a2 United States Patent

Lo et al.

US008160996B2

(10) Patent No.: US 8,160,996 B2
@s) Date of Patent: Apr. 17,2012

(54) SEQUENCE ONLINE ANALYTICAL
PROCESSING SYSTEM

(75) Inventors: Eric Chi Lik Lo, Kowloon (HK);
Benjamin Chi Ming Kao, Hong Kong
(HK); Wai-Shing Ho, Hong Kong (HK);
Chun-Kit Chui, Kowloon (HK);
Sau-Dan Lee, Hong Kong (HK)

(73) Assignees: The Hong Kong Polytechnic
University, Kowloon (HK); Versitech
Limited, Pokfulam (HK)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 435 days.

(21) Appl. No.: 12/364,265
(22) TFiled: Feb.2,2009

(65) Prior Publication Data
US 2010/0198777 A1 Aug. 5, 2010

(51) Int.CL

GO6F 17/30 (2006.01)
GO6F 17/00 (2006.01)
(52) US.CL ... 707/600; 707/601; 707/602; 707/603;
707/604
(58) Field of Classification Search 707/600-604;
705/10
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,799,300 A * 8/1998 Agrawaletal 1/1
7,010,495 BL* 3/2006 Samraetal. ... 705/14.41
7,516,128 B2* 4/2009 Colbyetal.ccccovcvvnne. 11

OTHER PUBLICATIONS

Smart Card Alliance, “Contactless payment and the retail point of
sale: Applications, technologies and transaction models,” Mar. 2003,
Publication No. PT-03002, pp. 1-50.

Beyer, K. S. and R. Ramakrishnan, “Bottom-up computation of
sparse and iceberg cubes.” SIGMOD, 1999, pp. 359-370.

Chen'Y. et al., “Multi-dimensional regression analysis of time-series
data streams,” Proceedings of the 28" VLDB Conference, Hong
Kong, China, 2002, pp. 323-334.

Fang, M., etal., “Computing iceberg queries efficiently,” Proceedings
of the 24" VLDB Conference, New York, USA, 1998, pp. 299-310.
Finkenzeller, K., “RFID Handbook: Fundamental and Applications
in Contactless Smart Cards and Identification,” p. 13, Wiley, 2003.
Gonzalez, H., et al., “FlowCube: Constructing RFID FlowCubes for
Multi-Dimensional Analysis of Commodity Flows,” VLDB, Sep.
12-15, 2006, pp. 834-845.

Gonzalez, H., et al., “Warchousing and Analyzing Massive RFID
Data Sets,” Proceedings of the 22" ICDE, 2006, p. 83.

Gray, I. et al., “Data cube: A relational aggregation operator gener-
alizing group-by, cross-tab, and sub-totals,” Data Mining and Knowl-
edge Discovery 1, 1997, pp. 29-53.

(Continued)

Primary Examiner — Yicun Wu

(74) Attorney, Agent, or Firm — Muncy, Geissler, Olds &
Lowe, PLLC

57) ABSTRACT

A sequence online analytical processing (S-OLAP) system
50 for analysing an event database (41) storing events (12),
the system (50) comprising: an S-OLAP engine (53) to com-
pute an S-cuboid (49) for a query on the event database (41);
asequence query engine (54) to form part of the S-cuboid (49)
by performing the steps of: selection, clustering, sequence
formation and sequence grouping; a cuboid repository (52) to
store computed S-cuboids (49) and to be searched by the
S-OLAP engine (53) for an S-cuboid query to determine
whether an S-cuboid has previously been computed; and a
sequence cache (56) to cache constructed sequence groups.

19 Claims, 16 Drawing Sheets

‘ user interface N 1

ht \
/ queries results
S-CLAP engine
cubcid repository / auxlliary data structures
53
56
| sequence query engine L
(/ sequence cache
[
54
50

event database

N

41

US 8,160,996 B2
Page 2

OTHER PUBLICATIONS

Gupta, A., etal., “Materialized views: Techniques, limplementations,
and Applications,” MIT Press, 1999.

Hellerstein, J. M. et al., “Online aggregation,” SIGMOD 1997, pp.
171-182.

Kohavi, R. et al., “KDD-Cup 2000 organizers’ report: Peeling the
onion,” SIGKDD Explorations, vol. 2(2):86-98, 2000.

Lenz, H.J., et al., “Summarizability in OLAP and Statistical Data
Bases,” SSDBM, 1997.

Li, X., et al,, “High-Dimensional OLAP: A Minimal Cubing
Approach,” Proceedings of the 307 VLDB, pp. 528-539, 2004.

Lo, E.,etal., “OLAP on Sequence Data,” Technical report, available
at www.comp.polyu.edu.hk/~cscllo/solap.pdf, 2008.

O’Nell, P E, et al., “Multi-table joins through bitmapped join indi-
ces,” SIGMOD Record, 24(3):8-11, 1995.

Ramakrishnan, R., et al., “SRQL: Sorted Relational Query Lan-
guage.” Proceedings of SSDBM, Jul. 1-3, pp. 84-95, 1998.

Ross, K. A., et al., “Fast computation of sparse datacubes,” Proceed-
ings of the 23 VLDB, pp. 116-125, 1997.

Sadri, R., et al., “Optimization of sequence queries in database sys-
tems,” PODS, pp. 71-81, 2001.

Seshadri, P, et al., “Sequence query processing,” SIGMOD, pp.
430-441, 1994.

Seshadri, P, et al., “The design and implementation of a sequence
database system,” Proceedings of the 22"¢ VLDB, pp. 99-110, 1996.
Valduriez, P., “Join indices,” ACM Transactions on Database Sys-
tems, vol. 12(2): pp. 218-246, 1987.

Wiwatwattana, N., et al., “X3: A Cube Operator for XML OLAP,”
ICDE, pp. 916-925, 2007.

* cited by examiner

U.S. Patent Apr.17,2012 Sheet10f16 US 8,160,996 B2
Figure 1
;
time card-id | location action | amount
2007-01-01T00:01 688 Glenmont in 0
2007-10-01T00:01 | 23456 | Pentagon in 0
2007-10-01T00:02 | 9876 | Pentagon in 0
2007-10-01T01:59 | 9876 Wheaton out -2
2007-10-02T22:46 52 Wheaton | deposit 100
2007-12-25T2\O:48 6544 | Wheaton out -3.5

\

12

\'

41

US 8,160,996 B2

Sheet 2 of 16

Apr. 17,2012

U.S. Patent

€S9 (uolBIY A\ ‘UOSRIUDJ UOIRIUQJ UOIBIY M)
SZ1°002 (U0BrIUdJ U0IRIY M “UOIRIY A “UO3IRIUI])
12€Y (UOZRIUD J IUOWUA[D) TWOWUI[D) ‘UOSLIUI])
£SO°L (UOpUaIR]D) ‘UOIBIY A\ “TUOIRIY A\ ‘UOPUIR])))
EV°S (uopuare[)‘uodeiud Juodeiud J ‘uopuaie[)))
INNOD (X XAA'X)
Z 2inbi4

Jno | = uoyovgx
ANV UL, = oo gh

ANV .Jno,, = totjov 1A

ANV UL, = OO T

HLIM (T ‘h 1A ‘T7) ALITVINIXVIN-LI9T
uoljels 1V #oupaol SV A

‘uonels 1Lv uonp20ol SV X

HIIM (X "A " K “X) DNIILSINS

Aep 1V auiy

‘dnoubB-aue} IV pi-pivo

ONIANADOSYV 2uil

Aep 1V auy

‘lenpiAlpul IV pi-pLoo

00:#CLIE-TI-L00T > 2l

ANV 00:00LT10-0T-L00C =< 2wl

US 8,160,996 B2

Sheet 3 of 16

Apr. 17, 2012

m uaAyg
= (+)JINNOD
=5

75 ¢ a.nbi4
-

Ad dIO0dNO

A9 dNOYOD IDNANOIS
Ad ADONANOTS

A HHIISNIO
Jd9HM

NOdd
IEUER

L1
91
Sl
vi
el

LSO = N
—

— N n v O~ 00 O

U.S. Patent Apr.17,2012 Sheet4 of 16 US 8,160,996 B2

Figure 4
Event Databasef\j1 Selected Eventsz-\ﬁ2
time | card-id[location[action[amount | ... time | card-id]location [action

sevent1e +eventq -

sevent2 - sevent3

sevent3 « > -event8:

45 ~ 4
A Sequence Groups ~.° ! Sequences Clusters~ %
e | gl S
. 8 -3 HIg s B
E 4 4> : E boja. Ll o
;2 TN B -
L5 - 1 i Pt g
P8 Oz T §] -
e A SE s
: . Ll : time:one-day time:one-day i
/ time:one-day, :
e

/ (X=VanAirport, Y=StanleyPark)
}

\
\

Y 46

,,:"‘Pattern Template (X,Y,Y,X
Y

Match Results ™

. (VanAirport,StanleyPark,
/ StanleyPark,VanAirport)

Y (location:stastion)
\

bae

Aggregate Values’\ﬁ8

US 8,160,996 B2

Sheet 5 of 16

Apr. 17,2012

U.S. Patent

Jno, = uonoe’ [z

(NV .U0Se1ua g, = uoneosoj ¢ (INV . Ul,, = Uoljoe ¢x
ANV . uodeiusd,, = uonedorze (NV . JNo,, = Uonoe g
ANV .U01BdYM,, — Uonedo[gzl (NV . Ul,, = uonoe-gh
ANV ..Uoleaym,, =uonedo[[(NV .Jno,, = uonode A
ANV . Uodeiusg,, = uoneoo| 1L (NV . Ul,, = UONoe 1T
HLIM (12 ‘g% ‘g ‘g ‘TATT) A LI TVINIX VIN-LAT'T
uonels IV uonwoo| Sy 7

‘uonels 1V uonpoo] SY X

‘uoneils IV Honwoo] SV X

HIIM (Z X X A “A “X) ONIILSANS

G ainbi4

Ad d104dNo

0¢
61
81
L1
91
Gl
bl
el
Cl
11
0l

U.S. Patent Apr.17,2012 Sheet 6 0f 16 US 8,160,996 B2

Figure 6

user interface /\/51

52 [} 55
f A
queries? results /
v
—— S-OLAP engine

auxiliary data structures

A
cuboid repository

sequence query engine -

h
(sequence cache

event database

4

US 8,160,996 B2

Sheet 7 of 16

Apr. 17, 2012

U.S. Patent

[@RLLALIIER S
iﬁgﬁwfhﬁ@_g w

o pue d saysnes 2

pue 7, JO UOH)ENIUE]ISUI Uk saydjew 7 (')wop > *i yoes a1doym
‘(wh ¢t CTR) Jo o] oY) Ut § Jo 2 Surpsqns snbrun yoes Jaoj L
G ul s souanbas yYoes a0y 9
/%% Sununoo pue 3utdnoisd ay) o(J 44/ 'S
0 = [¥a ‘- ‘2a‘lalH Anus 198 b
(*F)wop > q 21oym ‘(Ya ‘- - ‘Ta) ursned yoes a0§ ‘¢
/e SIIUNOD DY) SZI[BUIU] » s/ T

[2A9] uonorIISqe PaYy

-193ds o e %7 uotsuswip waped Jo urewop o) 3q (%7)wop 19 |

SUOISUaWIP & JO /) Aelie Uy :IndinQ

'd aeorpaid Sunojewr v (p) pue o uon
-o1nsaI [[20 € (0) f(we > u) ¥ g ¢ - I suotsusawip wdyed u pue
sfoquiAs utoped we Prm (g < TOONTILSANS=7 2rejdun

woned v (q) (dnoi3 souanbas e woiy g soouanbas Jo 195 v (B) :ynduy
dISVEIIINNOD) WYILIOZ|V

J 8inbBi4

US 8,160,996 B2

Sheet 8 of 16

Apr. 17,2012

U.S. Patent

ANo, tonoe aaey suonisod UdAD e SIUIAD SEIIYM
L, uonoe aaey suonisod ppo je sjuaad ‘N

(ORI A “POOMURS(] TOPUATR]) UOIBS A) /1l S
{uosejus J uopuaie)) 2101 ¢S
(no3ejad U0l M ‘Ol ‘UOSRINRG) | 9skET | TS
uogejua Juojes ‘UOIBIY A “TOTBIUD JUOT RIS JJUOUNID s
d UM 1A\ d d [D 8339
AJIADIQ IO] UMOUS 2IB Sanjes Yonels au3 Ajuo) aouanbas-juasas 1-pADD s
IAS1q 10] ! I 18]S 313 Af pr-p. P

g ainbi4

US 8,160,996 B2

Sheet 9 of 16

Apr. 17, 2012

U.S. Patent

J7umpr 9
[w4fi ¢ - - - SRy oyl s JO pis ppe S

[, JO UONenueIsuI ue saydew 7 pue ({7)wop D i yoed aroym
‘(wh - - CTR) 3O wI0J 9Y) Ul § JO 7 Surnsqns anbrun yoed 10j) b
G ur s dudanbas yoed 10§y ¢

/s« & dnoi3 aouanbas ap uedg ./ T
[9AJ] uondeIsqe pay
-103ds a1 18 %7 uorsuawp wianed Jo urewrop o) 2q (‘g)wop 1T |
'Spis dudaNbas Jo 18I € sureiuod Anud
AelIe Joed pue Aelre [RUOISUIWIP-w Uk ST YoIgm ‘7 Aerre uy ndinQ
(w S u) ¥g ¢ T4 suorsuawirp uidyed v pue
sfoquiks uraped we ynm (M40 ¢ LO)DNIILSINS=1 edwa)
waned v (q) (dnoi3 aouonbos v wioly ¢ saoudanbas Jo 19s vy () :ndu]
XAANTATING WYILIOFY

6 21nbi4

US 8,160,996 B2

Sheet 10 of 16

Apr. 17, 2012

U.S. Patent

T
{75 15} = [uoeayp\ ‘uoyeaym 127 19y
{Cs ‘15} = [uoBruaJ uoreaym |27 8}
{¥s} = [uopuare[Huoleaym 1277 4]
{75 IS} = [uoieoym ‘uOBRIUSJ]CT :9]
{15} = [uoBruaguodeius]y :9)
{15} = [voBeusguowiua[nH)e7 ¥}
{¥s} = [uorBOyYM ‘POOMURBI(]ET :¥]
{es} = [uoBeyusjuopuare[H]e7 4
{¥s} = [poomues(JUuopuaie[D]¢7 1
0l @Inbi4

T
{¥s gs ‘15} = [uoreaym |
{es ‘zs 15} = [uo3rua]
{15} = [1uowua[n)]

iy
tT
T

{ps} = [poomued(]t7

{ys ‘gs} = [uopuare[D]

v

US 8,160,996 B2

Sheet 11 of 16

Apr. 17, 2012

U.S. Patent

o, = uonoo 1A

ANV Ul = uonov 1x

HLIM (17 ‘12) ALITVINIXVIN-LAAT
uonels IV ©oyndo] SY X

‘uoljels Iy ©oyvoof SY X

HIIM (X “X) DNTILSEINS

L1 @b

Ad d104dNno

Sl
4!
el
Cl
e
01

US 8,160,996 B2

Sheet 12 of 16

Apr. 17,2012

U.S. Patent

C
l
C
I
1
|

(uo3eIUdJUOIBIYAN)
(uopuaIe) ‘U0IBIY M)
(uojeay A\ ‘uo3eIudJ)
(uogejua J1UOWUI[))

(UOJBIY A\ ‘POOMURBI(])
(uoseiuaJuopuaie[)))

(uo1pis ‘Uo1IDIS)

Zl @Inbi

US 8,160,996 B2

Sheet 13 of 16

Apr. 17,2012

U.S. Patent

7S IS {Ts “1S} U 4TS ‘IS} 6/ 1 9 [ojeaty Ay “UoROY A 0T B] | Ce el T o
{1 {ZS “IS} U {Pps} 6/ U €7 [ro3B2 A "HO3RY A\ pOvATIER(]] (x j&ﬂ P
{18} f1sy U {zs‘1s} 5/ U % {uoBejua uosuIuRJ UOIBAY A | P t&q €Ty
{¥s} £1st U {15} S U S [uoseIus uos s uodeiua | > imhq Nay
{18} {1st U {18} S7 U Y7 [uoBR1Ia{ UOSRIUS] WWOUHS[D)] X i%ﬂ T
{} f1s}t U {¢s} STUY [uoz e J uoseius J uopuaic] | (4 \:,.nwm 0
{poIs} uolj0asIsuUI-pIS uoloasIaul-)s||

¢l 2inbi4

US 8,160,996 B2

Sheet 14 of 16

Apr. 17,2012

U.S. Patent

{zs 18}

{78 IS} U {TS “18}

87 | SH _ [roFeia J U0y A UOIEAY A\ TOSBIIS]

v,
V.S 1

“m:w

{pis}

uoloasIaul-pIS

uoI08sSIB)UI-IS]| _

7L @inbi4

U.S. Patent Apr.17,2012 Sheet 150f 16 US 8,160,996 B2

Figure 15

Algorithm QUERYINDICES

Input: (a) A set of sequences S from a sequence group; (b) A pattern
template T=SUBSTRING(Y1,. .., Ym) with m pattern symbols
and n pattern dimensions P, ..., Pn (n < m); (¢) a cell restric-
tion o; and (d) a matching predicate p.

Output: An array C' of n dimensions

1. Let dom(P;) be the domain of pattern dimension F; at the speci-
fied abstraction level

2. /** Initialize the counters **/
3. for each pattern (v1, . . ., vy), where v; € dom(F;)
4. Setentry Clv1,v2,...,un] =0
5. /** Look-up mverted index Lgn Lo ¥in) and join the inverted in-
dices if necessary **/
while L&,fl o ¥m) ¢ not available
7. /*% Join the indices according to the pattern template and inter-
sect the sequence lists *%#/
(Y1.. 1) Y1,..,Y; (Yi,Yit1)
8. Ly Yi = Lg Lo ¥a) g Ly 17 (where
JASERR Yi) i the largest available inverted index)
9. Scan the database to eliminate invalid entries and cache
L(Y17 " 1+1)
341
10. for each entry L ’Ym)[m , Um] 10 L{YYm)
1. Clvi,...,vn] equals to the number of sequences iIn

Yi,....Ym
Lyt m|

12, return C

V1,...,Um]| that satisfy o and p.

US 8,160,996 B2

Sheet 16 of 16

Apr. 17,2012

U.S. Patent

() seousnbas jo J8quInN

000}

00G

\\\\ (F9°12)

(p'GZL) =

'
H
.
.

.
+

J!.,.:L (0z mN:

001 {egepd O

“s.
“na,
L,

v

.
P

&@

g} @inbi4

(z9'99)

.
2
+
.
»
.
.

»
.

.

ey
.
.t

[y
»
.

N e

’
v
-
»
[
»
-
»

T S L L L T RN Y T P OO S PR
» '
)
»

.
»

pauueds saouanbas -
ocmmzo.: Jo Jsquinu aAngINWIND

- 3 gan el
. s .
L] e L]
s - oy
" . art by
. . -t ~
pent : be® <
- . - -
- » .
Lent? M et PR
. -
et a2 a at
- Leemtt
et -
ves -
- 3 .
- nt

.
]
.
.
L]

)
©
A

&

Ol

US 8§,160,996 B2

1

SEQUENCE ONLINE ANALYTICAL
PROCESSING SYSTEM

TECHNICAL FIELD

The invention concerns a sequence online analytical pro-
cessing system and a method for building a sequence cuboid.

BACKGROUND OF THE INVENTION

Traditional online analytical processing (OLAP) systems
process records in a fact table and summarize their key sta-
tistics with respect to certain measure attributes. A user can
select a set of dimension attributes and their corresponding
levels of abstraction and an OLAP system will partition the
data records based on those dimension attributes and abstrac-
tion levels. Records that share the same values in those
dimension attributes (with respect to the selected abstraction
levels) are grouped together. Aggregate functions (such as
sum, average, count) are then applied to the measure
attributes of the records in each group. Next, an OLAP system
reports a summary (referred to as a cuboid) by tabulating the
aggregate values for all possible groups. OLAP is a powerful
data analysis tool because it allows users to navigate or
explore different levels of summarization by interactively
changing the set of dimension attributes and their abstraction
levels. In other words, users can navigate from one cuboid to
another interactively in order to obtain the most interesting
statistics through a set of pre-defined OLAP operations, for
example, roll-up, drill-down, slice, and dice.

Although powerful existing OLAP systems only handle
independent records, many kinds of real-life data exhibit
logical ordering among their data items and are thus sequen-
tial in nature. Examples of sequence data include stock mar-
ket data, web server access logs and RFID logs such as those
generated by a commodity tracking system in a supply chain.
Similar to conventional data, there is a strong demand to
warehouse and to analyze the vast amount of sequence data in
a user-friendly and efficient way. However, traditional online
analytical processing (OLAP) systems and techniques are not
designed for sequence data and they are incapable of support-
ing sequence data analysis.

Sequence databases and OLAP do not address the issues of
sequence data analysis as well. OLAP onunconventional data
does not address the problem of pattern based grouping and
analysis.

SUMMARY OF THE INVENTION

In a first preferred aspect, there is provided a sequence
online analytical processing (S-OLAP) system for analysing
an event database storing events, each event consisting of at
least one dimension and measure; the system comprising:

asequence cuboid (S-cuboid) builder to build an S-cuboid,

the S-cuboid defining a logical view of the sequence data
at a predetermined degree of summarization;

wherein the S-cuboid built by the S-cuboid builder is speci-

fied by:

a WHERE clause to select events of interest;

a CLUSTER BY clause to specify events that are ele-
ments of a sequence to be clustered together;

a SEQUENCE BY clause to form a sequence from a
cluster of events;

a SEQUENCE GROUP BY clause to group sequences
whose events share the same dimension values and
form a sequence group;

w

40

45

50

60

65

2

a CUBOID BY clause to specify the logical view of the
sequence data; and

at least one aggregation function to be applied to the
sequences in each S-cuboid cell.

Each attribute in the CLUSTER BY clause may be associ-
ated with an abstraction level in a concept hierarchy.

The CUBOID BY clause may comprise:

a pattern template to define a format of the substring/
subsequence patterns to be matched against the data
sequences;

a cell restriction to define how a response when a data
sequence contains multiple occurrences of a cell’s pat-
tern and the content of the data sequence should be
assigned to the cell; and

a matching predicate to select data sequences of interest.

The pattern template may consist of a sequence of symbols
each associated with a domain of values, and the domain of
values is specified as the domain of an attribute at predeter-
mined abstraction level.

The pattern template may instantiate a pattern by a set of
values that are associated with the symbols, and each cell is
associated with a pattern.

The cell restriction may be specified by a keyword.

The matching predicate may be specified by introducing a
sequence of event placeholders after the cell restriction.

The system may further comprise six S-OLAP operations:

APPEND to add a pattern symbol to the end of a pattern
template,

PREPEND to add a pattern symbol to the front of a pattern
template,

DE-TAIL to remove the last pattern symbol from a pattern
template,

DE-HEAD to remove the first pattern symbol from a pat-
tern template,

PATTERN-ROLLUP (P-ROLL-UP) to modify the
abstraction level of pattern dimensions by moving the
abstraction level of a pattern dimension one level up the
concept hierarchy; and

PATTERN-DRILL-DOWN (P-DRILL-DOWN) the
abstraction level of pattern dimensions by moving the
abstraction level of a pattern dimension one level down
the concept hierarchy.

The events may form a sequence if there is a logical order-

ing among a set of events.

A set of S-cuboids may form a lattice (S-cube) and an
S-cuboid at a coarser granularity is at a higher level in the
lattice containing fewer global and/or pattern dimensions or
the dimensions are at a higher level of abstraction.

The S-cuboid may be computed by associating each cell in
an S-cuboid with a counter and for each sequence, the cells
whose associated patterns are contained in the sequence are
determined and their corresponding counter is incremented
by one

The S-cuboid may be computed by creating a set of
inverted indices by pre-processing the data offline, and the
precomputed inverted indices are used to dynamically
assemble and compute the cells of the S-cuboid.

In a second aspect, there is provided a method for building
a sequence cuboid (S-cuboid) for a database query of an event
database, the method comprising:

selecting events from the event database;

clustering the selected events;

forming sequences from the clustered events; and

grouping the sequences into sequence groups sequences
whose events share the same dimensions’ values.

US 8§,160,996 B2

3

The method may further comprise grouping patterns to
specify a logical view of results from the database query
according to a user defined pattern template, cell restriction
and a matching predicate.

The method may further comprise aggregating the results
of the database query according to a selected aggregation
function.

The method may further comprise returning an n-dimen-
sional array where n is the number of pattern dimensions.

In a third aspect, there is provided a sequence online ana-
lytical processing (S-OLAP) system for analysing an event
database storing events, the system comprising:

an S-OLAP engine to compute an S-cuboid for a query on

the event database; and

a sequence query engine to form part of the S-cuboid by

performing the steps of: selection, clustering, sequence
formation and sequence grouping.

The system may further comprise a cuboid repository to
store computed S-cuboids and to be searched by the S-OLAP
engine for an S-cuboid query to determine whether an
S-cuboid has previously been computed.

The system may further comprise a sequence cache to
cache constructed sequence groups.

The system may further comprise auxiliary data structures
to compute the query online.

The system may further comprise a user interface to assist
a user in specifying an S-cuboid.

A notable difference between S-OLAP from traditional
OLAP is that a sequence is characterized by the attributes’
values of its constituting items and by the subsequence/sub-
string patterns it possesses. The S-OLAP system is able to
support pattern-based grouping and aggregation which are
not supported by any OLAP system.

S-OLAP allows users to interactively explore different lev-
els of summarization of sequence data through a user-friendly
interface. This facilitates the managerial decision process in
certain applications.

BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with
reference to the accompanying drawings, in which:

FIG. 1 is an event database;

FIG. 2 is a sequence OLAP query result;

FIG. 3 is an S-cuboid specification Q;

FIG. 4 is a conceptual view of building an S-cuboid for
Query Q;;

FIG. 5 is an S-cuboid specification Q,;

FIG. 6 is a system architecture diagram of an S-OLAP
system,

FIG. 7 is pseudocode for a CounterBased procedure;

FIG. 8 is an example sequence group in Query
(day="2006-12-25", fare-group="regular”);

FIG. 9 is pseudocode for a BuildIndex procedure;

FIG. 10 depicts inverted indices of a sequence group;

FIG. 11 is query specification Q;;

FIG. 12 is a two dimensional S-cuboid for query Q;;

FIG. 13 depicts an inverted index L,“"D;

FIG. 14 depicts an inverted index ,5"9;

FIG. 15 is pseudocode for a QueryIndices procedure; and

FI1G. 16 is a diagram showing the running time of query set
Q, under three different datasets with different number of
sequences.

Q

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 and the following discussion are intended to provide
a brief, general description of a suitable computing environ-

10

15

20

25

30

40

45

50

55

60

65

4

ment in which the present invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions, such as
program modules, being executed by a computer such as a
personal computer, laptop computer, notebook computer,
tablet computer, PDA and the like. Generally, program mod-
ules include routines, programs, characters, components, data
structures, that perform particular tasks or implement particu-
lar abstract data types. As those skilled in the art will appre-
ciate, the invention may be practiced with other computer
system configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, and the like. The invention may also be
practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote memory storage devices.

Referring to the drawings, a Sequence OLAP system
(S-OLAP) system 50 is provided. The S-OLAP system 50
analyzes sequence data and has many applications, for
example, a transportation planning application. Today, many
cities have implemented electronic transportation payment
systems using RFID technology. Examples include Hong
Kong’s Octopus system, Japan’s Kansai Thru Pass system
and Washington DC’s SmarTrip system. In these cities, every
passenger carries a smart card, for exaniple, a card with a
passive RFID chip, which is used as a form of electronic
money to pay for various kinds of transportation such as bus
or subway. The electronic payment system generates huge
volumes of data everyday. For example, Hong Kong’s Octo-
pus system collected over seven million transactions per day
in 2003. The transactions performed by a user each day can
form logical sequences in many different ways. For example,
a sequence is formed by clustering a user’s transactions over
1-day, 1-week or 1-month periods.

With the enormous amount of sequence data available, an
OLAP system that performs sequence summarizations is
desirable. For example, if a transport-planning manager of
Washington Metropolitan Area Transit Authority (WMATA)
wants to rearrange the subway schedule, he may initiate a
query asking “the number of round-trip passengers and their
distributions over all origin-destination station pairs within
2007 Quarter 4”. FIG. 1 presents an artificial WMATA
dataset. It is assumed that a passenger registers an event/
transaction into the system every time she enters
(action="In") or leaves a station (action="out™) through the
turnstiles. Therefore, the round-trip semantics may be cap-
tured by the pattern (X,Y,Y,X), which means that all passen-
gers who have first entered any station X (for example, Pen-
tagon), exited at any station Y (for example, Wheaton), and
then entered station Y (Wheaton) again and returned to station
X (Pentagon) should be grouped together. Furthermore, for
each possible combination of X andY, the aggregated number
of passengers is counted and a tabulated view of the sequence
data shown in FIG. 2 should be returned by the S-OLAP
system 50.

The S-OLAP system 50 also allows a user to interactively
change the grouping pattern and be able to answer iterative
queries efficiently. For example, after studying the round-trip
distribution in FIG. 2, the manager might observe that there is
a high concentration of people taking round-trips from Pen-
tagon to Wheaton. He might want to further investigate
whether those passengers would take one more follow-up trip
and if so where they usually go. He can view this distribution
by first performing a traditional slice OLAP operation on

US 8§,160,996 B2

5

(Pentagon,Wheaton,Wheaton, Pentagon), followed by
changing the grouping pattern to (X,Y,Y,X,X.7). where the
two newly appended symbols X.7Z denote the third trip from
station X (Pentagon) to any station Z.

S-OLAP systems have many more applications. Another
example is a marketing manager of an e-commerce company
can use an S-OLAP system to identify some “lost-sales”
page-clicking sequences by posing S-OLAP queries such as:
“for all possible pairs of page combinations within 2007
Quarter 4, show the number of visitors per day, with a visiting
pattern of (P.K)” onits web server access log, where P denotes
any product page and K denotes any “killer page” (for
example, alogout page). Again, the manager can interactively
change the grouping pattern and the S-OLAP system should
be able to efficiently answer those iterative queries so as to
help the manager to drill-down into the actual reasons for the
lost-sales.

In the S-OLAP system 50, a sequence is characterized by
the attributes’” values of its constituting events and by the
subsequence/substring patterns it possesses. The S-OLAP
system 50 supports pattern-based grouping and aggregation.
This is a very powerful concept and capability that is not
supported by traditional OLAP systems.

The raw data of an S-OLAP system is a set of events that are
deposited in an event database. An event e is modeled as an
individual record/tuple in a way similar to those stored in a
fact table in a traditional OL AP system. Referring to an event
database 41 stores events 12 is in the form of (time, card-id,
location, action, amount). It is assumed that each passenger
has only one smart card. Therefore, the first event in FIG. 1
shows that a passenger with card-id 688 has entered Glen-
mont station (action="in") at time 00:01 on Jan. 1, 2007.
Since the data is collected and consolidated from each station,
it is assumed that events 12 in the event database 41 are
ordered by the location and time attributes 13.

Anevent 12 in an S-OLAP system consists of a number of
dimensions and measures and each dimension may be asso-
ciated with a concept hierarchy. In FIG. 1, the attributes 13
time, card-id, location and action are dimensions and the
attribute amount is a measure. In the described example, it is
assumed that the location attribute is associated with a con-
cept hierarchy of two abstraction levels station—district, the
card-id attribute is associated with a concept hierarchy
individual—=fare-group (for example, student or regular or
senior), and the time attribute is associated with a concept
hierarchy time—day—week.

If there is a logical ordering among a set of events, the
events can form a sequence. In the described example, a
logical ordering may be based on the time attribute. There-
fore, the traveling history of passenger 688 may be denoted by
the sequence which consists of all the events with card-id 688,
ordered by the time attribute.

Sequence Cuboid (S-Cuboid)

In S-OLAP, an S-cuboid is a logical view of sequence data
at a particular degree of summarization in which sequences is
characterized by the attributes’ values and by the subse-
quence/substring patterns they possess.

Referring to FIG. 3, a cuboid specification for an example
query Q, is depicted. Query Q, asks for the number of
roundtrip passengers and their distributions over all origin-
destination station pairs for each day and for each fare-group
within Quarter 4 of 2007.

Referring to FIG. 4, the steps of building an S-cuboid 49 for
the example query Q, are depicted. After completion of all
steps, a four dimensional S-cuboid 49 with two global dimen-
sions (time:day, card-id:faregroup) and two pattern dimen-
sions (X,Y) are built. The event database 41 stores events 12.

35

40

45

60

6

Each event 12 has the following attributes: time, card-id,
location and action (which are dimensions) and amount
(which is a measure).

The specification of an S-cuboid 49 consists of six parts:
(1) WHERE clause (2) CLUSTER BY clause, (3)
SEQUENCE BY clause, (4) SEQUENCE GROUP BY
clause, (5) CUBOID BY clause and (6) Aggregation Func-
tions.

1. Selection

A WHERE clause selects only events 12 of interest. Lines
3 and 4 in FIG. 3 specify that only events 12 within 2007 Q4
are selected as the selected events 42.

2. Clustering

A CLUSTER BY clause specifies events that are elements
of a sequence to be clustered together 43. Each attribute in the
CLUSTER BY clause is associated with an abstraction level
in a concept hierarchy. Lines 5 and 6 in FIG. 3 specify that
events should be clustered together according to the attributes
card-id and time, at the abstraction levels of individual and
day, respectively. In other words, events that share the same
card-id value and occur in the same day should form a cluster.
However, events in the same cluster are not necessarily
ordered at this stage.

3. Sequence Formation

A SEQUENCE BY clause forms a sequence 44 from a
cluster of events 43. Events in each cluster form exactly one
sequence. For example, Line 7 in FIG. 3 specifies that the
clustered events 43 should form sequences 44 according to
their occurrence time.

4. Sequence Grouping

A SEQUENCE GROUP BY clause is introduced such that
sequences 44 whose events share the same dimensions’ val-
ues are further grouped together to form a sequence group 45.
The attributes in the SEQUENCE GROUP BY clause form
the set of global dimensions and each of them is associated
with an abstraction level in the concept hierarchy. For
instance, Lines 8 and 9 in FIG. 3 specify that individual user
sequences within the same fare-group and whose cvents
occurred in the same day should form a sequence group 45. If
the SEQUENCE GROUP BY clause is not specified, all
sequences form a single sequence group.

5. Pattern Grouping

A CUBOID BY clause is introduced in order to specify the
logical view of the sequence data that the user wants to see.
The CUBOID BY clause consists of three subparts: Pattern
Template, Cell Restriction and Matching Predicate. FIG. 4
illustrates pattern grouping 46 and the details are explained
below.

A Pattern Template consists of a sequence of symbols, each
associated with a domain of values. The domain of values is
specified as the domain of an attribute at certain abstraction
level. The set of distinct symbols in a pattern template form
the set of pattern dimensions. The set of pattern dimensions
together with the set of global dimensions define the parti-
tioning of an S-cuboid 49 (that is, the cells of an S-cuboid).

The Pattern Template defines the format of the substring/
subsequence patterns to be matched against data sequences.
SUBSTRING(X,Y,Y.X) or SUBSEQUENCE(X,Y,Y,X)
means a substring/subsequence pattern template (X,Y,Y,X) is
specified. Lines 10to 12 in FIG. 3 show an example substring
pattern template with two pattern dimensions X and Y, each
represents a location value at the station abstraction level.

Each cell is associated with a pattern. A pattern is instan-
tiated from a pattern template by a set of values that are
associated with the symbols. If two symbols in a pattern
template are the same, then they should be instantiated with
the same value. For example, the pattern (Pentagon, Wheaton,

US 8§,160,996 B2

7

Wheaton, Pentagon) is an instantiation of pattern template
(X.Y,Y.X) but the pattern (Pentagon,Wheaton,Glenmont,
Pentagon) is not. If a data sequence matches the pattern of a
particular cell, and if it further satisfies the Cell Restriction
and the Matching Predicate, then it is assigned to that cell 47.
Since a data sequence may match multiple patterns, it may be
assigned to more than one cuboid cell.

The Cell Restriction defines how to deal with the situations
when a data sequence contains multiple occurrences of a
cell’s pattern and what content of the data sequence should be
assigned to the cell (for the purpose of aggregation, to be done
later). One type of cell restriction is left-maximality-
matched-go. For example, when a cell with a substring pat-
tern (a,a) is matched against a data sequence haabaai, the
left-maximality-matched-go cell restriction states that only
the first matched substring/subsequence (that is, the first “aa”
in haabaai) is assigned to the cell. This cell restriction is
specified by the keyword LEFT-MAXIMALITY. In general,
depending on the applications, more cell restrictions are
defined. For example, one can define a left-maximalitydata-
go cell restriction where the whole data sequence haabaai, not
only the matched content haai, is assigned to the cell. As
another example, an all-matched-go cell restriction is also
defined where all substrings/subsequences that match the
pattern are assigned to the cell (that is, the two aa’s in haabaai
are assigned to the cell).

A Matching Predicate is for selecting data sequences of
interest. In order to specify a predicate, a sequence of event
placeholders is introduced after the cell restriction. Line 13 in
FIG. 3 shows an example of a Matching Predicate. The four
event placeholders x,, y,, ¥, and x, in Line 13 represent the
matched events (not only the location values) and the predi-
cate in Line 14 specifies that the action attribute value of the
first matching event x, must equal “in”.

An aggregation function is specified in the SELECT clause
in order to define the aggregate function 48 to be applied to the
sequences in each S-cuboid cell 47. In S-OLAP, the COUNT
aggregation function 48 counts the number of matched sub-
strings/subsequences that are assigned to a cell 47 as illus-
trated in FIG. 4.

An S-cuboid specification may be further extended if nec-
essary. For example, other aggregation functions, such as
SUM, may be incorporated ifits semantics is clearly defined.
For example, two data sequences s, ,,e,) and s,{,.e,) are
assigned to a cell. SUM is defined as the sum of the measures
of all the events that occurred in s, and s, (that is,
SUM=X,_,*e,amount). Alternatively, if desired, the first
occurring event is summed over in each sequence (that is,
SUM=e amount+e;amount). The S-cuboid specification
supports substring or subsequence pattern templates. The
specification may be extended so that pattern templates of
regular expressions are supported.

Sequence OL AP Operations

OLAP is a powerful analytical and decision-supporting
tool because it provides a set of operations (for example,
roll-up or drill-down) for a user to interactively modify the
cuboid specification (that is, changing the set of dimension
attributes and/or their abstraction levels) and thus enables a
user to navigate from one cuboid to another to explore the big
cube space with ease. Since an S-cuboid is defined by a set of
global dimensions and pattern dimensions, any changes to
these elements transform an S-cuboid to another. In the
S-OLAP design, the same set of OLAP operations are
adopted, namely, roll-up, drill-down, slice, and dice for the
manipulations of the global dimensions. For example, the
transport-planning manager might modify the S-OLAP query
Q; so that passengers are grouped based on individual. To

40

45

50

60

8

achieve this, a drill-down operation is performed on the glo-
bal dimension card-id, going from the abstraction level fare-
group to a lower abstraction level individual.

For pattern manipulation, six S-OLAP operations are pro-
vided, namely, APPEND, PREPEND, DE-TAIL, DE-HEAD,
PATTERN-ROLLUP (P-ROLL-UP) and PATTERN-
DRILL-DOWN (P-DRILL-DOWN). These six S-OLAP
operations modify the grouping patterns and/or the abstrac-
tion level of the elements inside the grouping patterns such
that users can interactively view the summarized data from
different perspectives. In other words, the six S-OLAP opera-
tions allow users to navigate from one S-cuboid to another in
the S-cube space with ease. The first four operations add/
remove a pattern symbol to/from a pattern template and the
last two operations modify the abstraction level of pattern
dimensions.

The APPEND operation appends a pattern symbol to the
end of the pattern template. For example, after learning about
the round-trip distribution resulted from query Q,, the man-
ager might observe that there is a particularly high concen-
tration of people traveling round-trip from Pentagon to
Wheaton. He might want to further investigate whether those
passengers would take one more trip and if so where they
usually go. Two APPEND operations plus a modification of
the matching predicate give the cuboid specification Q, in
FIG. 5 (only the CUBOID BY clause is shown for brevity). Q,
transforms the original four dimensional S-cuboid to a five
dimensional S-cuboid with global dimensions (time:day,
card-id:fare-group) and pattern dimensions (X,Y,7), where Z
is a new pattern dimension. The other three operations that
modify pattern length are similarly defined:

PREPEND-—add a symbol to the front of the pattern tem-

plate;

DE-TAIL—remove the last symbol from the pattern tem-
plate; and

DE-HEAD—remove the first symbol from the pattern tem-
plate.

A P-ROLL-UP operation moves the abstraction level of a
pattern dimension one level up the concept hierarchy. A
P-DRILL-DOWN operation moves a pattern dimension one
level down. For example, after viewing the trip distribution
resulting from query Q,, the manager might find that there are
too many station pairs which makes the distribution reported
by the S-cuboid too fragmented. He may want to roll up the
location pattern dimension 7 from the station level to the
district level. For that, the P-ROLL-UP changes Line 13 in
FIG. 5 to: “Z AS location AT district”,

Sequence Data Cube (S-Cube)

In S-OLAP, an S-cuboid is defined for each of the possible
subsets of the given dimensions and abstraction levels for a
set of global and pattern dimensions and a set of concept
hierarchies that is associated with the dimensions. The set of
S-cuboids also form a lattice and is called a Sequence Data
Cube (S-cube). An S-cuboid at a coarser granularity is at a
higher level in the lattice, which means it contains fewer
global and/or pattern dimensions, or the dimensions are at a
higher level of abstraction.

The number of S-cuboids in an S-cube is infinite. Theoreti-
cally, users may introduce any number of pattern dimensions
into the pattern template using S-OLAP operations such as
APPEND and PREPEND. For example, a pattern template
X.Y,Z,AB,C, . ..) is possible in which all pattern dimen-
sions refer to the same dimension attribute, say, location.
Consequently, an S-cube includes an infinite number of
S-cuboids although users seldom initiate S-OLAP queries
with long pattern template in practice.

US 8§,160,996 B2

9

Generally, data in an S-cuboid is non-summarizable which
means an S-cuboid at a higher level of abstraction (coarser
aggregates) cannot be computed solely from a set of
S-cuboids that are at a lower level of abstraction (finer aggre-
gates) without accessing the base data. Traditionally, summa-
rizability only holds when the data is disjoint and complete
during data partitioning. However, an S-cuboid may put a
data sequence into multiple cells which violates the disjoint-
ness requirement. Consider a dataset with only one data
sequence s, <Pentagon, Wheaton,Pentagon, Wheaton,Glen-
mont>. If the pattern template is SUBSTRING(X,Y,Z7), then
s5 contributes a count of one to all three cells [Pentagon,
Wheaton,Pentagon: ¢,]|, [Wheaton,Pentagon,Wheaton: c,],
and [Pentagon, Wheaton,Glenmont: c,] because s, matches
all three substrings (c,, ¢, and c, denote the counts of the
cells). If a DE-TAIL operation is performed, that is, the pat-
tern template is changed to SUBSTRING(X.,Y), then the cell
[Pentagon, Wheaton: c,] should have a count of one (as s;
matches the pattern only once under the left-maximality-
matched-go cell restriction). However, if ¢, is computed by
aggregation, ¢,=c,+c,=2, which is an incorrect answer. This
generally demonstrates that data in an S-cuboid is non-sum-
marizable.

The properties of having an infinite number of S-cuboids
and non-summarizability make the implementation of an
S-OLAP system very challenging. The main reason is that
many existing OLAP optimization techniques (for example,
full cube materialization) are no longer applicable nor useful
in implementing an S-OLAP system.

S-OLAP System

To implement an S-OLAP system an S-cuboid must be
efficiently computed. The S-OLAP operations are supported
such that a sequence of S-OLAP queries is efficiently evalu-
ated. In S-OLAP, full materialization is not practical because
the number of pattern dimensions is unbounded. Also, the
non-summarizability of S-cubes invalidates the power of par-
tial materialization because an S-cuboid cannot be computed
from other S-cuboids via simple aggregations. As a result,
instead of precomputing S-cuboids, the approach is to pre-
compute some other auxiliary data structures so that queries
are computed online using the pre-built data structures.

Referring to FIG. 6, the architecture of the S-OLAP system
50 is depicted. Events are stored as tuples in relational data-
bases or as events in native sequence databases 41. A user
initiates their S-OL AP queries through a User Interface 51.
The User Interface 51 provides user-friendly components to
help a user specify an S-cuboid. These include offering some
drag-and-drop facilities and a graphical user interface. Fur-
thermore, a user can perform the six S-OLAP operations
through the interface 51. An S-OLAP Engine 53 searches a
Cuboid Repository 52 for an S-cuboid query to see if such an
S-cuboid has been previously computed and stored. Ifnot, the
S-OLAP engine 53 either computes the S-cuboid from
scratch or computes the S-cuboid with the help of certain
auxiliary data structures 55. The computed S-cuboid is then
addedto the Cuboid Repository 52. If storage space is limited,
the Cuboid Repository 52 may be implemented as a cache
with an appropriate replacement policy such as LRU (least-
recently-used).

During the computation of an S-cuboid, the S-OLAP Sys-
tem 50 starts with the first four steps of S-cuboid formation,
thatis, (1) Selection, (2) Clustering, (3) Sequence Formation
and (4) Sequence Grouping. These four steps are offloaded to
an existing sequence database query engine 54 and the con-
structed sequence groups are cached in a Sequence Cache 56
for efficiency. After the first four steps, the sequence groups
are stored in a q-dimensional array (where q 1s the number of

30

40

45

10
global dimensions). Once the sequence groups are formed or
loaded from the sequence cache 56, the S-OLAP Engine 53
commences S-cuboid construction.
S-Cuboid Construction

Two exemplary approaches are described for S-cuboid
construction. The first one is a counter-based method (CB)
and the second one uses inverted indices (II) as the auxiliary
data structure. It is assumed that the left-maximality-
matched-go cell restriction is used.

For the counter-based method (CB), each cell in an
S-cuboid is associated with a counter. All relevant counters
are looked-up and incremented when the data sequences are
scanned. If the number of counters is small enough to fit in
memory, it is an efficient single pass algorithm. To determine
the value of the counter, the set of sequences in each sequence
group is scanned. For each sequence s, the cells whose asso-
ciated patterns are contained in s are determined. Each of such
counters is incremented by 1. The CB approach addresses
efficient S-cuboid computation. For efficient processing of
S-OLAP operations, CB takes the result of applying each
S-OLAP operation as a specification of a new S-cuboid and
computes the S-cuboid from scratch.

For each sequence group that is obtained from the first four
S-cuboid formation steps performed by the sequence query
engine 54, the procedure CounterBased is invoked as
depicted in FIG. 7 with all sequences in the group and the
CUBOID BY specification as input. The procedure performs
the pattern grouping step and the aggregation step and returns
an n-dimensional array where n is the number of pattern
dimensions. Anentry C[v,, .. .,v, | inthe n-dimensional array
C stores the number of sequences that match the substring
pattern (v, ...,v,).

The procedure repeats for each sequence group and finally
a (gq+n)-dimensional S-cuboid is obtained.

The CounterBased procedure in FIG. 7 is for substring
pattern matching only. Subsequence pattern are supported by
modifying Line 7 in FIG. 7. The performance of the counter-
based method may degrade when the number of counters far
exceeds the amount of available memory because counters
are paged in for each sequence in the scan. Furthermore, this
algorithm does not facilitate the processing of iterative
S-OLAP queries as it computes an S-cuboid from scratch
every time an S-OLAP operation is applied to transform an
S-cuboid.

For inverted indices (I1), a set of inverted indices is created
by pre-processing the data offline. During query processing,
the relevant inverted indices are joined online so as to address
efficient S-cuboid computation. The by-products of answer-
ing a query are the creation of new inverted indices. Such
indices can assist the processing of a follow-up query. The
inverted list approach thus potentially addresses efficient pro-
cessing of S-OLAP operations as well.

The inverted index approach involves two basic algo-
rithms: one for computing inverted indices and one for con-
structing S-cuboids based on the inverted indices. The pattern
dimensions are partitioned into a set of low dimensional
pattern fragments and each fragment is represented by an
inverted index. Using the precomputed inverted indices, the
S-cuboid cells of the required S-cuboid online are dynami-
cally assembled and computed.

The inverted index approach shares the same first four steps
of S-cuboid formation as in the counter-based approach. After
the first four steps, a number of sequence groups are formed.
To illustrate the inverted index approach, substring patterns
and the sequence group shown in FIG. 8 are considered. It is
assumed each sequence is identified by a unique sid attribute.

US 8§,160,996 B2

11

BuildIndex is a construction algorithm to precompute
inverted indices. BuildIndex creates a size-m inverted index
L, where m is a user-specified parameter. L, is a set of
inverted lists. An inverted list, denoted by L,,[v,, . . ., V], Is
associated with a length-m substring pattern (v, . . ., v,,).
Each element in the pattern is chosen from the domain of a
pattern dimension at a particular abstraction level. The list
stores the sids of all sequences that match the substring pat-
terns associated with it. For example, considering the location
pattern dimension at the station abstraction level, two
inverted indices L, and [, constructed for the data sequence
group are shown in FIG. 10 (empty lists, such as L,[Claren-
don,Clarendon], are not shown). For notational convenience,
apattern template T, L, 7 is used to denote a subset of L, such
that an inverted list L,, [v,, . .., v,] is in L,,” if the pattern
(v,...,v,,)is aninstantiation of the template T (for example,
considering the lists in FIG. 10, L,"*9={1,, I.}). Also L,***"
includes all the lists in L, if there are no restrictions on X and
Y. BuildIndex is summarized in FIG. 9.

Given a set of precomputed inverted indices, computing an
S-cuboid is not difficult. Consider a query Q, that inquires the
statistics of single-trip passengers. The cuboid specification
of Q, is shown in FIG. 11 (only the CUBOID BY clause is
shown). Q;, which specifies a pattern template (X,Y), is
answered by L,*® (which is the same as L, since X, Y are
unrestricted). For each instantiation (v,, v,) of (X,Y), the
count of the S-cuboid cell of pattern (v,, v,) is computed by
simply retrieving the inverted list L,[v,, v,], and counting the
number of sequences in the list that satisfy the cell restriction
and predicate (that is, Lines 13-15 in FIG. 11). FIG. 12 shows
the non-zero entries of the 2D S-cuboid computed. S-cuboids
ofhigher dimension can also be computed by joining inverted
indices. For example, consider query Q,, which specifies a
pattern template (X,Y.Y,X). Q, is answered in two steps,
assuming that L, is materialized. L,“*"*" is first computed
(that is, the set of inverted lists for any length-3 patterns that
are instantiations of (X,Y,Y)). This is done by joining L,*""
with L,"*"", The semantics of R=L,“*" <L, "> is that a list
1€ Riff I=L,[v,,v,]NL,[V,,V,] such that L,[v,,v,] € L%,
L,[v,.v,]€L,% and v,==v.. Using the described example,
L,""=L, and L,""={I,, L,}. The list intersections per-
formed by the join is illustrated in FIG. 13. Sequences in the
lists in R are then checked by scanning the database to elimi-
nate invalid entries. For example, refer to FIG. 13, list [, is
obtained by 15 N 1,={s,}. Since s, does not contain the sub-
string pattern (Pentagon, Pentagon, Pentagon), s, is removed
from the list. The resulting index gives L,**""". The index
L, is obtained by joining L, with L, in a
similar fashion. FIG. 14 shows the only non-empty list
resulted. Finally, the count of an S-cuboid cell is computed by
retrieving the corresponding list in L, verifying the
sequences against cell restrictions and predicates, and count-
ing the valid ones. In the example, only one cell [Pentagon,
Wheaton, Wheaton,Pentagon] has a count of 1, all others are
0.

The query processing algorithm Querylndices is summa-
rized in FIG. 15. For all S-OLAP quetries, Querylndices is
invoked to compute an S-cuboid from scratch. During query
evaluation, if Querylndices requires an inverted index that is
not available, then QueryIndices would build the proper
inverted index at runtime. This on-demand building process
would increase the initial query time. However, the subse-
quent iterative queries, which are obtained by successive
applications of S-OL AP operations and highly correlated to
the previous queries, would be benefited from the newly
computed inverted indices. The six S-OLAP operations can
use of existing inverted indices to obtain better performance.

40

45

55

12

For a sequence of iterative queries, Q,, Q,, Q. ifa query has
been evaluated before and its result is cached, the evaluation
is skipped and the cached result is returned immediately. For
example, if an APPEND on Q, to obtain Q, is performed,
followed by a DE-TAIL to obtain Q_, then Q.. is the same as
Q,, and the cached result is returned.

Referring to FIG. 11, the implementation of the APPEND
operation is explained by the following iterative queries Q,,
Q,. Q.. Qyis used as Q,. The second query Q, is obtained by
APPENDIng a symbol Y to Q, and therefore its pattern tem-
plateis (X,Y,Y). The final query Q. is obtained by APPEND-
ing one more symbol X to Q,. The first query Q, is directly
evaluated by QueryIndices. That is, the inverted index L,
in FIG. 10 is scanned and the number of sequences that satisfy
the cell restriction and matching predicate in each list is
counted. The result of Q,, is shown in FIG. 12. The implemen-
tation of an APPEND operation is very similar to QueryIndi-
ces. In the example, the first APPEND operation (that is, the
evaluation of Q,) is implemented by first performing
L, o<l P to obtain L, and then counting the
number of sequences in L," (FIG. 13) that satisfy the cell
restriction and the matching predicate. Similarly, the last
APPEND operation (that is, the evaluation of Q) 1s imple-
mented by first joining L,**"” with L,” to obtain
L, % " and then counting the number of sequences in
L, (FIG. 14) that satisfy the cell restriction and the
matching predicate. The last APPEND operation does not
build the inverted index L,“""% from scratch.

The PREPEND operation is very similar to the APPEND
operation. Continue with the above iterative queties example.
Assume that there is a further PREPEND a symbol Z to Q. to
obtain a new query Qd and the resulting pattern template is
(Z,X.,Y,Y,X). Similar to the APPEND operation, this
PREPEND operation is implemented by joining L, with
L9 0 obtain L, %510, With L% computed,
the domain (that is, the set of all possible instantiations) of X
is known. Therefore, L,'** does not contain all lists in L, as
X is restricted.

The DE-HEAD and the DE-TAIL operations rely more on
the caching feature of the S-OLAP system. Continue with the
above iterative queries example. If a DE-HEAD operation is
applied after the evaluation of Qd, the query back to Q, is
essentially restored. Therefore, the system can return the
cached S-cuboid of Q, as the answer. However, another
DEHEAD operation results in a new query Q, with pattern
template (Y,Y.X). Since the inverted index L,""*"** has not
been built during the process (see the table on the next page),
Q, is evaluated from scratch, by invoking Querylndices
directly.

Pattern
Query Template
Q. X.Y)
Qs XY,Y)
Q. XYY X)
Qq Z, XYY, X)
Q. YY,X)

The DE-TAIL operation is similar to the DE-HEAD opera-
tion. If there are proper inverted indices available or the query
has been evaluated before, the DE-TAIL operation may be
processed by retrieving a cached result. Otherwise, Query-
Indices is invoked.

The P-ROLL-UP operation is efficiently implemented if
there are proper inverted indices available. Assume a

US 8§,160,996 B2

13

P-ROLL-UP operation is applied on Q, such that the pattern
dimension Y on the location attribute of the new query Q,, is
rolled up from the station abstraction level to the district
abstraction level. This P-ROLL-UP operation is efficiently
implemented by taking the unions of the lists in L,“" whose
second elements in their patterns share the same district
value. The resulting inverted index is denoted L,**". For
example, assume that district D10 includes two stations Pen-
tagon and Clarendon, then the lists L,“** [Wheaton,Claren-
don] and L,*¥ [Wheaton,Pentagon] (see I, and I, in FIG.
10) are unioned to obtain L, @D [(Wheaton,D10]. The result of
applying a P-ROLL-UP can then be obtained by counting the
number sequences in L, P that satisfy the cell restriction and
matching predicate. For instance, the cell [Wheaton,D10] in
the resulting S-cuboid has a count of three. In the above
example, symbols in the pattern template (X,Y) are unre-
stricted. If symbols are restricted then a P-ROLL-UP may not
be processed by simply merging lists. To understand why it is
$0, let us consider a sequence sg;:

<Pentagon, Wheaton, Wheaton,Clarendon>. Clearly, s,
does not occur in any list of L,“****", However, district D10
includes both Pentagon and Clarendon and so s, should be in
M=L, "% D10, Wheaton, Wheaton, D10]. Hence, if M is
computed by merging lists in L,“""*% s will be missed
incorrectly. This example shows that if the pattern template
consists of restricted symbols, P-ROLL-UP cannot be imple-
mented by merging inverted lists at a lower abstraction level.
In this case, the result is computed by invoking QueryIndices.

P-DRILL-DOWN may be applied on Q,, (that is, the pat-
tern dimension Y of Q; has been rolled-up). If the inverted
index L,“"" for Q, is available, the cached result is returned.
Otherwise, P-DRILL-DOWN is processed either by invoking
Querylndices or by constructing the inverted index L,*"
from LZ(X’_Y). For the latter case, each list L,[v,,v,] in L, is
refined into a number of lists L,[v,, v,] where v, is a lower-
level concept of v,. Data sequences are examined to deter-
mine the refinement. For example, L,"" [Wheaton,D10]=
{1, 85, 84}. It is refined to L,[Wheaton,Pentagon]={s,, s,}
and L,[Wheaton,Clarendon]={s, }.

These two approaches are only two first-attempt solutions
to the S-OLAP problem and there is a lot of potential for
further optimization. For example, it is possible to study the
problem of computing iceberg S-cuboids, or online aggrega-
tion of S-cuboids, etc.

The counter-based approach (CB) constructs an S-cuboid
by scanning data sequences to determine which cells each
sequence is relevant to. All sequences are thus examined in
answering a S-OLAP query. On the other hand, the inverted
list approach (1) constructs inverted lists and accesses data
sequences that are contained in certain lists. In terms of per-
formance, 11 has the advantage of fewer data sequence
accesses if queries are very selective, for example, point
queries or subcube queries, where appropriate lists have
already been constructed. This is seen from the example
iterative queries. On the other hand, the construction of
inverted indices is costly. This affects the performance of II,
particularly in the start-up cost of iterative queries.

The inverted index approach is not always the preferred
way for implementing all S-OL AP operations. For example,
it cannot efficiently support P-ROLL-UP if the pattern tem-
plate contains restricted symbols. In these cases, CB is an
attractive alternative. Many factors such as storage space,
memory availability, and execution speed are parts of the
formula may affect S-OLAP query optimization. Also, the
choice of which inverted indices should be materialized
offline must be addressed. A related issue is how to determine
the lists to be built given a set of frequently asked queries. All

40

45

14

these issues are related to the design of an S-OLAP query
optimizer and is regarded as important.

The results of the experiments conducted on the S-OLAP
system are described. In an exemplary embodiment, the sys-
tem was implemented using C++ and all the experiments
were conducted on an Intel Pentium-4 2.6 GHz personal
computer with 2 Gb of RAM. The system ran Linux with the
2.6.10 kernel and gee 3.3.3.

Experiments were performed on both real data and syn-
thetic data. The experiments on real data show a use case of
performing click stream data analysis using the S-OLAP
system. The experiments on synthetic data study the perfor-
mance of the S-OLAP system and evaluate the CounterBased
and the inverted index approaches.

Experiments on Real Data

The real sequence data is a clickstream and purchase
dataset from Gazelle.com, a legwear and legcare web retailer,
who closed their online store on 2000-08-18. It was prepared
for KDD Cup 2000. The original data file size is 238.9 MB.
Each tuple in the data file is a visitor click event (sorted by
user sessions) and there is a total of 164,364 click events. The
details of an event are captured by 215 attributes. Three
example attributes are session-id, request-time and page
which identify a user session, its first access time, and the
accessed page.9

To demonstrate the usability of the S-OLAP system and to
validate the S-OLAP design, the S-OLAP system is used to
answer a KDD Cup 2000 data mining query in an OLAP data
exploratory way. The selected query is KDD Cup 2000 Query
1, which looks for page-click patterns of visitors. Since the
data was not designed for OLAP analysis, the following pre-
processing steps are performed:

(1) The data was manually inspected and filtered out click
sequences that were generated from web crawlers (that is,
user sessions with thousands of clicks). After this step, an
event database with 148,924 click events was obtained.

(2) A concept hierarchy raw-page—>page-category is
manually associated to the page attribute such that a page is
categorized by two abstraction levels. page-category is a
higher abstraction level and there are 44 categories. Example
categories include “Assortment”, “Legwear”, “Legcare”,
“Main Pages”, etc.

To answer the KDD Cup query, a general S-OLAP query
Q, is started to look for information about any two-step page
accesses at the page-category abstraction level:

1. SELECT COUNT(*) FROM Event
2. CLUSTER BY session-id
3. SEQUENCE BY request-time ASCENDING

4. CUBOID BY SUBSTRING(X,Y) WITH
5. X AS page AT page-category,
6. Y AS page AT page-category
7. LEFT-MAXIMALITY (x,,y,)

There were 50,524 sequences constructed and they were in
a single sequence group. Query Q, returned a 44x44 2D
S-cuboid. From the result, it was found that the cell (Assort-
ment, Legcare) had a count of 150, meaning that there were
150 sessions first visited an Assortment-related page fol-
lowed by a Legcare-related page. Interestingly, it was found
that the cell (Assortment, Legwear) had a much larger count
0f2,201 sequences (the highest count in the S-cuboid), mean-
ing that there were many sessions first visited an Assortment-
related page followed by a Legware-related page. Conse-
quently, a slice operation was performed on that cell (that s,
Assortment—Legwear) and performed a P-DRILL-DOWN

US 8§,160,996 B2

15

operation to see what Legwear products the visitors actually
wanted to browse. This results in a new query Q, (the cuboid
specification is omitted due to lack of space).

Query Q, returned a 1x279 2D S-cuboid. The cell with the
highest count was (Assortment, product-id-null) which had a
count of 181, meaning that many sessions visited a product
page where the product has no product-id after clicking an
Assortment-related page. Another remarkable cell was (As-
sortment, product-id-34893) which had a count of 172 (the
second highest count), meaning that there were many ses-
sions first visited an Assortment-related page followed by a
DKNY Skin collection legwear page (product-id=34893).
After viewing the result of Q,, an APPEND operation was
performed to see if those sessions who visited an Assortmen-
trelated page followed by a Legware-related page would visit
one more Legware-related page to perform so-called “com-
parison shopping”. That APPEND operation resulted ina new
query Q..

Query Q. returned a 1x279x279 3D S-cuboid. A remark-
able cell was (Assortment,product-id-34885, product-id-
34897) which had a count of 14, meaning that there were 14
sessions visited an Assortmentrelated page, then a DKNY
Skin collection legwear page (product-id=34885), and then a
DKNY Tanga collection legware page (product-id=34897).
At that point, the S-OLAP exploration was stopped because
enough information was collected to answer Query 11n KDD
Cup 2000 indirectly. Altogether, the three queries had
inserted 0.3 MB of cuboids in the cuboid repository.

The performances of iterative queries Q,, Q,, and Q,_ are
reported using both the counter-based approach (CB) and the
inverted index approach (II). Each query was repeated many
times in order that the 90% confidence intervals of the
reported numbers are within +5%. No inverted index was
precomputed in advance. Table 1 shows the result.

TABLE 1
Counter-Based (CB) Inverted Index (II)
Number of Number of
Runtime sequences Runtime sequences
Query (ms) scanzed (ms) scanned
Q, 243 50,524 46.24 50,524
Q, 215 50,524 6.26 2,201
Q. 23.0 50,524 592 842
3 68.8 151,572 5842 53,567

Table 1 shows that for the first query Q,, CB achieved a
better performance than I1. This is not surprising because
there was precomputing of any inverted index in advance so
that the query processing time of Q, included the time for
building 0.897 MB inverted indices. However, for Q, and Q,
I outperformed CB because II did not need to scan all
sequences with the help of the inverted indices. Table 1 also
shows the advantage of using inverted indices to perform
S-OLAP operations. From Q,, to Q,. a slice and a P-DRILL-
DOWN operation was performed. After the slice operation,
the number of sequences related to Q, was reduced. As a
result, the 1T implementation of the P-DRILL-DOWN opera-
tion outperformed the CB implementation because Q,
became more selective. From Q, to Q_, an APPEND opera-
tion was performed. Table 1 shows that the Il implementation
of the APPEND operation also outperformed the CB imple-
mentation because 11 reused the inverted indices to scan fewer
sequences than CB.

10

15

20

25

30

35

40

45

50

55

60

65

16

Experiments on Synthetic Data

Synthetic sequence databases are synthesized in the fol-
lowing manner. The generator takes four parameters: L, 1, 0,
and D. The generated sequence database has D sequences.
Each sequence s in a dataset is generated independently. Its
lengthI, withmean L, is first determined by a random variable
following a Poisson distribution. Then, events were repeat-
edly added to the sequence until the target length I is reached.
The first event symbol is randomly selected according to a
pre-determined distribution following Zipf’s law with param-
eter [and 6 (I is the number of possible symbols and 6 is the
skew factor). Subsequent events are generated one after the
other using a Markov chain of degree 1. The conditional
probabilities are pre-determined and are skewed according to
Zipf's law. All the generated sequences form a single
sequence group and that is served as the input data to the
algorithms.

QuerySet A—(a) Varying D. The objective of this experi-
ment is to study the scalability of the counter-based approach
and the inverted index approach under a series of APPEND
operations. In this experiment, a set of iterative queries were
executed under different numbers of sequences. The query
set, namely Q ,, consists of five S-OLAP queries Q,;, Q,»,
Q435 Q. and Q 5. A query is obtained from a previous one by
doing a slice followed by an APPEND. The initial query Q
has a substring pattern template (X,Y) and it looks for size-
two patterns in the sequence dataset and counts their occur-
rences. The second query Q. is obtained from Q,, by per-
forming a slice operation on the cell with the highest count
and APPENDing a new pattern symbol Z to the pattern tem-
plate of Q ;. Therefore, Q ,, has a substring pattern template
(X,Y,Z) and it looks for size-three patterns (with the first two
symbols fixed) in the sequence dataset and counts their occur-
rences. Query Q 5, Q,, and Q 5 are obtained in a similar way
and they are queries that look for size-four, size-five and
size-six patterns in the sequence dataset, respectively.

FIG. 16 shows the running time of query set Q , under three
datasets with different number of sequences (I1100.1.20.
00.9.D,, where x=100K/500K/1000K). Three size-two
inverted indices at the finest level of abstraction were precom-
puted for the three datasets. The precomputations took 0.43 s,
2.052 s and 3.879 s, respectively. The sizes of the built indices
were 7.3 MB, 36.3 MB and 72.2 MB, respectively. The run-
ning time of Q, is presented as the cumulative running time
from the first query Q , to the last query Q 5. From the figure,
(1) both CB and II scaled linearly with respect to the number
of sequences; and (2) II outperformed CB in all datasets in
this experiment. In F1G. 16, each data point is annotated with
a bracketed number, which is the cumulative number of
sequences scanned up to a certain query. CB scanned the
whole dataset every time it executed. For Q,,, I1 did not scan
the dataset because it may be answered by the inverted indices
directly. For the successive queries Q ;, t0 Q ;s Q. I took less
than 1 second to finish inverted index joins in all cases
because Q,,+1 may exploit the inverted indices built by Q,;
and thus not many data sequences were scanned.

The following is a summary of other experimental results.

QuerySet A—(b) Varying L. In this experiment, query set
Q, was executed on a dataset of 500K sequences and the
average length [of the sequences (that is, 1100.Lx.
60.9.D500K) was varied. The following conclusions are
drawn from theresults: (1) both CB and [1 scaled linearly with
respect to the average sequence length and (2) II outper-
formed CB in all datasets in this experiment.

QuerySet B—(a) Varying D (b) Varying L. The objective of
this experiment is to study the performance of CB and 11
under the P-ROLL-UP and P-DRILL-DOWN operations. In

US 8§,160,996 B2

17

this experiment, the dataset was 1100.Lx. 60.9.D.. The events
were hierarchically organized into 3 concept levels. The 100
event symbols are divided into 20 groups, with group sizes
following Zipf s law (I=20, 0=0.9). Similarly, the 20 groups
are divided into 5 super-groups, with super-group sizes fol-
lowing Zipf’s law (I=5, 6=0.9).

Another query set Qz was used in this experiment. Qg
consists of three queries Qg;, Q.,, and Q. The first query
Qp; has a substring pattern templates of (X,Y,Z) (X is the
middle abstraction level). The second query Q, is obtained
from Qg, by performing a subcube operation to select the
subcube with the same X value where its total count is the
highest among different subcubes and then P-DRILL-
DOWN into X, that s, the pattern template is (X,Y,Z) (X is the
finest abstraction level). Similarly, the third query Qg; is
obtained from Q, by performing the same subcube operation
and then P-ROLL-UP on Y, that is, the pattern template is
(X.Y,Z) (there was no P-ROLL-UP on X because it was
sliced; Y is the highest abstraction level).

Similar to the experiments conducted in query set A (see
above), Qz was executed on datasets with different D and L
values. In this experiment, an inverted index L,**"* was
precomputed in advance. The experimental results draw the
following conclusions:

(1) For P-DRILL-DOWN (that is, Qg,), CB and 1I
achieved comparable performance because the subcube was
sliced on with the highest count and the query was not selec-
tive. Therefore, 1T also needed to scan a lot of sequences in
order to compute the inverted list L““*2), (If cells with mod-
erate counts were sliced on, then 11 outperformed CB.)

(2) For P-ROLL-UP (that i3, Qg,), I outperformed CB in
all datasets because I1 computed the answer just by merging
the inverted index without scanning the dataset but CB did
scan the whole dataset.

Experiments on pattern templates with restricted symbols
(QuerySet C with pattern template (X,Y, Y, X)), Varying skew-
ness factor 8, Varying domain I, and experiments with Sub-
sequence patterns were performed. These results are consis-
tent with earlier results.

An S-OLAP system can be initiated for a local subway
company which has deployed an RFID-based electronic pay-
ment system. Every day, the IT department of the company
processes the RFID-logged transactions and generates a so-
called “OD-matrix” (stands for Origin-Destination Matrix).
The OD-matrix is a 2Dmatrix which reports the number of
passengers traveled from one station to another within the
same day (that is, representing the single trip information).
The OD-matrix is then sent to various departments for differ-
ent purposes. For example, the engineering department may
refer to the OD-matrix in order to schedule their resources.
Occasionally, the management of the company requests more
sophisticated reports about the passenger distributions. For
example, the management was once considered offering
round-trip discounts to passengers. Consequently, they
wanted to know the statistics of various passenger traveling
patterns at different levels of summarizations. The example
queries Q,, Q,, and Q; were parts of their business queries.

However, since there are no OLAP systems that are capable
of performing sequence data analysis, the management has to
request the IT department to write customized programs
whenever they come up with some business sequence queries.
Given the huge volume of data and the administrative over-
head, the turnaround time is usually one to two weeks. This
inefficient way of sequence data analysis severely discour-
ages data exploration and this problem is a motivation for the
present S-OLAP system.

20

25

35

40

45

18

The described S-OLAP system for the subway company
has three research issues classified into different areas: (1)
Performance, (2) Incremental Update, and (3) Data Integra-
tion and Privacy.

The two S-cuboid construction approaches are regarded as
a starting point to more sophisticated solutions to implement-
ing an S-OLAP system. In fact, it was realized that many
S-cuboid cells are often sparsely distributed within the
S-cuboid space (that is, many S-cuboid cells are empty with
zero count). [n such a case, introducing an iceberg condition
(that is, a minimum support threshold) to filter out cells with
low-support count would increase both S-OLAP perfor-
mance and usability as well as reduce space. How to deter-
mine the minimum support threshold is, however, always an
interesting but difficult question.

Another interesting direction is to introduce the online
aggregation feature into an S-OLAP system. The online
aggregation feature would allow an S-OLAP system to report
“what it knows so far” instead of waiting until the S-OLAP
query is fully processed. Such an approximate answer to the
given query is periodically refreshed and refined as the com-
putation continues. This online feature is especially useful for
S-OLAP systems because of the non-summarizable restric-
tion of S-cube. Moreover, an approximate query answer is
often adequate for many sequence analysis queries. For
example, rather than presenting the exact number of round-
trip passengers in FIG. 2, approximate numbers like 200,000
for the Pentagon-Wheaton round-trip would be informative
enough.

The performance is improved by exploiting some other
indices. For example, if the domain of a pattern dimension is
small, both the base data and the inverted indices are encoded
as bitmap indices. Consequently, the intersection operation
and the post-filtering step is performed much faster using the
bitwise-AND operation rather than using the list-intersect
operation. Furthermore, if the domain is very small, the sav-
ing in storage space may be very high.

It is necessary to provide methods to incrementally update
the precomputed inverted indices. In many applications like
the subway company, there is a huge amount of new data
being generated every day. When a day of new transactions
(events) is added to the event database, a new sequence group
may be created and the corresponding inverted indices are
precomputed for that day. However, that new set of transac-
tions (events) may also invalidate the cached sequence groups
and the corresponding inverted indices of the same week. As
a result,

Smart-card systems, in addition to paying for subway
rides, may be extended to new application areas. For instance,
in Hong Kong, the Octopus Card can also be used to pay for
other modes of public transport, to purchase groceries at
supermarkets and convenient stores, and even to pay bills at
restaurants. Each month, all vendors who have joined this
electronic payment network upload their transactions to a
centralized server maintained by an independent company for
accounting purposes. Each vendor still owns its uploaded
data and the data is not accessible by the others.

However, sometimes, a few vendors may share portions of
their data to perform sequence data analysis together. For
example, assume that the subway company collaborates with
a local bus company and offer a subway-bus-transit package
with which passengers who first take the subway and then
transfer to a bus would get a 20% discount off the second trip.
In order to evaluate the effectiveness of that cross-vendors
campaign, lots of sequence OL AP queries would be posed on
the passengers traveling history. However, how to integrate
the two separately-owned sequence databases (the subway

US 8§,160,996 B2

19

passenger traveling history and the bus passenger traveling
history) in order to perform such a high-level sequence data
analysis (without disclosing the base data to each other) is a
challenging research topic.

An S-OLAP system is built and it is able to support pattern-
based grouping and aggregation, which is currently not sup-
ported by any OLAP system.

It will be appreciated by persons skilled in the art that
numerous variations and/or modifications may be made to the
invention as shown in the specific embodiments without
departing from the scope or spirit of the invention as broadly
described. The present embodiments are, therefore, to be
considered in all respects illustrative and not restrictive.

What is claimed:

1. A sequence online analytical processing (S-OLAP) sys-
tem for analysing an event database storing events, each event
consisting of at least one dimension and measure, the system
comprising:

asequence cuboid (S-cuboid) builder to build an S-cuboid,

the S-cuboid defining a logical view of sequences of the

events at a predetermined degree of summarization;
wherein the S-cuboid built by the S-cuboid builder is speci-
fied by:

a WHERE clause to select events of interest from the
events stored in the database;

a CLUSTER BY clause to specify those of the selected
events of interest that are elements of respective
sequences to be clustered together, thereby forming
one or more clusters of events;

a SEQUENCE BY clause to form sequences from
respective clusters of events;

a SEQUENCE GROUP BY clause to group those of the
sequences whose events share a common dimension
value, thereby forming one or more sequence groups;

a CUBOID BY clause to specify the logical view of the
sequences of the events, the CUBOID BY clause
comprising (i) a pattern template to define a format of
substring/subsequence patterns to be matched against
the sequences of events, (ii) a cell restriction to define
how a response and content of the sequence of events
should be assigned to a cell of the S-cuboid when a
sequence of events contains multiple occurrences of a
cell’s pattern, and (ii1) a matching predicate to select
sequences of interest; and

at least one aggregation function to be applied to
sequences of the events in each cell of the S-cuboid.

2. The system according to claim 1, wherein each attribute
in the CLUSTER BY clause is associated with an abstraction
level in a concept hierarchy.

3. The system according to claim 1, wherein the pattern
template consists of a sequence of symbols each associated
with a domain of values, and the domain of values is specified
as a domain of an attribute at a predetermined abstraction
level.

4. The system according to claim 3, wherein the pattern
template instantiates a pattern for each cell of the S-cuboid
based upon a set of values associated with the sequence of
symbols.

5. The system according to claim 1, wherein the cell restric-
tion is specified by a keyword.

6. The system according to claim 1, wherein the matching
predicate is specified by introducing a sequence of event
placeholders after the cell restriction.

7. The system according to claim 1, further comprising six
S-OLAP operations:

APPEND to add a pattern symbol after a last pattern sym-

bol of the pattern template,

10

15

20

25

30

35

40

45

50

55

60

65

20

PREPEND to add a pattern symbol before a first pattern

symbol of the pattern template,

DE-TAIL to remove the last pattern symbol from the pat-

tern template,

DE-HEAD to remove the first pattern symbol from the

pattern template,

PATTERN-ROLLUP (P-ROLL-UP) to modify an abstrac-

tion level of a pattern dimension by moving the abstrac-
tion level of the pattern dimension one level up in a
concept hierarchy, and

PATTERN-DRILL-DOWN (P-DRILL-DOWN) to

modify the abstraction level of the pattern dimension by
moving the abstraction level of the pattern dimension
one level down in the concept hierarchy.

8. The system according to claim 1, wherein respective
sequences are each characterized by a logical ordering among
their respective events.

9. The system according to claim 1, wherein a set of
S-cuboids form a lattice (S-cube) and an S-cuboid at a higher
level in the lattice contains (i) fewer global and/or pattern
dimensions or (ii) dimensions at a higher level of abstraction.

10. The system according to claim 1, wherein the S-cuboid
is computed by associating each cell in the S-cuboid with a
counter and for each sequence of events, cells whose associ-
ated patterns are contained in the sequence are determined
and their corresponding counter is incremented by one.

11. The system according to claim 1, wherein the S-cuboid
is computed by creating a set of inverted indices by pre-
processing data offline, and the set of inverted indices are used
to dynamically assemble and compute the cells of the
S-cuboid.

12. A method for building a sequence cuboid (S-cuboid)
for a database query of an event database, the method com-
prising:

selecting events from the event database;

clustering the selected events;

forming sequences from the clustered events; and

grouping the sequences into sequence groups for

sequences whose events share a common dimension
value, further comprising grouping patterns to specify a
logical view of results from the database query accord-
ing to a user defined pattern template, cell restriction and
a matching predicate, wherein (i) the user defined pat-
tern template defines a format of substring/subsequence
patterns to be matched against the sequences of events,
(ii) the cell restriction defines how a response and con-
tent of the sequences should be assigned to a cell when a
sequence of events contains multiple occurrences of a
cell’s pattern, and (iii) the matching predicate is used to
select sequences of interest.

13. The method according to claim 12, further comprising
aggregating the results of the database query according to a
selected aggregation function.

14. The method according to claim 12, further comprising
returning an n-dimensional array, wherein n indicates a num-
ber of pattern dimensions.

15. A sequence online analytical processing (S-OLAP)
system for analysing an event database storing events, the
system comprising:

an S-OLAP engine to compute an S-cuboid for a query on

the event database; and

a sequence query engine to form part of the S-cuboid by

performing the steps of selection, clustering, sequence
formation, sequence grouping, and grouping patterns to
specify a logical view of results from the query accord-
ing to a user defined pattern template, cell restriction and
a matching predicate, wherein (i) the user defined pat-

US 8§,160,996 B2

21

tern template defines a format of substring/subsequence

patterns to be matched against a sequernces of events, (ii)

the cell restriction defines how a response and content of

the sequences should be assigned to a cell when a

sequence of events contains multiple occurrences of a

cell’s pattern, and (ii1) the matching predicate is used to
select sequences of interest.

16. The system according to claim 15, further comprising a

cuboid repository to store computed S-cuboids, the cuboid

repository to be searched by the S-OL AP engine in response

w

22

to an S-cuboid query to determine whether an S-cuboid has
previously been computed.

17. The system according to claim 15, further comprising a
sequence cache to cache constructed sequence groups.

18. The system according to claim 15, further comprising
auxiliary data structures to compute the query online.

19. The system according to claim 15, further comprising a
user interface to assist a user in specifying the S-cuboid.

