can be detected by PACER. On 
average, CARISMA shows a significantly higher detection rate 
than PACER. 
  

Table 5. Mean effective sampling rates (± one standard deviation) as the percentage of memory accesses sampled 

 AAS FLS CLS 
 0.01% 0.1% 1% 10% 0.01% 0.1% 1% 10% 0.01% 0.1% 1% 10% 

mtrt 0.009±0.003 0.10±0.01 1.1±0.2 10.2±1.1 0.011±0.004 0.09±0.03 1.0±0.3 10.0±1.1 0.009±0.002 0.09±0.04 0.8±0.2 10.9±1.0 
raytracer 0.011±0.003 0.09±0.02 1.0±0.2 10.6±0.7 0.009±0.011 0.10±0.02 0.8±0.2 10.0±0.8 0.010±0.003 0.10±0.02 1.0±0.0 10.1±0.7 
tsp 0.013±0.005 0.11±0.02 0.9±0.2 9.4±1.6 0.009±0.002 0.11±0.02 1.1±0.2 9.0±1.0 0.009±0.006 0.09±0.05 0.9±0.1 10.5±1.5 
hedc 0.011±0.006 0.09±0.05 0.8±0.4 11.3±1.5 0.007±0.008 0.05±0.12 0.9±0.2 9.5±2.4 0.011±0.007 0.11±0.11 0.7±0.3 12.1±2.2 
jbb 0.009±0.004 0.10±0.03 1.0±0.3 10.5±0.7 0.011±0.007 0.11±0.07 1.5±0.6 10.0±1.5 0.014±0.004 0.10±0.02 1.3±0.4 10.5±1.8 
weblech 0.006±0.007 0.12±0.07 0.7±0.5 8.1±2.4 0.007±0.012 0.11±0.11 0.9±0.7 11.0±1.5 0.010±0.007 0.13±0.06 0.8±0.2 10.0±1.6 
cache4j 0.012±0.004 0. 08±0.03 0.9±0.2 9.6±1.2 0.012±0.004 0. 08±0.02 1.2±0.2 9.5±1.0 0.007±0.006 0.13±0.03 0.9±0.2 10.0±1.0 
xalan 0.010±0.003 0.12±0.04 1.0±0.3 11.9±0.6 0.013±0.003 0.09±0.06 1.2±0.2 9.4±1.2 0.011±0.005 0.09±0.03 0.9±0.1 10.0±1.4 
hsqldb 0.011±0.004 0.09±0.03 1.1±0.4 9.2±1.3 0.006±0.004 0.10±0.04 1.4±0.4 10.2±1.5 0.010±0.003 0.11±0.04 1.0±0.4 9.8±1.2 
Average: 0.010±0.004 0.10±0.03 0.9±0.3 10.1±1.1 0.009±0.006 0.09±0.05 1.1±0.3 9.8±1.3 0.010±0.005 0.10±0.04 0.9±0.2 10.4±1.4 
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Figure 6. Detection rates of various techniques. 
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Figure 7. Slowdown vs. sampling rates for CLS. 
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Figure 8. Slowdown vs. sampling rates for FLS. 
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Figure 9. Slowdown vs. sampling rates for AAS.  
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Figure 10. Memory used over one execution of xalan. 
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4.4 Time and Space Overheads of CARISMA 
This section evaluates the time and space overheads of CARISMA. 

Time overhead. Figures 7 to 9 show the slowdown incurred by the 
three strategies of CARISMA on each benchmark for	  ranging 
over [0, 100%]. All figures show that the slowdowns incurred by 
CARISMA are roughly linear with respect to , although the slow-
down factors on different benchmarks vary a lot. We note that the 
slowdown factor includes the execution time of the program, the 
overhead incurred by the ROADRUNNER platform, the overhead 
incurred by additional monitoring of memory allocations, the 
overhead incurred by the sampling algorithms, and the overhead of 
FASTTRACK. Working at a target sampling rate of 1%, CARISMA 
incurs slowdowns by a factor of 5x on five benchmarks (mtrt, 
raytracer, tsp, xalan, and jbb), which are either computation-bound 
or relatively large in sizes, and can detect races with a relatively 
high probability (60%). If working at a sampling rate of 100%, 
CARISMA is functionally equivalent to FASTTRACK [9], which has 
no sampling effort. CARISMA slows down the five programs by a 
factor of 13.0x, compared with 8.5x by FASTTRACK. For the other 
programs, CARISMA incurs reasonable overheads. 

Note that the mean slowdown by the original ROADRUNNER 
platform on compute-bound programs is 4.1x. As we have 
implemented CARISMA on top of ROADRUNNER, there are many 
internal operations and events in ROADRUNNER that cannot be 
eliminated by sampling. For this reason, we believe that imple-
menting CARISMA within a Java virtual machine can improve the 
performance further. In fact, at a sampling rate of 1%, CARISMA 
can reduce 80% of the overhead incurred (from 8.5x – 4.1x = 4.4x 
to 5x – 4.1x = 0.9x) by the FASTTRACK tool, which is significant. 

Space overhead. By design, AAS consumes the most memory 
among the three strategies. Figure 10 shows the memory space 
overhead incurred by AAS on xalan. (Due to page limit, we do not 
present the results on other smaller programs or the results of CLS 
and FLS.) The x-axis shows the time fraction of one execution (as 
we normalize the execution time to 1). For each target sampling 
rate shown, we take the mean overhead over all executions. The 
line Java is the memory used by executing the program directly. 
The line RR is the memory used by executing the program with the 
original ROADRUNNER platform. The line RR+FT is the memory 
used by executing the program with FASTTRACK on top of the 
original ROADRUNNER. At a sampling rate of 100%, AAS uses 
more memory than FASTTRACK because AAS collects dynamic 
information during an execution. At a sampling rate of 20%, AAS 
uses significantly less memory than FASTTRACK. The result shows 
that CARISMA can scale well with the sampling rate in terms of 
memory space used, and with a low sampling rate of  = 1%, its 
space overhead appears to be very low. 

4.5 Threats to validity 
The threats to validity of the experiment can be further mitigated 
by using more benchmarks with and without races, and by evaluat-
ing more aspects of the techniques, such as the use of different 
numbers of threads per run, different types of contexts, and differ-
ent notions of correctness criteria (e.g., detection rate of atomicity 
violations). We have referred to evaluation methodologies reported 
in previous work and assured the quality of our evaluations. We 
have measured the mean performance of different techniques in 
terms of effectiveness as well as time and memory consumption. 
Measuring the results using other metrics such as variances in 
performance may produce different comparison results. 

5. RELATED WORK 
This section relates our work to that of others. 

5.1 Sampling for Bug Detection and Testing 
The work most relevant to CARISMA is LITERACE [23] and 
PACER [2]. LITERACE [23] uses a code-partitioning strategy and 
adaptive burst sampling to reduce sampling overheads. Bond et al. 
[2] have compared LITERACE and PACER, and states that PACER 

can be better than LITERACE. This paper has extensively 
compared CARISMA with PACER. Cooperative Crug Isolation 
(CCI) [18] samples inserted predicates according to their 
characteristics to infer the locations of concurrency bugs. Unlike 
CARISMA, these three techniques used neither cross-execution 
budget estimation nor inter-context budget balancing. 

RACEZ [30] uses a hardware performance monitor to sample 
memory accesses and an (imprecise) offline lockset-based 
analyzer to detect races from the collected data. Although the 
overhead can be lower, hardware support cannot completely 
replace software tools for two reasons: (a) hardware is less 
flexible and more difficult to be adapted and applied to other 
situations, and (b) hardware and software techniques are generally 
complementary. The notion of even spreading of test efforts is 
also explored in adaptive random testing. See, for example, Jiang 
et al. [17]. 

5.2 Context Sensitivity 
Context is a broad concept. We first review related work on its use 
for concurrency bug detection. Communication contexts [22] are 
proposed to record the ordering of communication events (memory 
reads and writes), so that communication edges can be effectively 
distinguished from one another. BREADCRUMBS [1] uses 
probabilistic calling contexts, which are encoded to unique 
identifiers and tagged to dynamic events. Such an identifier can be 
decoded offline to give the detailed circumstances of the events in 
order to facilitate debugging. MAGICFUZZER [5] uses a lightweight 
indexing algorithm to compute object abstraction to confirm 
deadlocks. CARISMA uses contexts to partition memory creation 
environments. Smaragdakis et al. [31] discussed the use of calling 
context for point-to analysis in object-oriented languages. We note 
that our definition of call context is unrestricted to any specific 
type, and calling context can also be use with CARISMA. 

5.3 Data Race Detection 
CARISMA is designed to work with dynamic data race detection 
tools, most of which are based on locksets [27], happens-before 
relations [20][24], or their hybrids. Lockset-based techniques 
[7][8][27] verify whether program executions follow locking 
disciplines [27]. They are fast and interleaving-insensitive, but 
imprecise. Happens-before based detectors [4][9][26][29] can 
precisely detect data races, and FASTTRACK [9] has shown a 
promise that its performance can match that of lockset-based 
techniques. LOFT [4] optimizes the vector clock operations on 
synchronization events. Hybrid techniques such as GOLDILOCKS [7] 
have been proposed, which often use locksets to reduce overheads 
and happens-before-based tracking to achieve precision. 
CARISMA has been tested to work well with FASTTRACK. 
CARISMA requires no technique-specific information. We expect 
that with slight adaptations, CARISMA can also work well with 
other dynamic race detection tools like GOLDILOCKS [7]. 
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6. CONCLUSION 
Data race is a common problem in multithreaded programs. Each 
data race is related to one memory location. In this paper, we have 
proposed CARISMA, a novel context-sensitive sampling approach 
to dynamic bug detection. CARISMA innovatively estimates and 
balances the sample budgets among contextual groups over a 
sequence of execution trials. It can be configured at various 
granularity levels. The experimental results  show that CARISMA 
finds data races with high probability and low overheads. We also 
foresee that CARISMA has the potential to support program 
testing in general and integrate with other concurrency bug 
analysis tools. In the future, we will generalize the approach to 
deal with different types of bugs (including assertion violation, 
atomicity violations, and atomic-set serializability violations) and 
will develop new methods to further refine the approach. 
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