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Based on the corrected Hohenberg-Kohn-Sham total energy density functional [Y. A. Zhang and Y.
A. Wang, J. Chem. Phys. 130, 144116 (2009)], we have developed two linear-expansion shooting
techniques (LIST)– direct LIST (LISTd) and indirect LIST (LISTi), to accelerate the convergence of
self-consistent field (SCF) calculations. Case studies show that overall LISTi is the most robust and
efficient algorithm for accelerating SCF convergence, whereas LISTd is advantageous in the early
stage of an SCF process. More importantly, LISTi outperforms Pulay’s direct inversion in the iterative
subspace (DIIS) [P. Pulay, J. Comput. Chem. 3, 556 (1982)] and its two recent improvements, energy-
DIIS [K. N. Kudin, G. E. Scuseria, and E. Cancès, J. Chem. Phys. 116, 8255 (2002)] and augmented
Roothaan-Hall energy-DIIS [X. Hu and W. Yang, J. Chem. Phys. 132, 054109 (2010)]. © 2011
American Institute of Physics. [doi:10.1063/1.3609242]

Ever since the beginning of quantum theory, how to ef-
ficiently solve the Schrödinger equation for complex sys-
tems has been the major endeavor of theoreticians in both
computational physics and chemistry communities.1 With the
invention of the Hartree-Fock method (HFM) and density-
functional theory (DFT), the computational task has been
shifted to identifying the converged solution of an iterative
self-consistent field (SCF) system,1–5 because the formula-
tions require the exact solution (before it is known) in the con-
struction of the Hamiltonian. Consequently, in an SCF proce-
dure, an initial guess (i.e., the input) of the exact solution has
to be utilized to obtain an approximate solution (i.e., the out-
put). If the output solution differs from the input, the whole
process must be repeated with better initial guesses until self-
consistency is achieved, upon which the difference between
the output and the input vanishes.

From a different perspective, in the field of differen-
tial equations, shooting method represents a mathematical
scheme for solving a boundary value problem by changing it
to the solution of an initial value problem.6 In a broad sense,
“boundary values” collectively put together a set of restraints
(i.e., boundary conditions) imposed on the solutions of the
differential equation, whereas “initial values” dictate specific
values (i.e., initial conditions) of the unknown solutions at
given fixed points in the domain of the solution.6 For exam-
ple, in a finite-well tunneling system, the continuity require-
ment of the wave function and its first derivatives (with re-
spect to position) at the edges of the potential box constitutes
the boundary values (conditions). In light of this conceptual
lineup, all SCF convergence algorithms are indeed shooting
methods with varied efficiencies: the Schrödinger-like equa-
tion is the differential equation under investigation, the self-
consistency of the fully converged SCF solution is a bound-

a)Authors to whom correspondence should be addressed. Electronic ad-
dresses: yawang@chem.ubc.ca and ghc@everest.hku.hk.

ary value, and generating initial guesses is an initial value
problem.

Despite its conceptual simplicity, an SCF system is of-
ten an ill-conditioned mathematical problem: many a time,
less intelligent initial guesses do not lead the iterative process
toward convergence.1 Among many algorithms to speed up
SCF convergence, Pulay’s direct inversion in the iterative sub-
space (DIIS) method2 has established itself as the most widely
adopted, nearly universally applicable convergence accelerat-
ing scheme.1 However, DIIS does fail sometimes, for which
interest of designing more powerful SCF convergence en-
gine has been feverishly pursued ever since.1–5 Recently, the
energy-DIIS (EDIIS) (Ref. 3) and the augmented Roothaan-
Hall energy-DIIS (ADIIS) (Ref. 4) offered two most notice-
able improvements over the traditional DIIS scheme.2

In the implementation of DIIS,2 the residual error vec-
tors {ei } of a series of trial Fock matrices {Fi } are measured
through the commutators between {Fi } and their associated
density matrices {Di }: ei = [Fi , Di ]. After m iterations, a lin-
ear combination of previous Fock matrices,

Fcomb
m =

m∑
i=1

ci Fi , (1)

carries a residual error, ecomb
m =

∑m

i=1
ci ei , whose norm can

be minimized subject to the normalization condition for the
expansion coefficients {ci }:

min

{〈
ecomb

m

∣∣ecomb
m

〉
,

m∑
i=1

ci = 1

}
. (2)

The optimal values of {ci } are then used in Eq. (1) to generate
the initial guess for the next iteration, and the above procedure
is restarted all over again unless full convergence is attained.
This numerical realization might contribute to the occasional
failures of DIIS because the coefficients minimizing the norm
of the error vector are not necessarily optimal either for the
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expansion of the Fock matrices or for the convergence of the
total energy. Moreover, the most important quantity, the total
energy, plays no role in DIIS, which further deteriorates the
performance of DIIS for many systems.3–5

For such reasons, based on the associated energies
{E[Di ]} of the density matrices {Di }, EDIIS (Ref. 3) and
ADIIS (Ref. 4) propose two distinct total energy expressions:

EEDIIS =
m∑

i=1

ci E[Di ] − 1

2

m∑
i, j

ci c j 〈(Di − D j )(Fi − F j )〉 ,

(3)

EADIIS = E[Dm] + 2
m∑

i=1

ci 〈(Di − Dm) Fm〉

+
m∑
i, j

ci c j 〈(Di − Dm)(F j − Fm)〉 . (4)

Because Eqs. (3) and (4) originate from perturbation theory,
they can only be incorporated into the following interpolation
minimization procedure with non-negative {ci },3, 4

min

{
EEDIIS or EADIIS ,

m∑
i=1

ci = 1, ci ≥ 0

}
, (5)

which is essentially different from the general extrapolation
minimization of DIIS in Eq. (2). To some degree of disap-
pointment, the performance of EDIIS and ADIIS is uneven:
for systems that DIIS really works, both EDIIS and ADIIS are
less robust; for other systems that DIIS does not work well,
both EDIIS and ADIIS are much more effective though.3, 4

Overall, ADIIS outshines EDIIS in almost every situation, de-
spite that both EDIIS and ADIIS should be switched over to
DIIS (i.e., EDIIS + DIIS and ADIIS + DIIS) to accomplish
stability and smoothness near convergence.3, 4

Such limited success of ADIIS and EDIIS motivated us to
contrive a better SCF convergence engine, which will univer-
sally outperform all three DIIS, EDIIS, and ADIIS schemes
(and their combos) for every system. To fulfill this goal, we
begin with building our own energy expression from the cor-
rected Hohenberg-Kohn-Sham functional (cHKS),5

EcHKS
i = E

[
Dout

i

] + 〈(
Db

m − Dout
i

)
�Fi

〉
, (6)

where �Fi = (Fout
i − Fin

i )/2, the superscripts “out” and “in”
betoken output and input, respectively, and Db

m designates the
best approximate to the fully converged D0 based on informa-
tion available at the latest iteration m. Similar to Eq. (1), we
introduce a linear expansion for Db

m in terms of {Di }:

Db
m =

m∑
j=1

c j D j , (7)

with the exact contents of {Di } to be decided later. After plug-
ging Eq. (7) back into Eq. (6) and going through several steps
of manipulations, we get our own total energy expression po-

tentially suitable for a DIIS-like maneuver,

EcHKS
i =

m∑
j=1

c j
{

E[Dout
i ] + 〈(D j − Dout

i ) �Fi 〉
}
. (8)

In comparison to Eqs. (3) and (4), Eq. (8) is the most com-
pact total energy expression accurate up to second order in
density matrix residual error for both HFM and DFT.5 Fur-
ther inspection reveals the unfortunate fact: Eq. (8) is only
linear in {ci }, which immediately precludes a straightforward
DIIS-type minimization in a least-squares sense. To mean-
ingfully engage Eq. (8) in accelerating SCF convergence, we
have proffered two new mechanisms based on the shooting
technique in numerical analysis.6 We thus name our own SCF
convergence schemes “linear-expansion shooting techniques”
(LIST), which are advanced hereafter.

Let us first present a direct approach to LIST (LISTd). It
has been well established that Eq. (6) is accurate up to sec-
ond order in density matrix residual error;5 therefore, Eq. (8)
should be very close to the fully converged energy for all it-
erations involved in the linear expansion, Eq. (7). This im-
mediately suggests an accurate approximation of shooting the
exact energy (up to second order in residual error),

EcHKS
1 = EcHKS

2 = · · · = EcHKS
m = E[Db

m]
.= E[D0] , (9)

leading to a matrix equation for {ci } and E[Db
m], nearly iden-

tical to that of DIIS:2⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 · · · −1

−1 a11 a12 · · · a1m

−1 a21 a22 · · · a2m

...
...

...
. . .

...

−1 am1 am2 · · · amm

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎜⎜⎜⎜⎜⎝

E

c1

c2

...

cm

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

C

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1

0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

,

O

(10)

where ai j = E[Dout
i ] + 〈(D j − Dout

i ) �Fi 〉. To avoid any
damping effect slowing down SCF convergence in actual cal-
culations, it is much more desirable to use {Dout

i }, instead
of {Din

i }, for {Di } in Eq. (7). Unfortunately, a closer inspec-
tion of Eq. (10) unveils an unsettling linear-dependency issue:
LISTd is very much likely to fail as it gets very close to self-
consistency, where the density matrix residual error becomes
very small. For instance, the last two columns of matrix A in
Eq. (10) turn virtually identical whenever Dout

m
.= Dout

m−1, yield-
ing a nearly singular matrix A.

To alleviate such a linear-dependency problem, we con-
sider two alternative linear expansions, one based on {Din

i }
and the other, {Dout

i }, along with their corresponding energies:

D̃
b
m =

m∑
i=1

c̃i Din
i =⇒ {

ẼcHKS
i

}
, (11)

Db
m =

m∑
i=1

ci Dout
i =⇒ {

EcHKS
i

}
. (12)

Obviously, the closer the full convergence, i.e., Din
i

.= Dout
i ,

the better the approximations, c̃i = ci and ẼcHKS
i = EcHKS

i .
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FIG. 1. Convergence of the total energy (in hartrees) for (a) water (H2O), (b) benzene (C6H6), (c) silane (H3Si–H) with a much extended Si–H bond, (d)
cadmium(II)-imidazole complex [Cd(Im)]2+, (e) tetranuclear ruthenium carbonyl cluster Ru4(CO), and (f) tetrahedral uranium fluoride (UF4). For H2O, the
two H–O bond lengths and the H–O–H bond angle are 0.965 Å and 103.75◦, respectively. The C=C and C–H bond lengths in C6H6 are 1.396 and 1.097 Å,
respectively. For H2O and C6H6, exchange and correlation functionals within local density approximation (LDA) (Refs. 8 and 9) were used with the 6-31G
basis set. For H3Si–H, the three regular and the elongated Si–H bond lengths are 1.47 and 4.00 Å, respectively; all the H–Si–H bond angles are 109.28◦.5

H3Si–H was calculated at the LDA/6-31G* level of theory.5 All the U–F bond lengths in UF4 are 1.98 Å.3 [Cd(Im)]2+ was calculated at the B3LYP/3-21G level
of theory10, 11 using the core Hamiltonian as the very first initial guess.4 Both Ru4(CO) and UF4 were calculated at B3LYP/LanL2DZ level with core electrons
of Ru and U represented by the LanL2 pseudopotentials.12 The geometries of [Cd(Im)]2+, Ru4(CO), and UF4 are the same as those used before.3, 4 Except for
[Cd(Im)]2+, atomic densities were utilized as the very first initial guesses for all other systems.

This fact immediately leads to

m∑
j=1

c j 〈(Dout
j − Din

j )�Fi 〉 = 0 (13)

or to a matrix form strikingly similar to that of LISTd,
Eq. (10),⎛⎜⎜⎜⎜⎜⎝

0 −1 −1 · · · −1
−1 g11 g12 · · · g1m

−1 g21 g22 · · · g2m

...
...

...
. . .

...
−1 gm1 gm2 · · · gmm

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0
c1

c2
...

cm

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , (14)

except gi j = 〈(Dout
j − Din

j )�Fi 〉. It is worth noting that, with-
out instituting a direct shooting within each linear expansion
separately via Eq. (9), we just go through a distinct shoot-
ing scheme between two linear expansions, which can be best
termed an indirect approach to LIST (LISTi) to differentiate
it from the direct approach, LISTd.

We have implemented LISTd and LISTi into the
NWChem code.7 For LISTd, LISTi, and DIIS, it was found
that only four output Fock matrices are adequately needed
in the linear combination to generate the input Fock matrix
for the next iteration. At each iteration of a LIST calcula-
tion, the cHKS functional was evaluated for the total energy.5

All calculations were carried out without any other types of
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SCF accelerating algorithms, and full convergence was de-
fined as the energy difference between two consecutive iter-
ations below 10−10 hartrees. To benchmark the effectiveness
of our LIST methods, we have chosen six molecular systems
of varied sizes and bonding complexity (Fig. 1): water and
benzene are the two easy cases for DIIS to perform very well,
whereas a silane molecule with a much extended Si–H bond,5

a tetrahedral uranium fluoride,3 a cadmium(II)-imidazole
complex, and a tetranuclear ruthenium carbonyl cluster4 are
the four troublesome systems for DIIS to show no sign of
convergence.

Surprisingly, Figs. 1(a) and 1(b) show that LISTd con-
verges the SCF despite suffering from its own linear-
dependence problem. However, the rate of convergence of
LISTd can be much slower than LISTi, despite that LISTd
performs better in the early stage of SCF process. LISTd is
thus not recommendable as a general strategy to speed up SCF
convergence. We also observe LISTi to be the most effective
scheme, convincingly outperforming DIIS for almost all itera-
tions from start to finish. This behavior is quite different from
EDIIS and ADIIS, which are much inferior to DIIS for those
systems that can be handled well by DIIS.3, 4

To keep the comparability with other approaches for the
four challenging cases, we have intentionally maintained the
systems’ structural and computational details virtually the
same as before.3–5 Figures 1(c)–1(f) exhibit the results for
these four tough cases that DIIS simply does not show any
sign of convergence at all for hundreds of iterations. Inter-
estingly, LISTd fairs quite well for [Cd(Im)]2+, reaching to
full convergence within 42 iterations. Unfortunately, the other
three systems prove to be extremely difficult for LISTd: either
nonconvergent for both silane and Ru4(CO) or wrongfully
convergent for UF4. This again confirms our above assess-
ment of LISTd: not to be entrusted for general usage. Most
amazingly, in all four hard cases, LISTi accelerates SCF to-
ward convergence with ease, rivaling the best performance
of the ADIIS + DIIS scheme4 and surpassing that of EDIIS
and EDIIS + DIIS schemes.3, 4 Keep in mind that LISTi has
achieved such an excellent performance all within a stand-

alone, stable methodology without invoking DIIS at any stage
of the SCF process. LISTi definitely has its own advantages
over ADIIS + DIIS, or any other DIIS-type schemes.2–4 In
retrospect, built upon the most compact total energy expres-
sion accurate up to second order in residual error for both
HFM and DFT, the formulation of LISTi ventures into both
positive and negative domains of {ci } to explore the full extent
of the linear-expansion space, which certainly contributes to
the superiority of LISTi over DIIS, EDIIS, and ADIIS.

In conclusion, between the two different approaches to
LIST, LISTd is mainly useful in the early stage of SCF pro-
cess when the SCF is far away from full convergence, but is
a less effective method not to be trusted for general applica-
tions. LISTi emerges as the most robust SCF convergence en-
gine, better than previous DIIS and related EDIIS and ADIIS
approaches.2–4 Evidently, LISTi manifests its potential to be-
come a universally applicable algorithm capable of accelerat-
ing SCF convergence for versatile systems.
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