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Abstract

The objective of this study is to evaluate the effectiveness of different CFRP rehabilitation
schemes in promoting the seismic performance of existing non-ductile RC frames. Three non-
ductile RC frames with different heights representing low-, medium-, and high-rise buildings
were investigated. Six typical rehabilitation patterns using CFRP composites were considered
and the static pushover and dynamic time-history analyses were conducted for predicting the
seismic behavior of frames before and after retrofitting. The seismic performance is evaluated
in terms of the inter-story drift (ID) ratio, the base shear-top displacement and the maximum
applied peak ground acceleration (PGA). It was found that for low-rise frames, the seismic
performance is enhanced effectively by only retrofitting the columns of the ground floor.
However, for medium-, and high-rise frames, rehabilitation of columns only was not as
effective as rehabilitation of both columns and beams. The CFRP rehabilitation should result
in the weak floor transfer of frames.

Keywords. CFRP; Dynamic analysis, Non-ductile RC frames; Perform-3D; Rehabilitation;
Seismic performance; Static pushover analysis

1. Introduction

Most of the existing reinforced concrete (RC) frames designed according to old building
codes or gravity loads have the risk of collapses when subjected to the future strong
earthquakes, due to insufficient lateral reinforcement of frame columns, beams, and joints.
Such frames lack of lateral ductility and load-carrying capacity, namely non-ductile frames.
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In order to reduce the risk of structural collapses, there is an urgent need to strengthen
existing RC frames to meet the requirements of the revised seismic codes.

In the past decades, fiber-reinforced polymer (FRP) composite materials have been widely
used to retrofit or strengthen RC structures due to their light weight, high strength, and ease of
application'*?. The FRP composite materials are usually used by wrapping or partialy
wrapping the structural elements such as columns and beams to increase their ductility and
shear strength capacity. As a result, most of existing researches have been conducted on the
FRP retrofit of RC frame members, but few studies have investigated the seismic behaviour
of FRP retrofit frame structures’®. Research on the principles and theoretical developments
of the conceptua retrofit strategy and seismic retrofit design method of existing RC frames
are still much more limited.

The objective of this study is to investigate the effect of different FRP retrofit strategy on the
seismic behaviour of non-ductile frame structures. Three non-ductile RC frames with
different heights representing low-, medium-, and high-rise buildings, respectively, were
designed and investigated. Six typical retrofit patterns such as retrofit the columns and/or
beams along the lower half of the structure height and/or full height were studied for each
frame. The pushover and time-history analysis were conducted based on Perform-3D software
to evaluate the seismic performance of the retrofitted frames. The conclusions were drawn by
assessing the seismic performance enhancement in terms of the inter-story drift ratio, base
shear-top displacement, and the maximum applied peak ground acceleration resisted by the
frames.

2. Details of designed buildings for evaluation

To accurately evauate the condition and the seismic performances of existing RC frames,
three bare frames designed according to the old codes were selected for this research. The
buildings had 5, 10, and 15 storeys to represent low-, medium-, and high-rise non-ductile RC
frames, respectively. All frames had the same rectangular plan of 18 m x 30 m, which
consisted of 3 and 5 symmetrical bays, respectively, where the bay width was 6 m. The floors
were designed to carry their own weight as well as live load. The three frames had the same
storey height of 4.5 mm at the first story and a constant height of 3.6 m at the rest of floors.
The total heights of the three frames were 32.4, 72.9, 113.4 m, respectively. The dimensions
of the beam section were assumed to be the same for the three structures, and the column
section also remained constant aong the whole building height for 5-, 10-story buildings,
while for 15-story frame, the column dimensions were varied along the height according to
the change of axial load acting on each group of columns. For existing buildings, the
compressive strength of concrete was assumed to be 24 MPa and the yield strength of
longitudinal and hoop stedl reinforcement was set to be 360 MPa and 260 MPa. The elastic
modulus of concrete and steel was taken as 30 GPa and 200 GPa, respectively. The density
and Poisson’s ratio was taken as 25 kN/m?® and 0.2, respectively.

3. Retrofit strategy

In order to evaluate the effect of varying distributions of FRP rehabilitation on the seismic
performance of non-ductile RC frames and select an appropriate retrofitting method, six
different retrofit strategies were investigated for each of the studied structures. The studied
patterns included retrofit columns only (1) in the first floor for low- and medium-rise frames
and in the lower 5 floors for high-rise frame and (2) in the lower 3, 5 and 10 floors for low-,
medium- and high-rise frames, respectively, and (3) along the full height; and retrofit all the
beams along the full height and selected columns with the same positions as patterns (1) to (3).
A high tensile strength uni-directional carbon fiber-reinforced polymer (CFRP) material with
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the nominal thickness of 0.167 mm was designed to retrofit the frame columns and beams.
The columns were retrofitted by wrapping 5 layers of CFRP composites in the lateral
direction. The beams were retrofitted using two patterns. For low- and medium-rise frames,
the beams were retrofitted by external bonding 3 layers of CFRP composites at their upper
and bottom surfaces along the longitudinal axes to increase flexural capacity while for high-
rise frame, beside the strengthened in flexural capacity the shear capacity was aso
strengthened by using one layer of CFRP U-wraps with the spacing center of 100 mm. The
ultimate tensile strength and corresponding strain and elasticity modulus of wrapped CFRP
composite were 4340 M Pa, 0.0178 and 244 GPa, respectively.

4. Modeling of the bare and CFRP-strengthened frames

Nonlinear static pushover and dynamic analyses were performed using Perform-3D, which is
a software widely used by many researchers to evaluate the seismic performance of building
structures. Because of the symmetry in plan, al the three frames were modelled in 2D for
computational efficiency. Beams and columns were modelled using a nonlinear beam-column
element of distributed plasticity with fiber section. To increase the accuracy of the analysis,
each section consisted of discrete steel and concrete fibers. The steel reinforcement and
concrete characteristics were modelled based on the axial stress-strain models. An ideal
elastic-plastic material was used to model the longitudinal steel reinforcement and a trilinear
constitutive model was adopted to represent the concrete material. For the norma RC
members, the characteristics of the stress-strain model were obtained from the stress-strain
model proposed by Guo et a.l*¥ for plain and reinforced concrete while for CFRP-
strengthened members, the characteristics were determined using the model proposed by
Wang et a.*** for FRP-confined reinforced concrete. The masses at each storey were
lumped at the beam-column joints. Elastic damping value of 5% was set for all frames. The
hypothesis of stiff floor slabs and the second order (P-delta) effects were also included in the
analysis.

5. Validation of the analytical results

The experimental data from a quasi-static lateral load test and a shake table test
(http://risedr.tongji.edu.cn/sysik.asp) were used to validate the reliability and accuracy of the
analytical results of the bare frame developed in Perform-3D software.
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Fig.1 Lateral force versusroof displacement

The quasi-static test which conducted by Xu et al. was used to validate the results of pushover
analysis. The tested specimen was a 2D bare RC frame with 2 bays and 3 storeys. It was
found that the analytically natural period of the specimen was 0.0817 s which was close to the
test result of 0.091 s. Moreover, the inter-storey drift ratios at peak lateral force obtained from
analysis were 1/100, 1/80 and 1/99 for the first to third floor, respectively, which were aso

Page 3 of 8



close to the test results of 1/80, 1/71 and 1/87, respectively. Fig. 1 shows the comparison of
lateral force versus roof displacement curves between experimental and analytical. The results
indicate that analytical results agree well with the test results.

The shaking table test which was conducted in Tongji University by Lu et al. was used to
validate the accuracy of time history analysis. The tested specimen was a 3D bare RC frame
which consisted of one bay twelve storeys regular in plan and elevation. Four scaled ground
motion records (i.e. EI Centro, Kobe, Shangha artificial and bedrock earthquake ground
motion records) were used in the test. The experimental and analytical displacement histories
of the bare frame are compared in Fig. 2 (a) to (d) for four earthquake records. It can be seen
from Fig. 2 that the predicted and tested displacements compare reasonably well aong the
entire time duration of the excitation.

— 4 — 4
E 3 —— Calculated results | £ 3} —— Calculated resuits
= 2r — Tested results = 2r —— Tested results
T 1} T 1}
& 0 g o
8t 8 gt
7 o 2 2}
2 -3 2 -3
P P ‘ : ‘
0 2 4 6 10 12 14
Time(s) ) ) Time(s) . .
(a)El Centrowavein the X direction (b)Kobewavein the X direction
15¢ —— Calculated results 15 —— Calculated results

1ol ‘ A — Tested resilts 10 ‘ A Teﬂed results

1op displacement (mm)
o

Top displacement (mm)
o

50 -5
10} 10
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
. Time(s) . . ) . Time(s) . .
(c)Shanghai bedrock wavein the X direction (d)Shanghai artificial wavein the X direction

Fig.2 Comparison of the calculated results versustested data

The results provided in Fig. 1 and Fig. 2 as well as the discussion in the preceding two
paragraphs leads one to conclude that the analytical results of pushover and time-history
analysis performed using Perform-3D software are reliable and accurate for this study.

6. Analysesresults

6.1 Nonlinear static and dynamic analysis of the frame

In the nonlinear static pushover analysis, a constant gravity load, equal to the total dead load
plus 50% of the live load based on the China seismic design code for buildings (GB50011-
2010), is applied to each frame. For accurate evaluation the seismic performance of frames,
three lateral forces distribution patterns were applied to each frame (i.e. inverted triangular
distribution, uniform distribution and multi-model distribution). The analytical results
indicated that the multi-model distribution of load produces the largest structural stiffness and
shear capacity compared with the other two distributions and the inverted triangular
distribution produces the smallest values for low- and medium-rise frames, while for high-rise
frame the multi-model distribution and the uniform distribution of lateral load produce
approximately the same analytical results which higher estimate the capacity of frame
compared with the inverted triangular distribution.

In the nonlinear dynamic time-history anaysis, two earthquake records (i.e. El Centro and
Taft earthquake records) and one artificial earthquake record were applied to the studied
frames based on the China seismic design code for buildings (GB50011-2010). In the analysis,
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the maximum applied peak ground acceleration (PGA) that can be resisted by the studied
frames was evaluated for different retrofit strategy and earthquake records.

6.2 Comparison of seismic performance between bare and retrofitted frames

In pushover analysis, the analytical results of each frame with different retrofit strategy
exhibits the similar curves under the three latera load distribution patterns as well as due to
the space limitations only the case of frames retrofit using pattern 1 and subjected inverted
triangular lateral load distribution was provided as an example to evaluate the seismic
performance enhancement. For the same reason, in dynamic analysis, only the results of the
frames under El Centro earthquake ground motion were shown to investigate the efficiency of
the retrofit strategy.

Fig.3 shows the comparisons of base shear-top displacement for the bare and retrofitted
frames. It can be seen that the two curves aimost coincide at the early stage, indicating that
strengthened using external CFRP wraps approximately has no influence on the initia
stiffness of structures. It can also be seen that the retrofitted low- and medium-rise frames
have a large displacement capacity without exhibiting much loss of strength but the first
retrofit strategy has little increase in the seismic performance of high-rise frame. The
analytical results exhibited that for high-rise frame retrofitted all the beams and columns in
the lower half of structural height (i. e. retrofit strategy 4 and 5) can significantly increase the
seismic performance. The provided results and the previous discussion indicate that
strengthening the columns only in lower haf of structural height is enough for low- and
medium-rise frames, while all the beams and the columns in the lower half needed be
strengthened for high-rise frames.
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Fig.3 Comparisons of base shear versustop displacement for the bare and retrofitted frames

The analytical results of dynamic time-history analysis indicates that due to the stiffness of
frames approximately has no change, consequently the frame exhibit approximately the same
displacement histories responses under the same earthquake records, however the maximum
PGA that can be resisted by the frames is considerably increased after retrofitting. For
example, the can be resisted maximum PGA is 0.24 g, 0.63 g and 0.80 g for low-, medium-
and high-rise bare frames, respectively, while it is 0.38 g, 0.91 g and 0.82 g after retrofitting
using strategy 1. The increases are 58%, 44% and 2.5% for three frames respectively. The
results also indicate that for low- and medium-rise frames retrofit columns only in the lower
half can effectively increase the seismic performance of these structures.

Fig.4 shows the inter-storey drift ratio distribution along the structure height for low-, and
medium-rise frames subjected to the maximum scaled El Centro earthquake intensities that
can be resisted. From the figures, it is noted that retrofitted frames using strategy 1 can
considerable increase the inter-storey capacity of the structures, which would lead to more
ductile buildings with higher energy dissipation capacity compared with existing bare frames.
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It is also observed that for medium-rise frame, the maximum inter-storey drift islocated in the
sixth floor before retrofitting, while it is located in the third floor after retrofitting. It is
indicated that retrofitted frames using FRP wrap may lead the weak floor transfer of the frame
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Fig.4 Inter-storey drift ratio of frame before and after retrofitting using strategy one
6.3 Comparison of different retrofit strategy

Due to the space limitations, only the anaytical results of portion retrofit strategy were
provided. Fig.5 shows the comparisons of basal shear versus roof displacement curves of
frames under different retrofit strategy. It can be seen that strengthened columns only or
strengthened the entire beams and columns exhibit little difference in structural behaviour for
low-rise frames (i. e. Fig. 5(a)). For medium-rise frames, strengthened the columns only is
still can considerable increase the seismic performance of the columns but strengthened both
columns and beams performs much better (i. e. Fig. 5(b)). For high-rise frames, retrofit both
columns and beams can increase the seismic performance of frames obvioudly, but retrofit
columns only has little enhancement in the seismic performance of structures.
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Fig.5 Comparisons of basal shear-roof displacement of framesunder different retrofit strategy

Table 1 Maximum PGA resisted by the frames before and after retrofitting

Rehabilitation scheme  EXxisting Scheme one Schemetwo  Schemethree  Schemefour  Schemefive Scheme six

Low-rise frame 0.24g 0.38g 0.6g 0.59g 0.39g 0.58¢g 0.58g
Medium-rise frame 0.63g 0.91g 0.99 0.99 0.969 0.959 0.959
High-rise frame 0.89 0.82g 0.81g 0.81g 1.22g 1.269 1.1g

Table 1 shows the maximum PGA resisted by the frames before and after different retrofitting
strategy for low-, medium-, and high-rise frames. The results indicate that all the retrofitting
strategy can increase the seismic performance and the retrofit strategy 2 performs best for
low-rise frame. For medium-rise frame, retrofit all beams and portion columns resulted in
much increase in seismic performance than retrofit columns only and the retrofit strategy 4
performs the best. For high-rise frames, retrofit columns only has no increase in the resisted
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maximum PGA while when retrofit al beams and portion columns the maximum PGA that
the frame can be resisted is significantly increased and among the six retrofit strategy the fifth
pattern performs best.

Based on the results provided and discussed above and considering the applicability and
efficiency, the conceptual retrofit strategy for RC frames is suggested that for low-rise frames
retrofit columns in the bottom 3 floors, while for medium- and high-rise frames should retrofit
all beams and columnsin the lower half of the structural height.

7. Conclusions

This paper investigated the efficiency different FRP retrofit strategy in improving the seismic
performance of nun-ductile RC frames. Three frames representing low-, medium- and high-
rise buildings were designed and studied. Nonlinear static and dynamic anayses were
conducted using Perform-3D software. Based on the conducted analyses, the following
conclusions can be drawn:

1. For existing RC frames, externa bonding CFRP wrap can obviously improve the ductility
and shear capacity of frames without changing the initial stiffness of structures.

2. The maximum PGA resisted by frames is obviously improved and the weak floor should
be changed after retrofitting by CFRP composites.

3. Based on the analytical results, the conceptua retrofit strategy for RC frames is suggested
that for low-rise frames, the first floor columns should be retrofitted, while for medium-
and high-rise frames, al beams and columns in the lower half of the structural height
should be retrofitted.
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