a9 United States

007005591

a2y Patent Application Publication (o) Pub. No.: US 2007/0055919 Al

Li et al.

43) Pub. Date: Mar. 8, 2007

(54) EMBEDDED STATE METRIC STORAGE FOR
MAP DECODER OF TURBO CODES

57) ABSTRACT

A method, an embedded state metric storage, is used for
MAP (Maximum A Posterior)-based decoder of turbo codes
to reduce the memory requirement of state metric storage.

(76) Inventors: Victor On-Kwok Li, Hong Kong (CN); For MAP decoder, this method comprises selecting any state
Jianhao Hu, Chengdu (CN): Alfred metric from the updated state metrics for each recursion
K.K. Wong, Brookline, MA (US) direction, forward and reverse, and dividing the state metrics
by the selected state metric: the selected state metric value
becomes a constant, namely, one. The constant one state
Correspondence Address: metric is embedded into the resulted state metrics. For
COOPER & DUNHAM, LLP log-MAP decoder, this method comprises selecting any state
1185 AVENUE OF THE AMERICAS metric from the updated state metrics in each direction,
NEW YORK, NY 10036 forward and reverse, and subtracting the state metrics from
the selected state metric; the selected state metric value
becomes a constant, zero. The constant zero state metric is
(21) Appl. No.: 11/221,311 embedded into the resulted state metrics. One advantage of
the embedded state metric storage during state metric updat-
(22) Filed: Sep. 7, 2005 ing and likelihood ratio calculation is to embed the infor-
mation of the selected state metric into the resulted state
Publication Classification metrics. Thus, the selected state metric is not required to be
kept in the state metric memory, and calculation of a
(51) Int. CL constant state metric in the resulted state metric can be
HO3M 13/00 (2006.01) omitted. Therefore, the latency and the area of implemen-
HO3M 13/03 (2006.01) tation in ASIC will be reduced with this method of embed-
(52) US. Cl oo cererrenerecneseens 714/755; 7147794 ded state metric storage.
I ® R\ K
(ds,dp,dp”) —
Received Data > Branch Metric 7 Likelihood Ratio | LLe(k) Extrinsic
Memory > Calculation > Calculation 7 Information
Memory
410
LLe in \i—l /.
Embedded State Embedded State
414 Metric Updating in Metric Updating in (a/(-l , ﬂk)
Reverse Direction Forward Direction
/ M7 i
— Be7 1
Extrinsic
Information of m /Ea/£ X
Previous Iteration Bir] 419
Metric
Memory

R R %

101
Discrete \ ‘ decoder \ decoded data
encoder Memoryless

Channel ds \
Source data \

X
>l encoder i 7LY> I O L do " »| decoder | - interieaving-
A / punc punc r
; / ture) : ture interfeaving
V]

Y

) g

interleaving

L—-» en?zéer 1} %

deinterleaving—J

11

L__; decode
\ s

y

\

r4/r4/r4/ 4 4‘ mxg«m

Fig. 1

9 JO T 339YS L00T ‘8 “1e]N uonednqng uonedrddy judjeq

IV 6165500/L00T SO

S o O
S o o)

n)
OOOO

0

&

é'jé

i (1
4

‘./‘.'/-

O

3

NN NN

201 —— | nfornati
(Oipeerrnd

i

Fig. 2

o ts
{ Wseorees]
()

n
(oo
(%

B g G
VRN

}, (
O 8
Qoti mal
pat h

i

00000000000000000
8

Iy

W.

£)

A S

g) 5 .. ~J
Jé’ -
=

i o

3 2

S)) Py
-

7))

o

=

314

LLe(k)

307

N

313

301 302\ 303 304 305 306
\ (ds,dp,dp”) \ \
Received Data > Branch Metric Vi Likelihood Ratio
Memory > Calculation Calculation
. / 310
) Yy
/LLe_m Vi~ 209 312
y
State Metric State Metric
308 Updating in Updating in (a,(_] > ,Bk)
Reverse Direction Forward Direction
y Y pym y ™
"1 oL
Extrinsic 311 Bart Lo 318 [/kf“ o
Information of l ; k\
Previous Iteration Bir 319
/—’ Metric
315 Memory
Fig. 3

Y

Extrinsic
Information
Memory

9 J0 £3994S L00T ‘8 “1e]N uonedqng uonedrddy judjeq

IV 6165500/L00T SO

414

401 402 403 404 405 406 407
\ (ds,dp.dp’) \ \ \ .
Received Data > Branch Metric Vi N Likelihood Ratio LLe(k) Inli’zrn:n:i:i)n
Memory » Calculation d Calculation
410 Memory
) Yig
Lle in Y P~ 409 412
y
Embedded State Embedded State
408 Metric Updating in Metric Updating in (ass Be)
Reverse Direction Forward Direction
. {113
417
[
Extrinsic 411 / Bk{— 418 /kf+l o
Information of l $ k\
Previous Iteration Bir 419
Metric
Memory
415
Py
Fig. 4

9 JO $3394S L00T ‘8 eI uonedqng uonedrddy judjeq

IV 6165500/L00T SO

BER

1.00E+00

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07

501

/

T TTTIT

T o

T T FTre

T T T7ITH

1
N

T L T 1 L] T + 1 LI T L T T T

-18 -16 -14 -t2 -1 -08 -06
SNR (dB)

Fig. 5

Ll

T

-0.4

502
= /
é =
[—B— Proposed
—Yegditional
i ™~ 503

9 J0 € 333YS L007 ‘8 “IeIN uonednqng uonedrddy judeq

IV 6165500/L00T SO

BER

1.00E+00 -

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05 -+

1.00E-06 -

1.00E-07

-2

-1.8

-1.6

-1.4

-1.2 -1 -08 -06 -04 -02 O

SNR (dB)
Fig. 6

0.2

601
/ / 602

G /

—8— Proposed —
[—t+— Traditional
T T~

—~ 603

i

9 J0 9339YS L00T ‘8 eI uonedqng uonedrddy judajeq

IV 6165500/L00T SO

US 2007/0055919 Al

EMBEDDED STATE METRIC STORAGE FOR MAP
DECODER OF TURBO CODES

FIELD OF THE INVENTION

[0001] The present invention relates to implementation of
MAP (Maximum A Posterior)-based algorithm. More spe-
cifically, the present invention reduces the memory require-
ment for state metric storage in MAP-based decoders by
embedding the selected state metric information into the
state metrics.

BACKGROUND OF THE INVENTION

[0002] Reliable data transmission is very important for
wireless communication systems. Turbo codes, originally
described by Berrou et al. “Near Shannon limit error-
correcting coding and decoding Turbo codes,”Proc. 1993
Int. Conf. on Comm., pp. 1064-1070, which is incorporated
herein by reference, can achieve a channel capacity near the
Shannon Limit with sufficient Signal to Noise Ratio (SNR);
also see U.S. Pat. No. 6,598,204 B1, “System and Method
of Turbo Decoding” to Giese et al., issued on Jul. 22, 2003,
and U.S. Pat. No. 6,516,444 B1, “Turbo-Code decoder” to
Maru, issued on Feb. 4, 2003, each of which is incorporated
herein by reference.

[0003] Decoding of Turbo codes is performed in an itera-
tive way: the information processed by one decoder is fed
into another decoder iteratively until a certain degree of
convergence is achieved. Decoding within each decoder can
be performed in several ways. Maximum A Posteriori
(MAP) decoding based on the BCJR algorithm, proposed by
Bahl et al., “Optimal decoding of linear codes for minimiz-
ing symbol error rate,”JEEE Trans. On Inf. Theory, pp.
284-287, March 1974, which is incorporated herein by
reference, is widely used. BCIR decoding is done according
to a trellis chart, by mapping the status of convolutional
memory at time Kk to its states at time k. As a posteriori
probability (APP) is used as the probability metric for the
trellis, the BCIR algorithm is generally referred to as the
Maximum A Posteriori method.

[0004] In practice, the a posteriori probability may be
computed in terms of the log domain value, in order to
reduce complexity. Such an algorithm is referred to as the
log-MAP algorithm. In an effort to reduce the decoding
complexity of the BCJR algorithm, the log-MAP algorithm
utilizes a suboptimum realization of the BCIR algorithm,
using log-likelihood ratios and some approximations to
avoid calculating the actual probabilities, and simplify some
computations, for example by omitting some insignificant
computations in the BCIR algorithm to reduce the complex-
ity. These approximation algorithms indeed have smaller
complexity than the BCIR algorithm, though, their error
performance is not as good as that of the BCIR algorithm.
Furthermore, the construction of the entire trellis diagram is
still necessary in these methods.

[0005] A further simplified log-MAP algorithm is referred
to as the Max log-MAP algorithm. In log-MAP algorithm, a
log summation of exponentiation operations, In

2.

J

Mar. &, 2007

is calculated during extrinsic information update. The expo-
nentiation enhances the differences between individual val-
ues in the log summation. Hence, one term will dominate the
log sum, which suggests the approximation

an & = mjz_lx(aj).

The log-MAP algorithm with this approximation is referred
to as the Max log-Map algorithm. Thus, Max log-Map is
much simpler than log-MAP, but at the expense of perfor-
mance degradation.

[0006] The objective of the MAP algorithm is to obtain a
good guess of bit information probabilities. These probabili-
ties include systematic information, intrinsic information
and extrinsic information. The extrinsic information is used
by another decoder in the next iteration. After a certain
number of iterations, the result of extrinsic information
converges and the iterative process stops. The performance
of Turbo decoder based on the MAP algorithm is close to the
Shannon limit.

[0007] Although the performance of Turbo codes is near
optimal, integrated circuit implementation of the MAP algo-
rithm faces two main challenges: latency and memory
requirement. Upon receiving a data frame, the MAP decoder
works in an iterative way. In each iteration, the MAP
decoder accesses the data frame and the extrinsic informa-
tion generated in the previous iteration from head to tail
(forward recursion) and then from tail to head (backward
recursion) to collect decoding information. Based on the
collected information, the decoder estimates the most likely
input data. The estimation of extrinsic information is fed
back to another decoder in the next iteration. This means
that, for each iteration, the MAP decoder must process the
data from the beginning of the data frame to the end, and
then process in the reverse direction before the estimation of
the extrinsic information will be made. For a data frame of
n bits, the process of getting the extrinsic information takes
2n steps, and the estimation needs n steps. Hence, latency of
the MAP algorithm is large. The MAP decoder has to keep
all of the decoding information until the extrinsic informa-
tion is generated, and the extrinsic information must be
stored for the next iteration. For a data frame of n samples
and a turbo code space of S, 2xnxS memory units are
required to store the temporary information. For example,
S=8. n=20730 in the turbo codes of the cdma2000 system,
331680 memory units are required for the MAP decoder.

[0008] Tt is desirable to provide a method to reduce the
memory requirement and speed up the calculation in the
MAP decoder.

SUMMARY OF THE INVENTION

[0009] The present invention relates to implementation of
MAP-based algorithm in MAP-based turbo decoders. More
specifically, in an illustrated embodiment, the present inven-
tion reduces the memory requirement for state metric stor-
age in MAP-based decoders by embedding selected state
metric information into the state metrics.

[0010] In a MAP or log-MAP decoder, it is important to
calculate the relative probability values among state metrics,

US 2007/0055919 Al

not the absolute probability values. A state metric with the
largest value means the state is the correct state on the
optimal decoding path with the highest probability. A state
metric having a larger value provides more significance than
one having smaller value during metric updating and extrin-
sic information calculation.

[0011] In the illustrated method, embedded state metric
storage is used for a MAP decoder of Turbo codes to reduce
the memory requirement for state metric storage. For a MAP
turbo decoder, this method comprises selecting any state
metric from the updated state metrics for each recursion
direction, forward and reverse, and dividing the state metrics
by the selected state metric; the selected state metric value
becomes a constant, namely, one. The constant one state
metric is embedded into the resulting state metrics.

[0012] The constant one state metric is defined as the
embedded state metric.

[0013] For a log-MAP decoder, including its simplifica-
tion a Max log-MAP decoder, this method comprises select-
ing any state metric from the updated state metrics in each
direction, forward and reverse, and subtracting the state
metrics from the selected state metric; the selected state
metric value becomes a constant, zero. The constant zero
state metric is embedded into the resulted state metrics. The
constant zero state metric is defined as the embedded state
metric. The advantage of embedded state metric storage
during state metric updating and likelihood ratio calculation
is to embed the information of the selected state metric into
the resulting state metrics. Thus, the embedded (or selected)
state metric is not required to be kept in the state metric
memory. and calculation of a constant state metric in the
resulting state metric can be omitted. Therefore, the latency
and memory area utilization in this implementation will be
reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a simplified block diagram of the Turbo
encoder and decoder on a digital communication system in
which the present invention is used,

[0015] FIG. 2 is a simplified decoding path for the turbo
code with a length=15 and S=8;

[0016] FIG. 3 is a simplified schematic block diagram of
a representative, illustrative interconnection of resources
detailing the operations of a MAP decoder using a known
method;

[0017] FIG. 4 is a simplified schematic block diagram of
a representative, illustrative interconnection of resources
detailing the operations of MAP decoder in accordance with
the present invention;

[0018] FIG. 5 is a diagram of the performance (i.e., Bit
Error Rate (BER)) comparison of the MAP decoder with the
present invention and with the known method on AWGN
channel. The Turbo code used in the simulation is based on
the ¢dma2000 standard with a Length=1146 and a code
rate=1/3; and

[0019] FIG. 6 is a diagram of the performance comparison
of the MAP decoder with the present invention and with the
known method on AWGN channel. The Turbo code used in
the simulation is based on the cdma2000 standard with a
Length=3066 and a code rate=1/3.

Mar. &, 2007

DETAILED DESCRIPTION OF THE
INVENTION

[0020] The following variables will be used in describing
the present invention:

[0021] «, is the state metric of the MAP decoder in the
forward direction at the k-th step;

[0022] A, isa natural log value of the state metric ot ofthe
MAP decoder in the forward direction at the k-th step;

[0023] P, is the state metric of the MAP decoder in the
reverse direction at the k-th step;

[0024] B, is the natural log value of the state metric f3, of
the MAP decoder in the reverse direction at the k-th step;

[0025] LLe, is the extrinsic information of the MAP
decoder for the k-th symbol;

[0026] LLR, is the natural log value of the extrinsic
information of the MAP decoder for the k-th symbol;

[0027]
[0028] m is the number of state registers in an encoder;

[0029] M (=2™) is the number of discrete states in the
collection state space S;

[0030] x, is the k-th symbol on the decoding path;

S is the collection of state space for the turbo codes;

[0031] vy, is the k-th parity code word on the decoding
path;

[0032] ds, is the k-th symbol fed into the decoder;

[0033] dp, is the k-th parity code word fed into the
decoder;

[0034] s* is the sub-collection of the states transferred
from §' to s, (s'—>s), when x,=+1;

[0035] s~ is the sub-collection of the states transferred
from s' to s, (s'-s), when x,=-1;

[0036] length is the length of the data frame for the

decoder.

[0037] FIG. 1 is a simple block diagram representing a
Turbo encoder and a Turbo decoder. The Turbo encoder 107
is formed by a combination of two simple encoders 109 and
110. Assuming a source data frame 101 with length infor-
mation bits, the first encoder 109 receives as its input the
information bits in its original from. The same length
information bits are fed through an interleaver 111 that
permutes the information bits before inputting them into the
second encoder 110. The two encoders 109 and 110 generate
parity symbols 103(y) and 104(y") from two recursive con-
volutional codes, respectively. The parity symbols are used
in the two recursive decoders at the receiver, respectively, to
produce independent, extrinsic information to help decoding
algorithm convergence. These encoded information bit
streams, as well as source data 102(x) are then punctured by
the puncturing mechanism 118 to save bandwidth. Punctur-
ing is a selection scheme for parity symbols 103(y) and
104(y") according to the coding rate.

[0038] The punctured information bit streams are trans-
mitted through a noisy discrete memoryless channel 117,
and received and de-punctured at a puncturing mechanism
119 at the decoder 108. In the decoder 108, a demodulator
(not shown) sends soft information relating to the received

US 2007/0055919 Al

bit stream, i.e., probabilities of the received values. These
probabilities can be interpreted as containing the received
information bit value and the associated confidence value,
which indicates how likely this information bit is correct.

[0039] Firstly, the parity bit streams 105« (ds) and 105
(dp) of the received information bits are fed to the first
decoder 112. The first decoder 112 evaluates and combines
the probabilities of the input bit streams to refine the soft
information so that the confidence level of individual bits
being correct is maximized, since the maximum a posteriori
decoding based on the BCJR algorithm is used in the
decoder. The refined probabilities are fed into the second
decoder 115 along with the de-interleaved information bit
stream and the second parities bit stream 106(dp'), again
producing enhanced soft information. After a predetermined
number of iterations, the decoding process is completed, and
the soft values are available at the output. According to the
study in “Near Shannon limit error-correcting coding and
decoding Turbo codes,”Proc. 1993 Int. Conf. on Comm., pp.
1064-1070, which is incorporated herein by reference, the
improvement of bit error rate (BER) worsens with the
increase in the number of iteration. To simplify the imple-
mentation, the number of iterations is preferably selected as
7 or slightly bigger, although the invention is not limited to
this range.

[0040] When data is exchanged between the two decoders
112 and 115, the soft values are reordered to match the
interleaving structure. This is preformed by the interleaver
113 and de-interleaver 116. An interleaver is a device that
rearranges the ordering of a sequence of symbols in some
one to one deterministic manner. Associated with any inter-
leaver is a de-interleaver, which is the device that restores
the reordered sequence to its original ordering. The parity
symbol information from two parallel recursive convolu-
tional encoders is used in two decoders respectively. The
extrinsic information from decoder I 112 must be interleaved
to produce the same sequence order with the parity infor-
mation generated by encoder II 110. The interleaved extrin-
sic information and source symbol information are fed into
decoder 1T 115 with the parity information generated by
encoder II 110 to perform the second decoding step. The
extrinsic information from decoder II 115 is fed into de-
interleaver 116 to restore its original ordering, which is the
same ordering with source symbol information ds 104 and
parity information dp 119 generated by encoder I 109. Thus,
decoder I 112 can work correctly to calculate the extrinsic
information for the next iteration.

[0041] FIG. 2 is a simplified decoding path for the Turbo
code with a length=17 and S=8. In a MAP decoder, there are
8 states 202 corresponding to each step. Each state transits
to two states of the next step corresponding to the input
information bit being zero 203 and one 204, respectively.
The MAP decoder evaluates and combines the probabilities
of the received data 201 from head to tail to obtain forward
state metrics o, and from tail to head to obtain reverse state
metrics f. Then the MAP decoder uses the forward and
reverse state metrics to refine the soft information, i.e., the
MAP decoder finds out the optimal decoding path 205 from
all possible paths. The optimal decoding path 205 is the best
guess for all input data.

[0042] In the forward direction, the state metrics
oy=(0,(0), o (1), . . ., o, (M=-1)) are obtained with o,_,=

Mar. &, 2007

(01 (0), o, (1), . ..y 04y (M=1)). In the reverse direction,
the state metrics B =(p.(0), p=(1), . . . , P(M=-1)) are
obtained with By,=(B_,(0), By (1), - - - By (M-1).
According to the MAP algorithm, the state metrics represent
the state transition probabilities from orne step to the next
step. If overflow occurs during state metrics updating due to
the limited bit width of the state metrics in the implemen-
tation, errors are generated, and the errors will propagate
inside the MAP decoder. Thus, the state metrics must be
normalized by the term 2 2 o, (8")y (s',8). o and B, are
calculated as following

D Gl s) M
w9 = Ds Dy B-1(8)Yi (8, 9)
D a8 s') @

Piils) = Y =—————
i D5 g G185, 8)

where seS, s'eS

[0043] The state transition probability y,(s',s), the branch
metrics, is defined as

Yels's s) = plsg =s/s-1 =)

= exp)

1 1
Exk (LLey + Lyds}) + 7 Ledp, Yk]
<z

1
= exp| 5% (LLey +Lcdfk)] Yl s)

where

1
115,90 x| 5 Led |
The extrinsic information, soft information, is

Do At W ALS) @

Lle, -
T P B)

[0044] FIG. 3 is a simplified schematic block diagram of
representative, illustrative interconnection of resources
detailing the operations of the MAP decoder using a known
method. The received data 302 and the extrinsic information
of the previous iteration 308 are fed into the branch metric
calculation unit 303 from the received data memory 301 and
the extrinsic information of the previous iteration 314,
respectively, to generate the branch metric y,° 304 for the
likelihood ratio calculation, y,, 310 for the state metrics
updating in the forward direction and y,, 309 for the state
metrics updating in the reverse direction. The state metrics-
updating unit in the forward direction 312 uses vy, 310 from
the branch metric calculation unit 303 and the state metrics
in the previous step oy, 319 from the metric buffer/memory
316 to update the state metrics o, ; 318 in the forward
direction. The state metrics-updating unit in the reverse
direction 311 uses y,,, 309 from the branch metric calculation
unit 303 and the state metrics in the previous step f,, 315
from the metric buffer/memory 316 to update the state
metrics Py,_; 317 in the reverse direction. When the branch

US 2007/0055919 Al

metrics v,.° 304 and the state metrics (o ,f,) 313 in both
recursion directions are available at the inputs of the like-
lihood ratio calculation unit 305, the likelihood ratio LLe(k)
306 is generated and stored in the extrinsic information
buffer/memory for the next iteration.

[0045] In order to simplify the computation, the known
log-MAP algorithm, such as has been shown in Robertson et
al. “A comparison of optimal and suboptimal MAP decoding
algorithms operation in the log domain,”Proc. 1995 Int.
Conf. on Comm., pp. 1009-1013 and in Viterbi, “An intuitive
justification and a simplified implementation of the MAP
decoder for convolutional codes,”/EEE JSAC, pp. 260-264,
February 1998, each of which is incorporated herein by
reference, is employed in most implementations. The sim-
plification is

D et $)Bels) @

LR =—"———————
T G OB

where

[(s’, 8) = In(plsy =s/s1 =5')

1 1

= Exk(LLRk +Lodsi)+ ELcdpk Yy
1

= Exk(LLRk + Lods;) +T5(s, 5)

where

L
[is,8)= ;Lcdpk Y.

Jacobian equality can be used to simplify the exponential
computation in log-MAP algorithm as follows:

In(e*+e®)=Log_Sum(a,b)=max(a,b)+n(1+exp(~|b-al) (3)

For implementation, In(1+exp(~|b-a|)) can be realized with
a lookup table. According to previous studies, e.g., in
Robertson et al., mentioned above, a lookup table size of 8
can provide enough accuracy.

[0046] The normalization in the log-MAP algorithm is
modified as
Au(s) = Ap(s) - IiaSX{A/Q) ©)
By(s) = B (s) - max{Bs)} M
where
A4(s)=LOG _ SUMFy_y(s)}, (6a)
Jes

Fie1(9) = A1 (9) + T ', 5)
B () =LOG _ SUM{R, (s")}, (72)
=5

Ri(s') = By(s) + T, (s,)

Mar. &, 2007

[0047] 1In log-MAP algorithm, extrinsic information is

LLR, =Log Sum{P; (s}} — Log_Sum{P; (s)} @®
=5+ s=5—
where

Pi(s) = Aec1(8) + TL(S7, 8) + Bi(s).

where Py (s)=A,_,(s)+],°(s',8)+B.(s).

[0048] According to the idea of MAP and log MAP
algorithms, state metrics at each step consists of a set of
numbers limited within upper and lower boundaries. A state
metric with the largest value means the state is the correct
state on the optimal decoding path with the highest prob-
ability. If A, (s) is the maximum, s is the correct state with
the highest probability at the k-th step in the forward
direction. If B,(s) is the maximum, s is the correct state with
the highest probability at the k-th step in the reverse direc-
tion.

[0049] In equations (3) and (), the maximum of {o_
15N }H{A_ ()} and the maximum of {B,(s)}/{B.(s)} give
the main contribution to LLe, and LLR . If ds,=+1 transmits
at the output of the encoder and the estimate of the decoder
is correct, LLe/LLR, is close to the upper boundary. If
ds,=-1 transmits at the output of the encoder and the
estimate of the decoder is correct, LLe,/LLR, is close to the
lower boundary. If the value of LLe,/LLe, is closer to the
upper or lower boundary, the confidence of the estimate is
higher at the k-th step. If the current maximum metric is
much larger than the previous maximum metric, LLe /LLe,
will converge at the correct estimate sooner. Thus, it is
important to know which state has the relative maximum,
rather than the absolute maximum.

[0050] Fora MAP algorithm in Turbo decoding, including
the Max log-MAP algorithm, any one of the updated state
metrics from equations (1) and (2) of each recursion direc-
tion can be selected as the embedded metric, for example,
o' (0) and p',_,(0) are selected as the embedded metrics for
the forward and reverse directions, respectively. The embed-
ding procedure is as follows:

o (8)=a, (Yo' (0), s€5 ®);
B 1()=P" 1 (/P (0), 5€S (10).

[0051] For a log-MAP algorithm in Turbo decoding, any
one of the updated state metrics from equations (6) and (7)
of each recursion direction can be selected as the embedded
metric, for example, A" (0) and B',_,(0) are selected as the
embedded metrics for the forward and reverse directions,
respectively. The embedding procedure is as follows:

Ay($)=A(5)-41(0), seS 1y
By 1(8)=B'1($)-B%1(0), seS @)

After the embedding procedure of MAP and log-MAP, the
original relationship among the updated state metrics is
maintained in the new set of state metrics due to the linear
operations of division and subtraction. The embedded metric
is always equal to a constant, i.e., one for a MAP decoder
and zero for log a MAP decoder. Thus, {a(0)}={a,(0),
al(o)a R O'length(o)}/{A(O)}={A0(0)s Al(o)a coe s
Arenen©)) and (B0} ={Bo(0), L) - - - . Brongsl O
{B(0)}={Bo(0), B,(0), . . ., Bicpg,(0)} are not required to be

US 2007/0055919 Al

stored in the state metrics memory. This technique is called
embedded state metric storage (EMSM). It can reduce the
memory requirement by a factor of 1/M.

[0052] Since o, (0)/A,(0) and B,(0)/B,(0) are always con-
stant, one for a MAP decoder and zero for a log-MAP
decoder after the embedding procedure, the calculation
using the embedded metric as an input signal can be omitted
during state metrics updating and extrinsic information
calculation. Thus, EMSM will not increase the computa-
tional load. The contribution of the embedded metrics during
the state metrics updating and extrinsic information calcu-
lation is provided by the embedded relationship among the
other state metrics, and EMSM can achieve the same result
with known methods.

[0053] FIG. 4 is a simplified schematic block diagram of
representative, illustrative interconnection of resources
detailing the operations of MAP decoder and log-MAP
decoder using the present invention. The received data
(ds,dp,dp") 402 and the extrinsic information of the previous
iteration LLe_in 408 are fed into the branch metric calcu-
lation unit 403 from the received data memory 401 and the
memory of the extrinsic information of the previous iteration
414, respectively, to generate the branch metric v,° 404
which is applied to the likelihood ratio calculation unit 405,
which produces at its output LLe, 406 likelihood ratio
calculation. The branch metric calculation unit 403 also
produces the branch vy, 410 for the state metrics updating in
the forward direction and the branch metric vy, 409 for the
state metrics updating in the reverse direction.

[0054] The embedded state metrics-updating unit in the
forward direction 412, in which multiplication for MAP
algorithm or addition for log-MAP algorithm with the
embedded metric are omitted, uses the branch metric vy, 410
from the branch metric calculation unit 403 and the state
metric in the previous step o, 419 from the metric buffer/
memory 416 to update the state metric a,,; 418 in the
forward direction. The embedded state metrics-updating unit
in the reverse direction 411, in which multiplication for
MAP algorithm or addition for log-MAP algorithm with the
embedded metric is omitted, uses the branch metric vy, 409
from the branch metric calculation unit 403 and the state
metric in the previous step p, 415 from the metric buffer/
memory 416 to update the state metric p,, ; 417 in the
reverse direction. The embedded metric is not stored in the
state metric buffer/memory 416.

[0055] Updating of state metrics is preferably done in
accordance with the known sliding window (SW) technique
in practical systems to reduce the memory requirement. As
mentioned in the background section, all of the metric
information of the forward and reverse directions must be
temporarily stored to calculate the extrinsic information. If
the data frame length is large, the temporary memory will be
huge. In practical systems, only part of the frame, called a
window, instead of the whole frame is used to compute the
extrinsic information, ignoring some of the extrinsic infor-
mation, thus causing performance degradation. However,
with a window sliding from the head to the end of the frame,
all of the extrinsic information is obtained. The sliding
window works as follows:

[0056] a) The window starts at the end of the data frame,
let step number k=0, source symbol frame length=L,
window size=W and training size=T,

Mar. &, 2007

[0057] b) Perform forward metric update from the k™
source symbol information, save the forward metric from
k to k+W-1; if ((k+W+D)>L, then perform forward
metric update from k™ source symbol information, save
the forward metric from k to L-1;

[0058] c) Perform reverse metric update from the (k+W+
T)™ source symbol information, save the forward metric
from k+W to k+1; if (k+W+T)>L, then perform reverse
metric update from the (L) source symbol information,
save the forward metric from L to k+1;

[0059] d) Calculate extrinsic information from k to the
(k+w-1) for source symbols; if (k+ W+T)>L, then calcu-
late extrinsic information from k to the (L-1) for source
symbols;

[0060] e) Update k=k+W; if k<L then go to step b;
otherwise this iteration terminates.

Thus the temporary memory depth reduces from 2 frame
lengths to 2 window sizes. In generally, the training size
should at least be 3 or 4 times of the state size. EMSM can
help the SW technique to reduce metric memory require-
ment in the same way as mentioned in the previous

paragraph.

[0061] When the branch metric v,° 404 and the state
metrics (oy._,,f) 413 in both recursion directions are avail-
able at the input of the likelihood ratio calculation unit 405,
the embedded likelihood ratio LLe, 406, in which multipli-
cation for the MAP algorithm or addition for the log-MAP
algorithm with the embedded metric is omitted, is generated
and stored in the extrinsic information buffer/memory for
the next iteration.

[0062] FIG. 5 shows the performance comparison curves
501 comparing the log-MAP decoder in accordance with the
present invention and the known method on an AWGN
channel. The turbo code used in this performance analysis is
based on the cdma2000 standard with Length=1146 and
code rate=1/3. The log-MAP decoder with EMSM 502 can
achieve the same performance with the known method 503,
and EMSM can reduce the memory used by 12.5% com-
pared to the known method. In FIG. § we find that there is
almost no difference between the two curves, indicating that
EMSM can achieve the same decoding performance as the
traditional decoding scheme.

[0063] FIG. 6 shows the performance comparison curves
601 comparing the log-MAP decoder in accordance with the
present invention and the known method on an AWGN
channel. The turbo code used in this performance analysis is
based on the ¢dma2000 standard with Length=3066 and
code rate=1/3. The log-MAP decoder with EMSM 602 can
achieve the same performance with the known method 603,
and EMSM can reduce the memory used by 12.5% com-
pared to the known method. Again, we find that there is
almost no difference between the two curves, indicating that
EMSM can achieve the same decoding performance as the
traditional decoding scheme.

[0064] By virtue of the above techniques, a MAP decoder
can be produced that has performance nearly identical to the
conventional MAP decoder, yet which requires much less
memory. The architecture shown in FIG. 4 can be used to
construct the MAP decoder, which is implemented in an
FPGA, PLC or ASIC with EMSM technique.

US 2007/0055919 Al

[0065] The present invention has been described above in
connection with certain illustrative embodiments. However,
the present invention is in no way limited to the disclosed
embodiment, which are exemplary and not intended to limit
the scope of the invention, which is to be interpreted in
accordance with the appended claims.

What is claimed is:
1. A method of state metrics storage in a turbo decoder
applicable to various decoding algorithms, comprising:

(a) updating the state metrics using a sliding window
method;

(b) selecting an embedded metric from the updated ones
of the state metrics in forward or reverse recursion
directions;

(c) performing a different calculation on said updated
state metrics and said embedded metric for respective
different ones of said decoding algorithms; when the
forward and reverse state metrics are available, per-
forming extrinsic information calculation;

(d) saving said embedded metric in a state metric buffer;

(e) saving a result of said calculation at step (c) for use as
an input signal during state metrics updating and extrin-
sic information calculation.

2. The method according to claim 1, wherein a state

metric is selected as said embedded mettic.

3. The method as in claim 1, wherein when the algorithm
is the MAP algorithm, said calculation involves dividing
said updated state metrics by one.

4. The method as in claim 1, wherein when the algorithm
is the log-MAP algorithm, said calculation involves sub-
tracting said updated state metrics from zero.

5. The method as in claim 1, wherein when the algorithm
is the Max log-MAP algorithm, said calculation involves
subtracting he said updated state metrics from zero.

6. An apparatus for implementing state metrics storage in
a turbo decoder applicable to various decoding algorithms,
comprising:

Mar. &, 2007

means for updating the state metrics using a sliding
window method;

means for selecting an embedded metric from updated
state metrics in forward or reverse recursion directions;

means for performing a different calculation on said
updated state metrics and said embedded metric for
respective different ones of said decoding algorithms;

means for performing a different calculation on said
updated extrinsic information with metrics metric for
respective different ones of said decoding algorithms;

means for saving said embedded metric in a state metric
buffer;

means for saving a result of said calculation for use as an
input signal during state metrics updating and extrinsic
information calculation.

7. The apparatus according to claim 6, wherein the
apparatus is realized with a programmable logic device
(PLD).

8. The apparatus according to claim 6, wherein the
apparatus is realized with a field-programmable gate array
(FPGA).

9. The apparatus according to claim 6, wherein the
apparatus is realized with application-specific integrated
circuit (ASICs).

10. The apparatus according to claim 6, wherein when the
algorithm is the MAP algorithm, said calculation involves
dividing said updated state metrics by one.

11. The apparatus according to claim 6, wherein when the
algorithm is the log-Map algorithm, said calculation
involves subtracting said updated state metrics from zero.

12. The apparatus according to claim 6, wherein when the
algorithm is the Max log-MAP algorithm, said calculation
involves subtracting said updated state metrics from zero.

