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ABSTRACT 
In cancer genomes, there are frequent copy number aberration (CNA) events, some of which are believed to be tumori- 
genic. While copy numbers can be detected by a number of technologies, e.g., SNP arrays, their relations with gene 
expressions are not well clarified. Here, we describe an approach to visualize the global relations between copy num- 
bers and gene expressions using expression microarrays. We mapped the gene expression signals detected by microar- 
ray probesets onto a reference human genome, the RefSeq, based on their annotated physical positions, resulting in a 
landscape that we called expressogram. To study the expressograms under various conditions and their relations with 
cytogenetic events, such as CNAs, we obtained three classes of array samples, namely samples of a cancer (e.g., liver 
cancer), normal samples in the same tissue, and normal samples of other tissues. We developed a Bayesian based algo- 
rithm to estimate a background signal from the latter two sources for the cancer samples. By subtracting the estimated 
background from the raw signals of the cancer samples, and subjecting the differences to a kernel-based smoothing 
scheme, we produced an expressogram that shows strong consistency with the copy numbers. This indicates that copy 
numbers are on average positively correlated with and have strong impacts on gene expressions. To further explore the 
applicability of these findings, we submit the expressograms to the significant CNA detection algorithm GISTIC. The 
results strongly indicate that expressogram can also be used to infer copy number events and significant regions of CNA 
affected dysregulation. 
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1. Introduction 
The copy numbers of genes in normal somatic chromo- 
somes are assumed to be two, i.e., one copy from father 
and the other from mother. But in cancer tissues, regions 
of the genome can experience copy amplifications or 
deletions, called copy number aberrations (CNAs). CNAs 
are very frequent in cancer genomes [1] and with the aid 
of recent development in biotechnologies, there are mas- 
sive efforts to generate measurements of CNAs in vari- 
ous cancers [2,3]. However, there have not been uniform 
theories on the cause of CNAs, and their relations with 
gene expressions and cancer, although there is a general 
speculation that some of these CNAs may have initiating 
or driving roles in the formation and development of 
cancer [4]. Algorithms such as GISTIC [5] have been 
developed to identify CNA regions that potentially har- 
bor such events. An immediate question following such 
efforts then is, if some of the CNAs are cancer causing 
events, what are the remaining CNAs? This question is 
important because if the remaining CNAs can be con- 
firmed to be either mere consequences or by-products, 

the role of the cancer-causing CNAs can be further es- 
tablished. 

The answer to this question may be found by a general 
inspection on the relations between copy numbers and 
their immediate effects, the gene expressions, which can 
now be readily measured by a plethora of methods, in- 
cluding gene expression microarrays. And while indi- 
vidual copy number changes may cause a gene to be ei- 
ther up or down regulated [6], some studies [7] also sug- 
gest that copy numbers do positively affect gene expres- 
sions. If the latter holds in the general settings, it means 
that we may be able to visualize the gene expression 
landscape, or as we called it, the expressogram, of a sam- 
ple or a group of samples, with respect to their cytoge- 
netic profiles, i.e., the genome-wide copy number mea- 
surements. 

This visualization is necessary for several reasons. 
First, it may clarify the copy number-expression rela- 

tion simultaneously across chromosomes and across dif- 
ferent samples. Particularly, when comparing the ex- 
pressogram with the copy number landscapes by other 
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means of measurements, such as SNP arrays, it can re- 
veal how copy numbers are generally affecting gene ex- 
pressions. 

Second, it may help pinpoint regions of disease-spe- 
cific dysregulation. CNAs typically harbor tens, hun- 
dreds, or even thousands of genes, all of which have 
uniform copy number states. But the impact on individu- 
al genes, and regions may be different. For example, 
some genes may be physically adjacent and share some 
regulating mechanisms [8], as a result of which, these 
genes tend to show region specific co-regulations. These 
co-regulations by CNAs are often important in cancer. 

Third, conventional CNA inferences are mostly based 
on array CGH, SNP arrays, etc., but some of them suffer 
from errors [9]. This visualization technique may serve 
as an independent source of measurements to help con- 
firm that certain regions are real CNAs. 

Fourth, instead of relying on SNP arrays for detection 
of recurrent CNAs for search of potential cancer causing 
events, the expressogram signals may be used to search 
for genes that are directly and recurrently affected by 
copy numbers. These genes may be more directly related 
to the cancer process than those candidates uncovered by 
SNP arrays. 

Toward this end, we propose an approach to visualize 
gene expression landscapes, i.e., expressograms, in can- 
cers using gene expression microarrays. The following 
sections discuss the algorithms and results of this ap- 
proach. 

2. Algorithm 
A direct approach to visualize the expressions in the 
chromosome positions is to plot the signals against the 
cytogenetic positions, such as in the work by [10], which 
may be subject to huge noises and biases. Here, we use a 
two-stage approach. First, a background landscape is 
estimated. Second, the estimated background is sub- 
tracted from the diseased samples under study, before the 
difference signals are subjected to a smoothing filter.  

2.1. Background Estimation 
Three gene expression datasets are obtained, namely, the 
dataset of samples under study, often from a disease (e.g., 
certain cancers), denoted as  ; the dataset of normal 
samples in the same tissue as the studying disease, de- 
noted as n ; and the dataset of samples in other normal 
tissues that will be used as the prior information for the 
background, denoted as p . 

For a probeset {1,.., }j J∈ , where J  is the total 
number of probesets, the objective is to derive a probe- 
set-specific background signal js  from n  and p . 
The reason for using both n  and p  is that very 
often, the n  dataset is small and not really normal 

because these normal references are often tissues donated 
by patients dying of other reasons, or patients having 
other conditions in the same tissue. As a result, they may 
not truly reflect the normal conditions in the studying 
tissue in the population. Also, most of the genes are sup- 
posed to be tissue-non-specific, i.e., their expressions are 
not tissue-dependent. Therefore, expressions of a gene 
(or probeset) from other tissues may be used as a prior 
information for a Bayesian inference of the true back- 
ground signal js . Specifically, let the mean signal from 

n  be js , the Bayesian estimate of the true signal js  
is given by: 

( | ) ( ) ( | ) / ( )j j j j j jP s s P s P s s P s=       (2.1) 

where ( )jP s  is a constant. Assuming a Gaussian dis- 
tributions for ( )jP s , the maximum a posteriori (MAP) 
[11] estimation of js , ˆ js , is given by: 
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where N  is the number of samples in n , jµ  is the 
mean of probeset j  in p , and jσ  is the standard 
deviation of probeset j  in n  and jσ  that in p . 

From Equation (2.2), it can be seen that if N  and/or 
jσ  are small, the estimate ˆ js  will largely depend on 

the population estimate, i.e., jµ . This is favorable be- 
cause often the normal samples are noisy and have small 
sample sizes. Hopefully, this will produce a more stable 
estimate of the background signals. 

2.2. Subtracting Background and Smoothing the 
Signals 

Suppose there are n  samples in  . Given a sample 
{1,.., }i n∈ , and the expression for the j -th probeset in 

i , ,i je , the difference signal with background subtracted 
is given by: , , ˆi j i j jf e s= − . Assuming that the probesets 
were pre-arranged in such an order that ,i jf  and , 1i jf +  
represent the signals of two physically adjacent probesets 
in the human genome (e.g., NCBI RefSeq Build 37.1), 
then the series ,{ }i jf  represents the gene expression 
landscape of i , referred to as the expressogram. 

A major issue in visualizing ,{ }i jf  is that on top of 
cytogenetic factors, it is also regulated by a large number 
of other unknown factors, producing tremendous high- 
frequency noises across the chromosomal positions. Fur- 
ther, the background estimate from previous step is non- 
sample-specific (i.e., all disease samples use the same 
background signals), which may produce some bias for 
the studying samples. To reduce these effects, a kernel- 
based smoothing scheme using the Nadaraya-Watson 
algorithm [12] is adopted. Specifically, given a cytoge- 
netic position x , the smoothed difference signal xf  is 
given by: 



P. K. CHEN, Y. S. HUNG 

Copyright © 2013 SciRes.                                                                                 ENG 

498 

( )

( )

h j j
j

x
h j

j

K X x f
f

K X x
∈

∈

−
=

−

∑

∑






          (2.3) 

where hK  is a kernel function with window width h , 
  is the set of points in the window and jX  is the 
chromosomal position for jf . When the Gaussian kernel 
is used, h  is the variance parameter σ . Equation (2.3) 
acts as a low-pass 1-D spatial filter and the resulting sig- 
nal ,{ }i jf  represents a location-dependent signal that 
may also reflect the impact of cytogenetic factors on ex- 
pressions. 

3. Results 
To test the proposed visualization method, we applied it 
to microarray measurements of a cancer, hepatocellular 
carcinoma (HCC), i.e., liver cancer. The   dataset con- 
sists of 90 samples by Chiang et al. [13] (GEO accession 
number: GSE9829), and the n  dataset consists of 58 
normal liver microarray expressions collected from six 
studies (GEO accession numbers: GSE7117, GSE14951, 
GSE19665, GSE23343, GSE29722 and GSE14668). To 
construct the dataset p  for estimating the prior values 
of the probesets, we select a number of tissues, including 
normal colorectal (GSE9254), pancreatic (GSE22780), 
thyroid (GSE3678), ovarian (GSE14407), endometrial 
(GSE7305), breast (GSE30010), skin (GSE14905) and 
esophageal (GSE26886) tissues from the controls of dis- 
ease studies, or from the samples of non-disease studies. 
Most of these selected tissues are made up of epithelial 
cells and share some common attributes with hepatocytes 
(liver cells), such as fast proliferation rates. Finally, 100 
samples were collected for p . All samples in the three 
datasets are from a single microarray platform, i.e., the 
Human Genome U133 Plus 2.0 array (Affymetrix, CA), 
and are pre-processed with the RMA algorithm [14]. 

Another 90 SNP arrays matching with the 90 expres- 
sions arrays in   were also downloaded from GSE9829 
and preprocessed with the Affymetrix CNAT algorithm 
[15]. Figure 1A shows the copy number landscape of 
these 90 samples. 

The background signal estimation and smoothing were 
conducted as described in the previous section. To see 
that the two-step approach does result in better distinc- 
tion between the expression probesets with CNAs and 
those without, we use the SNP array inferred copy num- 
bers as ground truth, and assigned each expression pro- 
beset a copy number state based on the measurement of 
its closest SNP probeset. The three solid-line distribu- 
tions (from left, in blue, black and red) in Figure 2 re- 
present the difference signals of genes having copy 
number losses, normal (i.e., two) and gains, respectively. 
It can be seen that there is a clear positive correlation 
between the SNP-inferred copy number states and the 

gene expressions. The background signals used in these 
curves are based on { }js , i.e., without Bayesian updates. 
The three dashed-line curves in the same colors corres- 
pond to the difference signals undergoing the Bayesian 
procedure using Equation (2.2). It is very clear that the 
Bayesian step greatly increases the contrast among dif- 
ference signals with different copy number states. 

We then used the difference signals obtained by Equa- 
tion (2.3) to produce an expressogram, i.e., a visualiza- 
tion of the landscape of gene expression by heatmap 
tools. Figure 1B shows the result. It can be seen that 
there is a strong consistency between the copy number 
landscapes and the expressogram in Figure 1. 

Next, we submitted the difference signals to GISTIC 
[5] (provided by genepattern.broadinstitute.org), a tool 
used in SNP arrays to identify recurrent CNAs, to find 
the recurrent up- or down-regulations. Figure 3 shows 
the result. Comparing the results in Figures 3A and B, it 
can be seen that most of the features are very similar. 
This suggests that the expressogram can be used to pin- 
point regions of recurrent dysregulations that are caused 
by CNAs. 

4. Conclusions 
In summary, we have described a novel visualization of 
gene expressions in the cancer genomes. We make use of 
extensive information, both from samples of normal tis- 
sue under study and those from other normal human tis- 
sues to predict the background signal before it is sub- 
tracted from the raw signal. The resulting difference signals 
are subjected to Kernel-based smoothing. The expresso- 
gram provides a wonderful visualization of gene expres- 
sion across the genome. This study is meaningful in sev- 
eral aspects. 

First, the expressogram clearly corresponds to the cy- 
togenetic changes, e.g., CNAs. This indicates that copy 
numbers of most genes do affect their expressions. But 
the effect is marginal, i.e., it becomes obvious only after 
the background signals are subtracted. And how some of 
these effects go on to produce cancer-driving conse- 
quences is yet to be determined. 

Second, the recurrent regions of gene expressions ar- 
rays are highly consistent with that from SNP arrays. 
This suggests that in cases where SNP arrays are not 
available, our method provides an alternative to generate 
the GISTIC landscape for identification of recurrent 
CNAs. Particularly, this method has advantage over the 
sample landscape by SNP arrays, as it directly shows the 
recurrence at the expression level, which is believed to 
have more biological importance. 
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Figure 1. The copy number landscape of hepatocellular carcinoma (HCC) by SNP arrays. (B) Expressogram of the same 
samples by our algorithm using gene expression microarrays. Color codes for (A): red, copy number gains; blue, copy num- 
ber losses. Color codes for (B): red, up-regulation; black or dark green, neutral; light green, down-regulation. In both (A) 
and (B), the horizontal axes represent the chromosomal positions and the vertical dashed lines represent chromosomal 
boundaries. Each row in both plots represents an HCC sample. (C) The raw difference signals (dots) and smoothed signals 
(green) of a specific example, B25. Also shown is the copy number profile of B25 by SNP array. Note the effects of CNAs on 
the raw and smoothed signals. 
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Figure 2. The distribution of difference signals { },


i jf  with respect to different copy number states as measured by SNP ar-

rays. Blue curves are the distributions of difference sig- nals with copy number losses. Black curves are the distributions of 
those with copy number neutral (=2), and Red curves copy number gains. The three solid-line distributions are based on 
background signals from the estimate of n , while the dashed lines represent those based on background signals updated 
with prior values. 
 

 
Figure 3. The GISTIC landscapes (A) using our difference signals, and (B) using SNP arrays for the hepatocellular carcino- 
ma samples. The horizontal axes are the chromosomes while the vertical axes are the log10q-values. The four green lines are 
the qv significance thresholds at 0.25. The blue peaks correspond to significant down-regulations in (A) and copy number 
losses in (B), while the red ones correspond to significant up-regulations in (A) and copy number gains in (B).   
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