Integral representation of renormalized self-intersection local times

Yaozhong Hu*, David Nualart \dagger Jian Song
Department of Mathematics
University of Kansas
Lawrence, Kansas, 66045 USA

Abstract

In this paper we apply Clark-Ocone formula to deduce an explicit integral representation for the renormalized self-intersection local time of the d-dimensional fractional Brownian motion with Hurst parameter $H \in(0,1)$. As a consequence, we derive the existence of some exponential moments for this random variable.

1 Introduction

The purpose of this paper is to apply Clark-Ocone's formula to the renormalized self-intersection local time of the d-dimensional fractional Brownian motion. As a consequence, we derive the existence of some exponential moments for this local time.

A well-known result in Itô's stochastic calculus asserts that any square integrable random variable in the filtration generated by a d-dimensional Brownian motion $W=\left\{W_{t}, t \geq 0\right\}$ can be expressed as the sum of its expectation plus the stochastic integral of a square integrable adapted process:

$$
F=E(F)+\sum_{i=1}^{d} \int_{0}^{\infty} u^{i}(t) d W_{t}^{i} .
$$

The process u is determined by F, except on sets of measure zero. In this context, Clark-Ocone formula provides an explicit representation of u in

[^0]terms of the derivative operator in the sense of Malliavin calculus. More precisely, if F belongs to the Sobolev space $\mathbb{D}^{1,2}$, then $u^{i}(t)=E\left(D_{t}^{i} F \mid \mathcal{F}_{t}\right)$, where D^{i} denotes the derivative with respect to the i th component of the Brownian motion and $\left\{\mathcal{F}_{t}, t \geq 0\right\}$ is the filtration generated by the Brownian motion. Extensions of this formula have been developed by Üstünel in [17, and by Karatzas, Ocone and Li in [12]. Clark-Ocone formula has proved to be a useful tool in finding hedging portfolios in mathematical finance (see, for instance, [11]).

The fractional Brownian motion on \mathbb{R}^{d} with Hurst parameter $H \in(0,1)$ is a d-dimensional Gaussian process $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ with zero mean and covariance function given by

$$
\begin{equation*}
E\left(B_{t}^{H, i} B_{s}^{H, j}\right)=\frac{\delta_{i j}}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right), \tag{1.1}
\end{equation*}
$$

where $i, j=1, \ldots, d, s, t \geq 0$, and

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & & i \neq j
\end{array}\right.
$$

is the Kronecker symbol. Assume $d \geq 2$. The self-intersection local time of B^{H} is formally defined as

$$
L=\int_{0}^{T} \int_{0}^{t} \delta_{0}\left(B_{t}^{H}-B_{s}^{H}\right) d s
$$

where δ_{0} is the Dirac delta function. It measures the amount of time that the process spends intersecting itself on the time interval $[0, T]$. Rigorously, L is defined as the limit in L^{2}, if it exists, of $L_{\varepsilon}=\int_{0}^{T} \int_{0}^{t} p_{\varepsilon}\left(B_{t}^{H}-B_{s}^{H}\right) d s d t$, as ε tends to zero, where p_{ε} denotes the heat kernel.

For $H=\frac{1}{2}$, the process B^{H} is a classical Brownian motion and its selfintersection local time has been studied by many authors (see Albeverio et al. [1], Calais and Yor [4, He et al. 66, Hu [7, Imkeller et al. [10], Varadhan [18], Yor [20], and the references therein). In this case, if $d=2$, Varadhan [18] has proved that L_{ε} does not converge in L^{2}, but it can be renormalized so that $L_{\varepsilon}-E\left(L_{\varepsilon}\right)$ converges in L^{2} as ε tends to zero to a random variable that we denote by \widetilde{L}. This result has been extended by Rosen 16 to the case $H \in\left(\frac{1}{2}, \frac{3}{4}\right)$ (still when $d=2$), and by Hu and Nualart in [9], where they have obtained the following complete result on the existence of the self-intersection local time of the fractional Brownian motion:
(i) The self-intersection local time L exists if and only if $H d<1$.
(ii) If $H d \geq 1$, the renormalized self-intersection local time \widetilde{L} exists if and only if $H d<\frac{3}{2}$.

An important question is the existence of moments and exponential moments for the (renormalized) self-intersection local time. Along this direction, Le Gall [13] proved that for the planar Brownian motion, there is a critical exponent λ_{0}, such that $E(\exp \lambda \widetilde{L})<\infty$ for all $\lambda<\lambda_{0}$, and $E(\exp \lambda \widetilde{L})=\infty$ if $\lambda>\lambda_{0}$. Using the theory of large deviations, Bass and Chen proved in [2] that the critical exponent λ_{0} coincides with A^{-4}, where A is the best constant in the Gagliardo-Nirenberg inequality.

Clark-Ocone formula seems to be a suitable tool to analyze the renormalized self-intersection local time, because in this formula we do not take into account the expectation of the random variable. The fractional Brownian motion can be expressed as the stochastic integral

$$
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

of a square integrable kernel $K_{H}(t, s)$ with respect to an underlying Brownian motion W. In this way the renormalized self-intersection local time \widetilde{L} is a functional of the Brownian motion W, and we can obtain an explicit integral representation \widetilde{L}, in the general case $H d<\frac{3}{2}$. This formula allows us to obtain some exponential moments for the renormalized self-intersection local time, using the method of moments.

The paper is organized as follows. In Section 2 we present some preliminaries on Malliavin calculus and Clark-Ocone formula. Section 3 is devoted to derive estimates for the moments of the self-intersection local time in the case of a general d-dimensional Gaussian process, using the method of moments. In the case of the fractional Brownian motion, this provides the existence of exponential moments in the case $H d<1$. Section 4 contains the main result, which is the integral representation of the renormalized self-intersection local time of the fractional Brownian motion in the case $H<\min \left(\frac{3}{2 d}, \frac{2}{d+1}\right)$. As an application we show that $E\left(\exp |\widetilde{L}|^{p}\right)<\infty$ if $p<\frac{1}{2}\left[\left(\frac{1}{2}+H\right)\left(\frac{d}{2}-\frac{1}{4 H}\right)\right]^{-1}$. A crucial tool is the local nondeterminism property introduced by Berman in [3] and developed by many authors (see Xiao [19] and the references therein).

2 Preliminaries on Malliavin calculus and Clark-Ocone formula

We need some preliminaries on the Malliavin calculus for the d-dimensional Brownian motion $W=\left\{W_{t}, t \geq 0\right\}$. We refer to Malliavin [14] and Nualart [15] for a more detailed presentation of this theory.

We assume that W is defined in a complete probability space (Ω, \mathcal{F}, P), and the σ-field \mathcal{F} is generated by W. Let us denote by H the Hilbert space $L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, and for any function $h \in H$ we set

$$
W(h)=\sum_{i=1}^{d} \int_{0}^{\infty} h^{i}(t) d W_{t}^{i} .
$$

Let \mathcal{S} be the class of smooth and cylindrical random variables of the form

$$
F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right),
$$

where $n \geq 1, h_{1}, \ldots, h_{n} \in H$, and f is an infinitely differentiable function such that together with all its partial derivatives has at most polynomial growth order. The derivative operator of the random variable F is defined as

$$
D_{t}^{i} F=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) h_{j}^{i}(t),
$$

where $i=1, \ldots, d$ and $t \geq 0$. In this way, we interpret $D F$ as a random variable with values in the Hilbert space H. The derivative is a closable operator on $L^{2}(\Omega)$ with values in $L^{2}(\Omega ; H)$. We denote by $\mathbb{D}^{1,2}$ the Hilbert spaced defined as the completion of \mathcal{S} with respect to the scalar product

$$
\langle F, G\rangle_{1,2}=E(F G)+E\left(\sum_{i=1}^{d} \int_{0}^{\infty} D_{t}^{i} F D_{t}^{i} G d t\right) .
$$

The divergence operator δ is the adjoint of the derivative operator D. The operator δ is an unbounded operator from $L^{2}(\Omega ; H)$ into $L^{2}(\Omega)$, and is determined by the duality relationship

$$
E(\delta(u) F)=E\left(\langle u, D F\rangle_{H}\right),
$$

for any u in the domain of δ, and F in $\mathbb{D}^{1,2}$. Gaveau and Trauber [5] proved that δ is an extension of the classical Itô integral in the sense that any d dimensional square integrable adapted process belongs to the domain of δ,
and $\delta(u)$ coincides with the Itô integral of u :

$$
\delta(u)=\sum_{i=1}^{d} \int_{0}^{\infty} u^{i}(t) d W_{t}^{i}
$$

It is well-known that any random variable $F \in L^{2}(\Omega)$, possesses a stochastic integral representation of the form

$$
F=E(F)+\sum_{i=1}^{d} \int_{0}^{\infty} u^{i}(t) d W_{t}^{i}
$$

for some d-dimensional square integrable adapted process u. Clark-Ocone formula says that if $F \in \mathbb{D}^{1,2}$, then

$$
\begin{equation*}
F=E(F)+\sum_{i=1}^{d} \int_{0}^{\infty} E\left(D_{t}^{i} F \mid \mathcal{F}_{t}\right) d W_{t}^{i} \tag{2.1}
\end{equation*}
$$

3 Exponential integrability of the self-intersection local time

Suppose that $W=\left\{W_{t}, t \geq 0\right\}$ is a d-dimensional standard Brownian motion, defined in a complete probability space (Ω, \mathcal{F}, P). Suppose that \mathcal{F} is generated by W. We denote by $\left\{\mathcal{F}_{t}, t \geq 0\right\}$ the filtration generated by W and the sets of probability zero. Consider a d-dimensional Gaussian processs of the form

$$
\begin{equation*}
B_{t}=\int_{0}^{t} K(t, s) d W_{s}, \tag{3.1}
\end{equation*}
$$

where $K(t, s)$ is a measurable kernel satisfying $\int_{0}^{t} K(t, s)^{2} d s<\infty$ for all $t \geq 0$. We will assume that $K(t, s)=0$ if $s>t$.

Fix a time interval $[0, T]$. We will make use of the following property on the kernel $K(t, s)$:
(H1) For any $s, t \in[0, T], s<t$ we have

$$
\begin{equation*}
\int_{s}^{t} K(t, \theta)^{2} d \theta \geq k_{1}(t-s)^{2 H} \tag{3.2}
\end{equation*}
$$

for some constants $k_{1}>0$, and $H \in(0,1)$.
Notice that $\operatorname{Var}\left(B_{t}^{i} \mid \mathcal{F}_{s}\right)=\int_{s}^{t} K(t, \theta)^{2} d \theta$, so condition (H1) is equivalent to say that $\operatorname{Var}\left(B_{t}^{i} \mid \mathcal{F}_{s}\right) \geq k_{1}(t-s)^{2 H}$, for each component $i=1, \ldots, d$. This property is satisfied, for instance, in the following two examples:

Example 1 Suppose that $K(t, s)=(t-s)^{H-\frac{1}{2}}$. Then, we have equality in (3.2) with $k_{1}=\frac{1}{2 H}$.

Example 2 Condition (H1) is satisfied by the kernel of the fractional Brownian motion, as a consequence of the local nondeterminism property (see (4.1) below).

We will denote by C a generic constant depending on T, the dimension d, and the constants appearing in the hypothesis such as H and k_{1}.

The self-intersection local time of the process B in the time interval $[0, T]$, denoted by L, is defined as the limit in L^{2} as ε tends to zero of

$$
\begin{equation*}
L_{\varepsilon}=\int_{0}^{T} \int_{0}^{t} p_{\varepsilon}\left(B_{t}-B_{s}\right) d s \tag{3.3}
\end{equation*}
$$

where p_{ε} denotes the heat kernel

$$
p_{\varepsilon}(x)=(2 \pi \varepsilon)^{-\frac{d}{2}} \exp \left(-\frac{|x|^{2}}{2 \varepsilon}\right)
$$

The next theorem asserts that L exists if $H d<1$, and it has exponential moments of order $\frac{1}{H d}$.

Theorem 1 Suppose that $H d<1$. Then, the self-intersection local time L exists as the limit in L^{2} of L_{ε}, as ε tends to zero, and for all integers $n \geq 1$ we have

$$
E\left(L^{n}\right) \leq C^{n}(n!)^{H d},
$$

for some constant C. As a consequence,

$$
E\left(e^{L^{p}}\right)<\infty,
$$

for any $p<\frac{1}{H d}$, and there exists a constant $\lambda_{0}>0$ such that $E\left(e^{\lambda L \frac{1}{H d}}\right)<\infty$ for all $\lambda<\lambda_{0}$.

Proof. From the equality

$$
p_{\varepsilon}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \exp \left(i\langle\xi, x\rangle-\frac{\varepsilon|\xi|^{2}}{2}\right) d \xi
$$

and the definition of L_{ε}, we obtain

$$
L_{\varepsilon}=\frac{1}{(2 \pi)^{d}} \int_{0}^{T} \int_{0}^{t} \int_{\mathbb{R}^{d}} \exp \left(i\left\langle\xi, B_{t}-B_{s}\right\rangle-\frac{\varepsilon|\xi|^{2}}{2}\right) d \xi d s d t .
$$

This expression allows us to compute the moments of L_{ε}. Fix an integer $n \geq 1$. Denote by T_{n} the set $\{0<s<t<T\}^{n}$. Then

$$
\begin{align*}
E\left(L_{\varepsilon}^{n}\right)= & \frac{1}{(2 \pi)^{n d}} \int_{T_{n}} \int_{\mathbb{R}^{n d}} E\left[\exp \left(i\left\langle\xi_{1}, B_{t_{1}}-B_{s_{1}}\right\rangle+\cdots+i\left\langle\xi_{n}, B_{t_{n}}-B_{s_{n}}\right\rangle\right)\right] \\
& \times \exp \left(-\frac{\varepsilon}{2} \sum_{j=1}^{n}\left|\xi_{j}\right|^{2}\right) d \xi_{1} \cdots d \xi_{n} d s d t \tag{3.4}
\end{align*}
$$

where $s=\left(s_{1}, \ldots, s_{n}\right)$ and $t=\left(t_{1}, \ldots, t_{n}\right)$. Notice that

$$
\begin{align*}
& \int_{\mathbb{R}^{n d}} E\left[\exp \left(i\left\langle\xi_{1}, B_{t_{1}}-B_{s_{1}}\right\rangle+\cdots+i\left\langle\xi_{n}, B_{t_{n}}-B_{s_{n}}\right\rangle\right)\right] \\
& \times e^{-\frac{\varepsilon}{2} \sum_{j=1}^{n}\left|\xi_{j}\right|^{2}} d \xi_{1} \cdots d \xi_{n} \\
= & \int_{\mathbb{R}^{n d}} \exp \left(-\frac{1}{2} E\left[\left(\left\langle\xi_{1}, B_{t_{1}}-B_{s_{1}}\right\rangle+\cdots+\left\langle\xi_{n}, B_{t_{n}}-B_{s_{n}}\right\rangle\right)^{2}\right]\right) \\
& \times e^{-\frac{\varepsilon}{2} \sum_{j=1}^{n}\left|\xi_{j}\right|^{2}} d \xi_{1} \cdots d \xi_{n} \\
= & \left(\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2} \xi^{T} Q \xi\right) e^{-\frac{\varepsilon}{2}|\xi|^{2}} d \xi\right)^{d}, \tag{3.5}
\end{align*}
$$

where Q is the covariance matrix of the n-dimensional random vector ($B_{t_{1}}^{1}-$ $B_{s_{1}}^{1}, \ldots, B_{t_{n}}^{1}-B_{s_{n}}^{1}$). Substituting (3.5) into (3.4) yields

$$
E\left(L_{\varepsilon}^{n}\right)=\frac{1}{(2 \pi)^{n d}} \int_{T_{n}}\left(\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2} \xi^{T} Q \xi\right) e^{-\frac{\varepsilon}{2}|\xi|^{2}} d \xi\right)^{d} d s d t
$$

and $E\left(L_{\varepsilon}^{n}\right)$ converges as ε tends to zero to

$$
\begin{aligned}
\alpha_{n} & =\frac{1}{(2 \pi)^{n d}} \int_{T_{n}}\left(\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2} \xi^{T} Q \xi\right) d \xi\right)^{d} d s d t \\
& =\frac{1}{(2 \pi)^{\frac{n d}{2}}} \int_{T_{n}}(\operatorname{det} Q)^{-\frac{d}{2}} d s d t,
\end{aligned}
$$

provided α_{n} is finite.
If $\alpha_{2}<\infty$, then in the same way as before we obtain

$$
\lim _{\varepsilon, \delta \downarrow 0} E\left(L_{\varepsilon} L_{\delta}\right)=\alpha_{2},
$$

which implies that L_{ε} converges in L^{2} as ε tends to zero. Furthermore, if α_{n} is finite for all $n \geq 1$, then we deduce the convergence in L^{p} for any $p \geq 2$
of L_{ε} as ε tends to zero. The limit, denoted by L, will be, by definition, the self-intersection local time of the process B in the time interval $[0, T]$. To complete the proof of the theorem it suffices to show that α_{n} is bounded by $C^{n}(n!)^{H d}$, for some constant C.

We can write

$$
\alpha_{n}=\frac{n!}{(2 \pi)^{\frac{n d}{2}}} \int_{T_{n} \cap\left\{t_{1}<\cdots<t_{n}\right\}}(\operatorname{det} Q)^{-\frac{d}{2}} d s d t .
$$

For each $i=1, \ldots, n$ we denote by τ_{i} the point in the set $\left\{s_{i}, s_{i+1}, \ldots, s_{n}, t_{i-1}\right\}$ which is closer to t_{i} from the left. Then, by (H1) and the fact that $s_{i}<t_{i}$, $i=1, \ldots, n$, we obtain, using Lemma 5 in the Appendix,

$$
\begin{aligned}
\operatorname{det} Q= & \operatorname{Var}\left(B_{t_{1}}^{1}-B_{s_{1}}^{1}\right) \operatorname{Var}\left(B_{t_{2}}^{1}-B_{s_{2}}^{1} \mid B_{t_{1}}^{1}-B_{s_{1}}^{1}\right) \\
& \times \cdots \times \operatorname{Var}\left(B_{t_{n}}^{1}-B_{s_{n}}^{1} \mid B_{t_{1}}^{1}-B_{s_{1}}^{1}, \ldots, B_{t_{n-1}}^{1}-B_{s_{n-1}}^{1}\right) \\
\geq & \operatorname{Var}\left(B_{t_{1}}^{1} \mid B_{s_{1}}^{1} \operatorname{Var}\left(B_{t_{2}}^{1} \mid B_{t_{1}}^{1}, B_{s_{1}}^{1}, B_{s_{2}}^{1}\right)\right. \\
& \times \cdots \times \operatorname{Var}\left(B_{t_{n}}^{1} \mid B_{t_{1}}^{1}, B_{s_{1}}^{1}, \ldots, B_{t_{n-1}}^{1}, B_{s_{n-1}}^{1}, B_{s_{n}}^{1}\right) \\
\geq & \operatorname{Var}\left(B_{t_{1}}^{1} \mid \mathcal{F}_{\tau_{1}}\right) \operatorname{Var}\left(B_{t_{2}}^{1} \mid \mathcal{F}_{\tau_{2}}\right) \cdots \operatorname{Var}\left(B_{t_{n}}^{1} \mid \mathcal{F}_{\tau_{n}}\right) \\
\geq & k_{1}^{n}\left(t_{1}-\tau_{1}\right)^{2 H}\left(t_{2}-\tau_{2}\right)^{2 H} \cdots\left(t_{n}-\tau_{n}\right)^{2 H} .
\end{aligned}
$$

As a consequence,

$$
\alpha_{n} \leq \frac{n!}{(2 \pi)^{\frac{n d}{2}}} k_{1}^{-\frac{n d}{2}} \int_{T_{n} \cap\left\{t_{1}<\cdots<t_{n}\right\}} \prod_{i=1}^{n}\left(t_{i}-\tau_{i}\right)^{-H d} d s d t
$$

If we fix the points $t_{1}<\cdots<t_{n}$, there are $3 \times 5 \times \cdots \times(2 n-1)=(2 n-1)!$! posible ways to place the points s_{1}, \ldots, s_{n}. In fact, s_{1} must be in $\left(0, t_{1}\right)$. For s_{2} we have three choices: $\left(0, s_{1}\right),\left(s_{1}, t_{1}\right)$ and $\left(t_{1}, t_{2}\right)$. By a recursive argument it is clear that we have $(2 i-1)$ possible choices for s_{i}, given s_{1}, \ldots, s_{i-1}. In this way, up to a set of measure zero, we can decompose the set $T_{n} \cap\left\{t_{1}<\cdots<t_{n}\right\}$ into the union of $(2 n-1)!$! disjoint subsets. The integral of $\prod_{i=1}^{n}\left(t_{i}-\tau_{i}\right)^{-H d}$ on each one of these subset can be expressed as

$$
\Phi_{\sigma}=\int_{\left\{0<z_{1}<\cdots<z_{2 n}<T\right\}} \prod_{i=1}^{n}\left(z_{\sigma(i)}-z_{\sigma(i)-1}\right)^{-H d} d z
$$

where $\sigma(1)<\cdots<\sigma(n)$ are n elements in $\{1,2, \ldots, 2 n\}$, and $z=\left(z_{1}, \ldots, z_{2 n}\right)$. Making the change of variables $y_{i}=z_{i}-z_{i-1}, i=1, \ldots, 2 n$ (with the con-
vention $z_{0}=0$) we obtain

$$
\begin{aligned}
\Phi_{\sigma} & =\int_{\left\{0<y_{1}+\cdots+y_{2 n}<T\right\}} \prod_{i=1}^{n} y_{\sigma(i)}^{-H d} d y \leq \frac{T^{n}}{n!} \int_{\left\{0<y_{1}+\cdots+y_{n}<T\right\}} \prod_{i=1}^{n} y_{i}^{-H d} d y \\
& =\frac{1}{n!} T^{n(2-H d)+H d} \frac{\Gamma(1-H d)^{n-1}}{\Gamma(n(1-H d)+H d+1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\alpha_{n} & \leq \frac{k_{1}^{-\frac{n d}{2}}(2 n-1)!!T^{n(2-H d)+H d} \Gamma(1-H d)^{n-1}}{(2 \pi)^{\frac{n d}{2}} \Gamma(n(1-H d)+H d+1)} \\
& =C_{1} C_{2}^{n} \frac{(2 n-1)!!}{\Gamma(n(1-H d)+H d+1)},
\end{aligned}
$$

with $C_{1}=T^{H d} \Gamma(1-H d)^{-1}$, and $C_{2}=\frac{k_{1}^{-\frac{d}{2}} \Gamma(1-H d) T^{2-H d}}{(2 \pi)^{\frac{d}{2}}}$. Taking into account that $(2 n-1)!!\leq 2^{n-1} n!$, and that

$$
\Gamma(n(1-H d)+H d+1) \geq C^{n}(n!)^{1-H d}
$$

for some constant C, we obtain the desired estimate.
If $H d \geq 1$, the above result is no longer true. In that case the expectation of L_{ε} blows up as ε tends to zero. In fact, if we denote $\sigma^{2}(s, t)=\operatorname{Var}\left(B_{t}^{1}-\right.$ $\left.B_{s}^{1}\right)$, for $s<t$, then

$$
E\left(L_{\varepsilon}\right)=\int_{0}^{T} \int_{0}^{t} p_{\varepsilon+\sigma^{2}(s, t)}(0) d s d t=(2 \pi)^{-\frac{d}{2}} \int_{0}^{T} \int_{0}^{t}\left(\varepsilon+\sigma^{2}(s, t)\right)^{-\frac{d}{2}} d s d t
$$

which converges to

$$
(2 \pi)^{-\frac{d}{2}} \int_{0}^{T} \int_{0}^{t} \sigma^{2}(s, t)^{-\frac{d}{2}} d s d t \geq(2 \pi)^{-\frac{d}{2}} k_{1}^{-\frac{d}{2}} \int_{0}^{T} \int_{0}^{t}(t-s)^{-H d} d s d t=\infty
$$

In this case, one can study the existence of the renormalized self-intersection local time defined as the limit as ε tends to zero of $L_{\varepsilon}-E\left(L_{\varepsilon}\right)$. In the next section we discuss the existence and exponential moments of the renormalized self-intersection local time, using Clark-Ocone formula, in the case of the fractional Brownian motion.

4 Renormalized self-intersection local time of the fBm

The fractional Brownian motion on \mathbb{R}^{d} with Hurst parameter $H \in(0,1)$ is a d-dimensional Gaussian process $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ with zero mean and covariance function given by (1.1). We will assume that $d \geq 2$.

It is well-known that B^{H} possesses the following integral representation

$$
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

where $W=\left\{W_{t}, t \geq 0\right\}$ is a d-dimensional Brownian motion, and $K_{H}(s, t)$ is the square integrable kernel given by

$$
K_{H}(t, s)=C_{H, 1} s^{\frac{1}{2}-H} \int_{s}^{t}(u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} d u
$$

if $H>\frac{1}{2}$, and by
$K_{H}(t, s)=C_{H, 2}\left[\left(\frac{t}{s}\right)^{H-\frac{1}{2}}(t-s)^{H-\frac{1}{2}}-\left(H-\frac{1}{2}\right) s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{3}{2}}(u-s)^{H-\frac{1}{2}} d u\right]$,
if $H<\frac{1}{2}$, for any $s<t$, where the constants are $C_{H, 1}=\left[\frac{H(2 H-1)}{B\left(2-2 H, H-\frac{1}{2}\right)}\right]^{\frac{1}{2}}$, and $C_{H, 2}=\left[\frac{2 H}{(1-2 H) b\left(1-2 H, H+\frac{1}{2}\right)}\right]^{\frac{1}{2}}$, where $B(\alpha, \beta)$ denotes th beta function.

The processes B^{H} and W generate the same filtration, that is, $\mathcal{F}_{t}=$ $\sigma\left\{W_{s}, 0 \leq s \leq t\right\}=\sigma\left\{B_{s}^{H}, 0 \leq s \leq t\right\}$.

The fractional Brownian motion satisfies the following local nondeterminism property:
(LND) There exists a constant $k_{2}>0$, depending only on H and T, such that for any $t \in[0, T], 0<r<t \wedge(T-t)$ and for $i=1, \ldots, d$,

$$
\begin{equation*}
\operatorname{Var}\left(B_{t}^{H, i}\left|B_{s}^{H, i}:|s-t| \geq r\right) \geq k_{2} r^{2 H}\right. \tag{4.1}
\end{equation*}
$$

Consider the approximated self-intersection local time L_{ε} introduced in (3.3). From the general result proved in Section 2 it follows that if $H d<1$, then L_{ε} converges in L^{2} to the self-intersection local time L, and the random variable L has exponential moments. If $H d \geq 1$, this result is no longer true, and one considers the renormalization of the self-intersection local time, introduced by Varadhan.

The purpose of this section is to apply the Clark-Ocone formula to provide a stochastic integral representation for the renormalized self-intersection local time \widetilde{L}. As a consequence, we will prove the existence of some exponential moments for the random variable \widetilde{L}.

Theorem 2 Suppose that $H<\min \left(\frac{3}{2 d}, \frac{2}{d+1}\right)$. Then the renormalized selfintersection local time of the d-dimensional fractional Brownian motion B^{H} exists in L^{2} and it has the following integral representation
$\widetilde{L}=-\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{t} \frac{A_{r, t, s}^{i}}{\sigma_{r, s, t}^{2}} p_{\sigma_{r, s, t}^{2}}\left(A_{r, t, s}^{i}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] d s d t\right) d W_{r}^{i}$,
where

$$
\begin{equation*}
A_{r, t, s}=E\left(B_{t}^{H}-B_{s}^{H} \mid \mathcal{F}_{r}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\sigma_{r, s, t}^{2}=\operatorname{Var}\left(B_{t}^{H, i}-B_{s}^{H, i} \mid \mathcal{F}_{r}\right) .
$$

Proof. The proof will be done in several steps.
Step 1 We are going to apply Clark-Ocone formula to the random variable L_{ε}. It is clear that L_{ε} belongs to $\mathbb{D}^{1,2}$, and its derivative can be computed as follows

$$
D_{r}^{i} L_{\varepsilon}=\int_{0}^{T} \int_{0}^{t} \frac{\partial p_{\varepsilon}}{\partial x_{i}}\left(B_{t}^{H}-B_{s}^{H}\right) D_{r}^{i}\left(B_{t}^{H, i}-B_{s}^{H, i}\right) d s d t
$$

where $r \in[0, T]$, and $i=1, \ldots, d$. Using

$$
D_{r}^{i}\left(B_{t}^{H, i}-B_{s}^{H, i}\right)=\left[K_{H}(t, r)-K_{H}(s, r)\right] \mathbf{1}_{[0, t]}(r)
$$

we obtain

$$
\begin{equation*}
D_{r}^{i} L_{\varepsilon}=\int_{r}^{T} \int_{0}^{t} \frac{\partial p_{\varepsilon}}{\partial x_{i}}\left(B_{t}^{H}-B_{s}^{H}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] d s d t \tag{4.3}
\end{equation*}
$$

The next step is to compute the conditional expectation $E\left(D_{r}^{i} L_{\varepsilon} \mid \mathcal{F}_{r}\right)$. The conditional law of $B_{t}^{H}-B_{s}^{H}$ given \mathcal{F}_{r} is normal with mean $A_{r, t, s}$ and covariance matrix $\sigma_{r, s, t}^{2} I_{d}$, where I_{d} is the d-dimensional identity matrix. Hence,
the conditional expectation $E\left(\left.\frac{\partial p_{\varepsilon}}{\partial x_{i}}\left(B_{t}^{H}-B_{s}^{H}\right) \right\rvert\, \mathcal{F}_{r}\right)$ is given by

$$
\begin{aligned}
E\left(\left.\frac{\partial p_{\varepsilon}}{\partial x_{i}}\left(B_{t}^{H}-B_{s}^{H}\right) \right\rvert\, \mathcal{F}_{r}\right) & =\int_{\mathbb{R}^{d}} \frac{\partial p_{\varepsilon}}{\partial x_{i}}(y) p_{\sigma_{r, s, t}^{2}}\left(y-A_{r, t, s}\right) d y \\
& =\frac{\partial p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)}{\partial x_{i}} \\
& =-\frac{A_{r, t, s}^{i}}{\varepsilon+\sigma_{r, s, t}^{2}} p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right) .
\end{aligned}
$$

As a consequence, from (4.3) we obtain
$E\left(D_{r}^{i} L_{\varepsilon} \mid \mathcal{F}_{r}\right)=-\int_{r}^{T} \int_{0}^{t} \frac{A_{r, t, s}^{i}}{\varepsilon+\sigma_{r, s, t}^{2}} p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] d s d t$,
and this leads to the following integral representation for $L_{\varepsilon}-E\left(L_{\varepsilon}\right)$

$$
\begin{aligned}
& L_{\varepsilon}-E\left(L_{\varepsilon}\right) \\
= & -\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{t} \frac{A_{r, t, s}^{i}}{\varepsilon+\sigma_{r, s, t}^{2}} p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] d s d t\right) d W_{r}^{i} .
\end{aligned}
$$

Step 2 In order to pass to the limit as ε tends to zero we proceed as follows. Set

$$
\begin{equation*}
\Sigma_{\varepsilon}^{i}(r, t, s)=\frac{A_{r, t, s}^{i}}{\varepsilon+\sigma_{r, s, t}^{2}} p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] . \tag{4.4}
\end{equation*}
$$

Clearly, $\Sigma_{\varepsilon}^{i}(r, t, s)$ converges pointwise as ε tends to zero to

$$
\Sigma^{i}(r, t, s)=\frac{A_{r, t, s}^{i}}{\sigma_{r, s, t}^{2}} p_{\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)\left[K_{H}(t, r)-K_{H}(s, r)\right] .
$$

In order to establish the convergence of the integrals in the variables s and t, we will first decompose the interval $[0, t]$ into the disjoint union of $[r, t]$ and $[0, r)$. In this way we obtain

$$
L_{\varepsilon}-E\left(L_{\varepsilon}\right)=L_{\varepsilon}^{(1)}+L_{\varepsilon}^{(2)}
$$

where

$$
L_{\varepsilon}^{(1)}=-\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{r}^{t} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t\right) d W_{r}^{i}
$$

and

$$
L_{\varepsilon}^{(2)}=-\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t\right) d W_{r}^{i}
$$

Step 3 We claim that the random field $\Sigma_{\varepsilon}^{i}(r, t, s)$ is uniformly bounded on the set $0<r<s<t$ by an integrable function not depending on ε. In fact, using the local nondeterminism property (LND), and Lemma 5 in the Appendix, we obtain the following lower bound for the conditional variance $\sigma_{r, s, t}^{2}=\operatorname{Var}\left(B_{t}^{H, i}-B_{s}^{H, i} \mid \mathcal{F}_{r}\right)$:

$$
\begin{equation*}
\sigma_{r, s, t}^{2} \geq \operatorname{Var}\left(B_{t}^{H, i}-B_{s}^{H, i} \mid \mathcal{F}_{s}\right)=\operatorname{Var}\left(B_{t}^{H, i} \mid \mathcal{F}_{s}\right) \geq k_{2}(t-s)^{2 H} . \tag{4.5}
\end{equation*}
$$

We can get rid off the factor $A_{r, t, s}^{i}$ in the expression (4.4) of $\Sigma_{\varepsilon}^{i}(r, t, s)$ using the inequality

$$
\begin{equation*}
p_{t}(x) \leq C \frac{t^{-\frac{d}{2}+\frac{1}{2}}}{|x|} e^{-\frac{|x|^{2}}{4 t}} \leq C \frac{t^{-\frac{d}{2}+\frac{1}{2}}}{|x|} \tag{4.6}
\end{equation*}
$$

for some constant $C>0$. In this way we obtain, using (4.5) and (4.6)

$$
\begin{equation*}
\left|\Sigma_{\varepsilon}^{i}(r, t, s)\right| \leq C(t-s)^{-H d-H}\left|K_{H}(t, r)-K_{H}(s, r)\right|, \tag{4.7}
\end{equation*}
$$

for some constant $C>0$, and by Lemma 7 in the Appendix we obtain that

$$
\begin{equation*}
\int_{r}^{T} \int_{r}^{t}(t-s)^{-H d-H}\left|K_{H}(t, r)-K_{H}(s, r)\right| d s d t \leq C\left(r^{\frac{1}{2}-H} \vee 1\right) \tag{4.8}
\end{equation*}
$$

By dominated convergence we deduce the convergence of the integrals

$$
\lim _{\varepsilon \downarrow 0} \int_{r}^{T} \int_{r}^{t} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t=\int_{r}^{T} \int_{r}^{t} \Sigma^{i}(r, t, s) d s d t
$$

for all $(r, \omega) \in[0, T] \times \Omega$, and a second application of the dominated convergence theorem yields that $\int_{r}^{T} \int_{r}^{t} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t$ converges in $L^{2}([0, T] \times \Omega)$ to $\int_{r}^{T} \int_{r}^{t} \Sigma^{i}(r, t, s) d s d t$. This implies the convergence of $L_{\varepsilon}^{(1)}$ to

$$
-\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{r}^{t} \Sigma^{i}(r, t, s) d s d t\right) d W_{r}^{i}
$$

in $L^{2}(\Omega)$ as ε tends to zero.
Step 4 Consider now the case $s<r<t$. In this case the integral of the term $\Sigma_{\varepsilon}^{i}(r, t, s)$ is not necessarily bounded, and in order to show the convergence of $L_{\varepsilon}^{(2)}$ we will prove uniform bounds in ε for the expectation
$E\left(\int_{r}^{T} \int_{r}^{t}\left|\Sigma_{\varepsilon}^{i}(r, t, s)\right|^{p} d s d t\right)$, for some $p>1$. We can write for $s<r<t$, using the first inequality in (4.6)

$$
\begin{align*}
\left|\Sigma_{\varepsilon}^{i}(r, t, s)\right| & \leq \frac{\left|A_{r, t, s}\right|}{\left(\varepsilon+\sigma_{r, s, t}^{2}\right)} p_{\varepsilon+\sigma_{r, s, t}^{2}}\left(A_{r, t, s}\right)\left|K_{H}(t, r)\right| \\
& =(2 \pi)^{-\frac{d}{2}} \frac{\left|A_{r, t, s}\right|}{\left(\varepsilon+\sigma_{r, s, t}^{2}\right)^{1+\frac{d}{2}}} \exp \left(-\frac{\left|A_{r, t, s}\right|^{2}}{2\left(\varepsilon+\sigma_{r, s, t}^{2}\right)}\right)\left|K_{H}(t, r)\right| \\
& \leq C\left(\varepsilon+\sigma_{r, s, t}^{2}\right)^{-\frac{d+1}{2}} \exp \left(-\frac{\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+\sigma_{r, s, t}^{2}\right)}\right)\left|K_{H}(t, r)\right| \tag{4.9}
\end{align*}
$$

for some constant $C>0$. If $s<r<t$, using the local nondeterminism property (LND) we obtain the following lower bound for the conditional variance $\sigma_{r, s, t}^{2}$:

$$
\begin{equation*}
\sigma_{r, s, t}^{2}=\operatorname{Var}\left(B_{t}^{H, i}-B_{s}^{H, i} \mid \mathcal{F}_{r}\right)=\operatorname{Var}\left(B_{t}^{H, i} \mid \mathcal{F}_{r}\right) \geq k_{2}(t-r)^{2 H} \tag{4.10}
\end{equation*}
$$

On the other hand, if $s<r<t$

$$
\begin{align*}
\sigma_{r, s, t}^{2} & =\operatorname{Var}\left(B_{t}^{H, i}-B_{s}^{H, i} \mid \mathcal{F}_{r}\right)=\operatorname{Var}\left(B_{t}^{H, i}-B_{r}^{H, i} \mid \mathcal{F}_{r}\right) \\
& \leq \operatorname{Var}\left(B_{t}^{H, i}-B_{r}^{H, i}\right)=(t-r)^{2 H} \tag{4.11}
\end{align*}
$$

Also we will make use of the estimate (see [8])

$$
\begin{equation*}
\left|K_{H}(t, r)\right| \leq k_{3}(t-r)^{H-\frac{1}{2}} r^{\frac{1}{2}-H} \tag{4.12}
\end{equation*}
$$

Substituting the estimates (4.10), (4.11) and (4.12) into (4.9) yields

$$
\begin{equation*}
\left|\Sigma_{\varepsilon}^{i}(r, t, s)\right| \leq C r^{\frac{1}{2}-H} \Psi_{\varepsilon}(r, t, s) \tag{4.13}
\end{equation*}
$$

for some constant C, where

$$
\begin{equation*}
\Psi_{\varepsilon}(r, t, s)=\left(\varepsilon+k_{2}(t-r)^{2 H}\right)^{-\frac{d+1}{2}}(t-r)^{H-\frac{1}{2}} \exp \left(-\frac{\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right) \tag{4.14}
\end{equation*}
$$

Notice that if $H d<\frac{1}{2}$, then $\left|\Sigma_{\varepsilon}^{i}(r, t, s)\right|$ is uniformly bounded by the integrable function $C r^{\frac{3}{2}-H}(t-r)^{-H d-\frac{1}{2}}$, and we can conclude as in Step 3. For this reason, we can assume that $H d \geq \frac{1}{2}$.

We claim that for some $p>1$, we have

$$
\begin{equation*}
\sup _{\varepsilon>0} E\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}^{p}(r, t, s) d s d t\right)<\infty \tag{4.15}
\end{equation*}
$$

To show this estimate we first derive a lower bound for the expectation of $\left|A_{r, t, s}^{1}\right|^{2}=\left[E\left(B_{t}^{H, 1}-B_{s}^{H, 1} \mid \mathcal{F}_{r}\right)\right]^{2}$. The main idea is to add and substract the term $B_{r}^{H, 1}$, and then neglect the expectation $E\left(\left(\left(E\left(B_{t}^{H, 1} \mid \mathcal{F}_{r}\right)-B_{r}^{H, 1}\right)^{2}\right)\right)$. This argument will be used later to find a lower bound for the covariance matrix of the vector $\left(E\left(B_{t_{i}}^{H, 1}-B_{s_{i}}^{H, 1} \mid \mathcal{F}_{r}\right), 1 \leq i \leq n\right)$.

$$
\begin{aligned}
E\left(\left|A_{r, t, s}^{1}\right|^{2}\right)= & E\left(\left(E\left(B_{t}^{H, 1}-B_{s}^{H, 1} \mid \mathcal{F}_{r}\right)\right)^{2}\right) \\
= & E\left(\left(E\left(B_{t}^{H, 1} \mid \mathcal{F}_{r}\right)-B_{r}^{H, 1}\right)^{2}\right) \\
& +2 E\left(\left(E\left(B_{t}^{H, 1} \mid \mathcal{F}_{r}\right)-B_{r}^{H, 1}\right)\left(B_{r}^{H, 1}-B_{s}^{H, 1}\right)\right)+E\left(\left(B_{r}^{H, 1}-B_{s}^{H, 1}\right)^{2}\right) \\
\geq & 2 E\left(\left(B_{t}^{H, 1}-B_{r}^{H, 1}\right)\left(B_{r}^{H, 1}-B_{s}^{H, 1}\right)\right)+E\left(\left(B_{r}^{H, 1}-B_{s}^{H, 1}\right)^{2}\right) \\
= & E\left(\left(B_{t}^{H, 1}-B_{s}^{H, 1}\right)^{2}\right)-E\left(\left(B_{t}^{H, 1}-B_{r}^{H, 1}\right)^{2}\right) \\
= & (t-s)^{2 H}-(t-r)^{2 H} .
\end{aligned}
$$

As a consequence, we obtain, assuming $p<2$

$$
\begin{aligned}
E(\exp & \left.\left(-\frac{p\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right)\right) \\
= & \left(1+\frac{p}{2}\left(\varepsilon+(t-r)^{2 H}\right)^{-1} E\left(\left|A_{r, t, s}^{1}\right|^{2}\right)\right)^{-\frac{d}{2}} \\
\leq & \left(1+\frac{p}{2}\left(\varepsilon+(t-r)^{2 H}\right)^{-1}\left[(t-s)^{2 H}-(t-r)^{2 H}\right]\right)^{-\frac{d}{2}} \\
= & \left(\varepsilon+(t-r)^{2 H}\right)^{\frac{d}{2}} \\
& \times\left(\varepsilon+\left(1-\frac{p}{2}\right)(t-r)^{2 H}+\frac{p}{2}(t-s)^{2 H}\right)^{-\frac{d}{2}}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& E\left(\exp \left(-\frac{p\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right)\right) \\
& \quad \leq C\left(\varepsilon+(t-r)^{2 H}\right)^{\frac{d}{2}}(t-r)^{-2 H \alpha}(t-s)^{-2 H \beta} \tag{4.16}
\end{align*}
$$

where $\alpha+\beta=\frac{d}{2}$. Substituting (4.16) into (4.14) yields

$$
\begin{aligned}
E\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}^{p}(r, t, s) d s d t\right) \leq & C \int_{r}^{T} \int_{0}^{r}\left(\varepsilon+(t-r)^{2 H}\right)^{-\frac{d+1}{2} p+\frac{d}{2}-\alpha} \\
& \times(t-r)^{\left(H-\frac{1}{2}\right) p}(t-s)^{-\beta 2 H} d s d t \\
\leq & C \int_{r}^{T} \int_{0}^{r}(t-r)^{-p H d-\frac{p}{2}+2 H \beta}(t-s)^{-2 H \beta} d s d t
\end{aligned}
$$

If $H d>1$, we can choose β such that $2 H \beta>1$, and integrating in the variable s, the above integral is bounded by

$$
C \int_{r}^{T}(t-r)^{-p H d-\frac{p}{2}+1} d t
$$

which is finite it $p>1$ satisfyes $\left(H d+\frac{1}{2}\right) p<2$ (this is possible because $H d+\frac{1}{2}<2$). If $H d \leq 1$, we can choose β such that $2 H \beta=H d-\delta$, for any $\delta>0$, and we obtain the bound

$$
C \int_{r}^{T}(t-r)^{-p H d-\frac{p}{2}+H d-\delta} d t
$$

which is again finite if $p>1$ is close to one, and $\delta>0$ is small enough.
As a consequence, from (4.13) and (4.15), for any fixed $r \in[0, T]$, the family of functions $\left\{\Sigma_{\varepsilon}^{i}(r, t, s), \varepsilon>0\right\}$, is uniformly integrable in $[r, T] \times$ $[0, r]$, so it converges in $L^{1}([r, T] \times[0, r]) \times \Omega$ to $\Sigma^{i}(r, t, s)$, for $i=1, \ldots, d$. This implies the convergence of the integrals

$$
\lim _{\varepsilon \downarrow 0} \int_{r}^{T} \int_{0}^{r} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t=\int_{r}^{T} \int_{0}^{r} \Sigma^{i}(r, t, s) d s d t
$$

for each fixed $r \in[0, T]$ in $L^{1}(\Omega)$.
Finally, we claim that this convergence also holds in $L^{2}([0, T] \times \Omega)$, and this implies the convergence of $L_{\varepsilon}^{(2)}$ to

$$
-\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \Sigma^{i}(r, t, s) d s d t\right) d W_{r}^{i}
$$

in $L^{2}(\Omega)$ as ε tends to zero. To show the convergence in $L^{2}([0, T] \times \Omega)$ of the integrals

$$
Y_{\varepsilon}^{i}(r)=\int_{r}^{T} \int_{0}^{r} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t
$$

it suffices to prove that

$$
\begin{equation*}
\sup _{\varepsilon>0} \int_{0}^{T} E\left(\left|Y_{\varepsilon}^{i}(r)\right|^{p}\right) d r<\infty \tag{4.17}
\end{equation*}
$$

for all $i=1, \ldots, d$ and for some $p>2$. The proof of (4.17) will be the last step in the proof of this theorem.
Step 5 Suppose first that $H d<1$. Then, from (4.13) we obtain

$$
\int_{0}^{T} E\left(\left|Y_{\varepsilon}^{i}(r)\right|^{p}\right) d r \leq C \int_{0}^{T} E\left[\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{p}\right] r^{p\left(\frac{1}{2}-H\right)} d r
$$

Using (4.14) and Minkowski's inequality yields

$$
\begin{align*}
\left\|\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right\|_{p} \leq & \int_{r}^{T} \int_{0}^{r}\left(\varepsilon+k_{2}(t-r)^{2 H}\right)^{-\frac{d+1}{2}}(t-r)^{H-\frac{1}{2}} \\
& \times\left\|\exp \left(-\frac{\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right)\right\|_{p} d s d t,(4.18) \tag{4.18}
\end{align*}
$$

and from (4.16), choosing $\beta=\frac{d}{2}$, we get

$$
\begin{equation*}
\left\|\exp \left(-\frac{\left|A_{r, t, s}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right)\right\|_{p} \leq C\left(\varepsilon+(t-r)^{2 H}\right)^{\frac{d}{2 p}}(t-s)^{-\frac{H d}{p}} \tag{4.19}
\end{equation*}
$$

Substituting (4.19) into (4.18) yields

$$
\left\|\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right\|_{p} \leq C \int_{r}^{T}(t-r)^{-H d-\frac{1}{2}+\frac{H d}{p}} d r
$$

which is finite if we choose $p>2$ such that $p<\frac{2 H d}{2 H d-1}$. Finally, if $p\left(\frac{1}{2}-H\right)>$ -1 we complete the proof of (4.17) in the case $H d<1$.

In the case $H d \geq 1$ we cannot apply the previous arguments, and the proof of (4.17) follows from the moment estimates given in Proposition 3 ,

Remark 1 Theorem 2also provides an alternative proof of the existence of the self-intersection local time in the case $H \in\left[\frac{1}{d}, \min \left(\frac{3}{2 d}, \frac{2}{d+1}\right)\right)$, which was proved by Hu and Nualart in $\left[9\right.$ in the general case $H d<\frac{3}{2}$. Notice that for $d \geq 3$, the condition $H \in\left[\frac{1}{d}, \min \left(\frac{3}{2 d}, \frac{2}{d+1}\right)\right)$ is equivalent to $1 \leq H d<\frac{3}{2}$, and for $d=2$ we require $H<\frac{2}{3}$, instead of the more general condition $H<\frac{3}{4}$,
that guarantees the existence of the renormalized local time (see [16] and [9]).

The next Proposition contains the basic estimates on the moments of the quadratic variation of the stochastic integral appearing in the representation of the renormalized self-intersection local time.

Proposition 3 Assume $1 \leq H d<\frac{3}{2}$. Set

$$
\Lambda_{\varepsilon}(r)=\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t
$$

where $\Psi_{\varepsilon}(r, t, s)$ has been defined in 4.14). Then, for any integer $n \geq 1$,

$$
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq C^{n}(n!)^{\gamma},
$$

for some constant $C>0$, where

$$
\gamma>\left(\frac{1}{2}+H\right)\left(d-\frac{1}{2 H}\right) .
$$

Proof. Set $g_{\varepsilon}(t-r)=\left(\varepsilon+k_{2}(t-r)^{2 H}\right)^{-\frac{d+1}{2}}(t-r)^{H-\frac{1}{2}}$. We have

$$
\begin{align*}
E\left(\Lambda_{\varepsilon}^{n}(r)\right)= & E\left[\left(\int_{r}^{T} \int_{0}^{r} g_{\varepsilon}(t-r) \exp \left(-\frac{\left|A_{r, s, t}\right|^{2}}{4\left(\varepsilon+(t-r)^{2 H}\right)}\right) d s d t\right)^{n}\right] \\
= & n!\int_{[r, T]^{n}} \int_{S_{n}} \prod_{i=1}^{n} g_{\varepsilon}\left(t_{i}-r\right) \\
& \times\left(E\left(\exp \left(-\sum_{i=1}^{n} \frac{\left|A_{r, s_{i}, t_{i}}^{1}\right|^{2}}{4\left(\varepsilon+\left(t_{i}-r\right)^{2 H}\right)}\right)\right)\right)^{d} d s d t \tag{4.20}
\end{align*}
$$

where $S_{n}=\left\{0<s_{1}<\cdots<s_{n}<r\right\}, s=\left(s_{1}, \ldots, s_{n}\right)$ and $t=\left(t_{1}, \ldots, t_{n}\right)$.
We denote by Q the covariance matrix of the vector

$$
\left(E\left(B_{t_{1}}^{H, 1}-B_{s_{1}}^{H, 1} \mid \mathcal{F}_{r}\right), \ldots, E\left(B_{t_{n}}^{H, 1}-B_{s_{n}}^{H, 1} \mid \mathcal{F}_{r}\right)\right)
$$

Then, a well-known formula for Gaussian random variables implies that

$$
\begin{align*}
E\left[\exp \left(-\sum_{i=1}^{n} \frac{\left|A_{r, s_{i}, t_{i}}^{1}\right|^{2}}{4\left(\varepsilon+\left(t_{i}-r\right)^{2 H}\right)}\right)\right] & =\operatorname{det}\left(I+\frac{1}{2} Q D^{-1}\right)^{-\frac{1}{2}} \\
= & 2^{\frac{n}{2}} \prod_{i=1}^{n} \sqrt{a_{i}} \operatorname{det}(2 D+Q)^{-\frac{1}{2}} \tag{4.21}
\end{align*}
$$

where D denotes the $n \times n$ diagonal matrix with entries $a_{i}=\varepsilon+\left(t_{i}-r\right)^{2 H}$. As in the computation of $E\left(\left|A_{r, t, s}^{1}\right|^{2}\right)$, adding and substracting the term $B_{r}^{H, 1}$ yields

$$
\begin{aligned}
Q_{i j}= & E\left(E\left(B_{t_{i}}^{H, 1}-B_{s_{i}}^{H, 1} \mid \mathcal{F}_{r}\right) E\left(B_{t_{j}}^{H, 1}-B_{s_{j}}^{H, 1} \mid \mathcal{F}_{r}\right)\right) \\
= & E\left(E\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right) E\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right)\right) \\
& +E\left(\left(B_{r}^{H, 1}-B_{s_{i}}^{H, 1}\right)\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1}\right)\right)+E\left(\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1}\right)\left(B_{r}^{H, 1}-B_{s_{j}}^{H, 1}\right)\right) \\
& +E\left(\left(B_{r}^{H, 1}-B_{s_{i}}\right)\left(B_{r}^{H, 1}-B_{s_{j}}^{H, 1}\right)\right) \\
= & E\left(E\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right) E\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right)\right) \\
& -E\left(\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1}\right)\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1}\right)\right)+E\left(\left(B_{t_{i}}^{H, 1}-B_{s_{i}}^{H, 1}\right)\left(B_{t_{j}}^{H, 1}-B_{s_{j}}^{H, 1}\right)\right) .
\end{aligned}
$$

Hence, we obtain

$$
Q=R-N+M,
$$

where

$$
\begin{aligned}
R_{i j} & =E\left(E\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right) E\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1} \mid \mathcal{F}_{r}\right)\right) \\
M_{i j} & =E\left(\left(B_{t_{i}}^{H, 1}-B_{s_{i}}^{H, 1}\right)\left(B_{t_{j}}^{H, 1}-B_{s_{j}}^{H, 1}\right)\right) \\
N_{i j} & =E\left(\left(B_{t_{i}}^{H, 1}-B_{r}^{H, 1}\right)\left(B_{t_{j}}^{H, 1}-B_{r}^{H, 1}\right)\right) .
\end{aligned}
$$

All these matrices are nonnegative definite. The main idea will be to get rid off the matrix R, and control the matrix N by its diagonal elements which are

$$
N_{i i}=\left(t_{i}-r\right)^{2 H} .
$$

Indeed, the matrix N is nonnegative definite and, hence, it safisties the inequality

$$
\begin{equation*}
N \leq n D_{N}, \tag{4.22}
\end{equation*}
$$

where D_{N} is a diagonal matrix whose entries are $N_{i i}$. Therefore,

$$
Q \geq-N+M \geq-n D_{N}+M
$$

and for any $1 \leq \delta<2$, we can write

$$
\begin{equation*}
\operatorname{det}(2 D+Q) \geq \operatorname{det}\left(2 D+\frac{2-\delta}{n} Q\right) \leq \operatorname{det}\left(2 D-(2-\delta) D_{N}+\frac{2-\delta}{n} M\right) \tag{4.23}
\end{equation*}
$$

The entries of the diagonal matrix $D_{1}=2 D-(2-\delta) D_{N}$ are the positive numbers

$$
2 \varepsilon+\delta\left(t_{i}-r\right)^{2 H}>0
$$

From (4.20), (4.21) and (4.23) we obtain

$$
\begin{aligned}
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq & 2^{\frac{n d}{2}} n!\int_{[r, T]^{n}} \int_{S_{n}} \prod_{i=1}^{n}\left(g_{\varepsilon}\left(t_{i}-r\right) a_{i}^{\frac{d}{2}}\right) \\
& \times \operatorname{det}\left(D_{1}+\frac{2-\delta}{n} M\right)^{-\frac{d}{2}} d s d t
\end{aligned}
$$

We have

$$
\operatorname{det}\left(D_{1}+\frac{2-\delta}{n} M\right)^{-\frac{d}{2}} \leq\left(\frac{n}{2-\delta}\right)^{n \beta}\left(\operatorname{det} D_{1}\right)^{-\alpha}(\operatorname{det} M)^{-\beta}
$$

where $\alpha+\beta=\frac{d}{2}$. Hence,

$$
\begin{aligned}
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq & \left(\frac{n}{2-\delta}\right)^{n \beta} 2^{\frac{n d}{2}} n!\int_{[r, T]^{n}} \int_{S_{n}} \prod_{i=1}^{n}\left(g_{\varepsilon}\left(t_{i}-r\right) a_{i}^{\frac{d}{2}}\left(2 \varepsilon+\delta\left(t_{i}-r\right)^{2 H}\right)^{-\alpha}\right) \\
& \times(\operatorname{det} M)^{-\beta} d s d t
\end{aligned}
$$

Then,

$$
\begin{aligned}
& g_{\varepsilon}\left(t_{i}-r\right) a_{i}^{\frac{d}{2}}\left(2 \varepsilon+2\left(t_{i}-r\right)^{2 H}\right)^{-\alpha} \\
= & \left(\varepsilon+k_{2}\left(t_{i}-r\right)^{2 H}\right)^{-\frac{d+1}{2}}\left(t_{i}-r\right)^{H-\frac{1}{2}}\left(\varepsilon+\left(t_{i}-r\right)^{2 H}\right)^{\frac{d}{2}}\left(2 \varepsilon+2\left(t_{i}-r\right)^{2 H}\right)^{-\alpha} \\
\leq & C\left(t_{i}-r\right)^{-\frac{1}{2}-2 H \alpha}
\end{aligned}
$$

for some constant $C>0$. Thus

$$
\begin{equation*}
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq C^{n} n^{\beta n} n!\int_{[r, T]^{n}} \int_{S_{n}} \prod_{i=1}^{n}\left(t_{i}-r\right)^{-\frac{1}{2}-2 H \alpha}(\operatorname{det} M)^{-\beta} d s d t \tag{4.24}
\end{equation*}
$$

for some constant $C>0$.
Applying Lemma 5 in the Appendix and the local nondeterminism property of the fractional Brownian motion we obtain

$$
\begin{align*}
\operatorname{det} M & =\operatorname{Var}\left(B_{t_{n}}-B_{s_{n}}\right) \operatorname{Var}\left(B_{t_{n-1}}-B_{s_{n-1}} \mid B_{t_{n}}-B_{s_{n}}\right) \\
& \times \cdots \times \operatorname{Var}\left(B_{t_{1}}-B_{s_{1}} \mid B_{t_{2}}-B_{s_{2}}, \ldots, B_{t_{n}}-B_{n}\right) \\
& =\left(t_{n}-s_{n}\right)^{2 H} \operatorname{Var}\left(B_{s_{n-1}} \mid B_{t_{n-1}}, B_{t_{n}}, B_{s_{n}}\right) \\
& \times \cdots \times \operatorname{Var}\left(B_{s_{1}} \mid B_{t_{1}}, \ldots, B_{t_{n}}, B_{s_{1}}, \ldots, B_{s_{n-1}}\right) \\
\geq & k_{2}^{n-1}\left(r-s_{n}\right)^{2 H}\left(\left(s_{n}-s_{n-1}\right) \wedge s_{n-1}\right)^{2 H} \cdots\left(\left(s_{2}-s_{1}\right) \wedge s_{1}\right)^{2 H} \tag{4.25}
\end{align*}
$$

Substituting (4.25) into (4.24), and choosing α such that $\alpha<\frac{1}{4 H}$ (this is possible because $H d \geq 1$) yields
$E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq C^{n} n^{\beta n} n!\int_{S_{n}}\left[\left(r-s_{n}\right)\left(\left(s_{n}-s_{n-1}\right) \wedge s_{n-1}\right) \cdots\left(\left(s_{2}-s_{1}\right) \wedge s_{1}\right)\right]^{-2 \beta H} d s$.
Finally, by Lemma 8 in the Appendix we obtain

$$
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq \frac{C^{n} n^{\beta n} n!}{\Gamma(n(1-2 H \beta)+1)}
$$

Notice that $\beta=\frac{d}{2}-\alpha>\frac{d}{2}-\frac{1}{4 H}$. And hence,

$$
E\left(\Lambda_{\varepsilon}^{n}(r)\right) \leq C^{n}\left(n!^{\beta+2 H \beta},\right.
$$

where

$$
\beta(1+2 H)>\frac{d}{2}-\frac{1}{4 H}+H d-\frac{1}{2}=\left(\frac{1}{2}+H\right)\left(d-\frac{1}{2 H}\right) .
$$

This concludes the proof.
Using the above proposition we can deduce the following integrability results for the renormalized self-intersection local time.

Theorem 4 Assume $\frac{1}{d} \leq H<\min \left(\frac{3}{2 d}, \frac{2}{d+1}\right)$. For any integer $p<\frac{1}{2}\left[\left(\frac{1}{2}+H\right)\left(d-\frac{1}{2 H}\right)\right]^{-1}$ we have

$$
E\left(\exp |\widetilde{L}|^{p}\right)<\infty
$$

Proof. Taking into account Lemma 6 in the Appendix, it suffices to show that

$$
E\left(\exp \langle\widetilde{L}\rangle^{p}\right)<\infty
$$

where

$$
\langle\widetilde{L}\rangle=\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{t} \Sigma^{i}(r, t, s) d s d t\right)^{2} d r
$$

As in the proof of Theorem 2 we make the decomposition

$$
\int_{r}^{T} \int_{0}^{t} \Sigma^{i}(r, t, s) d s d t=\int_{r}^{T} \int_{r}^{t} \Sigma^{i}(r, t, s) d s d t+\int_{r}^{T} \int_{0}^{r} \Sigma^{i}(r, t, s) d s d t
$$

From (4.7) and (4.8) we know that

$$
\left|\int_{r}^{T} \int_{r}^{t} \Sigma^{i}(r, t, s) d s d t\right| \leq C\left(r^{\frac{1}{2}-H} \vee 1\right) .
$$

Therefore, applying Fatou's lemma and the estimate (4.13) yields

$$
\begin{aligned}
E\left(\exp \langle\widetilde{L}\rangle^{p}\right) & \leq C E\left(\exp \left(\left|\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \Sigma^{i}(r, t, s) d s d t\right)^{2} d r\right|^{p}\right)\right) \\
& \leq C \liminf _{\varepsilon \downarrow 0} E\left(\exp \left(\left|\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \Sigma_{\varepsilon}^{i}(r, t, s) d s d t\right)^{2} d r\right|^{p}\right)\right) \\
& \leq C \lim \inf _{\varepsilon \downarrow 0} E\left(\exp \left(C\left|\int_{0}^{T} r^{1-2 H}\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{2} d r\right|^{p}\right)\right)
\end{aligned}
$$

Applying Hölder and Jensen inequalities we obtain

$$
\begin{aligned}
E\left(\exp \langle\widetilde{L}\rangle^{p}\right) & \leq C \lim \inf _{\varepsilon \downarrow 0} E\left(\exp \left(C \int_{0}^{T} r^{1-2 H}\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{2 p} d r\right)\right) \\
& \leq C \lim \inf _{\varepsilon \downarrow 0} \int_{0}^{T} r^{1-2 H} E\left(\exp \left(C\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{2 p}\right)\right) d r
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& E\left(\exp \left(C\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{2 p}\right)\right) \\
= & \sum_{n=1}^{\infty} \frac{C^{n}}{n!} E\left(\left(\int_{r}^{T} \int_{0}^{r} \Psi_{\varepsilon}(r, t, s) d s d t\right)^{2 n p}\right) \\
\leq & \sum_{n=1}^{\infty} \frac{C^{n}}{n!}(([2 n p]+1)!)^{\gamma}
\end{aligned}
$$

and it suffices to apply Proposition 3 to conclude the proof.
Remark 2 The exponent $p_{0}=\frac{1}{2}\left[\left(\frac{1}{2}+H\right)\left(d-\frac{1}{2 H}\right)\right]^{-1}$ is not optimal. For instance, if $H d=1$, then $p_{0}=\frac{2 H}{1+2 H}$ and we know that for $H d<1$, then $p_{0}=\frac{1}{H d}$. In particular, if $H=\frac{1}{2}$ and $d=2$ we obtain $p_{0}=\frac{1}{2}$, and we know that in this case the critical exponent is $p_{0}=1$. The lack of optimality is due to the factor n in the estimation of the positive definite matrix N by its diagonal elements given in (4.22). Without this factor n we would get the critical exponent $\frac{1}{2 H d-1}$, but our method does not allow to get this value.

Remark 3 In the case of the planar Brownian motion $B=\left\{B_{t}, t \geq 0\right\}$ (that is, $d=2$, and $H=\frac{1}{2}$), formula (4.2) yields

$$
\begin{equation*}
\widetilde{L}=-\frac{1}{2 \pi} \sum_{i=1}^{2} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \frac{B_{r}^{i}-B_{s}^{i}}{(t-r)^{2}} \exp \left(-\frac{\left|B_{r}-B_{s}\right|^{2}}{2(t-r)}\right) d s d t\right) d B_{r}^{i} \tag{4.26}
\end{equation*}
$$

The quadratic variation of this stochastic integral is

$$
\begin{aligned}
\langle\widetilde{L}\rangle & =\frac{1}{4 \pi^{2}} \sum_{i=1}^{2} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \frac{B_{r}^{i}-B_{s}^{i}}{(t-r)^{2}} \exp \left(-\frac{\left|B_{r}-B_{s}\right|^{2}}{2(t-r)}\right) d s d t\right)^{2} d r \\
& \leq \frac{1}{4 \pi^{2}} \int_{0}^{T}\left(\int_{r}^{T} \int_{0}^{r} \frac{\left|B_{r}-B_{s}\right|}{(t-r)^{2}} \exp \left(-\frac{\left|B_{r}-B_{s}\right|^{2}}{2(t-r)}\right) d s d t\right)^{2} d r \\
& =\frac{1}{\pi^{2}} \int_{0}^{T}\left(\int_{0}^{r} \frac{1}{\left|B_{r}-B_{s}\right|} \exp \left(-\frac{\left|B_{r}-B_{s}\right|^{2}}{2(T-r)}\right) d s\right)^{2} d r \\
& \leq \frac{1}{\pi^{2}} \int_{0}^{T}\left(\int_{0}^{r} \frac{d s}{\left|B_{r}-B_{s}\right|}\right)^{2} d r .
\end{aligned}
$$

From Itô's calculus we know that

$$
\int_{0}^{r} \frac{d s}{\left|B_{r}-B_{s}\right|}=\frac{1}{d-1}\left(X_{r}-b_{r}\right)
$$

where X_{r} has the law of the modulus of a d-dimensional Brownian motion at time r (Bessel process), and b_{r} has a normal $N(0, r)$ law. We can write

$$
\exp (\lambda\langle\widetilde{L}\rangle) \leq \frac{1}{T} \int_{0}^{T} \exp \left(\frac{T \lambda}{\pi^{2}}\left(\int_{0}^{r} \frac{d s}{\left|B_{r}-B_{s}\right|}\right)^{2}\right) d r
$$

which clearly imply the existence of some λ_{0} such that $E(\exp (\lambda\langle\widetilde{L}\rangle))<$ ∞ for all $\lambda<\lambda_{0}$. From Lemma 6 we get that there exists β_{0} such that $E(\exp (\beta|\widetilde{L}|))<\infty$ for all $\beta<\beta_{0}$. This method does not allows us to obtain the critical exponent, just the existence of exponential moments.
Remark 4 The above results remain true if we replace the fractional Brownian motion with Hurst paramter H, by an arbitrary centered Gaussian process of the form (3.1) satisfying the local nondeterminism property (LND) and following properties:
(C1) For any $s, t \in[0, T], s<t$, there exist constants k_{3} and k_{4} such that

$$
k_{3}(t-s)^{2 H} \leq E\left(\left|B_{t}^{i}-B_{s}^{i}\right|^{2}\right) \leq k_{4}(t-s)^{2 H} .
$$

(C2) The kernel $K(t, s)$ satisfies the estimates

$$
|K(t, s)| \leq k_{5}(t-s)^{H-\frac{1}{2}} s^{\frac{1}{2}-H},
$$

for all $s<t$, and

$$
\int_{r}^{T} \int_{r}^{t}(t-s)^{-H d-H}|K(t, r)-K(s, r)| d s d t \leq \psi(r)
$$

where $\int_{0}^{T} \psi(r)^{2} d r<\infty$.

5 Appendix

In this Appendix we will first state and prove some elementary lemmas. The first one is well-known.

Lemma 5 Suppose that $\mathcal{G}_{1} \subset \mathcal{G}_{2}$ are two σ-fields contained in \mathcal{F}. Then, for any square integrable random variable F we have

$$
\operatorname{Var}\left(F \mid \mathcal{G}_{1}\right) \geq \operatorname{Var}\left(F \mid \mathcal{G}_{2}\right) .
$$

Let $M=\left\{M_{t}, t \geq 0\right\}$ be a continuous local martingale such that $M_{0}=0$. Then, the following maximal exponential inequality is well-known

$$
P\left(\sup _{0 \leq t \leq T}\left|M_{t}\right| \geq \delta,\langle M\rangle_{T}<\rho\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2 \rho}\right) .
$$

As a consequence of this inequality we can obtain exponential moments for M_{T} from exponential moments of the quadratic variation $\langle M\rangle_{T}$

Lemma 6 Suppose that for some $\alpha>0$ and $p \in(0,1]$ we have $E\left(e^{\alpha\langle M\rangle_{T}^{p}}\right)<$ ∞. Then,
(i) if $p=1$, for any $\lambda<\sqrt{\frac{\alpha}{2}}$, $E\left(e^{\lambda\left|M_{T}\right|}\right)<\infty$, and
(ii) if $p<1, E\left(e^{\lambda\left|M_{T}\right|^{p}}\right)<\infty$ for all $\lambda>0$.

Proof. Set $X=\left|M_{T}\right|^{p}$. For any constant $c>0$ we can write

$$
\begin{aligned}
E\left(e^{\lambda X}\right) & =\int_{0}^{\infty} P(X \geq y) \lambda e^{\lambda y} d y \\
& =\int_{0}^{\infty}\left[P\left(X \geq y,\langle M\rangle_{T}^{p}<c y\right)+P\left(X \geq y,\langle M\rangle_{T}^{p} \geq c y\right)\right] \lambda e^{\lambda y} d y \\
& \leq \int_{0}^{\infty} 2 \exp \left(-\frac{y^{\frac{1}{p}}}{2 c^{\frac{1}{p}}}\right) \lambda e^{\lambda y} d y+\int_{0}^{\infty} P\left(\frac{\langle M\rangle_{T}^{p}}{c} \geq y\right) \lambda e^{\lambda y} d y \\
& =\int_{0}^{\infty} 2 \lambda \exp \left(\lambda y-\frac{y^{\frac{1}{p}}}{2 c^{\frac{1}{p}}}\right) d y+E\left(e^{\frac{\lambda}{c}\langle M\rangle_{T}^{p}}\right) .
\end{aligned}
$$

Then it suffices to choose $c=\frac{\lambda}{\alpha}$ to complete the proof.
The next two results are technical lemmas used in the paper.
Lemma 7 Suppose that $H<\min \left(\frac{2}{d+1}, \frac{3}{2 d}\right)$. Then, we have

$$
\int_{r}^{T} \int_{r}^{t}(t-s)^{-H d-H}\left|K_{H}(t, r)-K_{H}(s, r)\right| d s d t \leq C\left(r^{\frac{1}{2}-H} \vee 1\right),
$$

for some constant C.
Proof. We know that

$$
\frac{\partial K_{H}}{\partial t}(t, s)=c_{H}\left(H-\frac{1}{2}\right)\left(\frac{t}{s}\right)^{H-\frac{1}{2}}(t-s)^{H-\frac{3}{2}}
$$

Then

$$
\begin{aligned}
& I:=\int_{r}^{T} \int_{r}^{t}(t-s)^{-H d-H}\left|K_{H}(t, r)-K_{H}(s, r)\right| d s d t \\
\leq & C \int_{r}^{T} \int_{r}^{t} \int_{s}^{t}(t-s)^{-H d-H}\left(\frac{\theta}{r}\right)^{H-\frac{1}{2}}(\theta-r)^{H-\frac{3}{2}} d \theta d s d t .
\end{aligned}
$$

If $H<\frac{1}{2}$, then, $\left(\frac{\theta}{r}\right)^{H-\frac{1}{2}} \leq 1$, and if $H>\frac{1}{2}$, then $\left(\frac{\theta}{r}\right)^{H-\frac{1}{2}} \leq C r^{\frac{1}{2}-H}$. Hence, the above integral is bounded by

$$
C\left(r^{\frac{1}{2}-H} \vee 1\right) \int_{r}^{T} \int_{r}^{t} \int_{s}^{t}(t-s)^{-H d-H}(\theta-r)^{H-\frac{3}{2}} d \theta d s d t
$$

From the decomposition

$$
\begin{aligned}
\frac{3}{2}-H & =\alpha+\beta \\
H d+H & =\gamma+\delta
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \int_{r}^{T} \int_{r}^{t} \int_{s}^{t}(t-s)^{-H d-H}(\theta-r)^{H-\frac{3}{2}} d \theta d s d t \\
= & \int_{r}^{T} \int_{r}^{t} \int_{s}^{t}(s-r)^{-\alpha}(\theta-s)^{-\beta-\gamma}(t-\theta)^{-\delta} d \theta d s d t .
\end{aligned}
$$

Finally, it suffices to show the parameters α, β, γ and δ in such a way that $\alpha<1, \delta<1$ and $\beta+\gamma<1$. This leads to the condition

$$
\frac{1}{2}+H d<\min \left(1, \frac{3}{2}-H\right)+\min (1, H d+H)
$$

which is satisfied if $H<\min \left(\frac{2}{d+1}, \frac{3}{2 d}\right)$.
Lemma 8 Let $a<1$. Fix an interval $[0, T]$. For each integer $n \geq 1$ we have

$$
\begin{align*}
& \int_{\Delta_{n}(T)}\left[\left(\left(T-s_{n}\right) \wedge s_{n}\right)\left(\left(s_{n}-s_{n-1}\right) \wedge s_{n-1}\right) \cdots\left(\left(s_{2}-s_{1}\right) \wedge s_{1}\right)\right]^{-a} d s \\
& \quad \leq \frac{T^{n(1-a)}}{\Gamma(n(1-a)+1)} C^{n} \tag{5.1}
\end{align*}
$$

where $\Delta_{n}(T)=\left\{0<s_{1}<\cdots<s_{n}<T\right\}$
Proof. We proceed by induction on n. For $n=1$ we can write

$$
\begin{aligned}
\int_{0}^{T}\left(\left(T-s_{1}\right) \wedge s_{1}\right)^{-a} d s_{1} & =\int_{0}^{\frac{T}{2}} s_{1}^{-a} d s_{1}+\int_{\frac{T}{2}}^{T}\left(T-s_{1}\right)^{-a} d s_{1} \\
& =\frac{2}{1-a}\left(\frac{T}{2}\right)^{1-a},
\end{aligned}
$$

which implies (5.1) with $C=\frac{\Gamma(2-a)}{1-a} 2^{a}$.

Suppose that the result holds for $n-1$. Then,

$$
\begin{aligned}
I_{n}= & \int_{\Delta_{n}(T)}\left[\left(\left(T-s_{n}\right) \wedge s_{n}\right)\left(\left(s_{n}-s_{n-1}\right) \wedge s_{n-1}\right) \cdots\left(\left(s_{2}-s_{1}\right) \wedge s_{1}\right)\right]^{-a} d s \\
= & \int_{0}^{T}\left(\left(T-s_{n}\right) \wedge s_{n}\right)^{-a} \\
& \times\left(\int_{\Delta_{n-1}\left(s_{n}\right)}\left[\left(\left(s_{n}-s_{n-1}\right) \wedge s_{n-1}\right) \cdots\left(\left(s_{2}-s_{1}\right) \wedge s_{1}\right)\right]^{-a} d s_{1} \cdots d s_{n-1}\right) d s_{n}
\end{aligned}
$$

By the induction hypothesis we can write

$$
\begin{aligned}
I_{n} \leq & \frac{C^{n-1}}{\Gamma(n-a)} \int_{0}^{T}\left(\left(T-s_{n}\right) \wedge s_{n}\right)^{-a} s_{n}^{(n-1)(1-a)} d s_{n} \\
= & \frac{C^{n-1}}{\Gamma((n-1)(1-a)+1)} \\
& \times\left(\int_{0}^{\frac{T}{2}} s_{n}^{(n-1)(1-a)-a} d s_{n}+\int_{\frac{T}{2}}^{T}\left(T-s_{n}\right)^{-a} s_{n}^{(n-1)(1-a)} d s_{n}\right) \\
\leq & \frac{C^{n-1}}{\Gamma(n(1-a)+a)} \\
& \times\left(\frac{1}{n(1-a)}\left(\frac{T}{2}\right)^{n(1-a)}+T^{n(1-a)} \int_{0}^{1}(1-x)^{-a} x^{(n-1)(1-a)} d x\right) \\
\leq & \frac{T^{n(1-a)} C^{n-1}}{\Gamma(n(1-a)+a)}\left(\frac{1}{n(1-a)}+\frac{\Gamma(1-a) \Gamma((n-1)(1-a)+1)}{\Gamma(n(1-a)+1)}\right) \\
= & T^{n(1-a)} C^{n-1}\left(\frac{1}{n(1-a) \Gamma(n(1-a)+a)}+\frac{\Gamma(1-a)}{\Gamma(n(1-a)+1)}\right)
\end{aligned}
$$

Using the relation $\Gamma(n+1)=n \Gamma(n)$ we obtain

$$
n(1-a) \Gamma(n(1-a)+a) \geq n(1-a) \Gamma(n(1-a))=\Gamma(n(1-a)+1)
$$

and, as a consequence

$$
I_{n} \leq T^{n(1-a)} C^{n-1}(1+\Gamma(1-a)) \frac{1}{\Gamma(n(1-a)+1)}
$$

and it suffices to take $C \geq \max \left(\frac{\Gamma(2-a)}{1-a} 2^{a}, 1+\Gamma(1-a)\right)$.

References

[1] Albeverio, S., Hu, Y. and Zhou, X.Y. A remark on non smoothness of self intersection local time of planar Brownian motion. Statist. Probab. Letters 32 (1997), 57-65.
[2] Bass, R. F. and Chen, X. Self-intersection local time: critical exponent, large deviations, and laws of the iterated logarithm. Ann. Probab. 32 (2004), 3221-3247.
[3] Berman, S. M. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. . 23 (1973), 64-94..
[4] Calais, J. Y. and Yor, M. Renormalization et convergence en loi pour certaines intégrales multiples associées au mouvement brownien dans \mathbb{R}^{d}. Lecture Notes in Math. 1247 (1987), 375-403.
[5] Gaveau, B. and Trauber, Ph. L'intǵrale stochastique comme opŕateur de divergence dans l'espace fonctionnel. J. Funct. Anal. 46 (1982), 230238.
[6] He, S. W., Yang, W. Q., Yao, R. Q. and Wang, J. G. Local times of self-intersection for multidimensional Brownian motion. Nagoya Math. J. 138, (1995) 51-64.
[7] Hu, Y. Self-intersection local time of fractional Brownian motions - via chaos expansion. J. Math. Kyoto Univ. 41, (2001) 233-250.
[8] Hu, Y. Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Amer. Math. Soc. 175, no. 825. 2005.
[9] Hu, Y. and Nualart, D. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33 (2005), 948-983.
[10] Imkeller, P., Pérez-Abreu, V. and Vives, J. Chaos expansions of double intersection local time of Brownian motion in \mathbb{R}^{d} and renormalization. Stochastic Process. Appl. 56, (1995) 1-34.
[11] Karatzas, I. and Ocone, D. L. A generalized Clark representation formula, with application to optimal portfolios. Stochastics Stochastics Rep. textbf34 (1991), 187-220.
[12] Karatzas, I., Ocone, D. L. and Li, J. An extension of Clark's formula. Stochastics Stochastics Rep. 37 (1991), 127-131.
[13] Le Gall, J. F. Exponential moments for the renormalized selfintersection local time of planar Brownian motion. Lecture Notes in Math. 1583 (1994), 172-180.
[14] Malliavin, P. Stochastic analysis. Grundlehren der Mathematischen Wissenschaften 313. Springer-Verlag, Berlin, 1997.
[15] Nualart, D. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006.
[16] Rosen, J. The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal. 23, (1987) 37-46.
[17] Üstünel, A. S. Representation of the distributions on Wiener space and stochastic calculus of variations. J. Funct. Anal. 70 (1987), 126-139.
[18] Varadhan, S.R.S. Appendix to "Euclidean quantum field theory" by K.Symanzik, in "Local Quantum Theory" (R.Jost ed.), Academic, New York (1969).
[19] Xiao, Y. Sample paths properties of anisotropic Gaussian random fields. Preprint.
[20] Yor, M. Renormalization et convergence en loi pour les temps locaux d'intersection du mouvement brownien dans \mathbb{R}^{3}. Lecture Notes in Math 1123 (1985), 350-365.

[^0]: *Y. Hu is supported by the NSF grant DMS0504783.
 ${ }^{\dagger}$ D. Nualart is supported by the NSF grant DMS0604207.

