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A nonlinear stochastic heat equation: Hölder continuity

and smoothness of the density of the solution

Yaozhong Hu∗, David Nualart† and Jian Song

Abstract

In this paper, we establish a version of the Feynman-Kac formula for multidimen-

sional stochastic heat equation driven by a general semimartingale. This Feynman-Kac

formula is then applied to study some nonlinear stochastic heat equations driven by

nonhomogenous Gaussian noise: First, it is obtained an explicit expression for the

Malliavin derivatives of the solutions. Based on the representation we obtain the

smooth property of the density of the law of the solution. On the other hand, we also

obtain the Hölder continuity of the solutions.

1 Introduction

In this paper we consider the following nonlinear stochastic heat equation:






∂u

∂t
=

1

2
△u+ b(u) + σ(u)Ẇ (t, x), t ≥ 0, x ∈ R

d

u(0, x) = u0(x) ,
(1.1)

where ∆ =
∑d

i=1
∂2

∂x2

i

is the Laplace operator, b and σ are globally Lipschitz continuous

functions, and W is a zero mean Gaussian random field, which is a Brownian motion in the
time variable and it has a nonhomogeneous spatial covariance with density q(x, y) (see (2.1)

for the precise definition). Here Ẇ (t, x) denotes the generalized random field
∂d+1W

∂t∂x1 · · ·∂xd
.

The case of an homogeneous covariance kernel q(x, y) = q(x − y) has been studied
in the seminal paper by Dalang [3]. In this case, the existence, uniqueness and Hölder
continuity of u(t, x) with respect to both parameters t and x is obtained in [15] under
integrability conditions on the spectral measure µ of the noise. We extend these results to
the nonhomogeneous case in Section 4.

On the other hand, using the techniques of Malliavin calculus, and assuming suitable
nondegeneracy conditions, one can show that for a fixed (t, x), t > 0, the random variable
u(t, x), solution to (1.1), has an absolutely continuous probability law and the density is
smooth. The results that have been obtained so far along this direction can be summarized
as follows.
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†D. Nualart is supported by the NSF grant DMS0904538.
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(i) In [13] Pardoux and Zhang considered Equation (1.1) when x is in the interval (0, 1)
with Dirichlet boundary conditions, assuming that W is a space-time white noise.
In this case, if the coefficients are Lipschitz, then u(t, x) has an absolutely continuous
distribution for any t > 0 provided σ(u0(x0)) 6= 0 for some x0 ∈ (0, 1). The smoothness
of the density in this framework was proved by Mueller and Nualart in [10], assuming
that the coefficients are infinitely differentiable with bounded derivatives. On the
other hand, under the stronger nondegeneracy condition |σ(x)| ≥ c > 0, and smooth
coefficients, Bally and Pardoux [1] proved that the law of any vector of the form
(u(t, x1), . . . , u(t, xn)), 0 ≤ x1 < · · · < xn ≤ 1, t > 0, has an infinitely differentiable
density, assuming Neumann boundary conditions on (0, 1).

(ii) For the d-dimensional heat equation with an homogeneous spatial covariance, Nu-
alart and Quer-Sardanyons have provided sufficient conditions for the existence and
smoothness of the density of u(t, x) for t > 0 and x ∈ R

d, assuming |σ(x)| ≥ c > 0, in
the paper [12] (see also [4]).

An open problem for the stochastic heat equation with colored spatial covariance is to
derive the existence and smoothness of the density under a nondegeneracy condition of the
form σ(u0(x0)) 6= 0 for some x0 ∈ R

d. The main purpose of this paper is obtain new results
in this direction. To prove such results we need to show that the norm of the Malliavin
derivative of the solution

∫ t

0
‖Dsu(t, x)‖2Hds is either strictly positive almost surely (for the

absolute continuity) or it has negative moments of all orders (for the smoothness of the
density), where H is the Hilbert space associated with the spatial covariance.

We develop a new approach to prove these results based on the Feynman-Kac represen-
tation for the solution to the heat equation with multiplicative noise driven by a general
continuous semimartingale. The main idea is to express ‖Dsu(t, x)‖2H as the norm in L2(Rd)
of a function Vs,ξ(t, x) given by Vs,ξ(t, x) =

∫

Rd c(ξ, y)Ds,yu(t, x)dy, where c is the square
root of the kernel q as an operator. Then for any fixed (s, ξ), Vs,ξ(t, x) satisfies the linear
stochastic heat equation with random coefficients

∂Vs,ξ
∂t

=
1

2
△Vs,ξ + b′(u)Vs,ξ + σ′(u)Vs,ξẆ (t, x) , t ≥ s, x ∈ R

d, (1.2)

with initial condition Vs,ξ(s, x) = c(ξ, x)σ(u(s, x)).

In order to establish a Feynman-Kac representation for the solution to Equation (1.2)
we need to assume that the covariance kernel q(x, y) is non-singular and this implies the

existence of a random field W1(t, x) such that Ẇ (t, x) =
∂W1

∂t
(t, x). Then, Equation (1.2)

is a particular case of a more general stochastic heat equation of the form

∂V

∂t
(t, x) =

1

2
△V (t, x) + V

∂F

∂t
(t, x), (1.3)

where {F (t, x), t ≥ 0, x ∈ R
d} is a continuous semimartingale in the sense of Kunita [9],

with local characteristic b(t, x) = b′(u(t, x)) and a(t, x, y) = σ′(u(t, x))σ′(u(t, y))q(x, y). In
Section 3 (see Theorem 3.1) we derive a Feynman-Kac formula for the solution of (1.3)
assuming that the functions b and a are bounded by C(1 + |x|β), and C(1 + |x|β + |y|β) for
some 0 ≤ β < 2. This result has its own interest. The proof is based on a generalized Itô
formula proved in [9].
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There have been other papers on the Feynman-Kac formula for the stochastic heat
equation. We can mention the recent works [6] and [7] on the stochastic heat equation
driven by fractional white noise. We refer to the references in these papers for related
works.

In Section 4 we show the existence and uniqueness of a solution for the general stochastic
heat equation (1.1) with a nonhomogeneous spatial covariance and we deduce the Hölder
continuity of the solution. This result is an extension of the results proved in [15]. Finally,
in Section 5, assuming that the covariance kernel is continuous and under a nondegeneracy
condition of the form q(x0, x0) > 0 and σ(u0(x0)) 6= 0 for some x0 ∈ R, we establish the
absolute continuity of the law of the solution and the smoothness of the density if the
coefficients are smooth.

To simplify the presentation we have assumed that the functions b and σ depend only on
the variable u. All the results of this paper could be extended without difficulty to the case
of coefficients b(t, x, u) and σ(t, x, u) such that they are Lipschitz and with linear growth in
u, uniformly in (t, x) ∈ [0, T ]×R

d for any T > 0. In this case, the nondegeneracy condition
would be σ(0, x0, u0(x0)) 6= 0, for some x0 ∈ R

d.

The results of this paper can be extended to the stochastic heat equation on an open and
bounded set A ⊂ R

d, with Dirichlet boundary conditions. In this case, the Feynman-Kac
formula involves a d-dimensional Brownian motion starting form a point x ∈ A, and killed
when it leaves the set A. On the other hand, the existence and smoothness of the density
have been deduced, applying techniques of Malliavin calculus, for stochastic differential
equations of the form Lu = b(u) + σ(u)Ẇ , where L is a differential operator more general
than ∂t− 1

2
∆ (see, for instance, [8, 16] where L is a pseudodifferential operator and [12] where

L is a general parabolic or hyperbolic operator). In all these examples, one assumes that
σ is bounded away from the origin. Our approach to handle a nondegeneracy of the form
σ(0, x0, u0(x0)) only works if a Feynman-Kac representation is available for the corresponding
stochastic linear equation satisfied by the Malliavin derivative. This happens, for instance,
for parabolic operators of the form L = ∂t −

∑

i bi∂xi
− 1

2

∑

i,j ai,j∂
2
xi,xj

. The methodology
developed in this paper could be extended to these operators, replacing the Brownian motion
by the diffusion process with generator

∑

i bi∂xi
− 1

2

∑

i,j ai,j∂
2
xi,xj

.

2 Preliminaries

2.1 Malliavin calculus

Let (Ω,F , P ) be a complete probability space. Consider a family of zero mean Gaussian
random variables W = {Wt(ϕ), ϕ ∈ C∞

0 (Rd), t ≥ 0}, where C∞
0 (Rd) denotes the space of

infinitely differentiable functions on R
d with compact support, with covariance

E [Wt(ϕ)Ws(ψ)] = (t ∧ s)
∫

R2d

ϕ(x)ψ(y)q(x, y)dxdy, (2.1)

where q is a nonnegative definite and locally integrable function.

Let H be the Hilbert space defined as the completion of C∞
0 (Rd) by the inner product

〈ϕ, ψ〉H :=

∫

R2d

ϕ(x)ψ(y)q(x, y)dxdy.

3



The mapping 1[0,t]ϕ 7→ Wt(ϕ) can be extended to a linear isometry between H∞ :=
L2([0,∞);H) and the L2 space spanned by W . Then {W (h), h ∈ H∞} is an isonormal
Gaussian process associated with the Hilbert space H∞.

We will denote by D the derivative operator in the sense of Malliavin calculus. That is,
if F is a smooth and cylindrical random variable of the form

F = f(W (h1), . . . ,W (hn)),

hi ∈ H∞, f ∈ C∞
p (Rn) (f and all its partial derivatives have polynomial growth), then DF

is the H∞-valued random variable defined by

DF =
n
∑

j=1

∂f

∂xj
(W (h1), . . . ,W (hn))hj .

The operator D is closable from L2(Ω) into L2(Ω;H∞) and we define the Sobolev space D1,2

as the closure of the space of smooth and cylindrical random variables under the norm

‖DF‖1,2 =
√

E(F 2) + E(‖DF‖2H∞
).

We denote by δ the adjoint of the derivative operator, given by duality formula

E(δ(u)F ) = E
(

〈DF, u〉H∞

)

, (2.2)

for any F ∈ D
1,2 and any element u ∈ L2(Ω;H∞) in the domain of δ. The operator δ is also

called the Skorohod integral. The higher Malliavin derivatives can be defined in similar way

and we can define D
k,p for any integer k ≥ 1 and real number p ≥ 1. Set D∞ =

⋂

k≥1 ,p≥2

D
k,p.

To obtain the existence and smoothness of the density, we make use of the following criteria.

Theorem 2.1 Let F : Ω → R be a random variable. If F ∈ D
1,2 and ‖DF‖H∞ > 0 almost

surely, then the probability law of F is absolutely continuous with respect to the Lebesgue
measure. Moreover, if F ∈ D

∞ and E
[

‖DF‖−p
H∞

]

<∞ for all p ≥ 1, then the density of F
is infinitely differentiable.

For the proof of this result and a detailed presentation of the Malliavin calculus we refer
to [11] and the references therein.

2.2 Generalized Itô formula

In this section we introduce some preliminaries on continuous semimartingales depending
on a parameter and the corresponding generalized Itô formula. We refer to [9] for more
details.

Fix a time interval [0, T ], a complete probability space (Ω,F , P ) and a filtration {Ft, 0 ≤
t ≤ T} satisfying the usual conditions (increasing, right-continuous, and F0 contains all the
null sets). Let {F (t, x), 0 ≤ t ≤ T, x ∈ O} be a family of real valued processes with
parameter x ∈ O, where O is a domain in R

d. We can regard it as random field with
double parameters x and t. If F (t, x) is m-times continuously differentiable with respect to
x a.s. for any t, it can be regarded as stochastic process with values in Cm or a Cm-process.
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Here we denote by Cm = Cm(O,R) the set of all real valued functions on O which are m
times continuously differentiable. If furthermore, for each multi-index α ∈ {1, . . . , d}k with
|α| = k ≤ m, {Dα

xF (t, x), x ∈ O} is a family of continuous semimartingales, then F (t, x) is

called a Cm-semimartingale. Here we have used the notation Dα
x = ∂|α|

∂xα1
···∂xαk

.

We denote by C1,1 the set of all functions on a : [0, T ] × O × O → R such that the
partial derivatives ∂a

∂xi
(t, x, y), ∂a

∂yj
(t, x, y) and ∂2a

∂xi∂yj
(t, x, y) exist for any 1 ≤ i, j ≤ d and are

continuous in (x, y), and for any compact set K ⊂ O and 1 ≤ i, j ≤ d

∫ T

0

sup
x,y∈K

(

|a(t, x, y)|+ | ∂a
∂xi

(t, x, y)|+ | ∂a
∂yj

(t, x, y)|+ | ∂2a

∂xi∂yj
(t, x, y)|

)

dt <∞.

We also denote C1 the set of all functions on b : [0, T ] × O → R which are continuously
differentiable in x, and for any compact set K ⊂ O and any 1 ≤ i ≤ d

∫ T

0

sup
x∈K

(

|b(t, x)|+ | ∂b
∂xi

(t, x)|
)

dt <∞.

Let {F (t, x), x ∈ O} be a family of continuous semimartingales decomposed as F (t, x) =
M(t, x)+B(t, x), where M(t, x) is a continuous local martingale and B(t, x) is a continuous
process of bounded variation. Let A(t, x, y) be the joint quadratic variation of M(t, x)
and M(t, y) and assume that A(t, x, y) =

∫ t

0
a(s, x, y)ds and B(t, x) =

∫ t

0
b(s, x)ds, where

a(t, x, y) and b(t, x) are predictable processes. Then (a(t, x, y), b(t, x)) is called the local
characteristic of the family of semimartingales {F (t, x), x ∈ O}. Following Section 3.2 of
[9], we say that the local characteristic (a, b) belongs to the class B1,0 if a(t, x, y) and b(t, x)
are predictable processes with values in C1,1 and C1, respectively.

Now let {F (t, x), x ∈ O} be a continuous semimartingale with local characteristic (a, b).
Let {ft, 0 ≤ t ≤ T} be a predictable process with values in O satisfying

∫ T

0

a(s, fs, fs)ds <∞,

∫ T

0

|b(s, fs)|ds <∞ a.s. (2.3)

Then, the Itô stochastic integral of ft based on the kernel F (dt, x) is defined as the following
limit in probability if it exists

∫ t

0

F (ds, fs) = lim
|∆|→0

n−1
∑

k=0

{F (tk+1 ∧ t, ftk∧t)− F (tk ∧ t, ftk∧t)},

where ∆ = {0 = t0 < · · · < tn = T}, and |∆| = max1≤i≤n(ti − ti−1).

The joint quadratic variation of the Itô integrals
∫ t

0
F (ds, fs) and

∫ t

0
F (ds, gs) satisfies

〈
∫ ·

0

F (ds, fs),

∫ ·

0

F (ds, gs)〉t =
∫ t

0

a(s, fs, gs)ds.

The following is the generalized Itô formula (see Theorem 3.3.1 in [9]).

Theorem 2.2 (Generalized Itô formula) Let {F (t, x), x ∈ O} be a continuous C2-process
and a continuous C1-semimartingale with local characteristic belonging to the class B1,0 and
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let {Xt, 0 ≤ t ≤ T} be a continuous semimartingale with values in O. Then {F (t, Xt), 0 ≤
t ≤ T} is a continuous semimartingale and satisfies

F (t, Xt) =F (0, X0) +

∫ t

0

F (dr,Xr) +
d
∑

i=1

∫ t

0

∂F

∂xi
(r,Xr)dX

i
r

+
1

2

d
∑

i,j=1

∫ t

0

∂2F

∂xi∂xj
(r,Xr)d〈X i, Xj〉r +

d
∑

i=1

〈
∫ ·

0

∂F

∂xi
(dr,Xr), X

i〉t , (2.4)

for any t ∈ [0, T ].

3 Feynman-Kac formula

In this section we establish a general Feynman-Kac formula for the d-dimensional heat
equation driven by a continuous semimartingale. Suppose that F = {F (t, x), 0 ≤ t ≤ T, x ∈
R

d} is a continuous semimartingale with local characteristic (a, b). We are going to impose
the following condition.

(H1) Assume that a(t, x, y) and b(t, x) are continuous and satisfy

|a(t, x, y)| ≤ C(1 + |x|β + |y|β), (3.1)

|b(t, x)| ≤ C(1 + |x|β), (3.2)

for t ∈ [0, T ], with 0 ≤ β < 2.

Consider the stochastic heat equation

{

∂V

∂t
(t, x) =

1

2
△V (t, x) + V

∂F

∂t
(t, x)

V (x, 0) = h(x).
(3.3)

An adapted random field {V (t, x), 0 ≤ t ≤ T, x ∈ R
d} is called a mild solution to the above

equation if V (t, x) satisfies the following integral equation

V (t, x) =

∫

Rd

pt(x− z)h(z)dz +

∫

Rd

(
∫ t

0

pt−r(x− z)V (r, z)F (dr, z)

)

dz, (3.4)

where pt(x) = (2πt)−
d
2 exp(−|x|2/2t).

Theorem 3.1 (Feynman-Kac Formula) Let h(x) be continuous and with polynomial growth.
Then the process

V (t, x) = EB

(

h(x+Bt) exp

(
∫ t

0

F (dr, x+Bt − Br)−
1

2

∫ t

0

ā(r, x+Bt − Br)dr

))

,

(3.5)
where B is a d-dimensional standard Brownian motion independent of F , EB denotes the
mathematical expectation with respect to B, and ā(t, x) = a(t, x, x), is a mild solution to
Equation (3.3).
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Proof.

We divide the proof into three steps.

Step 1. First we show that the process (3.5) is well defined. In the sequel we denote by E
the mathematical expectation in the probability space where F is defined, and EB denotes
the expectation with respect to the independent Brownian motion B. Set

Yt =

∫ t

0

F (dr, x+Bt − Br)−
1

2

∫ t

0

ā(r, x+Bt − Br)dr.

Notice that
∫ t

0
F (dr, x + Bt − Br) is a well defined Itô stochastic integral, because the

process {Bt − Br, 0 ≤ r ≤ t} is independent of the semimartingale F , and conditions (2.3)
are satisfied. Then V (t, x) = EB (h(x+Bt) exp(Yt)). We claim that this expectation exists
and V (t, x) satisfies the following condition for any x ∈ R

d and p ≥ 1,

sup
0≤t≤T

E|V (t, x)|p ≤ K1 exp
(

K2|x|β
)

, (3.6)

where the constants K1 and K2 depend on p and T . In particular, this implies that the
stochastic integral in (3.4) is well defined. We can write

E|V (t, x)|p ≤
(

EB|h(x+Bt|2p EEB exp(2pYt)
)

1

2 .

Let us denote by M(t, x) the martingale part of F (t, x). Then we make the decomposition

Yt = Y
(1)
t + Y

(2)
t ,

where

Y
(1)
t =

∫ t

0

M(dr, x+Bt − Br)− p

∫ t

0

ā(r, x+Bt −Br)dr,

and

Y
(2)
t =

∫ t

0

[

b(r, x+Bt − Br) +

(

p− 1

2

)

ā(r, x+Bt − Br)

]

dr.

Using conditions (3.1) and (3.2) and taking into account that β < 2, we obtain for all
t ∈ [0, T ]

EB exp(2pY
(2)
t ) ≤ EB

(

exp

(

C

∫ t

0

(1 + |x+Bt − Br|β)dr
))

≤ K1 exp(K2|x|β).

On the other hand, taking into account that exp(2pY
(1)
t ) is a martingale, we can write

EEB exp(2pY
(1)
t ) = EBE exp(2pY

(1)
t ) ≤ 1,

which completes the proof of (3.6).

Step 2. We now show that the process (3.5) is a solution to Equation (3.3) under some
additional regularity assumptions on the semimartingale F (t, x). Suppose that F (t, x) is
a C3-semimartingale, such that the local characteristic (a, b) satisfies (3.1) and (3.2). We
also assume that the functions Dα

xD
α
y a(t, x, y) satisfy the estimate (3.1) for all multi-index

7



α with 1 ≤ |α| ≤ 2, and the functions Dα
xb(t, x) and D

α
x ā(t, x) satisfy the estimate (3.2) for

all multi-index α with 1 ≤ |α| ≤ 2. Clearly this implies that the local characteristic belongs
to the class B1,0. Suppose also that the functions Dα

xh(t, x) have polynomial growth for all
multi-index α with 1 ≤ |α| ≤ 2.

For fixed x, let

Φ(t, y) =

∫ t

0

F (dr, x+ y − Br)−
1

2

∫ t

0

ā(r, x+ y − Br)dr.

According to Theorem 3.3.3 in [9], Φ(t, y) is a C2-semimartingale with local characteristic
belonging to the class B1,0. We can apply the generalized Itô formula (2.4) to the process
Yt = Φ(t, Bt), and we obtain

dYt = F (dt, x)− 1

2
ā(t, x)dt+

d
∑

i=1

[
∫ t

0

∂F

∂xi
(dr, x+Bt −Br)

]

dBi
t

− 1

2

d
∑

i=1

[
∫ t

0

∂ā

∂xi
(r, x+Bt − Br)dr

]

dBi
t +

1

2

d
∑

i=1

[
∫ t

0

∂2F

∂x2i
(dr, x+Bt −Br)

]

dt

− 1

4

d
∑

i=1

[
∫ t

0

∂2ā

∂x2i
(r, x+Bt − Br)dr

]

dt.

The terms 〈
∫ ·

0
∂F
∂xi

(dr, x), Bi
· 〉t = 〈

∫ ·

0
∂M
∂xi

(dr, x), Bi
· 〉t vanish since M and B are independent.

The quadratic variation of the semimartingale Y is given by

d〈Y 〉t = ā(t, x)dt+
d
∑

i=1

[

∫ t

0

∂F

∂xi
(dr, x+Bt − Br)−

1

2

∫ t

0

∂ā

∂xi
(r, x+Bt −Br)dr

]2
dt . (3.7)

Consider the process Z(t, x) = h(x + Bt)e
Yt . Applying Itô’s formula to h(x + Bt)e

Yt

yields

Z(t, x) =h(x) +

∫ t

0

Z(s, x)dYs +
d
∑

i=1

∫ t

0

∂h

∂xi
(x+Bs)e

YsdBi
s

+
1

2

d
∑

i=1

∫ t

0

∂2h

∂x2i
(x+Bs)e

Ysds+
1

2

∫ t

0

V̂ (s, x)d〈Y 〉s

+

d
∑

i=1

∫ t

0

∂h

∂xi
(x+Bs)e

Ysd〈Bi, Y 〉s . (3.8)

We claim that the stochastic integrals with respect to Bi in the above expression have zero
expectation with respect to B. This is a consequence of the following properties

∫ T

0

EBZ(t, x)2EB

∣

∣

∣

∣

∣

d
∑

i=1

∫ t

0

∂F

∂xi
(dr, x+Bt − Br)

∣

∣

∣

∣

∣

2

dt <∞, (3.9)

∫ T

0

EBZ(t, x)2EB

∣

∣

∣

∣

∣

d
∑

i=1

∫ t

0

∂ā

∂xi
(r, x+Bt − Br)dr

∣

∣

∣

∣

∣

2

dt <∞, (3.10)

8



and
∫ T

0

EB

∣

∣

∣

∣

∣

d
∑

i=1

∫ t

0

∂h

∂xi
(x+Bs)

∣

∣

∣

∣

∣

2

e2Ysds <∞. (3.11)

These properties follow from our additional assumptions. For instance, to show (3.9) for
the martingale component of F , we take the expectation in the probability space where F
is defined and we use the fact that for any p ≥ 2

E

∣

∣

∣

∣

∣

d
∑

i=1

∫ t

0

∂M

∂xi
(dr, x+Bt − Br)

∣

∣

∣

∣

∣

p

≤ cpE

∣

∣

∣

∣

∣

d
∑

i,j=1

∫ t

0

∂2a

∂xi∂yj
(r, x+Bt − Br, x+Bt − Br)dr

∣

∣

∣

∣

∣

p
2

≤ CE

∫ t

0

(1 + |Bt −Br|β)ds <∞.

Then, taking the expectation with respect to B in (3.8) yields

V (t, x) = h(x) +

∫ t

0

V (s, x)F (ds, x)

+
1

2

d
∑

i=1

EB

(
∫ t

0

V (s, x)

{
∫ s

0

∂2F

∂x2i
(dr, x+Bs −Br)−

1

2

∫ s

0

∂2ā

∂x2i
(r, x+Bs −Br)dr

+

[
∫ s

0

∂F

∂xi
(dr, x+Bs − Br)−

1

2

∫ s

0

∂ā

∂xi
(r, x+Bs −Br)dr

]2}

ds

+

∫ t

0

∂2h

∂x2i
(x+Bs)e

Ysds

+ 2

∫ t

0

∂h

∂xi
(x+Bs)e

Ys [

∫ s

0

∂F

∂xi
(dr, x+Bs −Br)−

1

2

∫ s

0

∂ā

∂xi
(r, x+Bs − Br)dr]ds

)

Using that

∂Ys
∂xi

=

∫ s

0

∂F

∂xi
(dr, x+Bs −Br)−

1

2

∫ s

0

∂ā

∂xi
(r, x+Bs − Br)dr ,

we obtain easily

V (t, x) = h(x) +

∫ t

0

V (s, x)F (ds, x) +
1

2

d
∑

i=1

∫ t

0

∂2V

∂x2i
(s, x)ds .

This shows that under some the additional regularity conditions on F and h the process u
defined by (3.5) is a strong solution to Equation (3.3), and also a mild solution.

Step 3. Consider now the case of a general semimartingale F . For any ǫ > 0 we define

M ǫ(t, x) =

∫

Rd

M(t, y)pǫ(x− y)dy,

Bǫ(t, x) =

∫

Rd

B(t, y)pǫ(x− y)dy,

9



and hǫ(x) =
∫

Rd h(y)pǫ(x − y)dy. It is easy to check that hǫ is infinitely differentiable
and it has polynomial growth together with all its partial derivatives. Also F ǫ(t, x) =
M ǫ(t, x) +Bǫ(t, x) is a C3-semimartingale with local characteristic given by

bǫ(t, x) =

∫

Rd

b(t, y)pǫ(x− y)dy,

and

aǫ(t, x, y) =

∫ t

0

∫

R2d

a(s, x− z1, y − z2)pǫ(z1)pǫ(z2)dz1dz2ds.

It easy to check that aǫ and bǫ satisfy the estimates (3.1) and (3.2) respectively, the partial
derivatives Dα

xD
α
y a

ǫ(t, x, y) satisfy the estimate (3.1) for all multi-index α with 1 ≤ |α| ≤ 2,
and the functions Dα

x b
ǫ(t, x) satisfy the estimate (3.2) for all multi-index α with 1 ≤ |α| ≤ 2.

From Step 2 it follows that

V ǫ(t, x) = EB
{

hǫ(x+Bt) exp
(

∫ t

0

F ǫ(dr, x+Bt − Br)−
1

2

∫ t

0

āǫ(dr, x+Bt − Br)
)}

is the strong solution to
{

∂V ǫ

∂t
(t, x) =

1

2
△V ǫ(t, x) + V ǫ∂F

ǫ

∂t
(t, x)

V ǫ(x, 0) = hǫ(x)
(3.12)

As a consequence, it is also a mild solution to (3.12), namely,

V ǫ(t, x) =

∫

Rd

pt(x− z)hǫ(z)dz +

∫

Rd

(
∫ t

0

pt−r(x− z)V ǫ(r, z)F ǫ(dr, z)

)

dz.

Finally, we are going to take the limit as ǫ tends to zero in each term of the above expression
in order to deduce the Feynman-Kac formula of V . The estimate (3.1) implies

sup
ǫ>0

E exp

(

p

∫ t

0

|āǫ(r, x+Bt −Br)|dr
)

<∞, .

for all p ≥ 1 and, as a consequence, V ǫ(t, x) converges to V (t, x) in Lp for all p ≥ 1. Clearly,

lim
ǫ↓0

∫

Rd

pt(x− z)hǫ(z)dz =

∫

Rd

pt(x− z)h(z)dz,

and

lim
ǫ↓0

∫ t

0

∫

Rd

pt−r(x− z)V ǫ(r, z)bǫ(r, z)dzdr =

∫ t

0

∫

Rd

pt−r(x− z)V (r, z)b(r, z)dzdr,

also in Lp for all p ≥ 1. The following limits in Lp are also easy to check:

lim
ǫ↓0

∫

Rd

(
∫ t

0

pt−r(x− z)V ǫ(r, z)[M ǫ(dr, z)−M(dr, z)]

)

dz = 0

and

lim
ǫ↓0

∫

Rd

(
∫ t

0

pt−r(x− z)[V ǫ(r, z)− V (r, z)]M(dr, z)

)

dz = 0.

This completes the proof of the theorem.
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4 Stochastic heat equation: Hölder continuity of the

solution

Consider the following nonlinear stochastic partial differential equation:







∂u

∂t
=

1

2
△u+ b(u) + σ(u)Ẇ (t, x) , t ≥ 0 , x ∈ R

d

u(0, x) = u0(x) .
(4.1)

where W is the Gaussian family introduced in Section 2.1 with covariance function given by
(2.1). Let us recall that an adapted random field {u(t, x) , t ≥ 0 , x ∈ R

d} is called a mild
solution to Equation (4.1) if u satisfies the following integral equation.

u(t, x) =

∫

Rd

pt(x− z)u0(z)dz +

∫ t

0

∫

Rd

pt−r(x− z)b(u(r, z))dzdr

+

∫ t

0

∫

Rd

pt−r(x− z)σ(u(r, z))W (dr, dz) , (4.2)

where the stochastic integral is defined as the integral of an H-valued predictable process.

We are going to impose the following condition on the covariance function.

(H1) For each t ≥ 0,

sup
x∈Rd

∫ t

0

∫

R2d

pt−s(x− z1)pt−s(x− z2)|q(z1, z2)|dz1dz2ds <∞ .

Theorem 4.1 Suppose that b and σ are globally Lipschitz continuous functions and suppose
that the covariance function q satisfies (H1). Let u0(x) be a bounded function in R

d. Then
there exists a unique adapted process u = {u(t, x), t ∈ [0, T ], x ∈ R

d} satisfying (4.2).
Moreover,

sup
t∈[0,T ],x∈Rd

E|u(t, x)|p <∞, ∀ p ≥ 2 . (4.3)

Proof. Fix p ≥ 2. Let Bp be the Banach space of all adapted random fields u such that
‖u‖p <∞, where ‖u‖pp = sup

t∈[0,T ],x∈Rd

E|u(t, x)|p. On Bp, define the following mapping

Ψ(u)(t, x) :=

∫

Rd

pt(x− z)u0(z)dz +

∫ t

0

∫

Rd

pt−r(x− z)b(u(r, z))dzdr

+

∫ t

0

∫

Rd

pt−r(x− z)σ(u(r, z))W (dr, dz) .

It is straightforward to obtain

E |Ψ(u)−Ψ(v)|p (t, x) ≤ C

[

E

(
∫ t

0

∫

Rd

pt−s(x− z)|u(s, z)− v(s, z)|dzds
)p

+ E

{

∫ t

0

∫

R2d

pt−s(x− z1)|u(s, z1)− v(s, z1)|pt−s(x− z2)|u(s, z2)− v(s, z2)|
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× |q(z1, z2)|dz1dz2ds
}p/2

]

.

Taking the supremum with respect to t and x, we have

‖Ψ(u)−Ψ(v)‖pp ≤ C

∫ T

0

‖u− v‖ppds ≤ CT‖u− v‖pp .

Consequently, Ψ is a contraction mapping on Bp when T sufficiently small. This proves the
existence and uniqueness of the solution for some small T . From the above argument it
is clear that the T such that Ψ is a contraction is independent of the initial value of the
solution. This can be used to to show the existence and uniqueness of the solution for any
T . The inequality (4.3) follows in a similar way.

Now we apply the factorization method to obtain the Hölder continuity of u. Fix an
arbitrary α ∈ (0, 1) and denote

Yα(r, z) =

∫ r

0

∫

Rd

pr−s(z − y)σ(u(s, y))(r− s)−αW (ds, dy). (4.4)

The semigroup property of the heat kernel and the stochastic Fubini’s theorem yield

∫ t

0

∫

Rd

pt−s(x− y)σ(u(s, y))W (ds, dy)

=
sin(πα)

π

∫ t

0

∫

Rd

pt−r(x− z)(t− r)α−1Yα(r, z)dzdr. (4.5)

Consider the following stronger condition on the covariance function.

(H1a) There exists γ > −1 such that for each t ≥ 0,

sup
x∈Rd

∫

R2d

pt(x− z1)pt(x− z2)|q(z1, z2)|dz1dz2 < Ctγ.

Lemma 4.2 Let the assumptions of Theorem 4.1 be satisfied. Assume the covariance func-

tion q satisfies (H1a). Then for any fixed T > 0, p ≥ 1, α ∈ (0,
1 + γ

2
), we have

sup
r∈[0,T ],z∈Rd

E(|Yα(r, z)|p) <∞.

Proof. Since sup
r∈[0,T ],z∈Rd

E(|u(r, z)|p) <∞ from Theorem 4.1, and σ is Lipschitz continuous,

we have
sup

r∈[0,T ],z∈Rd

E(|σ(u(r, z))|p) <∞.

Then we can write

E|Yα(r, z)|p ≤C
(

E

∫ r

0

∫

R2d

pr−s(z − y1)pr−s(z − y2)

× σ(u(s, y1))σ(u(s, y2))(r − s)−2αq(y1, y2)dy1dy2ds

)
p
2
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≤C sup
r∈[0,T ],z∈Rd

E(|σ(u(r, z))|p)

×
(
∫ r

0

∫

R2d

pr−s(z − y1)pr−s(z − y2)(r − s)−2α|q(y1, y2)|dy1dy2ds
)

p
2

≤C
(
∫ r

0

(r − s)γ−2αds

)
p
2

<∞.

Equation (4.5) and Lemma 4.2 constitute the main ingredients to prove the following
theorem concerning the Hölder continuity of the solution u.

Theorem 4.3 Suppose that b and σ are globally Lipschitz continuous. Assume (H1a) and
suppose that u0(x) is bounded and ρ-Hölder continuous. Then the solution u to the equation
(4.1) is a.s. β1-Hölder continuous in the time variable t and β2-Hölder continuous in the

space variable x for any β1 ∈ (0,
1

2
[ρ ∧ (1 + γ)]) and β2 ∈ (0, ρ ∧ (1 + γ)), respectively.

Proof. It suffices to follow the idea of the proof of Theorem 2.1 in [15], and we provide a
sketch of the proof for the reader’s convenience. The proof contains two parts for time and
space variables, respectively.
Part I
Fix T, h > 0 and p ∈ [2,∞). First we show that

sup
0≤t≤T

sup
x∈Rd

E(|u(t+ h, x)− u(t, x)|p) ≤ C(p, T )hηp, (4.6)

for any η ∈ (0, 1
2
[ρ ∧ (1 + γ)]). Let Yα be as defined in (4.4) with α ∈ (0, 1+γ

2
) and denote

Ptf(x) =
∫

Rd pt(x− z)f(z)dz. We have

E(u(t+ h, x)− u(t, x)|p) ≤ C(p, α)
4
∑

i=1

Ii(t, h, x),

where

I1(t, h, x) = |Pt+hu0(x)− Ptu0(x)|p,

I2(t, h, x) = E

(
∣

∣

∣

∣

∫ t

0

∫

Rd

[pt+h−r(x− z)(t + h− r)α−1 − pt−r(x− z)(t− r)α−1]Yα(r, z)

∣

∣

∣

∣

p

dzdr

)

,

I3(t, h, x) = E

(

∣

∣

∣

∣

∫ t+h

t

∫

Rd

pt+h−r(x− z)(t + h− r)α−1Yα(r, z)

∣

∣

∣

∣

p

dzdr

)

,

I4(t, h, x) = E

(

∣

∣

∣

∣

∫ t+h

0

∫

Rd

pt+h−r(x− z)b(u(r, z))dzdr −
∫ t

0

∫

Rd

pt−r(x− z)b(u(r, z))

∣

∣

∣

∣

p

dzdr

)

.

For the term I1(t, h, x), using the fact that u0 is ρ-Hölder continuous we have I1(t, h, x) ≤
Ch

ρp
2 . For any α ∈ (0, 1+γ

2
) set ψα(t, x) = pt(x)t

α−1. By Hölder’s inequality and Lemma
4.2, we have

I2(t, h, x) ≤ C

(
∫ t

0

∫

Rd

|ψα(t + h− r, x− z)− ψα(t− r, x− z)|dzdr
)p

.
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Set

I2,1(t, h, x) =

∫ t

0

∫

Rd

exp

(

−|x− z|2
2(t− r)

)

|(t+ h− r)α−1− d
2 − (t− r)α−1− d

2 |dzdr,

and

I2,2(t, h, x) =

∫ t

0

∫

Rd

(t + h− r)α−1− d
2

∣

∣

∣

∣

exp

(

− |x− z|2
2(t+ h− r)

)

− exp

(

−|x− z|2
2(t− r)

)
∣

∣

∣

∣

dzdr.

Then I2(t, h, x) ≤ C(I2,1(t, h, x)
p + I2,2(t, h, x)

p), and using the same arguments as in the
proof of Theorem 2.1 in [15] to estimate the terms I2,1(t, h, x)

p and I2,3(t, h, x)
p, we obtain

for η ∈ (0, α) that I2(t, h, x) ≤ Chηp. By Hölder’s inequality and Lemma 4.2, we have

I3(t, h, x) ≤ C

(
∫ t+h

t

∫

Rd

pt+h−r(x− z)(t + h− r)α−1dzdr

)p

≤ Chαp.

A change of variable yields

I4(t, h, x) ≤ C(I4,1(t, h, x) + I4,2(t, h, x)),

with

I4,1(t, h, x) = E

(

∣

∣

∣

∣

∫ h

0

∫

Rd

Pt+h−r(x− z)b(u(r, z))dzdr

∣

∣

∣

∣

p
)

,

I4,2(t, h, x) = E

(

∣

∣

∣

∣

∫ h

0

∫

Rd

Pt−r(x− z)[b(u(r + h, z))− b(u(r, z))]dzdr

∣

∣

∣

∣

p
)

,

Since b is Lipschitz, using Hölder’s inequality and Equation (4.3), we have

I4,1(t, h, x) ≤ Chp.

The Lipschitz property of b also implies

I4,2(t, h, x) ≤
∫ t

0

sup
z∈Rd

E(|u(r + h, z)− u(r, z)|p)dr.

Putting together all estimations for Ii, i = 1, . . . , 4, we obtain

sup
x∈Rd

E(|u(t+ h, x)− u(t, x)|p) ≤ C

(

hpmin( ρ
2
,η,α) +

∫ t

0

sup
x∈Rd

E(|u(r + h, x)− u(r, x)|p)dr
)

.

Since 0 < η < α < 1+γ
2
, the estimate (4.6) follows by Gronwall’s Lemma.

Part II
Now consider the increments in the space variable. We want to show that for any T > 0, p ∈
[2,∞), x, a ∈ R

d and η ∈ (0, ρ ∧ (1 + γ)),

sup
0≤t≤T

sup
x∈Rd

E(|u(t, x+ a)− u(t, x)|p) ≤ C|a|ηp. (4.7)
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Fix α ∈ (0, 1+γ
2
). Ee have

E(|u(t, x+ a)− u(t, x)|p) ≤ C
3
∑

i=1

Ji(t, x, a),

with

J1(t, x, a) = |Ptu0(x+ a)− Ptu0(x)|p

J2(t, x, a) = E

(
∣

∣

∣

∣

∫ t

0

∫

Rd

[ψα(t− r, x+ a− z)− ψα(t− r, x− z)]Yα(r, z)dzdr

∣

∣

∣

∣

p)

,

J3(t, x, a) = E

(
∣

∣

∣

∣

∫ t

0

∫

Rd

[pt−r(x+ a− z)− pt−r(x− z)]b(u(r, y))dzdr

∣

∣

∣

∣

p)

.

It is easy to show that J1(t, x, a) ≤ C|a|ρp. For the term J2(t, x, a), first we have using the
mean value theorem,

∫

Rd

|ψα(t− r, x+ a− z)− ψα(t− r, x− z)|dz ≤ C(t− r)α−1− η
2 |a|η,

where η ∈ (0, 1). Again by Hölder’s inequality and Lemma 4.2, for α ∈ (0, 1+γ
2
), η ∈

(0, 2α ∧ 1), we deduce

J2(t, x, a) ≤ C

(
∫ t

0

∫

Rd

|ψα(t− r, x+ a− z)− ψα(t− r, x− z)|dzdr
)p

≤ C|a|ηp.

Finally, by a change of variable, the Lipschitz property of b, and Hölder’s inequality,

J3(t, x, a) ≤ E

(
∣

∣

∣

∣

∫ t

0

∫

Rd

pt−r(x− y)[b(u(r, z + a)− b(u(r, z)]dzdr

∣

∣

∣

∣

p)

≤ C

∫ t

0

sup
z∈Rd

E(|u(r, a+ z)− u(r, z)|p)dr.

Then (4.7) follows from the Gronwall’s lemma and the estimates of Ji, i = 1, 2, 3.

Here are two examples.

Example 4.4 A similar Hölder continuity result was obtained in [15] in the case of an
homogeneous covariance function q(x, y) = q(x−y) ≥ 0, where q is a nonnegative continuous
function on R

d\{0} such that it is the Fourier transform of a non-negative definite tempered
measure µ on R

d, and for some η ∈ (0, 1) we have
∫

Rd

µ(dξ)

(1 + |ξ|2)η <∞.

This condition implies (H1a). In fact, we can write
∫

R2d

pt(x− z1)pt(x− z2)q(z1 − z2)dz1dz2 =

∫

R2d

pt(x− z − z2)pt(x− z2)q(z)dz2dz

=

∫

Rd

p2t(z)q(z)dz =

∫

Rd

e−2tξ2µ(dξ)

≤
∫

Rd

e−2t(ξ2+1)µ(dξ) ≤ Ct−η

∫

Rd

µ(dξ)

(1 + |ξ|2)η .
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Theorem 4.3 can be applied to noises which do not have an homogeneous spatial covari-
ance like the following example.

Example 4.5 Consider the case where d = 1 and the covariance structure in space is that
of a bifractional Brownian motion with parameters H ∈ (0, 1), K ∈ (0, 1], that is,

q(x, y) = 2−K ∂2

∂x∂y
((|x|2H + |y|2H)K − |x− y|2HK),

where 2KH > 1. Then, BH,K(t, x) = W (1[0,t]×[0,x]), is a bifractional Brownian motion in
x ≥ 0 for each fixed t, and formally, W (t, x) = ∂

∂x
BH,K(t, x). Then

|q(x, y)| ≤ C[|x|2HK−2 + |y|2HK−2 + |x− y|2HK−2]

and γ = HK − 1 ∈ (−1, 0). Thus, Theorem 4.3 can be applied to this case.

5 Stochastic heat equation: Regularity of the density

of the solution

In this section we consider again the solution u(t, x) to (4.1), and we will impose the following
condition on the covariance q(x, y).

(H2) q is γ0-Hölder continuous for some γ0 > 0, and for some β ∈ [0, 2)

|q(x1, x2)| ≤ C(1 + |x1|β + |x2|β).

In this case we can assume that the random field {Wt(ϕ)} has a density with respect to the
Lebesgue measure on R

d. That means, we suppose that there exists a zero mean Gaussian
random field {W1(t, x), t ≥ 0, x ∈ R

d} with covariance

E(W1(t, x)W1(s, y)) = (s ∧ t)q(x, y),

such thatWt(ϕ) =
∫

Rd ϕ(x)W1(t, x)dx, for any ϕ ∈ C0(R
d), where q(x, y) is positive definite,

namely,
∫

R2d q(x, y)f(x)f(y)dxdy ≥ 0 for all f ∈ L2(Rd, dx). The additional regularity
conditions imposed on q have allowed us to introduce the density process W1(t, x), which is
a Brownian motion in the time variable and it has the spacial covariance q.

From a Theorem of Mercer’s type (section 98 on page 245 in [14]) we know that if
∫

R2d |q(x, y)|2dxdy <∞, then

q(x, y) =

∞
∑

n=1

λnen(x)en(y) ,

where en, n = 1, 2, · · · is an orthonormal basis of L2(Rd, dx) and
∑∞

n=1 λ
2
n <∞. The positive

definite property of q(x, y) implies λn ≥ 0. If we take C(x, y) =
∑∞

n=1

√
λnen(x)en(y),

then q(x, y) =
∫

Rd c(ξ, x)c(ξ, y)dξ. Thus it is without loss of generality for us to assume
that q(y1, y2) =

∫

Rd c(ξ, y1)c(ξ, y2)dξ for some c(ξ, y). Furthermore, we assume c(x, y) has
polynomial growth.

The following is the main result of this section.
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Theorem 5.1 Assume that q is γ0-Hölder continuous for some γ0 > 0 and satisfies (H1a).
Suppose

q(x1, x2) ≤ C(1 + |x1|β + |x2|β) for some β ∈ [0, 2) . (5.1)

Let u0 be bounded and ρ-Hölder continuous for some ρ > 0. Suppose that there is a x0 ∈ R
d

such that q(x0, x0) > 0 and σ(u0(x0)) 6= 0. Then,

(1) If b and σ are continuous differentiable functions with bounded first order derivatives,
for any t > 0 and x ∈ R

d, the probability law of u(t, x) is absolutely continuous with
respect to the Lebesgue measure.

(2) If b and σ be infinitely differentiable with bounded derivatives of all orders, then for
any t > 0 and x ∈ R

d, the probability law of u(t, x) has a smooth density with respect
to Lebesgue measure

Proof. First we claim that for all (t, x) the random variable u(t, x) belongs to the
Sobolev space D

1,2 under condition (1), and to the space D
∞ under condition (2). This

follows from standard arguments and we omit the proof (see, for instance [11], Proposition
2.4.4 in the case of the stochastic heat equation). On the other hand, the Malliavin derivative
Ds,yu(t, x) satisfies the linear stochastic evolution equation

Ds,yu(t, x) =pt−s(x− y)σ(u(s, y)) +

∫

Rd

∫ t

0

pt−r(x− z)b′(u(r, z))Ds,yu(r, z)drdz

+

∫

Rd

∫ t

0

pt−r(x− z)σ′(u(r, z))Ds,yu(r, z)W1(dr, z)dz .

Denote

F := ‖Du(t, x)‖2H∞
=

∫ t

0

∫

R2d

Ds,y1u(t, x)Ds,y2u(t, x)q(y1, y2)dy1dy2ds ,

where ‖ · ‖H∞ is the Hilbert norm introduced in Section 2. We are going to show only the
statement (2), and the first one follows from similar arguments. It suffices to show that
E [F−p] <∞ for any p ≥ 1. We divide the proof into two steps.

Step 1. Introduce Vs,ξ(t, x) =

∫

Rd

c(ξ, y)Ds,yu(t, x)dy. Then we can write

F =

∫ t

0

∫

Rd

Vs,ξ(t, x)
2dξds .

For any fixed (s, ξ), the random field {Vs,ξ(t, x), t ≥ s, x ∈ R
d} satisfies the following linear

stochastic heat equation for t ≥ s, and x ∈ R
d,







∂Vs,ξ
∂t

=
1

2
△Vs,ξ + b′(u)Vs,ξ + σ′(u)Vs,ξ

∂W1

∂t
(t, x),

Vs,ξ(s, x) = c(ξ, x)σ(u(s, x)) .

Consider the continuous semimartingale {F (t, x), t ≥ 0, x ∈ R
d} given by

F (t, x) =

∫ t

0

b′(u(r, x))dr +

∫ t

0

σ′(u(r, x))W1(dr, x).
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The local characteristic of this semimartingale are b(t, x) = b′(u(t, x)) and

a(t, x, y) =

∫ t

0

σ′(u(r, x))σ′(u(r, y))q(x, y)dr .

Notice that conditions (3.1) and (3.2) hold because b′ and σ′ are bounded and q satisfies
(5.1). Then, Theorem 3.1 gives an explicit Feynman-Kac formula for the above equation.
This means that we have

Vs,ξ(t, x) =E
B

[

c(ξ, x+Bt−s)σ(u(s, x+Bt−s))

× exp

{
∫ t

s

F (dr, x+Bt−s − Br−s)−
1

2

∫ t

s

ā(r + x,Bt−s − Br−s)dr

}]

.

Step 2. Let

Y (s, t;B) =

∫ t

s

F (dr, x+Bt−s − Br−s)−
1

2

∫ t

s

ā(r + x,Bt−s −Br−s)dr.

Then
∫ t

0

∫

Rd

|Vs,ξ(t, x)|2dξds =
∫ t

0

∫

Rd

EB,B̃

[

c(ξ, x+Bt−s)c(ξ, x+ B̃t−s)

× σ(u(s, x+Bt−s))σ(u(s, x+ B̃t−s)) exp{Y (s, t;B) + Y (s, t; B̃)}
]

dξds

=

∫ t

0

EB,B̃

[

q(x+Bt−s, x+ B̃t−s)

× σ(u(s, x+Bt−s))σ(u(s, x+ B̃t−s)) exp{Y (s, t;B) + Y (s, t; B̃)}
]

ds

=

∫ t

0

H(s)ds,

where B̃ is a standard Brownian motion independent of B. If we can show that E(H(0)−p) <
∞ for all p > 1, and H(s) is Hölder continuous, then by Lemma 5.2 below we deduce

E

(
∫ t

0

∫

Rd

|Vs,ξ(t, x)|2dξds
)−p

= E

(
∫ t

0

H(s)ds

)−p

<∞

for all p ≥ 1. The Hölder continuity of H(s) can be verified from the following inequality:

E|H(s1)−H(s2)|p ≤ C|s2 − s1|
p
2
min{ρ,γ0,1+γ},

where C is determined by

sup
s∈[0,t]

{

E|q(x+Bt−s, x+ B̃t−s)|8p, E|σ(u(s, x+Bt−s))|8p, E exp{8pY (s, t;B)}
}

.

It remains to show that E(H(0)−p) <∞. Notice that

H(0) = EB,B̃
(

Gx exp{Y (0, t;B) + Y (0, t; B̃)}
)

,
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where
Gx = q(x+Bt, x+ B̃t)σ(u0(x+Bt))σ(u0(x+ B̃t)).

We can write, by Jensen’s inequality,

E

(

EB,B̃

[

Gx exp{Y (0, t;B) + Y (0, t; B̃)}
])−p

=E

∣

∣

∣

∣

EB,B̃

[

|Gx| sign(Gx) exp{Y (0, t;B) + Y (0, t; B̃)}
]
∣

∣

∣

∣

−p

≤
[

EB,B̃ |Gx|
]−p−1

E

[

|Gx| exp{−p(Y (0, t;B) + Y (0, t; B̃))}
]

.

Our nondegeneracy hypotheses imply that EB,B̃G > 0, and this allows us to conclude the
proof.

Lemma 5.2 Let {St, 0 ≤ t ≤ 1} be a non-negative stochastic process. If ES−a
0 < ∞ for

some a > 0, and sup
0≤s≤t

|Ss−S0| ≤ Gtγ where G is a positive random variable with EGb <∞
for some b > 0, then we have

E

∣

∣

∣

∣

∫ 1

0

Stdt

∣

∣

∣

∣

−p

<∞, for 0 < p < abγ/(a + b+ bγ) .

In particular, if a and b can be arbitrarily large, then p can also be chosen arbitrarily large.

Proof. Let α, β > 0, where α + β < 1 and bβγ − bα ≥ aα, and 0 < ǫ < 2α+β−1. We have

P

[
∫ 1

0

Stdt < ǫ

]

≤ P

[

∫ ǫβ

0

Stdt < ǫ, S0 > ǫα

]

+ P [S0 < ǫα]

≤P
[

sup
0≤t≤ǫβ

|St − S0| >
1

2
ǫα

]

+ P
[

S−a
0 > ǫ−aα

]

≤2bǫ−bαE

(

sup
0≤t≤ǫβ

|St − S0|b
)

+ ǫaαES−a
0 ≤ C

(

ǫbβγ−bα + ǫaα
)

≤ Cǫaα .

Then E
∣

∣

∣

∫ 1

0
Stdt

∣

∣

∣

−p

< ∞, for 0 < p < aα. The lemma follows with the choice of α and β

such that α < bγ/(a + b+ bγ) and β = (a+ b)/(a + b+ bγ).
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[15] Sanz-Solé, M. and Sarrà, M. Hölder continuity for the stochastic heat equation with
spacially correlated noise. Progress in Probability, Vol. 52, 259-268, Birkhäuser, 2002.
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