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Comparison of 
Three Vertical 
Search Spiders

T he Web has plenty of useful resources, but
its dynamic, unstructured nature makes
them difficult to locate. Search engines help,
but the number of Web pages now exceeds
two billion, making it difficult for general-

purpose engines to maintain comprehensive, up-to-
date search indexes. Moreover, as the Web grows
ever larger, so does information overload in query
results. A general-purpose search engine, such as
Google (www.google.com) or AltaVista (www.
altavista.com), usually generates thousands of hits,
many of them irrelevant to the user query. 

Vertical search engines solve part of the problem
by keeping indexes only in specific domains.
Examples include LawCrawler (www.lawcrawler.
com), BuildingOnline (www.buildingonline.com),
and SciSeek (www.sciseek.com). However, these
engines still face the challenge of collecting a set
of relevant, high-quality pages from the two bil-
lion available on the Web. Further, the demand for
high-quality pages is generally—and sometimes
critically—more important in vertical search
engines.

Spiders are the software agents that search
engines use to collect content for their databases.
We investigated algorithms to improve the per-
formance of vertical search engine spiders. The
investigation addressed three approaches: a
breadth-first graph-traversal algorithm with no
heuristics to refine the search process, a best-first
traversal algorithm that used a hyperlink-analysis
heuristic, and a spreading-activation algorithm
based on modeling the Web as a neural network.

INTELLIGENT SPIDERING
Most spiders use simple graph search algorithms,

such as breadth-first search, to collect Web pages.
Without controls, the spiders will fetch pages for
any topic. There are two popular ways to control
the fetch relevance and quality:

• Restrict the spiders to particular Web domains.
For example, most Web pages within the
www.toyota.com domain would be relevant to
automobiles.

• Filter the collected pages on the basis of con-
tent. For example, a program could remove
pages that had fewer than a threshold number
of relevant keywords.

Both approaches have some disadvantages. Re-
stricting the domains misses potentially relevant
Web sites that are outside the original list; further,
it does not work for sites that have diverse content.
On the other hand, filtering the collected pages for
a full Web search is inefficient. 

Good spidering algorithms can improve the pre-
cision of search results, however, by predicting
whether a URL points to a relevant Web page before
downloading it to the local search engine database.
Such predictions depend on representing Web con-
tent and structure in ways that are meaningful to
machines. Current research in this area falls into one
of two categories: content-based or link-based.

Content-based Web analysis
Spiders can apply indexing techniques for text

In domain-specific search experiments, a Web spider based on a neural
network algorithm consistently outperformed spiders based on traditional
graph search and PageRank algorithms.
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analysis and keyword extraction to help determine
whether a page’s content is relevant to a target
domain. They can incorporate domain knowledge
into their analysis to improve the results. For exam-
ple, they can check the words on a Web page
against a list of domain-specific terminology and
assign a higher weight to pages that contain words
from the list. Assigning a higher weight to words
and phrases in the title or headings is also standard
information-retrieval practice that spiders can
apply based on appropriate HTML tags. 

The URL address often contains useful informa-
tion about a page. For example, http://ourworld.

compuserve.com/homepages/LungCancer/ tells us
that the page comes from the compuserve.com
domain and that it likely has information relating
to lung cancer. 

An intelligent spider might consider pages from
a .gov site to be more authoritative than pages from
a .com site. Some metrics also consider URLs with
fewer slashes more useful than those with more
slashes.1

Link-based Web analysis
Recent research has used Web link structure to

infer important information about pages. Intuitively,
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The PageRank algorithm calculates the quality of a page p
proportionally to the quality of the pages that contain in-links
to it.1 Since PageRank also considers the quality of the in-
linking pages, the score of p is calculated recursively as follows:

where d is a damping factor between 0 and 1, n is the total num-
ber of pages in the collection, and c(q) is the number of in-
linking pages q. 

As Figure A shows, a Web page p can have a high score if
many pages q link to it. The scores will be even higher if the
referring pages also have high PageRank scores. 

PageRank has proved effective in ranking search results in
commercial search engines, such as Google. Researchers have
also applied it to guide search engine spiders, as we do in our
experiments, sending the spiders first to URLs with higher
PageRank scores. The algorithm is computationally expensive,
however, because it calculates the score of each Web page iter-
atively.

The Hyperlink-Induced Topic Search algorithm2 is similar to
PageRank. HITS defines authority pages as high-quality pages
related to a particular topic or search query and hub pages as
those that are not necessarily authority pages themselves but
provide links to authority pages. Figure A illustrates the basic
idea: A page that many other pages point to should be a good
authority, and a page pointing to many others should be a good
hub. HITS calculates an authority score and a hub score for each
page as follows:

In an application of the HITS algorithm, the Clever search
engine3 achieved a higher user evaluation than the manually
compiled Yahoo directory. Other research has extended the basic
algorithm—for example, to factor in how much a node, based
on its relevance, influences its neighbors.4

Like PageRank, HITS calculates its scores iteratively and so
has high computational costs.
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Link-Based Web Analysis: PageRank and HITS Algorithms
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Figure A. Link-based algorithms. The PageRank score for a page p
depends on the PageRank scores of referring pages, q1 to qi point-
ing to p. In the HITS algorithm, the authority score of a page p
depends on the hub scores of referring pages, q1 to qi, and the hub
score depends on the authority scores of the pages to which p is
pointing, r1 to rj.
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the author of a Web page A, who places a link
to Web page B, believes that B is relevant to
A. The term in-links refers to the hyperlinks
pointing to a page. Usually, the larger the num-
ber of in-links, the higher a spider will rate a
page. The rationale is similar to citation analy-
sis, in which an often-cited article is consid-
ered better than one never cited. 

Anchor text is the word or phrase that
hyperlinks to a target page. Anchor text can
provide a good source of information about
a target page because it represents how peo-
ple linking to the page actually describe it.

Several studies have tried to use either the anchor
text or the text near it to predict a target page’s 
content.2

It is also reasonable to give a link from an author-
itative source, such as Yahoo (www.yahoo.com), a
higher weight than a link from a personal home-
page. 

Researchers have developed several link-analysis
algorithms over the past few years. The “Link-
Based Web Analysis: PageRank and HITS Algo-
rithms” sidebar describes the two most widely used
algorithms.

THREE APPROACHES
Simple breadth-first and best-first algorithms

exemplify the graph search approaches of most
existing search engine spiders. There is little research
on using more powerful algorithms. Furthermore,
while Web content- and link-analysis techniques
provide good heuristics in the spidering process,
most applications of them, such as PageRank and
HITS, are computationally expensive. Moreover,
the techniques are seldom combined effectively.

Vertical search engines offer more opportunity
to apply domain knowledge in spider applications.
The three spiders we developed address different
ways of combining content- and link-based Web
analyses and integrating them with graph search
algorithms. 

BFS spider
Our breadth-first search spider follows a basic

graph-traversal algorithm. The BFS approach
assumes that a URL relevant to a target domain is
likely to have other relevant Web pages in its neigh-
borhood, and many commercial search engines
have used this spidering technique.

Because the most important pages on a topic are
likely to include in-links from many hosts, BFS has
proved effective in discovering high-quality pages
early in a spidering process.3

PageRank spider
We combine link-based analysis with a heuristics-

based traversal algorithm in our PageRank spider.
Adapting the algorithm reported by Junhoo Cho
and colleagues,4 our spider performs a best-first
graph search using PageRank as the heuristic. In
each step, the spider gets the URL with the highest
PageRank score, fetches the content, and extracts
and enqueues all the page’s outgoing links. It runs
until it has collected a predetermined number of
pages. The PageRank spider calculates scores iter-
atively, as described in the “Link-Based Web
Analysis” sidebar. Our implementation sets the
damping factor d to 0.90. 

We also adapted this queuing approach for
anchor text analysis.4 As in the earlier study, we
established two priority queues for the PageRank
spider, hot_queue and normal_queue, and ordered
the URLs within each queue in descending order
by PageRank score. The spider first dequeues from
the hot_queue. If the hot_queue is empty, the spi-
der dequeues from the normal_queue. 

In our design, the spider places a URL in the
hot_queue if the anchor text pointing to this URL
contains a relevant term from a predefined list of
domain terminology. 

Hopfield Net spider
A neural network is a graph of many active nodes

(neurons) that are connected with each other by
weighted links (synapses). The network uses acti-
vation algorithms over the nodes to represent and
retrieve knowledge.5,6 We can apply these algo-
rithms to Web applications by modeling the Web
as a neural network in which the nodes are Web
pages and the links are simply hypertext links.

Accordingly, we modeled the Web as a weighted,
single-layer neural network called a Hopfield Net.6

A Hopfield Net activates its nodes in parallel and
combines activation values from different sources
for each individual node until the node activation
scores across the network converge to a stable state.
This model combines a parallel search algorithm
with content-based and link-based analysis. 

Our Hopfield Net spider incorporates a spreading-
activation algorithm for knowledge discovery and
retrieval, though we modified it significantly to
account for the Web’s unique characteristics. The
implementation occurs in three steps.

Initialization. Starting with a set of seed URLs, each
represented as a node with a weight of 1, the spider
fetches and analyzes the seed Web pages in iteration
0. The weight of node i at iteration t is expressed as
µi(t). Thus, for all seed URLs, µi(0) = 1.

Vertical search
engines offer

more opportunity
to apply domain

knowledge 
in spider 

applications.



The spider adds the new URLs found in the seed
pages to the network.

Activation, weight computation, and iteration. Pro-
ceeding to the next iteration, the spider calculates
each node’s weight as follows:

where wh,i is the weight of the link between two
nodes and fs is the sigmoidal transformation func-
tion that normalizes the weight to a value between
0 and 1.

The link weight wh,i estimates whether a URL i
pointed to from a Web page h is relevant to the tar-
get domain, based on a measure of the anchor text.
For example, we can calculate the weight wh,i as a
function of the number of words relevant to the tar-
get domain used in page h’s anchor text linking to
page i.

We adopted a slightly modified sigmoidal func-
tion as follows:

After the spider calculates the weights of all
nodes in the current iteration, it activates (visits)
that set of nodes (URLs) and fetches them from the
Web in descending order of weight. To filter out
low-quality URLs, the spider bypasses nodes with
a weight below a threshold θ. Figure 1 illustrates
the activation process. 

After the spider has visited and downloaded all
the pages with a weight greater than the threshold
θ, it updates the weight of each node in the new
iteration to reflect the quality and relevance of the
downloaded page content as follows:

µi(t + 1) = fs[µi (t + 1) × pi]

where pi is a weight that represents the relevance
of the textual content of a page i. This score is a
function of the number of phrases in a page’s con-
tent that are relevant to the target domain. A page
with more relevant phrases will receive a higher
score.

Stopping condition. The process iterates until the
spider has collected a predetermined number of
Web pages or until the average weight of all nodes
in an iteration is smaller than a maximum allow-
able error (a small number).

MEDICAL DOMAIN TEST BED
To evaluate the three approaches, we imple-

mented them as backend spiders for a medical
search engine called HelpfulMed (ai.bpa.arizona.
edu/helpfulmed/).8 Medical Web pages are highly
distributed, highly variable in their quality, and dif-
ficult to locate. HelpfulMed is designed to collect
high-quality information that can support profes-
sional users in potentially significant decisions. It
provided an ideal test bed for comparing spider per-
formance in a vertical domain.

Establishing domain knowledge
To facilitate content-based analysis, we used the

Unified Medical Language System to develop a
medical lexicon, called the Good Phrase List.
UMLS is a long-term research and development
project of the US National Library of Medicine that
provides knowledge sources for medical profes-
sionals and researchers. A medical librarian
reviewed the semantic types in the UMLS meta-
thesaurus and extracted about 300,000 medical
phrases from the entire collection for the Good
Phrase List. 

In addition, the librarian manually compiled a
Bad Phrase List that contains 118 unwanted, non-
medical words that frequently appear in medical
Web pages—for example, “Job posting” and
“Contact us.”

Finally, the librarian also identified a set of 354
medical domain Web sites that were either good
hubs or good authorities, such as the US National
Library of Medicine Web site (www.nlm.nih.gov).
From this list, the librarian further identified five
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high-quality hub pages as seed URLs, which
served as the starting points in our experi-
ment.

Creating the test bed
To prevent variations in network load and

traffic from affecting the performance results,
we set up a controlled environment for our
experiments by creating a local repository of
a portion of the Web relevant to our study.
The repository supported virtual spidering,

meaning that a spider fetched a page’s content from
the local repository rather than the Web. 

We created the repository by running a random-
first search, using the five seed URLs identified by
our medical expert as starting points and then
fetching all new links in a random order. The result-
ing test bed consisted of 1,040,388 valid, unique
Web pages and 6,904,026 links. The repository
contained pages both inside and outside the start-
ing Web sites as well as both medical and non-
medical Web pages.

We also ran the Arizona Noun Phraser9 to
extract noun phrases from each test bed page. We
then calculated the total number of phrases and the
number of phrases that appeared in the Good
Phrase List for each page.

EXPERIMENTS
We designed and conducted two experiments to

compare the three spiders.

Simulation
In the first experiment, we simulated the spider-

ing processes to analyze their speed and quality.
Experiment design. First, we executed each spider

on the test bed. Although the local repository con-
tained information for all test bed pages, each spi-
der could access only information based on pages
it already had visited. For each spider, we used the
same seed URL set that we used to create the test
bed, and we ran the spider until it had visited
100,000 pages. To ensure that each spider collected
the same number of pages, we did not use the
Hopfield Net spider’s convergence property in the
experiment.

To compare performance in terms of the quality
of each Web page visited, we introduced the notion
of Good Page, which estimated a Web page’s rele-
vance to the medical domain automatically. Based
on a previous experiment on a similar but smaller
collection (about 100,000 Web pages), we consid-
ered a Web page to be a Good Page if the number
of medical phrases divided by the total number of

phrases found in the page was greater than a certain
threshold. In our previous experiment, we used this
method to classify a set of randomly sampled Web
pages and found the error rate to be 5.0 percent for
the medical domain. Using this classification, the
test bed in the current experiment contained
171,405 Good Pages.

Using the notion of Good Page, we defined the
precision and recall rates of the spiders as follows:

precision rate = 
number of Good Pages visited by the spider
number of all pages visited by the spider

recall rate = 
number of Good Pages visited by the spider
number of Good Pages in the test bed

Because the total number of Good Pages in the
test bed was 171,405 and the total number of all
pages visited by a spider was fixed at 100,000, the
precision and recall rates were directly proportional
to each other for each spider. We focus our discus-
sion here on the precision rate. We also compared
efficiency by measuring the time each spider used to
visit 100,000 pages.

Results. Figure 2 summarizes the simulation
results. Figure 2a shows that the Hopfield Net spi-
der retrieved 40,014 Web pages (40.0 percent of
all pages visited) compared with 36,307 (36.3 per-
cent) by the BFS spider and 19,630 (19.6 percent)
by the PageRank spider. The Hopfield Net spider
took 12.6 minutes to retrieve 100,000 pages, the
BFS spider took 12.7 minutes, and the PageRank
spider took significantly longer at 1,183.6 minutes. 

In addition to the final collection, we studied spi-
der performance during different stages of the
process. Figure 2b shows the total number of Good
Pages found during the spidering process for each
system. The Hopfield Net spider consistently
achieved the best performance. The BFS spider was
slightly less effective, and the PageRank spider per-
formed at a considerably lower level.

To analyze the data further, we divided the
100,000 pages that each spider visited into 1,000
equal portions, each containing 100 consecutive
pages according to the original visiting order of
each spider. Within each portion, we calculated the
percentage of Good Pages in the search results. As
there were 100,000 pages, we obtained 1,000 data
points for each spider. 

Figure 2c shows the results of paired t-tests con-
ducted on these data. At the 1 percent level, the
Hopfield Net spider had significantly better preci-

The Hopfield Net 
spider incorporates

domain-specific
content analysis 

into the 
scoring function.



sion than the BFS and PageRank spiders. The
PageRank spider performed significantly below
either of the other two throughout the process.

Discussion. The BFS spider obtained high-quality
pages simply by visiting the URLs close to the start-
ing URLs, which tended to point to relevant pages.
We had expected the PageRank spider to perform at
least as well as the BFS spider, which did not use any
heuristics. However, detailed data analysis showed
that the PageRank spider visited more irrelevant
URLs than the other two spiders early in the search
(the first 3,000 pages in Figure 2c). 

For example, many of the first few hundred pages
contained a link to the Adobe Web site (www.
adobe.com), which provided information on how
to open and read PDF files. Because of the large
number of referring pages, the Adobe site URL had
a high PageRank score. The spider therefore visited
it early in the spidering process and, because the
PageRank algorithm is recursive, propagated the
high score to other URLs contained in the page.
Although the PageRank algorithm is robust for
large collections of pages, we believe its scores can
be misleading for small collections, especially early
in the spidering process.

The Hopfield Net spider did not suffer from this
problem because it incorporates domain-specific
content analysis into the scoring function, thus effec-
tively combining content- and link-based analysis.
Filtering the URLs also increased the precision rate.

The PageRank spider’s heavy computational
requirements also made it take much longer to exe-
cute than the other two spiders. Research has shown
that it takes several hours for the PageRank algo-

rithm to calculate the scores of a set of 19 million
pages.10 The PageRank spider made the recursion
problem worse by calculating the PageRank scores
not just once but each time the spidering process
found any new URLs. Consequently, the spider
became exponentially slower as the number of vis-
ited URLs increased. While PageRank is a good
measure for ranking Web search results, it is imprac-
tical for the spidering process in large collections.

User study
The second experiment was a user study to deter-

mine how domain experts rated the Web pages by
each system collected.

Experiment design. We recruited two senior gradu-
ate students with medical training to judge the qual-
ity of the pages collected by each spider. Each expert
was assigned 100 Web pages randomly drawn from
the collection of pages fetched by each spider dur-
ing the simulation. To eliminate possible bias, we
did not disclose the source for a page. The experts
independently judged each page’s quality and rele-
vance to the medical domain on a score ranging
from one to four.

Results. In general, the user study results agreed
with those of the simulation experiment. The
Hopfield Net spider score was 2.30, the highest
relevance score among the three. The BFS spider
scored 2.13, and the PageRank spider scored 1.78.
The Hopfield Net and BFS spiders both scored sig-
nificantly better than the PageRank spider at the 5
percent level. The Hopfield Net spider had a higher
relevance score than the BFS spider, but our exper-
iment did not statistically confirm the difference.
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Discussion. Our judges found that the PageRank
spider collected many nonmedical pages from large
sites such as Yahoo and eBay (www.ebay.com),
where the pages tended to have higher PageRank
scores and were visited by the PageRank spider
during an early stage of the spidering process. As
a result, the average relevance of the collection the
PageRank spider built was not as high as the other
two collections.

W e have combined content and link structure
analysis to improve the performance of ver-
tical search spiders, but the combination

holds promise for other Web applications as well.
In addition, modeling the Web as a neural network
opens a large body of research to Web applications.
Our work continues to address the intersections of
these fields. For instance, we are currently study-
ing how the Web’s link structure can enhance the
performance of Web page classification and clus-
tering applications. �
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