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ABSTRACT

Transcription factors are involved in a number of
important cellular processes. The transcription
factor NF-iB has been linked with a number of
cancers, autoimmune and inflammatory diseases.
As a result, monitoring transcription factors poten-
tially represents a means for the early detection and
prevention of diseases. Most methods for transcrip-
tion factor detection tend to be tedious and labori-
ous and involve complicated sample preparation,
and are not practical for routine detection. We
describe herein the first label-free luminescence
switch-on detection method for transcription
factor activity using Exonuclease III and a lumines-
cent ruthenium complex, [Ru(phen)2(dppz)]2+. As a
proof of concept for this novel assay, we have de-
signed a double-stranded DNA sequence bearing
two NF-iB binding sites. The results show that
the luminescence response was proportional to
the concentration of the NF-iB subunit p50
present in the sample within a wide concentration
range, with a nanomolar detection limit. In the pres-
ence of a known NF-iB inhibitor, oridonin, a reduc-
tion in the luminescence response of the ruthenium
complex was observed. The reduced luminescence
response of the ruthenium complex in the pres-
ence of small molecule inhibitors allows the assay
to be applied to the high-throughput screening of
chemical libraries to identify new antagonists of
transcription factor DNA binding activity. This will
allow the rapid and low cost identification and
development of novel scaffolds for the treatment

of diseases caused by the deregulation of transcrip-
tion factor activity.

INTRODUCTION

Transcription factors are a class of proteins that regulate
gene expression by binding to specific DNA sequences
within the regulatory regions of genes (1). Due to their
important role in the regulation of gene expression, tran-
scription factors are vital for cell development, differenti-
ation and growth in biological systems (2–4). Typically,
transcription factors exist in the cell in an inactive state
and become activated by the presence of a specific ligand,
leading to the expression of target gene(s). As a result, the
inhibition or undesired activation of transcription factors
can lead to a number of diseases which include develop-
mental disorders (5–8), abnormal hormone responses
(9–11), inflammation (12,13) and cancer (14–16).
Therefore, the rapid and convenient detection of transcrip-
tion factor activity is important for the development of in-
hibitors for the treatment or prevention of these diseases.
Current methods for the detection of transcription factor

activity includeDNA footprinting, western blotting, the gel
mobility shift assay, affinity chromatography and visual
microscopy (17–19). However, the aforementioned
methods are generally tedious, laborious and expensive
for the routine detection of transcription factor activity in
the laboratory (20). Fluorescence methodologies are an at-
tractive alternative to the traditional methods of transcrip-
tion factor activity detection due to their simplicity, low
cost, high sensitivity and most importantly, amenability
to high-throughput screening (21). Current
fluorescence-based methods for the detection of transcrip-
tion factors require labeled oligonucleotides containing the
sequence recognized by the appropriate transcription
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factor (22–25). The basic principle behind this ‘molecular
beacon’ approach for the detection of transcription factors
involves monitoring the conformational change of the
oligonucleotide upon binding by a transcription factor.
This conformational change leads to the fluorophore and
the quencher being brought closer together or further
apart, leading to a ‘switch-off’ or ‘switch-on’ fluorescence
effect, respectively. In 2000, Tan and co-workers (22)
described a switch-on probe for the Escherichia coli
single-stranded binding protein using a classical stem–
loop, doubly labeled with dabcyl and tamra at the 30- and
50-terminus. In 2002, Heyduk and Heyduk (23) developed a
switch-off detection platform that utilized two independ-
ently labeled DNA fragments each containing one-half of
the transcription factor binding site. Recently, Mirkin and
co-workers (25) described a fluorescence recovery assay for
the detection of protein–DNA binding, utilizing a doubly
labeled short DNA duplex and an exonuclease. While these
fluorescence approaches to the detection of transcription
factor activity are more convenient compared to the trad-
itional methods, they are still limited by the high cost of the
labeled oligonucleotides.
Luminescent transition metal complexes have received

increasing attention in photochemistry, organic optoelec-
tronics and luminescent sensors (26–33). We previously
developed oligonucleotide-based, label-free detection
methods for nanomolar quantities of Hg2+ and Ag+ ions
by employing luminescent platinum(II) metallointercala-
tors (34,35), as well as for assaying exonuclease activity
by using crystal violet as a G-quadruplex probe (36).
Consequently, we were interested in developing a
label-free alternative to the molecular beacon approach
through modification of the fluorescence recovery assay
developed by Mirkin and coworkers by utilizing unmodi-
fied oligonucleotides and a luminescent transition metal
complex as a DNA probe. Luminescent transition metal
complexes typically contain a metal center bound to by
organic ligands arranged in a precise 3D arrangement. The
3D nature of transition metal complexes allows selective
interactions with biomolecules (36). In addition, the
photophysical (i.e. emission wavelength), physical (i.e.
solubility and stability) and selectivity (duplex DNA
versus single-stranded DNA) of these complexes can be
modulated through ligand modifications. Examples of
luminescent metallointercalators used for the detection
of DNA include ruthenium (37–41), osmium (42–44),
iridium (45–47) and platinum complexes (48–51) that
bear planar aromatic ligands suitable for intercalation.
We chose the classical ‘molecular light switch’ complex
[Ru(phen)2(dppz)]

2+ (phen=1,10-phenanthroline;
dppz=dihydro[3,2-a:20,30-c]phenazine) as a probe due to
its avid DNA binding affinity (>106M�1). In addition, this
complex possesses a strong luminescence response when
bound to duplex DNA but is only weakly emissive when
free in aqueous solution or in the presence of
single-stranded DNA. The complex [Ru(phen)2(dppz)]

2+

has also been employed for the detection of aptamer/
protein binding using unlabeled oligonucleotides (52).
Based on our past experience in the design of label-free

oligonucleotide-based luminescent assays for metal ions
(34,35), we were interested to see if we could develop a

label-free detection method for the p50 subunit of the
transcription factor NF-kB. The transcription factor
NF-kB has been identified as an important regulator for
key pro-inflammatory mediators such as TNF-a, which is
involved in the immune response, apoptosis and cell cycle
regulation (53). The deregulation of TNF-a has been
linked with inflammatory and autoimmune diseases such
as rheumatoid arthritis and osteoarthritis (54). The ability
to screen a large library of compounds against an import-
ant protein target such as NF-kB using aluminescence
assay amenable to high-throughput screening would be
invaluable in developing new treatments and diagnostic
tools for inflammation and autoimmune diseases.

MATERIALS AND METHODS

All reagents were purchased and used as received unless
otherwise stated. The p50 protein was expressed and
purified based on a modified procedure from Leung et al.
(55). Exonuclease III (ExoIII) was purchased from New
England Biolabs. [Ru(phen)2(dppz)](PF6)2 was synthesized
according to literature method (38). DNA sequences were
purchased from Techdragon Ltd (Hong Kong). Oridonin
was purchased from China Langchem Inc (P.R. China).

Expression and purification of the p50

The pET-21b-p50 constructs were expressed in E. coli
BL21(DE3) cells. The cells were grown at 37�C in a
shaking incubator until the absorbance of the culture
at 600 nm was 0.6. Expression of the p50 protein from
the T7 promoter was induced for 5 h at 30�C by the
addition of 0.1mM isopropyl-1-thio-b-D-galactopyrano-
side (final concentration). The cells were then harvested
in lysis buffer (25mM Tris, pH 7.4, 150mM NaCl,
1mM EDTA, b-mercaptoethanol, phenylmethylsulfonyl
fluoride) and lysed by sonication. The cell debris was
pelleted by ultracentrifugation (27 500 rpm, 4�C and
40min). The supernatant was diluted with binding buffer
(25mM, Tris pH 7.4, 500mM NaCl and 20mM imid-
azole) and loaded onto a His-Bind Quick Columns
(Novagen, Madison, WI, USA) and washed with
washing buffer (25mM Tris pH 7.4, 500mM NaCl and
40mM imidazole), then eluted with elution buffer (25mM
Tris pH 7.4, 500mM NaCl and 200mM imidazole). The
fractions containing the p50 protein were combined and
dialyzed against 10mM Tris buffer solution (pH 7.9, 10%
glycerol, 1mM EDTA, 50mM NaCl and b-mercapto-
ethanol). The purity of the expressed p50 proteins were
estimated to be >90% pure using electrophoresis on
SDS–PAGE gel stained with Coomassie Blue.

DNA sequences

Hairpin (HP) containing one NF-kB binding site:

50-AGTTGAGGGGACTTTCCCAGGCCAGAAGGAG
CCTGGGAAAGTCCCCTCAACT-30

Double-strand containing one NF-kB binding site:

50-AGTTGAGGGGACTTTCCCAGGC-30

30-TCAACTCCCCTGAAAGGGTCCG-50
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Double-strand containing two NF-kB binding site:

50-TTGAGGGACTTTCCGAACATGCAGGCAAGCT
GGGGACTTTCCAGG-30

30-AACTCCCTGAAAGGCTTGTACGTCCGTTCGAC
CCCTGAAAGGTCC-50

Double-strand without NF-kB binding site:

50-TTGTTACAACTCACTTTCCGCTGCTCACTTTCC
AGGGAGGCGTGG-30

30-AACAATGTTGAGTGAAAGGCGACGAGTGAA
AGGTCCCTCCGCACC-50

Emission measurements

The appropriate oligonucleotide (0.02 mM) was first
annealed in Tris buffer solution (10mM, pH 7.4,
100mM NaCl, 1mM EDTA, final concentration) by
incubating at 95�C for 5min, followed by gradual
cooling to room temperature over a period of 1 h. The
p50 subunit and the annealed oligonucleotide mixture in
TF buffer (10mM Tris, pH 7.4, 50mM KCl, 1mM DTT,
1mM MgCl2, 10% glycerol) were incubated for 20min at
37�C, after which 40 units of ExoIII (NEB) were added
and the mixture was incubated for an additional 50min at
37�C. The digestion reaction was quenched by the
addition of 25mM EDTA and diluted to 1ml with a
solution of the ruthenium complex (1 mM, final concentra-
tion) and [Fe(CN)6]

3� (600 mM, final concentration) in TF
buffer (10mM Tris, pH 7.4, 50mM KCl, 1mM DTT,
1mM MgCl2, 10% glycerol). The solution was then
allowed to stand for 10min and the luminescence

spectrum was measured using an excitation wavelength
of 450 nm.

RESULTS AND DISCUSSION

The principle behind our assay for the detection of tran-
scription factor activity is based on the 30!50 activity of
ExoIII and a luminescent transition metal complex which
is ‘switched-on’ in the presence of double-stranded DNA
(Scheme 1). In the presence of double-stranded DNA, the
ruthenium complex [Ru(phen)2(dppz)]

2+ (Scheme 1) inter-
calates into the double-stranded DNA and is emissive,
presumably through suppression of non-radiative decay
by solvent interactions. A 30!50 ExoIII is added to the
reaction mixture and digests the double-stranded oligo-
nucleotide from the 30-end, leading to the formation of
single-stranded fragments. Due to the weak binding
affinity of the ruthenium complex to single-stranded
DNA, the luminescence response of the complex is
reduced (Scheme 1a). In the presence of a transcription
factor that binds to the double-stranded substrate with
the cognate binding site, the digestion of the oligonucleo-
tide is blocked, allowing the oligonucleotide to retain its
double-stranded structure in the presence of ExoIII
(Scheme 1b). The intercalation of the ruthenium
complex into the double-stranded DNA substrate leads
to a strong luminescence response.
To validate our label-free detection assay for transcrip-

tion factors, we designed a hairpin oligonucleotide that
contained the NF-kB binding site [-GGGACTTTC-]
(56). The hairpin substrate was incubated at 95�C for
5min, followed by gradual cooling to room temperature
to ensure the formation of the double-stranded structure.

Scheme 1. The principle of the label-free detection of transcription factor activity using a combination of a luminescent ruthenium-based metalloin-
tercalator [Ru(phen)2(dppz)]

2+ and 30!50 ExoIII.
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The luminescence response of the ruthenium complex in
the presence of the hairpin substrate was enhanced by
4.6-fold due to intercalation of the ruthenium complex
into the DNA (Figure 1). The addition of ExoIII leads
to the digestion of the oligonucleotide, converting the
hairpin structure into short single-stranded DNA frag-
ments. Due to the weak binding of the ruthenium
complex with the single-stranded DNA, emission intensity
was decreased by 3.0-fold. Potassium ferrocyanide
K3[Fe(CN)6] was used to quench the background
emission of the ruthenium complex in aqueous solution
or when bound to single-stranded DNA. A ferrocyanide
concentration of 600 mM was found to give the highest
degree of discrimination between double-stranded and
single-stranded DNA.
After confirming the activity of the exonuclease, we next

investigated the effect of adding the transcription factor.
When the hairpin substrate was incubated with the NF-kB
subunit p50 before the addition of ExoIII, a luminescence
enhancement of 3.6 was observed relative to the control
(no transcription factor added) (Figure 2). Presumably,
the p50 subunit bound the hairpin substrate and inhibited
the digestion of the oligonucleotide, allowing the ruthe-
nium metallointercalator to bind to the intact
double-stranded DNA.
It has been previously shown that the structure of the

oligonucleotide substrate can influence the digestion rate
of ExoIII (57). To examine the effect of a double-stranded
DNA substrate on the performance of this label-free
assay, we annealed a duplex DNA sequence containing
the NF-kB binding site. In the absence of the p50
subunit, a weak luminescence response was observed due
to the exonuclease digestion of the double-stranded DNA.
As the concentration of the p50 subunit was increased,
there was a corresponding enhancement in the lumines-
cence response of the ruthenium complex, with saturation
occurring at about 160 nM (Figure 3). A maximum fold
change of 4.5 was observed.
We next investigated the effect of introducing two

binding sites on the double-stranded oligonucleotide sub-
strate. The luminescence spectrum of the ruthenium

complex in the presence of the double-stranded substrate
containing two binding sites after digestion is shown in
Figure 4. When this oligonucleotide was incubated in
the presence of the p50 subunit and subjected to Exo III
digestion, a maximal 8-fold increase in the luminescence
response was observed, compared to only 4.5-fold for the
oligonucleotide containing one binding site. We postulate
that in the case of the double-stranded substrate contain-
ing one binding site, complete digestion by Exo III from
the 30 would be expected to generate long 50-overhangs
with limited duplex regions (Figure 5a). Thus, even
though digestion was inhibited relative to the control,
the luminescence response of the ruthenium complex
would still be reduced. However, when two p50 subunit
binding sites are present, the complete digestion of the
double-stranded substrate from the two 30-termini does
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Figure 2. The fold change luminescence response of [Ru] (1 mM) in TF
buffer solution containing K3[Fe(CN)6] (600 mM) in the presence of the
digestion mixture containing the hairpin DNA substrate (0.02 mM) and
40U of ExoIII as a function of the concentration of the p50 subunit
(0, 0.06, 0.20 and 0.40mM).
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Figure 3. The fold change luminescence response of [Ru] (1 mM) in TF
buffer solution containing K3[Fe(CN)6] (600 mM) in the presence of the
digestion mixture containing the double-stranded DNA substrate
(0.02 mM) and 40U of ExoIII as a function of the concentration of
the p50 subunit (0, 0.04, 0.08, 0.12, 0.16, 0.20 mM).

Figure 1. The luminescence response of [Ru] (1 mM) in TF buffer
solution containing K3[Fe(CN)6] (600 mM) in the presence of (a) the
hairpin DNA (0.02 mM); and (b) the hairpin DNA (0.02 mM) and
ExoIII (40U).
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not occur (Figure 5b), preserving the duplex structure of
the substrate and allowing the intercalation of the ruthe-
nium complex. Using the double-stranded substrate with
two p50 subunit binding sites, we observed a linear lumi-
nescence response (up to 8-fold intensity enhancement) to
changes in the concentration of the p50 subunit in the
concentration range of 30–220 nM with a detection limit
of 30 nM.

In the original report by Heyduk and Heyduk (23), the
molecular beacon approach could effectively sense down
to 10 nM of catabolite activator protein, a bacterial tran-
scription factor. The fluorescence recovery assay de-
veloped by Mirkin and co-workers (25) gave a 32%
decrease in the fluorescence intensity upon addition of

130 nM of estrogen receptor-a. Thus, the sensitivity of
our assay for transcription factor activity is at least com-
parable to that of previously reported methods.
Furthermore, a significant advantage of the method pre-
sented here is its label-free nature, which obviates the re-
quirement for the expensive labeling of oligonucleotides,
contrasting favorably with previous methods. Reducing
the cost of the assay is important for potential adaptation
into a high-throughput format. Finally, both literature
methods were ‘switch-off’ with respect to transcription
factors, which may suffer from false positives due to
non-specific quenching by environmental samples. The
‘switch-on’ detection mode reported here is advantageous
and is generally preferable for analytical purposes.
This label-free assay is based on the inhibition of ExoIII

catalyzed digestion of the oligonucleotide by the binding
of the p50 subunit. To validate the mechanism of this
method, we replaced the p50 subunit with the non-DNA
binding protein bovine serum albumin (BSA). The lumi-
nescence response of the ruthenium complex in the
presence of the oligonucleotide containing the double
p50 binding site and BSA after ExoIII digestion is
shown in Figure 6.
The emission spectrum in Figure 6 shows that incuba-

tion of the oligonucleotide substrate with BSA did not
produce the same emission enhancement (fold change of
1.1) as observed for the p50 subunit. To further provide
evidence that the inhibition of ExoIII digestion was due to
the selective binding of the p50 subunit, we replaced the
oligonucleotide substrate with a DNA sequence that
cannot bind to the p50 subunit. The non-NF-kB-binding
substrate was incubated in the presence of the p50 subunit
and the luminescence spectrum of the ruthenium complex
in the presence of the digestion mixture was measured
(Figure 7). In the presence of 0.4mM p50 subunit, a fold
change of 2.4 was observed, which was significantly lower

Figure 5. A schematic representation of the digestion products for oligonucleotides containing one (a) and two (b) NF-kB subunit binding sites.

Figure 4. The fold change luminescence response of [Ru] (1 mM) in TF
buffer solution containing K3[Fe(CN)6] (600 mM) in the presence of the
digestion mixture containing the double-stranded DNA substrate with
two NF-kB binding sites (0.02 mM) and 40U of ExoIII as a function of
the concentration of the p50 subunit (0, 0.03, 0.05, 0.06, 0.11, 0.18,
0.20, 0.22, 0.28, 0.30 and 0.38mM).
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than the 8-fold enhancement observed with the wild-type
sequence.
To provide additional evidence that the selective

binding of the p50 subunit is responsible for the inhibition
of ExoIII catalyzed digestion of the double-stranded sub-
strate, we repeated the luminescence measurements in the
presence of oridonin, a known inhibitor of NF-kB DNA
binding activity (58). In the presence of the NF-kB inhibi-
tor (Figure 8, orange), a significant reduction in the lumi-
nescence response of the ruthenium complex was observed
compared to the sample that does not contain the inhibi-
tor (Figure 8, purple). Oridonin is presumed to inhibit
binding of p50 to the double-stranded substrate and
ExoIII is able to digest the DNA into short single-
stranded fragments resulting in a reduced luminescence
response. Taken together, these series of negative control
experiments demonstrate that the luminescence

enhancement observed in the presence of the p50
subunit is probably due to the binding of the transcription
factor to the oligonucleotide, inhibiting the ExoIII
catalyzed digestion of the double-stranded substrate.

The above results also highlight the amenability of this
assay to the high-throughput screening of small molecules
as inhibitors of the p50 subunit of NF-kB. NF-kB is found
in the cytoplasm bound to the inhibitory protein IkB (59).
In the presence of activators, such as ultraviolet irradi-
ation, cytokines, bacterial and viral products, NF-kB is
released from IkB and becomes activated (59). The
overactivation of NF-kB has been associated number of
autoimmune and inflammatory diseases and it is thus con-
sidered an important drug target (53,54). The label-free
assay described herein can be readily applied to a
high-throughput format using 96-well plates. Wells
showing a reduction in luminescence intensity of the ru-
thenium complex contain a potential inhibitor of the p50
subunit. Due to the low cost of the label-free oligonucleo-
tides and the ruthenium metallointercalator, large
chemical libraries can be screened in an inexpensive and
high-throughput manner, allowing the identification of
small molecule NF-kB inhibitors for treating autoimmune
and inflammatory diseases.

CONCLUSION

In conclusion, we have described the first label-free lumi-
nescence detection method for transcription factor
activity. Our method is based on the principle that the
binding of the transcription factor prevents the ExoIII
catalyzed digestion of a double-stranded substrate. A lu-
minescent ruthenium metallointercalator is used to probe
the double-stranded substrate leading to a ‘switch-on’
effect in the presence of the transcription factor. The lu-
minescence enhancement was shown to be proportional to
the concentration of the transcription factor NF-kB
subunit p50. This method allows the detection of tran-
scription factor activity without the need for time-
consuming experiments such as gel mobility shift assays
or DNA footprinting. We have also demonstrated that in
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Figure 6. The fold change luminescence response of [Ru] (1mM) in TF
buffer solution containing K3[Fe(CN)6] (600 mM) in the presence of the
digestion mixture containing the double-stranded DNA substrate with
two NF-kB binding sites (0.02 mM) and 40U of ExoIII as a function of
the concentration of BSA (0, 0.08, 0.20 and 0.40 mM).
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Figure 7. The fold change luminescence response of [Ru] (1mM) in TF
buffer solution containing K3[Fe(CN)6] (600 mM) in the presence of the
digestion mixture containing double-stranded non-NF-kB-binding sub-
strate (0.02 mM) and 40U of ExoIII as a function of the concentration
of the p50 subunit (0, 0.10, 0.20 and 0.40 mM).

Figure 8. The luminescence response of [Ru] (1 mM) in TF buffer
solution containing K3[Fe(CN)6] (600 mM) in the presence of the diges-
tion mixture with the double-stranded DNA substrate (0.02 mM) con-
taining two NF-kB binding sites incubated with p50 (0.12 mM) with or
without oridonin (20 mM).

e67 Nucleic Acids Research, 2011, Vol. 39, No. 10 PAGE 6 OF 8



the presence of a known NF-kB inhibitor oridonin, the
luminescence response of the ruthenium complex was
decreased. Therefore, this assay can be used to identify
modulators that can activate or inhibit transcription
factor–DNA binding, for the diagnosis and treatment of
diseases linked with irregular transcription factor activity.
Furthermore, this technique is readily amenable to
high-throughput screening, allowing rapid and economic-
al identification of the target compounds. We anticipate
that this assay can be adapted to selectively detect any
transcription factor simply by changing the binding site
sequences. Due to the modular synthesis of the transition
metal complexes, we envisage that there is considerable
scope to adjust the selectivity of the complexes toward
particular DNA structures which would further improve
this assay for transcription factor detection.
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