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Abstract. The traveling salesman problem (TSP) is a canonical NP-complete problem which
is proved by Trevisan [SIAM J. Comput., 30 (2000), pp. 475–485] to be MAX-SNP hard even on
high-dimensional Euclidean metrics. To circumvent this hardness, researchers have been developing
approximation schemes for “simpler” instances of the problem. For instance, the algorithms of Arora
and of Talwar show how to approximate TSP on low-dimensional metrics (for different notions of
metric dimension). However, a feature of most current notions of metric dimension is that they
are “local”: the definitions require every local neighborhood to be well-behaved. In this paper, we
define a global notion of dimension that generalizes the popular notion of doubling dimension, but
still allows some small dense regions; e.g., it allows some metrics that contain cliques of size

√
n.

Given a metric with global dimension dimC , we give a (1 + ε)-approximation algorithm that runs in
subexponential time, i.e., in exp(O(nδε−4 dimC ))-time for every constant 0 < δ < 1. As mentioned
above, metrics with bounded dimC may contain metrics of size O(

√
n) on which the TSP problem

is hard to approximate to within (1 + ε). Hence, to do better than a running time of Ω(exp{√n}),
our algorithms find O(1)-approximations to some portions of the tour, and (1 + ε)-approximations
for other portions, and stitch them together. Moreover, we show that such globally bounded metrics
have spanners that preserve distances to arbitrary accuracy and have size Θ(n1.5).

Key words. traveling salesman problem, approximation algorithms, metric spanners, global
notion of dimension
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1. Introduction. This paper presents a definition for the global dimension of a
metric space, shows that it generalizes the notion of doubling dimension, and gives
a subexponential approximation algorithm for the traveling salesman problem (TSP)
on metrics with bounded global dimension. Recall that a metric space M = (V, d) is
a set of points V with a distance function d : V × V → R≥0 such that that distances
are symmetric, satisfy the triangle inequality, and d(x, y) = 0 ⇐⇒ x = y. Unless
specified otherwise, we assume that the set V is finite.

TSP has long been known to be NP-hard [GJ79], and Papadimitriou and Yan-
nakakis showed that TSP is MAX-SNP hard even for metrics where all distances
are either 1 or 2 [PY93]. To show that an underlying geometric structure may not
make the problem tractable, Trevisan proved that TSP remains MAX-SNP hard if
the Euclidean dimension is unbounded [Tre00]. On the other hand, Arora [Aro98]
gave a polynomial-time approximation scheme (PTAS) for TSP on bounded dimen-
sional Euclidean metrics. Moreover, TSP admits exact algorithms on metrics which
arise from graphs that have bounded treewidth [AP89] and also admits a PTAS for
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588 T.-H. HUBERT CHAN AND ANUPAM GUPTA

metrics arising from weighted planar graphs (see, e.g., [Kle05]). If the graph excludes
some fixed minor, it is known how to obtain a (1+ ε)-approximation to TSP using an
algorithm that runs in quasi-polynomial time for every constant ε [Gri00].

The above algorithms show that if a metric can be represented in some specific
way (e.g., if a metric can be represented as a set of points in bounded-dimensional
Euclidean space or as the shortest-path metric of a planar graph), it admits optimal
or near-optimal algorithms for TSP. Consequently, if a metric is such that distances
can be stretched by at most D to get another metric that is representable in some
special way, one gets an approximation for TSP that is at most a factor of D worse.
A slightly different approach has been to define notions of dimension for arbitrary
metric spaces (and not just for geometric ones) and then to parameterize the time-
or space-complexity of algorithms using not just the number n = |V | of points in
the metric space, but also the dimension of the metric space itself. For example,
building on the study of “bounded growth-rate” metrics [PRR99, KR02, HKRZ02]
and a definition of [Ass83], researchers considered the doubling dimension dimD(M)
of a metric M [Cla99, GKL03]; a formal definition appears in section 2. The doubling
dimension of a metric space has proved to be a very useful parameter in algorithm
design on metric spaces. It generalizes the notion of dimension in geometric spaces,
i.e., dimD(Rd, �p) = Θ(d). Moreover, the performance (run-time, space) of many
algorithms can be given as functions of |V | and dimD(M), hence allowing a more
nuanced quantification than those obtained only in terms of the number of points.
For the TSP problem, Talwar [Tal04] gave a (1 + ε)-approximation algorithm such
that for metrics with doubling dimension dimD(M) at most k, the algorithm runs in
time exp((kε logn)

O(k)). Hence, for metrics with constant doubling dimension, and
for constant ε, this gives a (1 + ε)-approximation to TSP in quasi-polynomial time.

If a metric has bounded doubling dimension, this implies that for any subset
S of points which are nearly equidistant from one another, the cardinality of S is
bounded; indeed, if the doubling dimension of the metric is k, the cardinality of any
set S is bounded by Δ(S)dimD , where the aspect ratio Δ(S) is the ratio between the
largest and smallest distances between distinct points in S. Since this has to hold
for all subsets of points in the metric space, the introduction of even a small but
nonconstant set of equidistant points into a space with bounded doubling dimension
would cause the doubling dimension to become unbounded. This is the starting point
of our investigation: in this paper, we define a new notion of dimension called the
correlation dimension, which attempts to circumvent this problem. We give some
basic structural results about how the correlation dimension is related to various
metric properties; we then present algorithms for spanners and TSP for metrics with
low correlation dimension. Our definitions are inspired by work on relaxed notions
of dimensions such as the correlation fractal dimension in physics [GP83] and in
databases [BF95].

Note that correlation dimension is not the first idea to incorporate dense regions in
graphs (e.g., see [KL06] for a different direction, which also gives good approximations
for TSP). But it gives a different, global notion of dimension, and can be useful in
contexts where strict, local ways of measuring dimension may not be applicable.

1.1. Our results and techniques. Given a metric M = (V, d), for any x ∈ V
and r ≥ 0, let B(x, r) = {y ∈ V | d(x, y) ≤ r} denote the ball around point x of
radius r. The correlation dimension is defined as the smallest constant k > 0 such
that for every r > 0,

(1.1)
∑
x∈V

|B(x, 2r)| ≤ 2k ·
∑
x∈V

|B(x, r)|,
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“Tail”: path with n −√
n nodes

“Head”:
√

n-clique

(a) Lollipop

Grid with Θ(n) nodes

√
n-sized “hard” instance of (1, 2)-TSP

(b) Augmented Grid

Fig. 1.1. Examples of metrics with low correlation dimension but high doubling dimension.

and moreover, this inequality must hold under taking any net of the metric M . (For-
mal definitions of this and other relevant notions of dimension are given in section 2.)
Note that if, instead of taking a sum over all x ∈ V , we were to take a maximum over
all x ∈ V , we would get the notion of strong doubling dimension based on bounded-
growth rate used by [PRR99, KR02]; it implies that the notion of correlation dimen-
sion generalizes the notion of pointwise dimension. While not so immediate, we show
in section 2.2 the following relationship between correlation dimension and doubling
dimension.

Theorem 1.1 (correlation generalizes doubling). Given any metric M , its cor-
relation dimension is bounded above by nine times its doubling dimension.

Note that it is easy to construct metrics where the correlation dimension is asymp-
totically much less than the doubling dimension: adding a clique of size O(

√
n) to a

doubling metric may not change its correlation dimension by much but definitely in-
creases its doubling dimension to Ω(logn). (More examples are given in Figure 1.1.)
Observe that a subset of a metric with bounded correlation dimension could have
large correlation dimension: for instance, we can just take the Θ(

√
n)-sized clique as

the subset in the above example. Moreover, we show as a corollary of Theorem 3.1
that correlation dimension is not preserved even when the metric is modified with
distortion 2.

The following theorems show the algorithmic potential of this definition. (Please
refer to [IM04, Mat02] for the definitions of embedding and distortion and to [Die00]
for the definition of treewidth.)

Theorem 1.2 (embedding into small treewidth graphs). Given any constant
0 < ε < 1 and k, metrics with correlation dimension at most k can be embedded into
a distribution of graphs with treewidth Õk,ε(

√
n) and distortion 1 + ε.

This result implies (1 + ε)-approximate randomized algorithms with nontrivial
running times for problems that can be solved efficiently on small-treewidth graphs,
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590 T.-H. HUBERT CHAN AND ANUPAM GUPTA

which include the TSP, facility location problems, and many other NP-hard optimiza-
tion problems on metrics. Moreover, we can do much better for the TSP despite the
presence of these O(

√
n)-sized cliques (or other complicated metrics of that size); we

can make use of the global nature of the TSP problem (and the corresponding global
nature of dimC) to get the following result.

Theorem 1.3 (approximation schemes for TSP). Given any metric M with

dimC(M) = k, there is a randomized algorithm that runs in time 2O(nδε−O(k)) for
any constant δ > 0 and outputs a traveling salesman tour with expected cost within a
(1 + ε)-factor of the optimum.

Hence, given constants ε, k, the algorithm runs in subexponential time. (Recall

that subexponential time is ∩δ>0TIME(2n
δ

).) As we will see later, the best expo-

nent in the expression above that we can show is (ε−12
√
logn log logn)4k; substantially

improving this expression remains an interesting open problem.

Finally, we show that while metrics with bounded correlation dimension do not
necessarily admit (1 + ε)-stretch spanners with a linear number of edges, we can get
better spanners than those possible for general metrics.

Theorem 1.4 (sparse spanners). Given any 0 < ε < 1, any metric with correla-
tion dimension k admits a spanner with O(n3/2ε−O(k)) edges that has stretch (1+ ε).
Moreover, there exist metrics whose correlation dimension is 2, for which any 1.5-
stretch spanner has Ω(n3/2) edges.

1.2. Related work. Many notions of dimension for metric spaces (and for ar-
bitrary measures) have been proposed; see the survey by Clarkson [Cla06] for the
definitions and for their applicability to near-neighbor (NN) search. Some of these
give us strong algorithmic properties which are useful beyond NN-searching. For in-
stance, the strong doubling dimension of a metric M = (V, d) is the smallest value
k such that for all x ∈ V and all r, |B(x, 2r)| ≤ 2k · |B(x, r)|. This notion was
used in [PRR99, KR02, HKRZ02] to develop algorithms for object location in general
metrics and in [KK77, AM05] for routing problems.

The notion of doubling dimension [Ass83, Cla99, GKL03] has been used for a
large number of algorithms, e.g., for NN-searching [Cla99, KL04, KL05, BKL06,
HPM05, CG06], TSP and other optimization problems [Tal04], low-stretch com-
pact routing [Tal04, CGMZ05, Sli05, AGGM06, KRX06a, KRX06b], sparse span-
ners [CGMZ05, HPM05], and other applications [KSW04, KMW05]. Many algorithms
that were originally developed for Euclidean spaces have subsequently been extended
to work for doubling metrics.

For TSP on low-dimensional Euclidean spaces, the first PTASs were given by
Arora [Aro98] and Mitchell [Mit99]; see, e.g., [CL98, ARR99, CLZ02, KR99] for algo-
rithms for other problems in low-dimensional spaces. The run-time of Arora’s algo-

rithm [Aro98] for points in R
k was O(n(log n)O(

√
k· 1ε )k−1

), which was subsequently

improved to 2(
k
ε )

O(k)

n + O(kn log n) [RS99]. For (1 + ε)-approximation for TSP
on metrics with doubling dimension k, the best running time currently known is

2(
k
ε logn)O(k)

[Tal04]. There has been much work on algorithms for TSP on other
restricted classes of inputs: for instance, Arnborg and Proskurowski [AP89] studied
the TSP for graphs with bounded treewidth and gave a dynamic program that solves
TSP on the induced metrics exactly in linear time. For metrics induced by weighted
planar graphs, Klein [Kle05] gave a (1 + ε)-approximation algorithm that runs in

D
ow

nl
oa

de
d 

05
/2

0/
13

 to
 1

47
.8

.2
30

.1
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATING TSP ON GLOBALLY BOUNDED METRICS 591

time O(c1/ε
2

n). Grigni [Gri00] gave quasi-PTASs (QPTAS)1 for metrics induced by
minor-forbidding graphs and bounded-genus graphs.

The concept of correlation fractal dimension [GP83] was used by physicists to
distinguish between a chaotic source and a random source; while it is closely related
to other notions of fractal dimension, it has the advantage of being easily computable.
Let us define it here, since it may be useful to compare our definitions with the
intuition behind the original definitions. Consider an infinite set V . If σ = {xi}i≥1 is a
sequence of points in V , the correlation sum is defined as Cn(r) =

1
n2 |{(i, j) ∈ [n]×[n] |

d(xi, xj) ≤ r}| (i.e., the fraction of pairs at distance at most r from each other).
The correlation integral is then C(r) = limn→∞ Cn(r), and the correlation fractal

dimension for σ is defined to be supr>0 limε→0
logC((1+ε)r)−logC(r)

log(1+ε) . Hence, given a set

of points, the correlation fractal dimension quantifies the rate of growth in the number
of points which can see each other as their range-of-sight increases. This notion
was studied by Belussi and Faloutsos [BF95] (see also [PKF00]) for estimating the
selectivity of spatial queries; Faloutsos and Kamel [FK94] also used fractal dimension
to analyze R-trees. In the next section, we will define a version of this definition for
finite sets.

2. Correlation dimension: Definition and motivation. Given a finite met-
ric M = (V, d), we denote the number of points |V | by n. For radius r > 0, we define
the ball B(x, r) = {y ∈ V | d(x, y) ≤ r}. Given U ⊆ V , define BU (x, r) = B(x, r)∩U .
Recall that a subset N ⊆ V is an ε-cover for V if for all points x ∈ V , there is a
covering point y ∈ N with d(x, y) ≤ ε. A subset N ⊆ V is an ε-packing if for all
x �= y ∈ N , d(x, y) > ε. A subset N ⊆ V is an ε-net if it is both an ε-cover and an
ε-packing. A set N ⊆ V is a net if it is an ε-net for some ε. Inspired by the definitions
mentioned in section 1.2, we give the following definition.

Definition 2.1 (correlation dimension). The correlation dimension dimC(M)
of a metric M = (V, d) is the least k ≥ 0 such that for all r > 0 and for all nets
N ⊆ V , the following inequality holds:

(2.1)
∑
x∈N

|BN (x, 2r)| ≤ 2k ·
∑
x∈N

|BN (x, r)|.

In other words, we want to ensure that the average growth rate of the metric M
is not too large, and the same holds for any net N of the metric. A natural question
is whether we can remove this requirement in Definition 2.1 that the bounded average
growth property (2.1) hold for every net. Unfortunately, just requiring property (2.1)
to hold for the entire metric M is too weak, as we show in section 2.3.

The doubling constant is the least λ such that for all r > 0 and every ball B(x, 2r)
of radius 2r, there exist at most λ balls {B(xi, r)} with radius r such that B(x, 2r) ⊆
∪iB(xi, r); the doubling dimension is defined to be dimD(M) = log2 λ [GKL03]. The
strong doubling dimension (this name is due to [BKL06]; the notion has also been
called the KR-dimension in [GKL03] and the doubling measure in [Cla06]) is the
least k such that for all x ∈ V and radius r,

(2.2) |B(x, 2r)| ≤ 2k|B(x, r)|.
It is known that the doubling dimension is at most four times the strong doubling

dimension [GKL03, Proposition 1.2]. Moreover, it follows directly from the definitions

1An algorithm runs in quasi-polynomial time if there exists a constant c > 0 such that for every
problem instance of size n, the algorithm runs in time 2O((logn)c).
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592 T.-H. HUBERT CHAN AND ANUPAM GUPTA

that the correlation dimension is no more than the strong doubling dimension. In
section 2.2, we prove Theorem 1.1, which claims that dimC(M) ≤ O(dimD(M)) for
any metric space M . This implies that the class of bounded correlation dimension
metrics contains the class of doubling metrics; however, the converse is not true,
since there exist metrics with bounded correlation dimension but unbounded doubling
dimension, as we show in section 2.2.1.

2.1. Small nets. A useful property of correlation dimension is that it has
“small” nets. Since metrics with bounded correlation dimension allow large cliques,
the nets cannot be as small as for bounded doubling dimension.

Lemma 2.2 (small nets). Consider a metric M = (V, d) with dimC(M) ≤ k.
Suppose N is an R-net and S ⊆ N is a subset with diameter at most D. Then, the
size |S| ≤ (2D/R)k/2 ·√|N |.

Proof. Observe that |S|2 ≤ ∑
x∈N |BN (x,D)|. By applying the definition of

correlation dimension repeatedly, we have for each integer t,

(2.3)
∑
x∈N

|BN (x,D)| ≤ 2kt
∑
x∈N

|BN (x,D/2t)|.

Setting t = log2(D/R)� gives the required result.
Define the aspect ratio of a set S to be the ratio of the maximum to the minimum

interpoint distances
maxx,y∈S d(x,y)
minx �=y∈S d(x,y) , and call a set S near-uniform if it has bounded

aspect ratio. Then the above lemma implies that, given any metric whose correlation
dimension is O(1), any near-uniform subset S of points has cardinality O(

√
n), and

hence the doubling constant λ of this metric is also O(
√
n).

2.2. Correlation dimension generalizes doubling. In this section, we prove
Theorem 1.1, relating correlation dimension to doubling dimension; recall that the
theorem claims that the correlation dimension of any metric is bounded above by
nine times its doubling dimension.

Proof of Theorem 1.1. Observe that if M contains at least two points, then
dimD(M) ≥ 1. Hence, it suffices to show that for any nontrivial metric space M =
(V, d), dimC(M) ≤ 8 dimD(M) + 1. Suppose the doubling dimension dimD(M) = k
and the doubling constant λ = 2k; it suffices to show that

(2.4)
∑
x∈V

|B(x, 2r)| ≤ 2λ4
∑
x∈V

|B(x, r)|.

This implies that dimC(M) ≤ log2 2λ
4 = 4 log2 λ+1 = 4 dimD(M)+1. To show (2.1)

for every net N ⊆ V , we can then apply (2.4) to the submetric M ′ = (N, d|N×N ) to
infer ∑

x∈N

|B(x, 2r)| ≤ 24 dimC(M ′)+1
∑
x∈N

|B(x, r)|,

and finally use that dimD(M ′) ≤ 2 dimD(M) to complete the proof of the theorem.
Let us now prove (2.4). We first obtain an upper bound for eachB(x, 2r). Suppose

Y is an r
2 -net of V . Defining Yx := Y ∩B(x, 3r) and By := B(y, r

2 ), we can observe
that

(2.5) B(x, 2r) ⊆
⋃

y∈Yx

By.
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APPROXIMATING TSP ON GLOBALLY BOUNDED METRICS 593

Since Yx is contained in a ball of radius 4r centered at x and the interpoint distance
of Yx is greater than r

2 , it follows from dimD(M) = k that |Yx| ≤ λ4. Hence if each
By were small, i.e., |By| ≤ |B(x, r)|, the right-hand side would be ≤ λ4 · |B(x, r)|.

However, we may be unlucky and have several y ∈ Yx such that |By| > |B(x, r)|.
Define the small centers Sx = {y ∈ Yx | |B(y, r

2 )| ≤ |B(x, r)|} and the set of the large
centers Lx := Yx \ Sx. Note that |Sx|, |Lx| ≤ |Yx| ≤ λ4. Combining this with (2.5),
we get

|B(x, 2r)| ≤
∑
y∈Yx

|By| ≤
∑
y∈Sx

|By|+
∑
y∈Lx

|By|

≤
∑
y∈Sx

|B(x, r)| +
∑
y∈Lx

|By| ≤ λ4|B(x, r)| +
∑
y∈Lx

|By|.

Hence, summing over all x ∈ V , we have

(2.6)
∑
x∈V

|B(x, 2r)| ≤ λ4
∑
x∈V

|B(x, r)| +
∑
x∈V

∑
y∈Lx

|By|.

The first term is what we want: we just need to bound the second term on the right-
hand side of (2.6). Call this term E. Changing the order of summation and defining
Ny := {x ∈ V : y ∈ Lx}, we have

(2.7) E :=
∑
x∈V

∑
y∈Lx

|By| =
∑
y∈Y

∑
x:y∈Lx

|By| =
∑
y∈Y

|Ny| · |By|.

So it now suffices to give an upper bound on |Ny| · |By| for every net point y ∈ Y .
Now we change our perspective to a single net point y ∈ Y . Let N ′

y be an r-net of
Ny. Since all points in Ny are at distance at most 4r from y, it follows that |N ′

y| ≤ λ3.
Moreover, x ∈ Ny implies that |B(x, r)| < |By|. Also, we have Ny ⊆ ∪x∈N ′

y
B(x, r).

It follows that |Ny| ≤ λ3|By|. Plugging this into (2.7), we get

(2.8) E ≤
∑
y∈Y

λ3|By|2.

For any z ∈ By, note that By = B(y, r
2 ) ⊆ B(z, r). Observe that |By| =

∑
z∈By

1,

and hence |By|2 ≤
∑

z∈By
|B(z, r)|. This implies that

(2.9) E ≤ λ3
∑
y∈Y

∑
z∈By

|B(z, r)| = λ3
∑
z∈V

∑
y∈Y :z∈By

|B(z, r)|.

The second equality is a change in the order of summation. Hence, to show that
the expression on the right is at most λ4

∑
x∈V |B(x, r)|, it suffices to show that

|{y ∈ Y | z ∈ By}| ≤ λ. Define Mz := {y ∈ Y | z ∈ By}: note that we want to show
|Mz| ≤ λ. Note that Mz is contained in a ball of radius r

2 centered at z and that any
two distinct points in Mz are more than r

2 apart. From the doubling property of V ,
Mz contains at most λ points. Combining this with (2.6) and (2.9), we have∑

x∈V

|B(x, 2r)| ≤ 2λ4
∑
x∈V

|B(x, r)|,

completing the proof.
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2.2.1. The converse is false. The converse of Theorem 1.1 is not true: a met-
ric with bounded correlation dimension does not necessarily have bounded doubling
dimension. To see this, consider the metric obtained by attaching a path with n−√n
nodes to a clique of size

√
n (Figure 1.1(a)). The doubling dimension of this metric

is at least log2
√
n = 1

2 logn. However, note that the quantity
∑

x∈V |B(x, r)| starts
off at n (for r = 0) and is about Θ(nr) for arbitrary r ≤ n. Moreover, this also holds
true for any ε-net N , with

∑
x∈N |BN (x, r)| being |N | for r ≤ ε and being Θ(|N |r/ε)

for general r ≥ ε. Hence the correlation dimension of this metric is O(1).

2.3. Why require closure under nets? Suppose we define a metric to have
weak correlation dimension k if

(2.10)
∑
x∈V

|B(x, 2r)| ≤ 2k ·
∑
x∈V

|B(x, r)|

holds only for the original metric. Note that here we do not require (2.1) to hold for
all nets N , as for correlation dimension. We can show that this weaker definition is
too inclusive.

Proposition 2.3. Given any metric M = (V, d), one can find a metric M ′ =
(V ∪ V ′, d′) with the restriction d′|V = d, the number of new points |V ′| = |V |, and
the weak correlation dimension of M ′ is 2.

Proof. Without loss of generality, let the minimum nonzero interpoint distance in
V be at least 1. Let ε > 0 be small enough such that εn� 1. Let V ′ be a path on n
new vertices, with edge-lengths on the path being ε, and place the path at distance
1 to some point in V . If we view the original metric as a complete graph on V , the
distances given by metric d′ are the shortest-path distances in the new graph formed
by adding this “tail.”

We now verify that inequality (2.10) holds with some constant k for any r > 0.
The first case is when r ≥ 1

2 . Consider the right-hand side of (2.10). Each point in the

tail sees at least n
2 points for this range of r. Hence, the right-hand side is at least n2

2 .
The left-hand side is at most (2n)2. Hence, the inequality holds with k = 3, which
completes the proof for the case when r ≥ 1/2. For the other case, let 0 < r < 1

2 .
For each original point x ∈ V , |B(x, 2r)| = 1 = |B(x, r)|. For each point x ∈ V ′ in
the tail, |B(x, 2r)| ≤ 2|B(x, r)|. Hence, in this case, the inequality (2.10) holds with
k = 1.

Hence, if we do not require the closure under taking subnets, we can realize
any metric as a submetric of a (slightly larger) low-dimensional metric, making the
definition fairly uninteresting; this motivates why we need to restrict the definition
further. It is an interesting question whether one can obtain an interesting definition
with weaker or different restrictions.

3. Hardness of approximating the correlation dimension. We now show
that it is hard to approximate the correlation dimension of a metric to a factor better
than O(log n); since the correlation dimension always lies in the interval [1, logn], this
proves that only trivial approximation guarantees are possible unless NP ⊆ ZPP .

Theorem 3.1. Given a metric M = (V, d) with n points, it is hard to distinguish
between the cases dimC(M) = O(1) and dimC(M) = Ω(logn), unless NP ⊆ ZPP .

Proof. The proof is by reduction from the hardness of approximation of the
independent set problem. Let G = (V,E) be an instance of independent set, namely
a graph on n vertices, and let α(G) be the size of a maximum independent set in G.
We will construct a metric M such that if α(G) ≤ nk1 then dimC(M) = O(1), and if
α(G) ≥ nk2 , then α(G) = Ω(log n). The following result then implies the hardness.
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Theorem 3.2 (see [H̊as96]). There exist constants 0 < k1 < k2 < 1 such that
given a graph with n vertices, it is hard to distinguish whether the size of a maximum
independent set is smaller than nk1 or larger than nk2 , unless NP ⊆ ZPP .

Define MG to be a metric on n points, each corresponding to a vertex in G,
with unit distance between two points if there is an edge between the corresponding
vertices in G, and distance 2 otherwise. Hence MG is a metric of diameter 2; note
that any ε-net for MG with ε > 1 is an independent set in G, and this is going to be
useful for the hardness.

Let us define a parameter l = 2(1 − k1), where k1 is the smaller constant in
the hardness result for the independent set problem, and let K = nl; note that
1 < K ≤ n2; this is going to be a size parameter. Define R = 2n2; this is going to be a
distance parameter. We now define a metricM = (X, d), with |X | = 2nK+n2K. This
metric M consists of the following three “components”; points in different components
are at distance 10n2KR from each other:

1. Superclique. This component consists of K copies of the metric MG. Two
points lying in different copies of MG are at distance R from each other.

2. Chain-of-clusters. This component consists of a chain of K “clusters,” with
each cluster being a uniform metric on n points (hence unit interpoint dis-
tance). The distance between points from adjacent clusters is 2, and hence
the distance between points in the ith and jth clusters is 2|i− j|.

3. Tail. This component consists of a line metric with Kn2 points, with adjacent
points at distance R from each other.

We now examine the correlation dimension of this metric M . Note that bounding
the correlation dimension involves analyzing the quantity FN (r) =

∑
x∈N |BN (x, r)|

as a function of r, starting from r = 0 and checking whether or not there is a sudden
increase as r doubles. The first claim shows that the only interesting ε-nets are those
with 1 ≤ ε < 2.

Lemma 3.3. If N is an ε-net for the metric M where ε < 1 or ε ≥ 2, then∑
x∈N |BN (x, 2r)| ≤ O(1)

∑
x∈N |BN (x, r)| for any r > 0.

Proof. Let us consider ε-nets for ε < 1. Since the smallest distance in M is 1,
the net N consists of the entire set X . For r < 1, since each point sees only itself,
FN (r) = |N | = Θ(n2K). As r increases past 1 and reaches 2, all the points within
each copy of MG in the superclique, or within each cluster in the chain-of-clusters,
can see one another. This gives a contribution of 2K × n2 = Θ(Kn2) to FN (r), but
since FN (0) = Θ(Kn2) to begin with, the increase is not large. As r increases from
2 to R, the quantity FN (r) also increases to Θ(n2K2) due to the chain-of-clusters.
Hence, when r reaches R, the sudden contribution of Θ(n2K2) due to the superclique
also does not cause any sudden jumps in FN (r). Finally, as r increases beyond R,
nothing interesting happens.

For ε ≥ 2, each copy of MG can contain at most one point in N . Observe there
are at most K such points, and these are at distance R from one another. On the
other hand, in the chain-of-clusters, each uniform metric can have at most one point
in N ; hence, this component becomes a line metric. Finally, the tail is a line metric
with Kn2 points with adjacent distance R (the same as the distance between different
MG’s), and hence the tail, after taking ε-net, counteracts any dense local clustering
effect caused by the MG’s. It follows that in this case FN (2r) = O(1) FN (r) for all
r > 0.

Hence it suffices to consider ε-nets N where 1 ≤ ε < 2. For these values of ε, the
net N can contain only one point from each cluster in the chain-of-clusters; moreover,
for each copy of MG in the superclique, the points that remain in N correspond to
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an independent set in the graph G. As r increases to R, the chain-of-clusters can
give only a contribution of Θ(K2) = o(n2K); hence, if there is a large contribution
to FN (r) due to the superclique as the r reaches R, there would be a sudden increase
in FN (r). Thus the number of net points in each copy of MG in the superclique (i.e.,
the size of the independent sets in G) becomes crucial to the ratio FN (2r)/FN (r) for
R/2 ≤ r < R. The following two lemmas make this intuition formal.

Lemma 3.4. Suppose a maximum independent set of G has size α(G) ≤ nk1 .
Then, for 1 ≤ ε < 2, for any ε-net N of M , FN (2r) = O(1)F (r) for any r > 0.

Proof. As before, the interesting action takes place when R/2 ≤ r < R. Observe
that FN (r) ≥ n2K = n2+l. Since the net points in each MG correspond to an
independent set in G, the contribution to FN (2r) due to the superclique is at most
(nk1K)2 = n2k1+2l = n2+l. Hence, FN (2r) = O(1)FN (r).

Lemma 3.5. Suppose α(G) ≥ nk2 . Then, for some 1 ≤ ε < 2, there exists an
ε-net N and R/2 ≤ r < R such that FN (2r) ≥ Ω(n2(k2−k1))FN (r).

Proof. Let ε = 1.5 and r = R/2. Since G contains an independent set of size at
least nk2 , for each copy MG, we can pick at least nk2 net points to be in N . It follows
as before that FN (r) ≤ O(n2K) = O(n2+l). Observe that the superclique contributes
at least (nk2K)2 = n2k2+2l. Hence, the ratio FN (2r)/FN (r) ≥ Ω(n2k2+2l−2−l) =
Ω(n2(k2−k1)).

Combining the lemmas completes the proof of Theorem 3.1.
Corollary 3.6 (distortion does not preserve correlation dimension). The cor-

relation dimension of a metric can change by a factor of Ω(logn) when it is modified
with distortion 2.

Proof. Observe that for any two graphs G and G′, the corresponding metrics
MG and MG′ as defined in the proof of Theorem 3.1 have distortion 2 from each
other. It follows that the resulting metrics M and M ′ also have distortion 2 from
each other. However, from the proof of Theorem 3.1, it is possible for one to have
correlation dimension at most O(1), while the other has correlation dimension at least
Ω(logn).

Note that the above hardness result does not rule out using correlation dimension
for algorithm design. In particular, the algorithms in this paper do not require us to
know the correlation dimension of the input metric. For example, the algorithm for
finding spanners is completely oblivious of the correlation dimension. On the other
hand, the TSP approximation algorithm of section 6 seems to require this information
at first glance, but this issue can be resolved using standard “guess-and-double” ideas,
as is explained in that section.

4. Sparse spanners. We begin our study of metrics with small correlation di-
mension with a simple construction of sparse spanners; this also serves to introduce the
reader to some basic concepts we use later in the paper. Given a metric M = (V, d),
a c-spanner is a graph G = (V,E) such that the shortest-path distances in G (de-
noted by dG) approximate the distances in d up to a factor of c: i.e., for all x, y ∈ V ,
d(x, y) ≤ dG(x, y) ≤ c · d(x, y). This factor c is called the stretch of the spanner, and
the two quantities of interest for a spanner are the stretch and the number of edges
|E| in the spanner. For motivations behind spanners, see [PS89, ADD+93, CDNS95].

In this section, we show that metrics with bounded correlation dimension admit
(1+ε)-stretch spanners with Oε(min{n1.5, n logΔ}) edges, where Δ is the aspect ratio
of the metric. This result should be contrasted with a trivial lower bound for general
metrics: any spanner with stretch less than three for the shortest path metric for Kn,n

requires Ω(n2) edges.
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4.1. Upper bound for spanners. We have the following upper bound.

Theorem 4.1 (sparse spanner theorem). Given a metric M = (V, d) with
dimC(M) ≤ k, and given ε > 0, there exists a polynomial time algorithm that outputs
a (1 + ε)-spanner with (2 + 1

ε )
O(k) min{n1.5, n logΔ} edges.

The algorithm for constructing sparse spanners for metrics with bounded cor-
relation dimension is the same as that for doubling metrics in [CGMZ05],2 though
the proofs are different. For completeness, we briefly describe the algorithm from
that paper. Given a metric (V, d) with intervertex distance at least 1 and a pa-
rameter ε > 0, define two parameters, γ := 4 + 32

ε and p := log2 γ� + 1. Define
Y−p := V . For i > −p, let Yi be a 2i-net of Yi−1; hence these nets are nested. (Note
that since the intervertex distance is at least 1, Yi = V for −p ≤ i < 0.) For each
net Yi in the sequence, add edges between vertices which belong to the net Yi and
are “close together.” In particular, for i ≥ −p, define the edges at level i to be
Ei = {(u, v) ∈ Yi × Yi | γ · 2i−1 < d(u, v) ≤ γ · 2i}. The union of all these edge sets

Ê = ∪iEi is the spanner returned by the construction. The following lemma (proved

in [CGMZ05]) states that the spanner (V, Ê) preserves distances well.

Lemma 4.2 (low stretch). The graph (V, Ê) forms a (1 + ε)-spanner for (V, d).
Lemma 4.3. If the metric (V, d) has correlation dimension at most k, the number

of edges in Ei is at most 2kp|Yi|. Hence |Ê| ≤ (2 + 1
ε )

O(k)n logΔ.

Proof. Observe that |Ei| ≤
∑

v∈Yi
|BYi(v, γ · 2i)|. By repeatedly using Defini-

tion 2.1 for correlation dimension, and the fact that p = log2 γ�+ 1, it follows that
the sum is bounded by 2kp|Yi|. Now, since each |Yi| ≤ n and 2p = O(ε−1), summing

this bound over all i implies that Ê has at most n logΔ · ε−O(k) edges, where Δ is the
aspect ratio of the metric.

This proves half of Theorem 4.1; we now need to prove the other half of the
bound. The following lemma shows that if there are many edges in Ei, then a large
number of points in the net Yi would no longer belong to the net Yi+p.

Lemma 4.4. Let U := Yi \ Yi+p be the points in Yi that do not belong to the net
Yi+p. Then, the number of edges |Ei| ≤ 1

2 |U |(|U |+ 1).

Proof. By the construction of the edge set Ei, note that if (u, v) ∈ Ei, then
d(u, v) ≤ γ · 2i. Since 2p > γ, at most one of the two vertices {u, v} can still be in
2i+p-net Yi+p, and hence any edge in Ei must have at least one endpoint in U . Now
consider any u ∈ U . If both (x, u) and (y, u) are in Ei, then d(x, y) ≤ γ · 2i+1. Hence,
at most one of {x, y} can survive in Yi+p. Thus, for each node u ∈ U , there can be at
most one edge in Ei connecting to a point outside U ; all other edges in Ei having u
as one endpoint must have some other vertex in U as their other endpoint. It follows
that |Ei| ≤

(|U|
2

)
+ |U |, which completes the proof.

Lemma 4.5. For any r ∈ {0, 1, . . . , p − 1}, the number of edges in all the Ei’s
with i ≡ r (mod p) is

∑
j |Ejp+r | ≤ O(2kp/2n1.5).

Proof. We want to find a function F (·) such that for any j0, if |Yj0p+r| = a,
then

∑
j≥j0
|Ejp+r | ≤ F (a); we want to find the sharpest upper bound function F (·)

possible. Lemma 4.4 implies that if |U | = b, then F (a) ≤ maxb{ 12b(b + 1) + F (a −
b)}. Note that the right-hand side is maximized when b is maximized; however, the
value of b = |U | cannot be too large, since by Lemma 4.3 we have |Ej0p+r| ≤ 2kpa.
Putting these together forces F (a) ≤ 2kpa+F (a− 2kp/2

√
a) and implies that F (a) =

O(2kp/2a1.5). Since any |Yi| ≤ n, the result follows.

2Using well-separated pair decomposition from [Tal04], a similar spanner construction can be
obtained.
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. . .

√
n nodes

√
n −√

n nodes
√
n −

√
n −√

n − · · · nodes

Fig. 4.1. Lower bound example for sparse spanners.

Applying Lemma 4.5 for each r ∈ [p] and summing up the resulting bounds gives

us |Ê| ≤ O(2kp/2pn1.5) ≤ (2 + 1
ε )

O(k)n1.5, proving the second part of Theorem 4.1.
We contrast this with the result that metrics with doubling dimension k admit

(1+ ε)-spanners with O(nε−O(k)) edges [CGMZ05, HPM05]. In the following section,
we show that such a result is not possible with bounded correlation dimension and
that the upper bound in Theorem 4.1 is indeed tight.

4.2. Lower bound for spanners. We have the following lower bound.
Theorem 4.6 (lower bound on sparsity). For every n, there exists a metric with

bounded correlation dimension such that any 1.5-stretch spanner has Ω(n1.5) edges.
The metric in the lower bound is supported on a graph such as that given in

Figure 4.1. Before we give the details of the construction, let us note that it is
essential that this lower bound metric have superpolynomial aspect ratio Δ, for we
can obtain such a spanner with O(n logΔ) edges from Theorem 4.1. Now we give the
formal construction: let β ≥ 4 be a parameter which specifies the difference in distance
scales in different levels of the recursive construction. We define the construction via
an algorithm that takes an integer n, the number of points in the metric, and a positive
real α > 0, the minimum distance in the metric. We denote the corresponding metric
by M(n, α). For ease of exposition, we omit all ceilings or floors from the description,
and moreover, each M(n, α) has a special node u.

Construction for M(n, α).
1. If n is less than some threshold n0 (say, 10), then return a uniform metric of

n points with interpoint distance α; set u to be any point.
2. Otherwise, recursively construct M ′ := M(n − √n, αβ), together with the

special point u′. Replace u′ with a uniform metric U with
√
n+1 points with

interpoint distance α. Each point in U has as distance to any other point the
same as that from u′. Set the special point u to be any point in U .

Lemma 4.7. For all n ≥ 1, the metric M(n, 1) has correlation dimension O(1).
Proof. Let N be an R-net of M(n, 1), where βi−1 ≤ R < βi. Note that by our

construction, we have N = M(ni, β
i) for some ni. Let ui be the corresponding special

point. We can assume ui ∈ N . Consider r ≥ R/2. There are four simple cases:
(1) If 2r < βi, then trivially we have∑

x∈N

|BN (x, 2r)| = ni =
∑
x∈N

|BN (x, r)|.

(2) If 2r ≥ βi > r, then we have∑
x∈N

|BN (x, 2r)| = (
√
ni + 1)2 + (ni −√ni − 1) ≤ 3

∑
x∈N

|BN (x, r)|.D
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(3) Consider 2r ≥ β
̂i > r, where î > i. Define the quantities p := |BN (ui, r)| and

q := |BN (ui, 2r)\BN (ui, r)|. Note p ≥ √ni and q ≤ √ni. Hence,∑
x∈N

|BN (x, 2r)| = (p+ q)2 + (ni − p− q) ≤ 2(p2 + q2) + (ni − p− q)

≤ 3(p2 + ni − p) = 3
∑
x∈N

|BN (x, r)|.

(4) Consider β
̂i+1 > 2r > r ≥ β

̂i, where î ≥ i. Then, p := |BN (ui, 2r)| =
|BN (ui, r)|. Hence,∑

x∈N

|BN (x, 2r)| = p2 + ni − p =
∑
x∈N

|BN (x, r)|.

Hence, any net of the metric M(n, 1) satisfies (2.1).
Theorem 4.8. Any 1.5-spanner for M(n, 1) must have at least Ω(n1.5) edges.
Proof. Let h(n) be the size of a sparsest 1.5-spanner H for M(n, 1). Observe that

M(n, 1) contains a uniform metric U of size
√
n + 1. Hence, there must be an edge

in H between any two vertices in U . Suppose we contract U to a single point in H .
Then, the resulting graph is a 1.5-spanner for M(n−√n, β), and hence it contains at
least h(n −√n) edges. Hence, we have h(n) ≥ (

√
n+ 1)2 + h(n −√n). Solving the

recurrence, we have h(n) ≥ Ω(n1.5).

5. Algorithms for metrics with bounded correlation dimension. Given
an ε ≤ 1, we consider randomized (1 + ε)-approximation algorithms for TSP on a
metric M = (V, d) on n points and dimC = k. Let OPT be the cost of the optimal
TSP.

Our first algorithm returns a tour with expected cost at most (1 + ε)OPT, in

time 2
√
n·(ε−1 logn)O(dimC )

. As a by-product of our techniques, we also get Theo-
rem 1.2: an embedding of the original metric into distribution of graphs with treewidth√
n · (ε−1 log n)O(dimC). To prove these results, we extend the ideas of Arora [Aro02]

and Talwar [Tal04] for TSP on doubling metrics. The main conceptual hurdle we have
to overcome is the use of so-called “O(1)-separating decompositions” in these previous
proofs; these are randomized decompositions of the metric into portions of diameter
D such that two points at distance d lie in different clusters with probability O(d/D).
Metrics with small dimC do not necessarily admit such separating decompositions, so
instead we give a new decomposition procedure for such metrics.

For the second algorithm, which appears in section 6, we show how to improve
our decomposition procedure, and use an improved global charging scheme to get our
main result Theorem 1.3: an algorithm for TSP that returns a tour of expected cost
(1 + ε)OPT and runs in subexponential time.

5.1. An algorithm for TSP in time exp(Õ(
√
n)). We assume that the

aspect ratio of the input metric is O(n/ε); this can be achieved by the following
simple preprocessing step similar to that used in [Aro02, Tal04]. Suppose Δ is the
diameter of the metric M . Let Va be an εaΔ/n-net of M . Suppose OPTa is the length
of an optimal tour just for the points in Va. Then, it follows that OPTa ≤ OPT. From
an optimal tour for the points in Va, we can construct a tour for all points in V , with
extra length at most n · 2εaΔ/n = εa · 2Δ ≤ εaOPT. Hence, we will assume that
Va = V and that our metric has an aspect ratio of at most n/ε. We will also assume
that the closest pair of points is at unit distance, and hence the aspect ratio equals
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the largest distance, which will be denoted by Δ. Moreover, we assume that ε > 1/n,
or else we can solve TSP exactly in 2O(1/ε)-time.

The (Q)PTASs for TSP [Aro02, Tal04] are based on the following general concep-
tual steps. (a) These algorithms first find a good probabilistic hierarchical decompo-
sition into clusters with geometrically decreasing diameters. (b) They choose a small
set of portals in each cluster in this decomposition by taking a suitably fine net of the
cluster, and force the tour to enter and leave the cluster using only these portals—such
a tour is called a portal-respecting tour. The main structure lemma of these papers
shows that the expected cost of the best portal-respecting tour is at most (1+ε) times
its original cost. (c) Finally, the algorithms find the best portal-respecting tour using
dynamic programming. Specifically, for a cluster C, if there are only B portals among
all its child clusters, the time to build the table for C is at most BO(B) = 2O(B logB).
(See, e.g., section 5.3.) Since the total number of clusters is poly(n), total run-time is
poly(n)2O(B logB). For doubling metrics, each cluster has only 2O(dimD) child clusters,
each with O(ε−1 logn)O(dimD) portals; the run-time is quasi-polynomial [Tal04].

Extending this approach to metrics with small correlation dimension, we face
two immediate problems. First, metrics with low correlation dimension do not ad-
mit O(1)-separating decompositions which are traditionally used in step (a) to obtain
probabilistic hierarchical decompositions. Second, while we can ensure that the num-
ber of portals in any single cluster is bounded by O(

√
n) using Lemma 2.2, each

cluster may have as many as
√
n child clusters, and hence the number of portals for

all the child clusters may be close to Θ(n). To take care of these problems, we give
a new partitioning and portaling scheme such that the union of the portals in each
cluster and all its child clusters is only Õ(

√
n); this requires the partitioning and

portal-creation steps to happen in a dependent fashion.

We will need several more definitions for the following algorithms.

Hierarchical decomposition. We consider sequences of partitions of the metric
P0,P1, . . . ,PL, where L := logH(n/ε)�. These partitions have the following proper-
ties: they define DL ≥ Δ and Di−1 := Di/H , where H ≥ 4 is some parameter that
can possibly depend on n. For each i, Pi will be a partition of the point set V into
clusters such that each cluster in the partition has diameter at most Di, and such a
cluster is said to have height i. Note that PL consists of just one cluster containing all
points in V , and the partition P0 has each point in V in its own separate cluster. The
sequence of partitions {Pi}i is a hierarchical decomposition if each height-i cluster is
contained in some height-(i + 1) cluster. Given a partition P and a point z, we use
P(z) to denote the cluster in P that contains z.

Portal assignment. Given a hierarchical decomposition, for each 0 ≤ i ≤ L and
each height-i cluster C, we associate cluster C with a subset U(C) of points within C
known as portals. We impose the condition that a portal for a height-i cluster is also
a portal for some height-j cluster, for all j ≤ i. A child portal for a cluster C ∈ Pi is
a portal in one of its child clusters, i.e., a portal in some cluster C′ ∈ Pi−1 such that
C′ ⊆ C. An assignment of portals to a set of hierarchical clusters is called β-proper
if for all i, for all height-i clusters C, the portal set U(C) is a βDi-cover for the set of
child portals of C.

A path or tour satisfies the portal condition (or is portal-respecting) if it only
enters or leaves a cluster through its portals.

α-padded decomposition. Given a metric (V, d) and a diameter bound D, an
α-padded decomposition is a randomized polynomial-time algorithm that outputs
a random partition with each cluster in this partition having diameter at most D,
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and moreover, for every u, v ∈ V and every r ≥ 0, the probability that the union

B(u, r) ∪ B(v, r) is not contained within a single cluster is at most α · d(u,v)+2r
D .

It is known that algorithms due to Bartal [Bar96] and Fakcharoenphol, Rao, and
Talwar [FRT04] allow us to sample from α-padded decompositions with α = O(log n).
In particular, we will assume the existence of an algorithm Bartal(V,D) with the
following property.

Fact 5.1. There exists a universal constant t > 0 such that given any n point
metric space (V, d) and a parameter D > 0, the algorithm Bartal outputs a random
decomposition into clusters with diameter at most D, such that for all points u, v, and
r > 0, the probability that B(u, r) ∪B(v, r) is separated is at most

t logn · d(u, v) + 2r

D
.

A closely related notion is that of an α-separating decomposition, where we require
only that for any u, v ∈ V , the probability that u, v do not lie in the same cluster

is at most αd(u,v)
D . Note that this corresponds to setting r = 0 in the definition of

an α-padded decomposition; hence, every padded decomposition is also a separating
decomposition.

α-separating hierarchical decomposition. An α-separating hierarchical decomposi-
tion is a randomized polynomial-time algorithm that outputs a random hierarchical
decomposition {Pi}i of the metric such that the height-i decomposition Pi is an α-
separating decomposition simultaneously for each value i ∈ [L]. The aforementioned
algorithms of [Bar96, FRT04] can be used to obtain α-separating hierarchical decom-
positions with α = O(log n).

Given these definitions, we can now state a general lemma indicating the utility
of good separating hierarchical decompositions and portal assignments.

Lemma 5.2. Suppose {Pi} is drawn from an α-separating hierarchical decomposi-
tion of (V, d) with an associated β-proper portal assignment. Then, for any u, v ∈ V ,
the expected length of the shortest portal-respecting path between u and v is at most
(1 + 6Lαβ) · d(u, v), where the expectation is over the randomness of the hierarchical
decomposition.

Proof. Consider the event that u and v are separated in Pi but not separated in
Pi+1. The probability of this event is at most α ·d(u, v)/Di. We show in the following
that under this event, the shortest path from u to v satisfying the portal condition is
at most 6βDi + d(u, v); i.e., the extra distance traveled from u to v is at most 6βDi.

For node u, we define a series of portals in the following way. Let u0 := u. For
j ≥ 1, let uj be the closest height-j portal to uj−1 in the height-j cluster containing
uj−1. Since we assume that the portal assignment is proper, it is possible to go
directly from uj−1 to uj , and d(uj−1, uj) ≤ βDj . By the triangle inequality, d(u, ui) ≤∑i

j=1 βDj ≤ 4
3βDi.

We define vj ’s similarly for v, and we also have d(v, vi) ≤ 4
3βDi.

Observe that we have a portal-respecting tour from u to v in the following way.
We start from u = u0, u1, . . . , ui and then go across to vi, vi−1, . . . , v1, v0 = v. Observe
that d(ui, vi) ≤ 2 · 43βDi + d(u, v). The total distance is at most d(u, v) + 4 · 43βDi ≤
d(u, v) + 6βDi.

Next, summing over all heights i, we can show that the expected extra distance

traveled between u and v is at most
∑L

i=0 α · d(u,v)Di
· 6βDi ≤ 6Lαβ · d(u, v).

Hence, using Lemma 5.2, we can show that even if we require the tour to satisfy
the portal condition, the length of the resulting optimal tour does not increase too
much.
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5.2. A partitioning and portaling algorithm. In order to apply Lemma 5.2,
we need to construct an α-separating hierarchical decomposition and an associated β-
proper portaling scheme such that both α and β are small; moreover, to use dynamic
programming to find the best portal-respecting tour, we want the number of child
portals B for each cluster to be small too. In this section, we show how to achieve
this.

To start off, observe that if the child portals of each cluster form a packing, then
Lemma 2.2 implies that B is small for each cluster. However, using a standard hier-
archical decomposition (e.g., those due to [Bar96, FRT04]) and choosing an arbitrary
net for each cluster as the set of portal does not imply this property, because the
portals near the boundary of two different clusters might be too close together. We
resolve this by using Bartal’s decomposition [Bar96] twice: after obtaining a standard
decomposition, we apply the decomposition technique again to make minor adjust-
ments to the boundaries of clusters. Here is the main result listing the properties of
our hierarchical decomposition and portaling scheme.

Theorem 5.3. Given a metric (V, d) and a parameter β ≤ 1, there is a random-
ized polynomial-time algorithm to generate hierarchical decompositions of the metric
such that

(A1) the diameter of a height-i cluster is guaranteed to be at most (1 + 2β)Di,
where Di = 4i, and

(A2) for every u, v ∈ V , the probability that u, v fall in different clusters at height-i

but fall in the same height-(i + 1) cluster is at most O(log2 n)× d(u,v)
Di

.

Moreover, each cluster C is assigned portals U(C) such that

(B1) (β-proper) for each nonroot cluster C at height-i (i.e., i < L), the set of
portals U(C) forms a β Di-cover of C (and hence also a βDi-cover for its
child portals).

(B2) Moreover, the set of portals in C and in all its children (which are height-
(i− 1) clusters) forms a (β/4)Di−1-packing.

The proof of Theorem 5.3 appears in section 5.2.1, the TSP algorithm obtained
using this theorem appears in section 5.3, and the application of this theorem to
embedding metrics with bounded correlation dimension into small treewidth graphs
appears in section 5.4.

5.2.1. The proof of Theorem 5.3. Let us first present the algorithm claimed in
Theorem 5.3. Recall that the metric (V, d) has unit minimum distance and aspect ratio
Δ = O(n/ε). Define H := 4 and L := logH Δ�. Set DL := Δ and Di−1 := Di/4. As
mentioned above, the hierarchical decomposition is constructed in a top-down fashion.
Each parent cluster is partitioned into child clusters using Bartal’s decomposition
twice; the details appear in Algorithm 1.

Let us first show that the portal assignment satisfies the properties required in
Theorem 5.3(B1)–(B2).

Lemma 5.4 (covering/packing properties). For i < L, for any height-(i + 1)
cluster C produced by the decomposition algorithm, the following two properties hold:

(1) For any child cluster C′ of C, the set U(C′) is a βDi-cover of C′; and
(2) the union of U(C′)’s, over all the child clusters C′ of C is a 1

4βDi-packing.

Proof. We show that if the portal set U(C) is a 1
4βDi+1-packing for a height-(i+1)

cluster C, then for any child cluster C′ of C, the portal set U(C′) is a βDi-cover of
C′, and the union of U(C′)’s over all the child clusters C′ of C is a 1

4βDi-packing.
The lemma then follows by induction on i, the base case following from the fact that
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Algorithm 1 An algorithm for hierarchical decompositions and portal assignment.

1: let PL ← {V } and U(V )← ∅.
2: for i = L− 1 down to 0 do
3: for each height-(i+ 1) cluster C ∈ Pi+1 do

4: P̃i ← Bartal(points C, diameter bound Di)
{note: we inductively ensure U(C) is a 1

4βDi+1 = βDi-packing.}
5: augment U(C) to obtain a βDi-net Û(C) of C

6: let Z ← {z ∈ C | d(z, Û(C) ∩ P̃i(z)) > βDi} be the points that are far from

the points in Û(C) within their height-i cluster
7: let L ← Z, G← C, and U(C)← ∅

[Boundary Adjustment]
8: while L �= ∅ do
9: let u← an arbitrary point in L, r ← βDi/4 lnn.

10: pick z ∈ [0, βDi/4] randomly with probability density function p(z) :=
n

n−1 · 1r e−z/r.
11: let Bu ← B(u, βDi/4 + z).

12: if Bu contains some point c in Û(C) then
13: move all points in Bu ∩G to the height-i cluster currently containing c
14: else
15: let U(C)← U(C) ∪ {u}
16: move all points in Bu ∩G to the height-i cluster currently containing u
17: end if
18: let G← G \Bu, L ← L \Bu

19: end while
20: let the new partition on C be Pi.
21: for each new height-i cluster C′ do
22: let U(C′) := C′ ∩ (Û(C) ∪ U(C))
23: end for
24: end for
25: end for

the only height-L cluster is the entire point set V , and the empty set U(V ) is a trivial
1
4βDL-packing.

Suppose C is a height-(i + 1) cluster returned by the algorithm and the corre-
sponding U(C) is a 1

4βDi+1-packing. We first show the covering property for each
child cluster C′ of C. Since Di+1 = HDi = 4Di, the subset U(C) is a βDi-packing;

it can indeed be augmented to a βDi-net Û(C) for C in step 5. Observe that points

in Û(C) are not reassigned to different height-i clusters in the boundary adjustment
steps (the while loop in steps 8–19).

Let x be a point in C. We claim there is a point in Û(C) ∪ U(C) that is in the
same height-i cluster induced by Pi and also within distance βDi of x.

There are two cases: The first is that x is not in the set Z (which was defined

in step 6). Then, there is a point v ∈ Û(C) ∩ P̃i(x) such that d(x, v) ≤ βDi. Note

that points in Û(C) are not reassigned—so if point x is also not reassigned to another
height-i cluster, it will still be covered by the point v after boundary adjustment. On
the other hand, suppose point x is in some ball Bu (created at step 11) with diameter

at most βDi, which contains a point in Û(C)∪U (C). At step 16, all points in Bu will

D
ow

nl
oa

de
d 

05
/2

0/
13

 to
 1

47
.8

.2
30

.1
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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be removed from G and stay in the same height-i cluster throughout the boundary
adjustment process.

The second case is that x is in Z: then eventually x must be removed from list
L. Then, by a similar argument, at some moment x must be in some ball Bu with
diameter at most βDi, which contains a point in Û(C) ∪ U(C). The same argument
follows.

To complete the proof, we next show that the union of U(C′)’s, which is the same

as Û(C) ∪ U(C), is a 1
4βDi-packing. First, observe that Û(C) is a βDi-net and so is

trivially also a 1
4βDi-packing. Next, observe that whenever a new point u is added to

U(C), it must be at a distance of more than 1
4βDi from Û(C) and existing points in

U(C). Hence, the packing property follows.

Now we begin to give an upper bound on the separation probability from Theo-
rem 5.3(A2). We use the following fact, which follows immediately using techniques
in [Bar96, section 3].

Lemma 5.5. Suppose x, y ∈ V . Then the probability that exactly one of x and y
lies in some Bu during some execution of the while loop (in steps 8–19) is at most

O(log n) · d(x,y)βDi
, and this is independent of the randomness in step 4.

Proof. We use the algorithm in [Bar96, section 3]. Observe that in the while
loop (in steps 8–19), we grow balls of radii at most βDi

4 with centers from Z.

Hence, by the same analysis as Bartal’s, the probability that the points x and

y are separated by some ball Bu is at most O(log |Z|) · d(x,y)βDi
, from which the result

follows because |Z| ≤ n.

Lemma 5.6 (separation probability). For each level i, Pr[(x, y) separated by Pi |
(x, y) not separated by Pi+1] ≤ O(log2 n)d(x,y)Di

.

Observe that the probability that (x, y) is first separated at level i is upper
bounded by this conditional probability, and hence this proves Theorem 5.3(A2).

Proof. Consider x, y ∈ V . Let Bx and By be the balls centered at x and y,

respectively, with radius βDi. We claim that if Bx ∪By is not separated by P̃i, then
x and y cannot be separated by Pi. The reason is as follows: since Bx is contained
in one cluster in P̃i, the point x has a net point in Û(C) in the same cluster within
distance βDi. Moreover, x is at a distance of at least βDi from any point from another
cluster. Hence, it follows that the point x will remain in the same cluster during the
boundary adjustment process. By the same argument for y, it follows that x and y
cannot be separated by Pi.

First, consider the case when d(x, y) ≥ βDi. Hence, by the observation above,
the probability that Pi separates x and y is upper bounded by that of the event that

P̃i separates Bx ∪ By, which is at most O(log n) · d(u,v)+2βDi

Di
, by Fact 5.1. By the

assumption that d(x, y) ≥ βDi, the probability is at most O(log n) · d(x,y)Di
.

Next consider the case when d(x, y) < βDi. By the same argument as before, if

x and y are separated by Pi, then Bx ∪By must be separated by P̃i. The event that
x and y are separated by Pi implies one of the following two events:

(1) x and y are separated by P̃i, or

(2) x and y are not separated by P̃i but are separated in the boundary adjustment
process in the while loop.

The probability of event (1) is at most O(log n) · d(x,y)Di
. Note that event (2) implies

that the union of Bx and By is separated by P̃i, and also that x and y are separated
in the boundary adjustment step. Since these are independent, we can bound the first
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probability using Fact 5.1, and the second using Lemma 5.5, and hence we can upper
bound the probability of event (2) by the following expression:

O(log n) · d(x, y) + 2βDi

Di
· O(log n)

d(x, y)

βDi
≤ O(log2 n)

d(x, y)

Di
.

This completes the proof.
Lemma 5.7 (proof of Theorem 5.3(A1)). The diameter of each cluster in Pi is

at most (1 + 2β)Di.

Proof. In step 4, the diameter of each cluster in P̃i is at most Di; in the boundary
adjustment step, balls of diameter at most βDi can be added to a cluster. Hence, the
diameter of a cluster in Pi is at most (1 + 2β)Di.

Lemmas 5.4, 5.6, and 5.7 complete the proof of Theorem 5.3. Finally, let us record
a useful corollary of Theorem 5.3.

Corollary 5.8. The hierarchical decomposition produced by Theorem 5.3 is
α-separating with α = (1 + 2β) · O(log2 n), and the portal assignment is β-proper.

Proof. Note that the diameter of the height-i clusters is bounded by D′
i = Di(1+

2β). Hence, we would like to find a value α such that the probability of u, v being

separated at height-i is bounded by αd(u,v)
D′

i
. Theorem 5.3(A2) bounds the probability

that a pair of points is first separated at height i. However, if the pair is separated
at height i, the pair must be first separated at some height j for some value j ≥ i.
Now a trivial union bound implies that the probability that a pair (u, v) is separated

at height i is at most
∑

j≥i O(log2 n) × d(u,v)
Dj

≤ O(log2 n) × d(u,v)
Di

, observing that

the Di’s form a geometric series. Finally, since Di = D′
i/(1 + 2β), we get that the

hierarchical decomposition is O(log2 n)/(1 + 2β)-separating. To end, we note that
the portal assignment is a βDi-cover, which also implies that it is a βD′

i-cover, since
Di ≤ D′

i.

5.3. The first TSP algorithm. We now proceed to give our first algorithm
for TSP. We will use Corollary 5.8, which gives us the properties of the hierarchical
decomposition and the portal assignment. Moreover, since the child portals of every
cluster form a packing, we can bound their number, as the following corollary shows.

Corollary 5.9. Suppose the metric space (V, d) has correlation dimension at
most k. For any cluster C created by Algorithm 1, the union of U(C′) over all child
clusters C′ of C has size at most (16/β + 4)k/2

√
n.

Proof. Suppose cluster C is at height i+ 1. By Theorem 5.3(B2), the union S of
U(C′) over all child clusters C′ of C is a 1

4βDi-packing. Hence, it can be extended to
a 1

4βDi-net N for the whole space V . Observe that C has diameter at most 3Di+1.
Since N is a 4iβ-net, C is contained in a ball of radius at most 4i+1 +4iβ centered at
some net point u ∈ N . Hence, S ⊆ BN(u, 4i+1 + 4iβ), which by Lemma 2.2 has size
at most (16/β + 4)k/2

√|N | ≤ (16/β + 4)k/2
√
n.

5.3.1. The dynamic programming framework for solving TSP. We brief-
ly outline a dynamic program to solve TSP given a hierarchical decomposition and its
corresponding portals for each cluster. The basic idea is similar to the constructions
used by Arnbourg and Proskurowski [AP89] and Arora [Aro02], and we give the details
here for completeness.

We describe the dynamic programming table. For each cluster C with its portals
U(C), there are entries indexed by (J, I), where J is a set of unordered distinct pairs of
portals from U(C), and I is a subset of U(C). Any portal that appears in a pair in J
does not appear in I. Note that if r = |U(C)|, then there are at most r!r2 such entries.
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An entry index by (J, I) represents the scenario in which a tour visits the nonportals
of cluster C using entry and exit portals described by pairs in J . Each point in I is
visited while the tour remains in cluster C; hence, in this case, the points in I are not
behaving as portals in the sense that for each point in I, the two points adjacent to
it in the tour are in the cluster C. For each portal x in U(C) that does not appear in
J or I, the adjacent points in the tour are both not in U(C); i.e., the tour enters the
cluster through that portal x and leaves immediately afterward. We keep track of the
length of the portion of the tour that is within the cluster C. More precisely, we count
only the part of the tour that is between u and v for some pair {u, v} in J . The entry
indexed by (J, I) keeps the length of the shortest possible internal segments for tours
consistent with the scenario imposed by (J, I). Note that if we have to construct the
tour, under each entry we have to store the internal segments of the tour as well.

Finally, there are special entries, each of which is indexed by only a single portal
x ∈ U(C). This corresponds to the (suboptimal) case when we enter the cluster C
through x, perform a tour visiting all points in C, and leave through x. The value of
such an entry corresponds to the length of a tour for points in cluster C.

As shown in [AP89], if the number of child portals for a cluster is at most B, then
the time to complete all entries for that cluster is 2O(B logB). Hence, if this holds for
all clusters in the decomposition, the total running time is at most nL · 2O(B logB),
though typically nL is absorbed in the exponential term.

5.3.2. The algorithm. We now use the framework along with Lemma 5.2 and
Theorem 5.3 to give our first algorithm.

Theorem 5.10. For any constant 0 < ε < 1, there is a randomized algorithm
for metric TSP, which, for a metric M = (V, d) with dimC(M) = k, returns a tour

of expected length at most (1 + ε)OPT in time 2((logn)/ε)O(k)√n.

Proof. By Corollary 5.8, the hierarchical decomposition is O(log2 n)-separating,
and the portal assignment is β-proper. Also, the height of the decomposition is
L = O(log n

ε ). Now, if we set β := ε
6Lα , Lemma 5.2 implies that the expected length

of the optimal portal-respecting tour is at most (1 + 6Lαβ)OPT = (1 + ε)OPT.

Finally, we need to bound the running time of the dynamic program: recall that
an upper bound B for the number of portals in each cluster and its children would
imply a BO(B) run-time. By Corollary 5.9, it follows that B ≤ (16/β + 4)k/2

√
n.

Hence, the running time of the algorithm is nL ·2O(B logB) = exp{(ε−1 logn)O(k)√n},
as required.

5.4. Embedding into small treewidth graphs. Observe that our probabilis-
tic hierarchical decomposition procedure actually gives an embedding into a distribu-
tion of low treewidth graphs (see [Die00] for the definition of treewidth). Suppose we
are given a particular hierarchical decomposition together with the portals for each
cluster. We start with the complete weighted graph consistent with the metric and
delete any edge that is going out of a cluster, but not via a portal. If the number of
child portals for each cluster is at most B, then the treewidth of the resulting graph
is at most B. From Lemma 5.2, the expected distortion of the distance between any
pair of points is small. Using the same parameters as in the proof of Theorem 5.10,
we have the following theorem.

Theorem 5.11 (embedding into small treewidth graphs). Given any constant
0 < ε < 1 and k, a metric space of size n with correlation dimension at most k can be
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APPROXIMATING TSP ON GLOBALLY BOUNDED METRICS 607

embedded with distortion 1+ε into a distribution of dominating graphs3 with treewidth
((log n)/ε)O(k)

√
n).

6. A subexponential time (1+ε)-approximation for TSP. In the previous
section, we saw how to get a (1+ε)-approximation algorithm for TSP on metrics with
bounded correlation dimension, essentially using the idea of random embeddings into
small treewidth graphs. This approach gives approximations for problems on metric
spaces which can be solved for small-treewidth graphs. However, similar to the exam-
ple of

√
n-lollipop graph, a metric with bounded correlation dimension can contain an

arbitrary submetric of size
√
n. Hence, from the result of Carroll and Goel [CG08], we

can conclude that in general randomly (1 + ε)-approximating metrics with bounded
correlation dimension require the use of graphs with treewidth of order

√
n.

In this section, we get an improved approximation for TSP using a different ob-
servation inspired by the examples in Figure 1.1: in those instances, the contribution
to the optimal TSP due to the dense substructure is much smaller than that from
the low-dimensional ambient structure. For example, for the subgrid with an (1, 2)-
TSP instance attached to it (Figure 1.1(b)), we can obtain a (1 + ε)-approximation
to TSP on the grid (which contributes about Θ(n) to OPT) and stitch it together
with a näıve 2-approximation to the hard instance (which contributes only Θ(

√
n) to

OPT). Metrics with small correlation dimension do not admit such trivial clusterings
in general, and hence our algorithm must do some kind of clustering for all instances.
Moreover, this indicates that we need a global accounting scheme: the poor approxi-
mation obtained for the hard subproblem needs to be charged to the entire OPT and
not just the optimal tour on the subproblem. Following are some of the issues we
need to address, along with high-level descriptions of how we handle them.

Avoiding large tables. The immediate hurdle to a better run-time is that some
cluster may have Θ(

√
n) child portals, and we have to spend exp(

√
n log

√
n) time

to compute the tables. Our idea here is to set a threshold B0 such that in the
dynamic program, if a cluster has B > B0 portals among its children, we compute, in
linear time, a tour on C that only enters and leaves C once. This “patching” incurs
an increase in length of a constant times the weight of a minimum spanning tree
on the portals. We call this extra length the “MST-loss” and bound this trivially by
B ·diam(C), the number of portals times the diameter of the cluster. This step implies
that we need only spend max{O(B), 2O(B0 logB0)} time on any table computation,
at the expense of these MST-losses. The patching procedure is reminiscent of the
patching from [Aro96] and is described in section 6.2.

Paying for the MST-loss. In contrast to previous works, the “MST-loss” due to
patching cannot be charged locally, and hence we need to charge this to the cost of
the global OPT. Moreover, we may need to account for the MST-loss occurring in
many clusters. Hence we need to show that OPT is large enough, and the MST-loss is
incurred infrequently enough, so that we can charge all the MST-losses over the entire
run of the algorithm to εOPT. To charge MST-losses in a global manner, consider the
hierarchical decomposition. The extra length incurred for patching height-i clusters
is proportional to the number of child portals of the clusters for which patchings are
applied. Now, if the union of all of the height-(i − 1) portals in the decomposition
formed a good packing, Lemma 2.2 would bound their number, and hence also bound
the total MST-loss at height-i of the decomposition tree. However, the techniques in
the previous section can ensure only that the child portals of a single cluster form a

3A weighted graph dominates a metric space (with the same point set) if the shortest-path
distance in the graph between every pair of points is at least that given by the metric space.
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608 T.-H. HUBERT CHAN AND ANUPAM GUPTA

packing, and hence we need to give a new partitioning scheme and portal assignment
algorithm.

A new partitioning and portaling procedure. The algorithm from Theorem 5.3 first
decomposed a cluster C at height-(i + 1), and then adjusted the boundaries of the
child clusters created at height-i so that their portals formed a packing. However, the
union of the portals in the grandchildren of C (i.e., all the clusters at height-(i − 1)
below C) may not form a packing: hence we have to readjust the boundaries created
at height-i yet again. In general, when clusters at a certain level are created, the
boundaries for clusters in all higher levels have to be readjusted. This increases the
probability that a pair of points is separated at each level. To control this, we require
that cluster diameters fall by logarithmic factors instead of by constants. The details
are given in section 6.1.

Avoiding computation of correlation dimension. Finally, in the following, we
assume that we know the value of the correlation dimension. Though Theorem 3.1
shows a hardness result, we can use a “guess-and-verify” strategy: we start with a
small value as our guess for k, and for each net encountered during the run of the
algorithm, we verify in polynomial time the bounded average growth rate property
in (2.1). Whenever property (2.1) is violated for some net, we know the current
estimation of the correlation dimension is too small, so we double the current guess
for k and restart the algorithm. Since the correlation dimension is at most O(log n)
and the running time is doubly exponential in k, the extra time incurred for trying
out smaller values of k does not affect the asymptotic running time.

We formalize the ideas sketched above in the following. The general framework
described in Lemma 5.2 of using a good hierarchical decomposition and portal assign-
ment to approximate TSP still applies here. We give a more sophisticated partitioning
and portaling algorithm in section 6.1 and analyze the MST-loss incurred from patch-
ing in section 6.2.2.

6.1. A modified partitioning and portaling algorithm. The algorithm in
this section is similar to that in section 5.2: the main difference is that when a height-i
partition is performed, all height-j partitions with j < i are modified in order to ensure
that all height-i portals form a packing. Again, let H ≥ 4 be a parameter (possibly
depending on n) to be determined later. Let L := logH(n/ε)�. Set DL := Δ, the
diameter of (V, d), and set Di−1 := Di/H .

We now give a hierarchical decomposition of (V, d) in Algorithm 2; moreover, we
associate a single set of portals Ui for each height i such that Ui is a

1
4βDi-packing,

and moreover, for each height-i cluster C, the set U(C) := Ui ∩ C is a βDi-cover
of Ui−1 ∩ C, the child portals of C. We ensure that once a Ui is formed, it is not
modified, and moreover, the height-i partition of Ui remains invariant throughout the
remaining execution of the algorithm.

Analogous to Theorem 5.3, the hierarchical partition given by Algorithm 2 has
the following properties.

Theorem 6.1. Given a metric (V, d) and a parameter β ≤ 1, Algorithm 2 is a
randomized polynomial-time algorithm that generates a hierarchical decomposition of
the metric such that

(A1) the diameter of each height-i cluster is guaranteed to be at most 4Di, and
(A2) for every u, v ∈ V , the probability that u, v fall in different clusters at height-i

is at most O(log n)L · d(u,v)Di
.

Moreover, for each i, a set Ui of nodes is designated as height-i portals such that

D
ow

nl
oa

de
d 

05
/2

0/
13

 to
 1

47
.8

.2
30

.1
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATING TSP ON GLOBALLY BOUNDED METRICS 609

Algorithm 2 A modified algorithm for hierarchical decompositions and portal as-
signment.

1: let PL ← {V } and UL ← ∅.
2: for i = L− 1 down to 0 do
3: for each height-(i+ 1) cluster C ∈ Pi+1 do
4: Pi ← Bartal(points C, diameter bound Di)
5: end for

{note: we inductively ensure Ui+1 is a 1
4βDi+1 = 1

4βHDi ≥ βDi-packing.}
6: augment Ui+1 to obtain a βDi-net Ûi of V

7: let Z ← {z ∈ V | d(z, Ûi ∩ Pi(z)) > βDi} be the points that are far from the

points in Ûi within their height-i cluster
8: let L ← Z, G← V , and U i ← ∅

[Boundary Adjustment]
9: while L �= ∅ do

10: let u← an arbitrary point in L, r ← βDi/4 lnn.
11: pick z ∈ [0, βDi/4] randomly with probability density function p(z) := n

n−1 ·
1
r e

−z/r.
12: let Bu ← B(u, βDi/4 + z).

13: if Bu contains some point c in Ûi then
14: for each j ≥ i do
15: Modify Pj by moving all points in Bu ∩ G to the height-j cluster cur-

rently containing c
16: end for
17: else
18: let U i ← U i ∪ {u}
19: for each j ≥ i do
20: Modify Pj by moving all points in Bu ∩ G to the height-j cluster cur-

rently containing u
21: end for
22: end if
23: let G← G \Bu, L ← L \Bu

24: end while
25: let Ui ← Ûi ∪ U i

26: for each j ≥ i do

27: let P(i)
j ← Pj

28: end for
{note: the P(i)

j ’s are only for analysis and are not necessary for the algorithm.}
29: end for
30: return {(Pi, Ui)}i≥0

(B1) (β-proper) for each nonroot cluster C at height-i (i.e., 0 < i < L), the set of
portals in Ui ∩ C forms a β Di-cover of Ui−1 ∩C, the child portals of C.

(B2) Moreover, the set of portals Ui is a 1
4βDi-packing.

The proof of the theorem follows from the subsequent lemmas: statement (A1)
follows from Lemma 6.2, statement (A2) follows from Lemma 6.5, and statements
(B1) and (B2) follow from Lemma 6.3.

Lemma 6.2. Each cluster in Pi has diameter at most 4Di.

D
ow

nl
oa

de
d 

05
/2

0/
13

 to
 1

47
.8

.2
30

.1
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

610 T.-H. HUBERT CHAN AND ANUPAM GUPTA

Proof. Using the same argument as in Lemma 5.7, each cluster in Pi has diameter
at most (1 + 2β)Di. After that, for each boundary adjustment step at height j < i,
the diameter of a height-i cluster can increase by at most 2βDj . Observing that Dj

decreases geometrically by a factor of at least 4 gives the result.
Lemma 6.3. For each height i, the set Ui of height-i portals is a 1

4βDi-packing.
Moreover, for each height-i cluster C in Pi, the set Ui ∩ C of portals is a βDi-cover
of C.

Proof. Using exactly the same argument as in Lemma 5.4, we obtain the following

statement for P(i)
i : the set Ui is a 1

4βDi-packing, and for each height-i cluster C in

P(i)
i , the set Ui∩C of portals is a βDi-cover for C. Since Ui is not modified once it is

created, it is still a 1
4βDi-packing after boundary adjustment steps for lower heights.

We next prove that after P(i−1)
i−1 is formed, for each height-i cluster C and each

child cluster C′ of C, Ui(C) = C ∩ Ui is a βDi-cover for Ui−1(C
′) = Ui−1 ∩ C′. To

do this, consider how Ui−1 is formed. At step 6, Ûi−1 is formed. At this moment,
for each height-i cluster C, Ui ∩ C of portals is a βDi-cover for C, and hence also a
βDi-cover for C ∩ Ûi−1. Observe that if ui ∈ Ui and ui−1 ∈ Ûi−1 are in the same
height-i cluster at this moment, then they will always remain in the same height-i
cluster for the remaining execution of the algorithm.

Hence, it suffices to analyze points in U i−1. Observe that when a point u is added
to U i−1, it remains in the same height-(i − 1) cluster in P̃i−1, and hence also in the

same height-i cluster in P(i)
i . It follows that u is at a distance of at most βDi from

some node in Ui∩P(i)
i (u). Since Ui−1 := Ûi−1∪U i−1, it follows that for each height-i

cluster, Ui(C) is a βDi-cover for C ∩ Ui−1.
Next, we analyze the probability that a pair of points u, v is separated in P i

i .
Since the decomposition procedure is quite involved, the analysis requires more care.
Throughout this section, the parameter t refers to the one that comes from Fact 5.1.
We first prove the following lemma, which is analogous to Lemma 5.6. Recall that
Di+1 := HDi; for technical reasons, we assume that H ≥ 4t logn.

Lemma 6.4. Suppose that u, v ∈ V and that Bu and Bv are balls of radius r

centered at u and v, respectively. The probability that Bu ∪Bv is separated by P(i)
i is

at most 4t2 log2 n · d(u,v)+2r
Di

.
Proof. We prove this by induction on i. For i = L, the statement is trivial

because PL = {V } and no points are separated from one another. Now consider

i < L. Let δ := d(u, v)+2r and r′ := r+βDi. Observe that if P(i)
i separates Bu∪Bv,

then at least one of the following two events happens: event E1 is that the partition

P(i+1)
i+1 separates B(u, r′) ∪ B(v, r′), and event E2 is that the partition P̃i separates

B(u, r′) ∪B(v, r′).
The probability of event E1 is, by the induction hypothesis, at most 4t2 log2 n ·

δ+βDi

Di+1
. The probability of event E2 \ E1 is at most t logn · δ+βDi

Di
, by Fact 5.1. Hence,

observing that Di+1 = HDi ≥ 4tDi logn, the probability of the event E1 ∪ E2 is at
most

2t logn · δ + βDi

Di
.

Now we consider two cases to bound this expression: if δ ≥ βDi, then the ex-
pression is at most 4t logn · δ

Di
, and we are done. Else, suppose δ < βDi. Observe

that in order for P(i)
i to separate Bu ∪Bv, in addition to the event E1 ∪ E2, the event

E3 that Bu ∪ Bv is separated during the boundary adjustment step must also occur.
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Note that the probability of E3 given the event E1 ∪E2 is at most t logn · δ
βDi

. Hence,
it follows that the required probability is at most

2t logn · δ + βDi

Di
· t logn · δ

βDi
≤ 4t2 log2 n

δ

Di
,

which completes the inductive step, and hence the proof.
Lemma 6.5. The probability that a pair (u, v) of points is separated by the final

Pi is at most (4t logn)L · d(u,v)Di
= O(log n)L · d(u,v)Di

.
Proof. Observe that if the final Pi separates u and v, then for some j ≤ i, the

partition P(j)
i separates u and v. Let this event be Ej . We consider the probability

of such event Ej . Observe that in order for this to happen, for each j ≤ l < i, the

partition P(l)
l has to separate B(u, βDl−1)∪B(v, βDl−1), due to boundary adjustment

at height l. Let k be the integer such that 2βDk ≤ d(u, v) < 2βDk+1, and i :=
max{k + 1, j}. Hence, the probability of the event Ej is at most

4t2 log2 n · d(u, v) + 2βDi−1

Di
·
⎛⎝ i−1∏

l=i+1

t logn · d(u, v) + 2βDl−1

Dl

⎞⎠ · t logn · 2d(u, v)
βDi

≤ 1

2
· (4t logn)i−j+2 · d(u, v)

Di
,

where the first term comes from Lemma 6.4, and each subsequent terms comes from
Fact 5.1 applied to each boundary adjustment step. Now, summing Pr[Ej ] over j ≤ i
shows that the probability that (u, v) is cut by the final Pi is at most (4t logn)L ·
d(u,v)
Di

.

6.2. Handling large portal sets via patching. As we mentioned earlier, we
want to avoid a situation where a cluster C has many child portals, since computing
the standard TSP table for the cluster would require time exponential in the number
of portals. To avoid this, we do two kinds of patching as we explain below.

6.2.1. Patching a single cluster. The first idea is simple: if we are willing to
pay an extra additive term of O(BD) in the length (where B is the number of portals
and D is the diameter of the cluster), we show that there exists a tour that enters
and leaves cluster C at a single portal. Indeed, we can alter the tour to enter cluster
C through some portal x, perform a traveling salesperson tour on points in cluster C,
and leave cluster C through x. We describe this patching process in more detail in
the following lemmas.

Lemma 6.6. Suppose cluster C has diameter D and that there are at most B
portals in the cluster C. Then, given any portal-respecting tour on the vertices V ,
the tour can be modified such that it enters and leaves the cluster C through a single
portal and has additional length at most 2BD.

Proof. Suppose the height-i cluster C has diameter D. Suppose a given portal-
respecting tour enters and leaves C at the portal pairs {(xj , yj)}rj=1. Let us define
the height of a portal x to be the maximum value h such that x is a portal of some
height-h cluster. Without loss of generality, suppose x1 is a portal of greatest height
among ∪j{xj , yj}. For each j ∈ {1, 2, . . . , r}, use Pj to denote the part of the tour
within C between xj and yj , and use Qj to denote the part of the tour outside C
between yj and xj+1 (where we define xr+1 = x1).

We modify the given tour in the following way. We start at x1 and follow P1 to
y1. Instead of leaving C, we go from y1 to x2 inside cluster C, and then follow P2
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inside C to y2. This goes on until yr is reached, and then we go directly from yr to
x1. Now, all points in cluster C have been visited, and we leave cluster C through x1.
Note that at this stage, we have added distances due to (y1, x2), (y2, x3), . . . , (yr, x1).
Observe that all the xj ’s and yj’s are portals of height-i clusters and hence are also
portals of lower height clusters. Therefore, the patching procedure does not violate
the portal-respecting property for lower height clusters.

Now, we continue to patch the tour from outside. For the time being, imagine
that each portal xj or yj has a twin copy (x′

j or y′j) colocated with it but considered
to be “outside” C. Resuming the tour from x1, we go to x′

1 and on to y′1, follow Q1 to
x′
2, go from x′

2 to y′2, follow Q2 to x′
3, and so on, until we go from y′r via Qr back to

x′
1. Note that at this stage, we added distances due to (x′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
r, y

′
r).

Hence, with at most B portals and the diameter of C being at most D, the total
distance added so far is at most 2rD ≤ BD.

Now, we have to resolve the issue of going from x′
j to y′j, because in reality these

points do not exist. Let pj be the last point in Qj−1 just before reaching x′
j , and let qj

be the first point in Qj just after y′j. Instead of going as pj → x′
j → y′j → qj , we want

to go from pj directly to qj . If this is possible and does not violate the portal condition,
then by the triangle inequality, we cannot increase the tour length by doing so. But
suppose going from pj directly to qj would violate the portal condition. Observe that
both xj and yj are portals for the height-i cluster C. Hence, if pj can go directly
to xj , and yj can go directly to qj in the original tour, this means both pj and qj
are portals of height at least i. Since x1 is a portal of highest height, it is portal
respecting to go from pj to x1 and then to qj . This further adds a distance of D for
each such pj and qj .

Observe that although the point x1 can be visited a multiple number of times
in the whole tour, it is used only once to enter and exit cluster C. Hence, the total
increase in distance is at most 2BD.

The above lemma promises the existence of a good tour that enters and leaves a
cluster C via a single portal, but we must specify how to find the subtour within the
cluster C efficiently. Indeed, if cluster C has too many child portals, it may be too
expensive to perform dynamic programming to find the best tour possible from the
information in C’s child clusters. Hence, we may need a second patching step.

Lemma 6.7. Consider the dynamic program in section 5.3, and look at a cluster
C with diameter D and having B child portals. Suppose l is the length of the shortest
tour for the points in C that is computable from the entries in the child clusters of
C (possibly in 2Ω(B logB) extra time). Then, it is possible to obtain a tour for cluster
C, again from the entries in the child clusters of C, that has length at most l +BD.
Moreover, with the entries in the child clusters already computed, it takes further
O(B) computation time to obtain this tour.

Proof. From each child cluster Cλ of C, pick the entry such that the length lλ of
its partial segments is smallest. Each partial segment corresponds to the part of the
tour within the corresponding child cluster Cλ. Note that the length l of the optimal
tour on C is at least

∑
λ lλ. Since there are at most B child portals and the diameter

of C is D, it takes an extra length of BD to join the partial segments returned by
each child cluster to form a tour on C.

Observe that any portal of C is also a child portal of C. Hence, using Lemmas 6.6
and 6.7, for any cluster C with diameterD and B child portals, we can do the patching
procedure in time O(B) from the entries of its child clusters. After the procedure,
each entry of cluster C is indexed by a single portal and has a value corresponding to
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the length of some tour on cluster C. The resulting increase in length for the overall
tour is at most 3BD.

6.2.2. Applying a patching technique in the dynamic program. We an-
alyze the increase in tour lengths when we apply the patching procedure described
in section 6.2.1. Since the dynamic program is performed in a bottom-up fashion,
patching is also performed starting from lower height clusters.

Let OPT0 be the length of the optimal tour returned by the dynamic program
(without patching) described in section 5.3. Suppose patching is performed for all
the clusters with heights j ≤ i that had more than B0 child portals, and no patching
is performed for clusters at heights higher than i. Let the length of the best tour
obtainable with such a partial patching be OPTi. We want to bound OPTL, which is
the length of the tour returned by the dynamic program when patching is performed
whenever appropriate. We do this by the recurrence in the following lemma, which
bounds the extra length incurred by patching all clusters at one level. (Recall that k
is the correlation dimension of the metric.)

Lemma 6.8. For 0 ≤ i < L, OPTi+1 ≤ OPTi +
3

2B0
(8Hβ )k+1OPT.

Proof. Suppose {Cλ : λ ∈ Λ} is the set of height-(i + 1) clusters such that each
one has Bλ > B0 child portals. Observe that the set of height-i portals is a 1

4βDi-
packing. Hence, we can extend it to a 1

4βDi-net Ni for V . From section 6.2.1, it
follows that the extra length to patch up all appropriate height-(i + 1) clusters is at
most 3

∑
λ BλDi+1. Now, from the definition of correlation dimension, we have for

all integers t, ∑
x∈Ni

|BNi(x,Di+1)| ≤ 2kt
∑
x∈Ni

|BNi(x, 2
−t ·Di+1)|.

By setting t := log2(4Di+1/βDi)� and recalling Di+1 = HDi, we have

(6.1)
∑
λ

B2
λ ≤

∑
x∈Ni

|BNi(x,Di+1)| ≤
(
8H

β

)k

|Ni|.

Observing that each Bλ > B0, we have

(6.2) |Λ| ≤ 1

B2
0

(
8H

β

)k

|Ni|.

Using the Cauchy–Schwarz inequality and inequalities (6.1) and (6.2), we have

(6.3)
∑
λ

Bλ ≤
√
|Λ| ·

∑
λ

B2
λ.

By substituting (6.1) and (6.2) into (6.3), we have

∑
λ

Bλ ≤ 1

B0

(
8H

β

)k

|Ni|.

Finally, observing that OPT ≥ 1
4βDi|Ni|, we conclude that the extra length incurred

by patching all appropriate height-(i+ 1) clusters is at most

3
∑
λ

BλDi+1 ≤ 3

2B0

(
8H

β

)k+1

OPT.
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Applying Lemma 6.8, we get that by patching whenever applicable, the total
extra length incurred is small:

(6.4) OPTL ≤ OPT0 +
3L

2B0

(
8H

β

)k+1

OPT.

6.3. The subexponential time TSP algorithm. We improve on the TSP
algorithm from section 5.3 using the enhanced partitioning, portaling, and patching
ideas to get the following result.

Theorem 6.9 (subexponential time algorithm for TSP). For any constant
k (independent of n), there is a randomized (1 + ε)-approximation algorithm for
TSP on metrics of size n with correlation dimension at most k that runs in time

exp{(ε−12
√
logn log log n)4k} = 2O(nδε−O(k)) for any δ > 0.

Proof. We create a probabilistic hierarchical decomposition, where the diameter
at height-i is Di = Hi for some parameter H = Ω(logn). Hence the depth of the tree
is L := Θ(logH(n/ε)). As indicated above (and proved in Lemma 6.5), the probability

that (u, v) are separated at level-i is at most αd(u,v)
Di

, with α = O(log n)L. Moreover,
portals in clusters of diameter Di form a βDi-cover, and since there are L levels, the
total increase in the TSP length is O(αβ L)OPT. To make this at most ε/2, we set
β = O(ε/Lα).

Finally, from an analysis in section 6.2.2, the length increase from patching is
3L
2B0

(8Hβ )k+1OPT. To make this at most ε/2 as well, we pick B0 such that 3L
2B0

(8Hβ )k+1

= ε/2.
The only parameter left to be chosen isH . Observe that the running time depends

on B0, and so H is chosen to minimize B0. Note that

B0 =

(
L

ε

)k+2

O(Hα)k+1.

Observe thatHα is the dominating term and also that asH increases, α decreases.
It happens that in this case the best value is attained when H = α. This is satisfied
when logH =

√
log n

ε log logn.

It follows that it suffices to set the threshold B0 = ε−(k+2)22(k+1)
√

log n
ε log logn ≤

(ε−1 ·2
√
log n log log n)3k, recalling ε > 1

n . Hence, we obtain a tour with expected length
(1 + ε) times that of the optimal tour in time

nL · 2O(B0 logB0) = exp{(ε−1 · 2
√
logn log logn)4k} = 2O(nδε−O(k))

for any δ > 0.

7. Summary and conclusions. In this paper, we considered a global notion
of dimension, which tries to capture the “average” complexity of metrics: our notion
of correlation dimension captures metrics that potentially contain small near-uniform
metrics (of size O(

√
n)) but still have small average growth-rate. We showed that

metrics with a low correlation dimension do indeed admit efficient algorithms for a
variety of problems.

Many questions remain open: can we improve the running time of our algorithm
for TSP? A more open-ended question is how to define other notions of dimension for
metric spaces: it is unlikely that one notion can capture the complexity of metrics,
and it seems reasonable to consider several definitions whose properties can then be
exploited under the appropriate circumstances.
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