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Abstract. This study proposes a potential field algorithm for formulating pedestrian 

route choice behavior during evacuation in individual-based models with discrete 

space representation. The potential field reflects the effect of the route distance, 

pedestrian congestion and route capacity on route choice. Numerical simulations 

show that the developed model can reproduce more route choice modes in a scenario 

compared with several existing models. Three groups of pedestrian evacuation 

experiments are conducted and the proposed model reproduces pedestrian route 

choices effectively. 
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1. Introduction 
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Increases in city and urban populations and mass events have raised interest among 

researchers and authorities in problems of pedestrian-dynamics [1]-[4]. Pedestrian 

behavior in different scenarios has been investigated using mathematical models and 

computer simulations [5, 6]. These models and simulations help to shed light on 

pedestrian-dynamics problems and influence engineering decisions that maintain 

public facility service levels and ensure pedestrian safety.  

 

When pedestrians evacuate a closed area such as a meeting room, supermarket or 

theater or an open area such as a plaza or park, their choice of route is a critical 

behavioral reaction that affects the efficiency of their evacuation. Once they cannot 

appropriately select an evacuation route, a phenomenon in which many individuals 

collect on a few routes is likely to occur, leading to inefficient evacuation or even 

accidents caused by jamming. A study of pedestrian route choice behavior would lay 

the groundwork for route planning and finding meaningful locations for signs in 

pedestrian facilities. In this paper, we focus on the subject of pedestrian route choice, 

which depends on the prerequisite that they are familiar with the layout of the area 

and dynamic distribution of all individuals during evacuation so that the quickest 

evacuation can be implemented in principle.  

 

Route choice can be modeled using network-based models [7]-[12]. In this class of 

models, the spatial layout of a facility is represented by a network based on the 

facility’s actual structure. Accordingly, each node in the network represents a section 

of the pedestrian space in the facility irrespective of its physical dimensions. These 

nodes are connected by arcs that represent the actual openings between separate 

components. This class of models is generally used to form solutions to optimization 

problems and involves link disutility or cost functions. In these optimization problems, 

the numbers of pedestrians in these nodes are seen as decision variables. However, 
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several issues must be considered carefully before applying this class of models to 

route choice. First, it does not consider the fact that when the number of pedestrians in 

each section of the pedestrian space is fixed, their distribution in each section affects 

their choice of evacuation route. Second, while the number of pedestrians assigned to 

each route is known in the optimization problems, how the pedestrians are distributed 

in the route is unclear. Third, the link walking time functions are difficult to 

determine.  

 

To avoid the aforementioned issues, route choice can be modeled in individual-based 

models using either continuous space representation [13]-[15] or discrete lattice space 

[16]-[26]. In the individual-based models, each pedestrian is considered as a discrete 

individual, and the position update of each individual is formulated by a continuous or 

discrete dynamical system. The individual-based models mainly include the social 

force [5], lattice gas [27], cellular automata [1] and discrete choice models [3].  

 

In individual-based models with discrete lattice space, pedestrian route choices are 

formulated using the potential field of the lattice, i.e., the floor field in [1] and [28]. 

The potential is generally used to measure the route distance from the lattice site to 

the destination, the congestion of pedestrians en route to the destination or the 

capacity of routes to the destination; this allows these factors to be taken into account 

in a unified and simple way. Varas et al. [16] and Huang and Guo [17] proposed a 

category of algorithms to compute the potential of each lattice site that considers only 

the route distance, thereby formulating pedestrian route choices to multiple exits.  

 

Kretz [18] and Hartmann [21] considered the effects of not only route distance but 

also pedestrian congestion on route choice using the potential of space. For some 

scenarios, a location’s congestion affects the route choices of not only nearby 
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individuals but also pedestrians who are far from the location; however, for other 

some scenarios, a location’s congestion affects only the route choices of nearby 

individuals and has no effect on the route choices of pedestrians who are far from the 

location. Guo and Huang [19] and Alizadeh [23] formulated pedestrian route choices 

in buildings with multiple exits and obstacles using a class of potentials that weigh 

route distance and pedestrian congestion. Guo and Huang [19] used the number of 

pedestrians selecting each exit to reflect the effect on an individual, and Alizadeh [23] 

used the number of pedestrians on frontal routes to exits.  

 

Zhao and Gao [22] and Xu and Huang [25] formulated pedestrian route choice 

non-uniformly distributed in a facility while considering route distance and capacity.  

Zhao and Gao [22] used the free spaces near each exit to reflect the effect of capacity 

on each individual’s route choice, and Xu and Huang [25] used the free spaces near 

both each exit and each individual. However, neither study acknowledged that the free 

spaces between the two regions also affect route choice. In addition, their models 

probably become unreliable when there are obstacles in the facility. 

 

Guo and Huang [20] developed a method for computing the potential of discrete 

space that measures route distance, pedestrian congestion and route capacity. Capacity 

is reflected in the width of each link. However, when the widths of all links in a 

facility are equal, their model cannot be used to formulate the effect of capacity on the 

route choice. Zhang et al. [26] also established a potential field for pedestrian 

dynamics in individual-based models with discrete lattice space. The potential of each 

lattice site is defined as the minimal cost of traveling from the lattice site to the 

destination. The cost is related to the route distance and pedestrian density on front 

routes to the destination. However, the potential field cannot control the ratio of 

pedestrians selecting each route. In fact, real pedestrians are not completely rational 
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and sometimes select routes with non-minimal costs. Therefore, to formulate real 

pedestrian route choice behavior, a potential field should be capable of controlling the 

ratios of pedestrians selecting each route.  

 

We propose a potential field algorithm to formulate the route choice behavior of 

evacuating pedestrians in individual-based models with discrete space representation. 

The potential field has the following three properties. First, it reflects the effect of 

route distance, pedestrian congestion and route capacity on the route choice. The 

effect of capacity on an individual’s route choice is reflected in the free space in front 

of the individual. Second, it can formulate more route choice modes in a scenario than 

several existing potential fields. That is to say, by adjusting the parameters of the 

algorithm, the number of pedestrians selecting each route varies in a larger interval. 

Thus, the algorithm is more likely to be used to reproduce real pedestrian route choice 

behavior. Third, it can formulate the route choice of pedestrians evacuating a facility 

with internal obstacles and multiple exits.  

 

In Section 2, we introduce the algorithm and an associated individual-based 

pedestrian model with discrete space representation. In Section 3, we use numerical 

simulation to show that the potential algorithm can reproduce phenomena that several 

existing potential field algorithms cannot reproduce. Further, we conduct three groups 

of pedestrian evacuation experiments in a classroom. These experiments and a 

comparison of experiment results and model simulations are described in Section 4. 

Section 5 concludes the paper.  

 

2. Algorithm and Model Description 

 

While the proposed model is applied to simulate pedestrian evacuation from a closed 
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area with internal obstacles and n  exits, it can also be applied to simulate pedestrian 

route choices in open areas such as plazas and parks. Pedestrian space is represented 

by two-dimensional square lattices. Each lattice site can be either empty or occupied 

by an obstacle or exactly one pedestrian. In each discrete time step t∆ , the positions 

of all pedestrians are updated in a random sequence.  

 

In each time step t∆ , each pedestrian moves only one lattice site in the horizontal or 

vertical directions (i.e., the Manhattan Metric) or remains unmoving. When at least 

one direction of movement is available, the pedestrian moves one lattice site in a 

horizontal or vertical direction. The choice of direction is governed by the transition 

probability, which represents the possibility that the pedestrian moves the distance of 

a lattice site in each direction. If we let the probability of transition from one lattice 

site ( , )i j  into a neighboring lattice site 0 0( , )i j  in the horizontal or vertical 

directions be 
0 0( , ) ( , )i j i jP → , it is computed as follows:  

0 0 0 0 0 0( , ) ( , ) exp( )(1 )i j i j i j i jP U p oε→ = − − ,  (1) 

where U  is a normalization factor for ensuring that  

0 00 0
( , ) ( , )( , )

1i j i ji j
P → =∑ .  

 

In equation (1), 
0 0i jp  is the potential of the lattice site 0 0( , )i j . The potential of a 

lattice site is used to reflect the total effect of the route distance from the lattice site to 

the exit, the pedestrian congestion on the frontal route to the exit and the capacity of 

the frontal route to the exit. The potential is directly proportional to the route distance 

and the degree of congestion and is inversely proportional to the size of the frontal 

free space. The potential influences the transition probabilities in such a way that a 

movement in the direction of a smaller potential is preferred.  

 

In equation (1), ε  ( 0> ) is a sensitivity parameter for scaling the potential, and 
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parameter 
0 0i jo  represents whether a neighboring lattice site 0 0( , )i j  is occupied by a 

pedestrian, obstacle or wall. It is 1 if the lattice site is occupied and 0 otherwise. 

When all four neighboring lattice sites in the horizontal and vertical directions (i.e., 

the von Neumann neighborhood) are occupied, the pedestrian in this lattice site 

remains unmoving.  

 

The n  exits are numbered from 1 to n . Let ije  be the exit serial number of lattice 

site ( , )i j , which indicates that the potential of lattice site ( , )i j  is iteratively 

computed by the potential of the lattice sites occupied by exit ije . The algorithm for 

computing the potential of lattices in the area is summarized by the following steps 

(Note that parameters kd , δ , λ , α  and β  involved in this algorithm are 

specified later).  

Step 1. For each lattice site ( , )i j  occupied by a wall or obstacle, its potential 

ijp = +∞ .  

Step 2. For each lattice site ( , )i j  occupied by exit k  ( 1, 2, , n=  ), its potential 

0ijp = , and set ije k= .  

Step 3. For each k  ( 1, 2, , n=  ), set kd  as the number of lattice sites occupied by 

exit k .  

Step 4. For each lattice site ( , )i j  with a neighboring lattice site 0 0( , )i j  occupied by 

an exit in the horizontal or vertical directions, set its potential 1ijp = , set 
0 0ij i je e= , 

and it is added into the set of lattices that need to be checked.  

Step 5. For each k  ( 1, 2, , n=  ), set k k kd d m← + , where km  is the number of 

lattice sites, which are in the set of lattices that need to be checked, satisfy ije k=  

and are not occupied by pedestrians.  

Step 6. Set 1δ ← .  

Step 7. For each lattice site ( , )i j  in the set of lattices that need to be checked, if 

1ijpδ δ≤ < + , then check its neighboring lattice sites 0 0( , )i j  in all eight directions 
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(i.e., the Chessboard Metric) and remove the lattice site ( , )i j  from the set of lattices 

that need to be checked. If the potential 
0 0i jp  of the lattice site 0 0( , )i j  has not been 

determined, then set a temporary exit serial number 
0 0i j ije e=  and compute a 

temporary potential 
0 0i jp  in terms of the following four cases:  

If lattice site 0 0( , )i j  is not occupied by a pedestrian and is in the horizontal or 

vertical directions then  

( )0 0
1

iji j ij ep p dλ= + + ;  (2) 

if lattice site 0 0( , )i j  is occupied by a pedestrian and is in the horizontal or 

vertical directions then  

( )( )0 0
1 1

iji j ij ep p dα λ= + + + ;  (3) 

if lattice site 0 0( , )i j  is not occupied by a pedestrian and is in a diagonal 

direction then 

( )0 0
1

iji j ij ep p dβ λ= + + + ;  (4) 

and if lattice site 0 0( , )i j  is occupied by a pedestrian and is in a diagonal 

direction then 

( )( )0 0
1 1

iji j ij ep p dα β λ= + + + + .  (5) 

Step 8. For each lattice site 0 0( , )i j  evaluated according to the temporary exit serial 

number and potential in Step 7, its potential 
0 0i jp  takes the minimum value among 

all its temporary potentials, its exit serial number 
0 0i je  takes the temporary exit serial 

number value corresponding to the minimum temporary potential, and it is added into 

the set of lattices that need to be checked.  

Step 9. For each k  ( 1, 2, , n=  ), set k k kd d m← +  , where km  is the number of 

lattice sites, which are added into the set of lattices that need to be checked in Step 8, 

satisfy ije k=  and are not occupied by pedestrians. 

Step 10. Set 1δ δ← + .  

Step 11. If the potential of each lattice site has been determined then stop; otherwise, 

return to Step 7. 
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For each of iteration, an interval [ , 1)δ δ +  is determined. If the potential of a lattice 

site in the set of lattices that need to be checked is in the interval, then the potentials 

of its neighboring lattices are computed. In this way, as the parameter δ  increases, 

more lattice potentials are computed.  

 

Parameter kd  reflects the frontal route capacity. Intensity parameter λ  ( 0≥ ) scales 

the effect of the frontal route capacity on the potential. If the potential of a lattice site 

is iteratively computed by the potential of the lattice sites occupied by exit k , 

parameter kd  records the number of empty lattice sites on the frontal routes of the 

lattice site to exit k . The frontal route of a lattice site comprises those lattice sites 

whose potential computation precedes the potential computation of the lattice site and 

whose potentials are used to compute the potential of the lattice site. kd  occurs in 

formulae (2)-(5) as a denominator and hence its initial value takes the number of 

lattice sites occupied by exit k  to guarantee 0kd ≠ . Formulae (2) to (5) indicate 

that the potential is inversely proportional to the number of empty lattice sites on the 

frontal routes. When there is more free space in front of a lattice site, the increase rate 

of the lattice site’s potential is smaller. Moreover, for each of iteration, the size of the 

interval [ , 1)δ δ +  is fixed as one. Thus, the potential of more lattice sites in the space 

is computed using the potential of the lattice sites occupied by the exit, near which 

there are more free space. If the potential of a lattice site is computed by the potential 

of the lattice sites occupied by an exit, then the pedestrian in the lattice site almost 

moves towards the exit.  

 

Intensity parameter α  ( 0≥ ) scales the effect of local pedestrian congestion on the 

potential. It indicates that the increase rate of the potential of a lattice site occupied by 

a pedestrian is not less than that of an unoccupied lattice site. The pedestrian space is 
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discretized into two-dimensional square lattices, and hence the distance of a lattice 

site to a neighboring lattice site in the vertical or horizontal directions is smaller than 

the distance of the lattice site to a neighboring lattice site in a diagonal direction. The 

distance between two neighboring lattice sites is reflected by terms 1 and (1 )β+  in 

the right parenthesis of formulae (2)-(5). Intensity parameter β  ( [0,1]∈ ) scales the 

increase rate of the potential of a neighboring lattice site in a diagonal direction. It 

indicates that the increase rate of the potential of a neighboring lattice site in a 

diagonal direction is not less than that of a neighboring lattice site in the vertical or 

horizontal directions. A detailed description of the potential algorithm run is shown in 

Appendix A1.  

 

When parameter 0λ = , the algorithm degenerates into those in [18] and [21]. 

Furthermore, when parameters 0λ =  and 0α = , the algorithm is similar to those in 

[16] and [17]. Contrary to the algorithm in [20], in which capacity is reflected in the 

link widths, capacity in the potential algorithm is reflected in the frontal free space. 

Section 3 shows that the algorithm can be used to reproduce more route choice modes 

in a scenario compared with these algorithms in [16-18, 20, 21].  

 

When the potential algorithm is used to simulate pedestrian evacuation from a facility, 

the potential distribution in the space needs to be recomputed in each time step. The 

potential algorithm is a flood fill algorithm that can be run quickly enough in 

principle.  

 

3. Numerical Results 

 

We then simulate pedestrian route choices in a scenario shown in figure 1. In the 

scenario, the area of a building is discretized into 50×50 lattice sites, including those 
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occupied by walls. Two exits with the same widths as two lattice sites are located in 

the middle of the north and south walls, respectively. At the initial time, 384 

pedestrians distributed throughout the lattice sites are marked as red circles. There are 

two obstacles denoted by shaded rectangles in the scenario. The building’s link widths 

are the same (eight lattice sites) and the widths of the two exits are equal. Thus, if the 

capacity is reflected by the link widths, in line with [20], the ratios of pedestrians 

selecting each exit cannot be controlled by adjusting the intensity parameter of scaling 

capacity. We use the proposed model to simulate pedestrian evacuation in the 

scenario. 

 

***Place Figure 1 about here*** 

 

The sensitivity parameter in formula (1) is 2ε =  and the intensity parameter is 

2 1β = − . By adjusting intensity parameters α  and λ , we observe the variation 

trend of the route choices of these pedestrians. Figure 2 shows snapshots of pedestrian 

evacuation in the scenario at time steps T = 50, 100 and 150, when 0λ =  and α = 0, 

5 and 10. When 0λ =  and 0α = , the proposed model is similar to those in [16] and 

[17]. In this case, almost all pedestrians select exit 1. When 0λ = , the proposed 

model degenerates into those in [18] and [21]. When parameter α  increases, the 

number of pedestrians selecting exit 1 decreases and the number of pedestrians 

selecting exit 2 increases. This trend can also be seen in figure 3, which displays the 

potentials of lattices in the scenario at time steps T = 50, 100 and 150 when 0λ =  

and α = 0, 5 and 10. Pedestrians move along the direction in which the potential 

decreases. For each α  value, the apex of the potential is still closer to exit 1. Thus, 

for each α  value, the number of pedestrians selecting exit 1 is more than the number 

of pedestrians selecting exit 2. In fact, when parameter α  increases, the number of 

pedestrians selecting exit 1 cannot decrease to less than the number of pedestrians 
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selecting exit 2. This can be observed in figure 4.  

 

***Place Figure 2 about here*** 

 

***Place Figure 3 about here*** 

 

Figure 4 shows the relation of the number of evacuation time steps of each exit and 

number of pedestrians evacuating from each exit to parameter α , varying from 0 to 

15 for the scenario in the case of 0λ = . The number of evacuation time steps of each 

exit refers to the number of time steps needed for all pedestrians to leave the building, 

i.e., the number of evacuation time steps of the last pedestrian to leave the building 

through the exit. Twenty simulations are conducted for each parameter value, and the 

number of time steps and number of pedestrians are the averages across 20 

simulations. As the α  value increases, both the number of time steps of exit 1 and 

the number of pedestrians evacuating from exit 1 decline and the decline rates 

decrease. For exit 2, both the number of time steps and the number of pedestrians rise 

and the rise rates decrease. Moreover, the number of time steps of exit 1 is still larger 

than that of exit 2 and the number of pedestrians evacuating from exit 1 is more than 

that of pedestrians evacuating from exit 2. Hence, for these models in [16-18, 21], the 

ratios of pedestrians selecting each exit cannot be adjusted so that the evacuation time 

of exit 1 and number of pedestrians evacuating from exit 1 are less than those for exit 

2.  

 

***Place Figure 4 about here*** 

 

Figure 5 shows snapshots of pedestrian evacuation in the scenario at time steps 50, 

100 and 150 when 1α =  and λ =0, 17.5 and 30. As parameter λ  increases, the 
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number of pedestrians evacuating from exit 1 decreases and the number of pedestrians 

evacuating from exit 2 increases. When 0λ = , there are still pedestrians near exit 1 

at time step 150, and there is only one individual near exit 2. As a result, the 

evacuation time of exit 1 is larger than that of exit 2. When 30λ = , the number of 

pedestrians near exit 1 is less than the number of pedestrians near exit 2 at time step 

15, and the evacuation time of exit 1 is less than that of exit 2. This phenomenon can 

also be observed in figure 6, which shows lattice potentials in the scenario at time 

steps 50, 100 and 150 when 1α =  and λ = 0, 17.5 and 30. As parameter λ  

increases, the apex of the potential moves from a location closer to exit 1 to one closer 

to exit 2 at time step 150. 

 

***Place Figure 5 about here*** 

 

***Place Figure 6 about here*** 

 

Figure 7 shows the relation of the number of evacuation time steps of each exit and 

number of pedestrians evacuating from each exit to parameter λ , varying from 0 to 

30 for the scenario when 1α = . When 0λ = , the number of evacuation time steps of 

exit 1 is larger than that of exit 2. As parameter λ  increases, the number of 

evacuation time steps of exit 1 decreases and that of exit 2 increases. When 17.5λ = , 

the numbers of evacuation time steps of the two exits are almost equal. For those λ  

values larger than 17.5, the number of evacuation time steps of exit 1 becomes smaller 

than that of exit 2. A similar phenomenon can be observed for the number of 

pedestrians evacuating from each exit. Therefore, the proposed model can reproduce 

more route choice modes in a scenario than these models in [16-18, 20, 21] and is 

more likely to be used to reproduce real pedestrian route choice behavior.  
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***Place Figure 7 about here*** 

 

4. Experiment Description and Results 

 

In this section, we introduce three groups of pedestrian evacuation experiments and 

try to reproduce pedestrian route choice behavior using the proposed model.  

 

The three groups of experiments were conducted in a classroom, which is illustrated 

schematically in figure 8. The size of the classroom was 5.65×10.80 m2. Two exits 

with widths of 0.76 m and 1.05 m were located in the north wall close to the west and 

east walls, respectively. Two obstacles, a lectern and a computer workbench, were 

placed on the west side of the classroom. Seventy pairs of desks and chairs were 

arranged in eight rows of nine. The obstacles and the desks are denoted in the schema 

by light grey rectangles, and the initial positions of individuals are denoted by green 

circles numbered 1 to 70. The desks and chairs were divided into three sections by 

two horizontal aisles. The transverse distance between desks in each section was 0.9 

m. The vertical width of the desks was 1.36 m in the north section, 2.06 m in the 

middle section and 1.23 m in the south section. The width of each of the horizontal 

aisles was 0.5 m. The chairs folded automatically, so when individuals stood up, the 

chairs folded up and left space for the individuals to move between the desks. A video 

camera was mounted at the southwest corner of the classroom and was used to record 

the evacuation processes.  

 

***Place Figure 8 about here*** 

 

Three groups of experiments were carried out, in which 10, 20 and 30 students were 

asked to perform 8, 8 and 16 evacuation processes, respectively. In each evacuation 
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process, the initial positions of the students were randomly generated using a 

computer. All individuals stood up from their seats and moved towards the exits as 

soon as the command to evacuate was given. Once they arrived at the exits, they left 

the classroom and then their initial positions, the exits they selected and their 

evacuation times were recorded. An individual’s evacuation time is defined as the 

time that elapsed between when the command to evacuate was given and the moment 

the individual exited the classroom. Let Experiment i-j represent the jth evacuation 

process in the ith group of experiments. The individuals’ initial positions, exit 

selections and evacuation times are given in Tables 1-3 (see Appendix A2). Figure 9 

shows photographs of individuals evacuating the classroom in Experiment 1-2 at 0 

and 5 s, Experiment 2-2 at 0 and 5 s and Experiment 3-4 at 0 and 5 s. 

 

***Place Figure 9 about here*** 

 

To reproduce the exit choice behavior of the individuals in these experiments using 

the proposed model, we discretized the classroom into 12×27 lattice sites according 

to space distribution. A schematic illustration of the classroom in these simulations is 

shown in figure 10. We let Simulation i-j represent the jth evacuation process in the 

ith group of simulation. The number of individuals and their initial positions in 

Simulation i-j are identical to those in Experiment i-j. We compare the numbers of 

individuals evacuating from each exit and the evacuation times at each exit obtained 

in both Experiment i-j and Simulation i-j. Twenty simulations are conducted for each 

Simulation i-j and the number of time steps and number of pedestrians are the 

averages across the 20 simulations.  

 

***Place Figure 10 about here*** 
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In these simulations, the sensitivity parameter in formula (1) is 2ε =  and the 

intensity parameters are 2 1β = −  and 1α = .  Let the parameter λ  vary from 0 

to 50 with an interval of 1. The following indications, 1I  and 2I , are used to 

evaluate the degree of similarity between the numbers and times obtained in these 

simulations and experiments.  

( )2

1 ijk ijk
i j k

I N N= −∑∑∑  , (6) 

where ijkN  and ijkN  are the numbers of individuals evacuating from exit k  ( 1, 2= ) 

in Experiment i-j and Simulation i-j, respectively.  

( )2

2 ijk ijk
i j k

I t S t= − ∆∑∑∑ , (7) 

where ijkt  is the evacuation time of exit k  ( 1, 2= ) in Experiment i-j and ijkS  is the 

number of evacuation time steps of exit k  ( 1, 2= ) in Simulation i-j. The time step 

t∆  is computed by 

2

ijk ijk
i j k

ijk
i j k

t S
t

S
∆ =

∑∑∑
∑∑∑

;  (8) 

that is to say, 

( )2

0
arg min

≥
∆ = −∑∑∑ ijk ijkx i j k

t t S x . (9) 

Smaller 1I  or 2I  values indicate simulations that can reproduce these experiments 

more effectively.  

 

Figure 11 shows the relation of indications 1I  and 2I  to parameter λ . As 

parameter λ  increases, both indications 1I  and 2I  first decline and then rise. 

Moreover, both indications 1I  and 2I  take minimum values at about 12λ = . When 

12λ = , the corresponding time step 0.44t∆ = . This implies a free walking speed of 

approximately 1.1 m/s, which is very close to the findings of many observational 

studies [29, 30]. Figures 12 and 13 compare the numbers of individuals evacuating 

from each exit and the evacuation times at each exit between the experiments and 
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simulations, when 12λ = . For either the numbers or times, these points are on or 

near the diagonal lines. Therefore, the proposed model can be used to formulate 

pedestrian route choice behavior in the three groups of experiments.  

 

***Place Figure 11 about here*** 

 

***Place Figure 12 about here*** 

 

***Place Figure 13 about here*** 

 

5. Conclusions 

 

We propose an algorithm for the potential field that navigates pedestrian route choice 

in the individual-based model to simulate the evacuation process of pedestrians from a 

facility. The potential field measures three factors that affect the route choice, 

including route distance, pedestrian congestion and route capacity. These models in 

[16-18, 21] are special cases of the proposed model. In this model, route capacity is 

reflected by the free space in front of each individual, which is different to the method 

used in [20]. Through numerical simulation, we show that the proposed model can 

formulate more route choice modes in a scenario compared with these models in 

[16-18, 20, 21]. Therefore, it is more likely to be used to reproduce real pedestrian 

route choice behavior. In addition, the model avoids several issues that exist in those 

in [19, 22, 23, 25, 26].  

 

We also conduct three groups of experiments, in which individuals evacuate a 

classroom, and compare experiment results and model simulations. Experimental and 

numerical results indicate that the model can reproduce pedestrian route choice more 
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effectively. Thus, it is helpful for devising evacuation schemes and designing internal 

layouts and exit arrangements in buildings similar to the classroom. 

 

In addition, the proposed potential field algorithm is extendable to other areas. It may 

be used to consider pedestrian route choices in individual-based models with 

continuous space representation and vehicle route choices in urban networks. Further, 

it may be applied to autonomous robot navigation, providing solutions for a robot’s 

path-finding issues.  
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Appendix  

A.1. Flow chart of potential algorithm 

 

Figure 14 presents the flow chart of the potential algorithm. In this figure, ijp , ijo , 

ije , ijp , n , kd  ( 1, 2, ,k n=  ), δ , λ , α , and β  have the same meaning with 

those in Section 2. tn  is the total number of lattice sites in the closed areas, and is 

used to determine whether the potentials of all lattice sites are computed, i.e., whether 

the algorithm stops. on  is the number of lattice sites occupied by a wall or obstacle, 

and the 2on ×  dimensional array oS  records the coordinates of these lattice sites. 
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i
en  is the number of lattice sites occupied by exit i , and the 2i

en ×  dimensional 

array i
eS  records the coordinates of these lattice sites. i

nn  is the number of lattice 

sites that have a neighboring lattice site occupied by exit i  in the horizontal or 

vertical directions, and the 2i
nn ×  dimensional array i

nS  records the coordinates of 

these lattice sites. cn  is the number of lattice sites that need to be checked, and the 

2cn ×  dimensional array cS  records the coordinates of these lattice sites. 1S  and 

2S  are two arrays that record the coordinates of 1n  and 2n  lattice sites, 

respectively, and they are used to update the array cS . The 8 2×  dimensional array 

ijS  records the coordinates of eight lattice sites adjacent to lattice site ( , )i j , and the 

coordinates of these lattice sites in horizontal and vertical directions (diagonal 

directions) are recorded in odd lines (even lines).  

 

***Place Figure 14 about here*** 

 

A.2. Evacuation Times and Exit Choices of Pedestrians in These Experiments 

 

See Tables 1 to 3.  

 

***Place Table 1 about here*** 

 

***Place Table 2 about here*** 

 

***Place Table 3 about here*** 
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Figure 1. Simulation scenario (unit of size: lattice site). 
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Figure 2. Snapshots of pedestrian evacuation in the figure 1 scenario at time steps 50, 

100 and 150 when 0λ =  and α = 0, 5 and 10. 
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Figure 3. Potential of lattices in the figure 1 scenario at time steps 50, 100 and 150 

when 0λ =  and α = 0, 5 and 10. 
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Figure 4. Relation of the number of evacuation time steps of each exit and number of 

pedestrians evacuating from each exit to parameter α  for the figure 1 scenario when 

0λ = .  
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Figure 5. Snapshots of pedestrian evacuation in the figure 1 scenario at time steps 50, 

100 and 150 when 1α =  and λ =0, 17.5 and 30. 
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Figure 6. Potential of lattices in the figure 1 scenario at time steps 50, 100 and 150 

when 1α =  and λ =0, 17.5 and 30. 
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Figure 7. Relation of the number of evacuation time steps of each exit and number of 

pedestrians evacuating from each exit to parameter λ  for the figure 1 scenario when 

1α = .  
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Figure 8. Schematic illustration of the classroom used in the experiments (unit of size: 

m).  
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Figure 9. Photographs of pedestrian evacuation from the classroom in Experiment 1-2 

at 0 and 5 s, Experiment 2-2 at 0 and 5 s, and Experiment 3-4 at 0 and 5 s. 
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Figure 10. Schematic illustration of the classroom in the simulations (unit of size: 

lattice site). 
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Figure 11. Relation of indications 1I  and 2I  to parameter λ  for the figure 10 

scenario when 2ε = , 2 1β = − , and 1α = . 
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Figure 12. Numbers of pedestrians evacuating from each exit in the experiments and 

those in the simulations. 
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Figure 13. Evacuation times of each exit in the experiments and those in the 

simulations. 
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Figure 14. Flow chart of the potential algorithm. 
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Table 1 Evacuation times (unit: s) and exit choices of pedestrians in Experiments 1-1 

to 1-8. 

 
Experiment 1-1 Experiment 1-2 Experiment 1-3 Experiment 1-4 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
3 1 6.57 7 1 4.90 3 1 6.63 2 1 6.87 
9 1 5.52 13 1 6.36 5 1 3.64 15 1 7.74 
13 1 7.52 24 1 7.39 10 1 4.65 18 1 8.53 
20 1 8.59 25 1 8.66 13 1 5.69 22 1 5.64 
38 2 8.32 32 1 9.82 27 1 7.57 31 1 9.37 
47 2 9.32 35 2 7.47 30 1 10.01 34 2 8.15 
52 2 5.10 37 2 6.61 35 1 8.74 40 2 5.94 
57 2 3.71 41 2 5.65 44 2 4.82 52 2 4.76 
64 2 7.26 44 2 4.60 45 2 6.68 63 2 6.97 
66 2 6.37 51 2 9.52 69 2 3.04 69 2 2.82 
Experiment 1-5 Experiment 1-6 Experiment 1-7 Experiment 1-8 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
6 1 5.59 4 1 4.67 11 1 3.86 12 1 4.38 
7 1 4.40 8 1 3.62 19 1 7.84 16 1 9.96 
12 1 6.60 13 1 6.04 27 1 5.69 24 1 5.95 
20 1 8.52 42 2 5.67 30 1 8.79 25 1 6.80 
21 1 7.69 51 2 8.97 37 2 5.64 31 1 7.96 
37 1 9.42 52 2 6.58 44 2 7.41 45 2 7.27 
45 2 5.95 60 2 3.94 47 2 8.34 48 2 7.93 
55 2 4.51 66 2 7.93 48 2 9.25 56 2 6.34 
56 2 6.67 67 2 4.96 56 2 3.83 61 2 4.54 
57 2 3.26 70 2 2.77 70 2 2.02 67 2 5.42 
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Table 2 Evacuation times (unit: s) and exit choices of pedestrians in Experiments 2-1 

to 2-8. 

 
Experiment 2-1 Experiment 2-2 Experiment 2-3 Experiment 2-4 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
4 1 7.77 7 1 4.35 3 1 5.66 3 1 6.34 
6 1 5.13 16 1 7.84 8 1 4.91 6 1 3.24 
8 1 4.05 20 1 9.29 14 1 7.20 15 1 7.08 
9 1 6.99 25 1 8.71 19 1 7.94 16 1 9.40 
13 1 8.65 28 1 6.48 23 1 6.33 25 1 10.25 
18 1 9.48 31 1 10.59 30 1 9.39 26 1 5.49 
25 1 11.38 35 1 11.45 31 1 10.27 27 1 7.86 
31 1 10.56 39 1 9.96 32 1 11.09 28 1 8.64 
32 1 12.93 42 2 11.69 39 1 8.67 36 2 11.34 
33 2 12.70 43 2 5.73 41 2 10.55 40 1 11.17 
39 1 12.09 52 2 10.26 42 2 8.89 41 2 10.34 
41 2 9.60 53 2 9.24 43 2 8.01 49 2 12.01 
49 2 11.65 55 2 3.60 45 2 9.06 53 2 8.51 
51 2 10.61 56 2 8.35 46 2 12.22 54 2 5.62 
53 2 8.70 61 2 5.29 52 2 11.35 55 2 7.58 
58 2 3.61 63 2 6.74 53 2 6.26 56 2 9.39 
59 2 5.70 64 2 10.93 58 2 5.44 57 2 3.75 
60 2 6.73 65 2 6.25 60 2 4.47 63 2 6.28 
66 2 7.81 67 2 4.38 61 2 6.85 65 2 6.80 
70 2 4.78 69 2 3.39 67 2 3.47 67 2 4.71 
Experiment 2-5 Experiment 2-6 Experiment 2-7 Experiment 2-8 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
2 1 5.39 3 1 5.40 1 1 6.52 4 1 5.87 
8 1 3.80 4 1 8.58 3 1 7.25 8 1 5.27 
12 1 6.84 6 1 4.68 6 1 4.15 13 1 6.68 
13 1 8.36 7 1 3.66 8 1 4.95 16 1 7.64 
15 1 6.17 13 1 6.06 11 1 5.65 19 1 9.04 
20 1 7.58 16 1 7.74 15 1 8.28 20 1 8.40 
25 1 10.57 18 1 10.35 18 1 9.52 25 1 9.67 
29 1 9.80 21 1 6.93 21 1 9.05 29 2 10.53 
30 1 9.03 27 1 9.41 25 1 10.29 31 1 10.40 
33 2 10.5 30 1 11.24 32 1 11.54 34 1 11.04 
36 2 9.14 31 1 12.11 39 2 9.93 37 1 11.82 
44 2 8.34 33 2 10.67 42 2 9.31 38 2 7.24 
47 2 9.70 37 2 9.20 49 2 8.16 44 2 6.39 
48 2 11.26 39 2 7.43 51 2 8.69 45 2 8.79 
54 2 6.72 40 2 9.87 55 2 4.82 48 2 9.57 
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57 2 4.19 47 2 7.98 56 2 7.58 53 2 4.82 
60 2 5.12 52 2 6.75 57 2 6.83 55 2 3.84 
61 2 7.61 53 2 5.30 58 2 6.06 64 2 8.04 
68 2 5.92 65 2 8.51 59 2 3.83 65 2 5.54 
69 2 3.22 66 2 5.95 63 2 5.43 70 2 2.00 
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Table 3 Evacuation times (unit: s) and exit choices of pedestrians in Experiments 3-1 

to 3-16. 

 
Experiment 3-1 Experiment 3-2 Experiment 3-3 Experiment 3-4 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
1 1 10.85 1 1 8.69 6 1 4.65 2 1 6.26 
4 1 4.76 2 1 5.64 7 1 3.73 4 1 6.91 
8 1 3.34 3 1 7.06 8 1 2.98 9 1 7.82 
11 1 5.47 9 1 4.48 11 1 5.41 10 1 4.41 
13 1 7.83 12 1 6.39 13 1 6.38 11 1 5.40 
15 1 6.28 16 1 10.17 15 1 7.02 14 1 8.47 
16 1 13.62 19 1 10.96 16 1 11.27 16 1 9.04 
18 1 9.72 22 1 7.98 18 1 13.08 17 1 10.58 
23 1 7.00 28 1 9.42 19 1 9.76 23 1 9.95 
25 1 11.78 31 1 13.44 20 1 12.14 26 1 11.39 
27 1 8.95 32 1 12.12 21 1 10.50 28 1 12.53 
29 1 12.66 33 2 15.37 22 1 7.73 30 1 13.21 
30 1 14.53 34 2 14.52 26 1 8.67 31 1 12.12 
32 2 16.72 35 1 12.77 35 1 13.78 35 2 14.36 
36 2 15.41 36 1 14.98 36 2 14.75 38 1 13.97 
37 2 12.25 39 1 15.83 41 2 12.46 39 1 14.67 
41 2 11.34 41 2 10.92 42 2 10.21 40 2 11.68 
43 2 10.47 42 2 10.08 44 2 13.16 42 2 9.90 
44 2 13.22 44 2 8.41 45 2 13.82 43 2 10.86 
48 1 16.59 45 2 12.40 50 2 10.97 48 2 13.42 
51 2 18.14 46 2 13.91 52 2 8.76 49 2 12.57 
54 2 6.85 48 2 13.20 54 2 5.79 50 2 8.20 
56 2 9.57 50 2 11.67 57 2 4.16 53 2 6.49 
57 2 5.57 51 2 6.58 60 2 4.80 56 2 9.06 
60 2 4.49 54 2 3.95 61 2 6.78 58 2 4.21 
62 2 7.94 56 2 4.91 62 2 9.52 59 2 2.49 
63 2 8.87 60 2 3.33 64 2 11.76 61 2 7.19 
64 2 11.00 62 2 7.45 65 2 7.76 66 2 4.84 
66 2 14.33 64 2 9.26 69 2 3.47 67 2 5.77 
68 2 3.65 65 2 5.72 70 2 2.00 68 2 3.38 
Experiment 3-5 Experiment 3-6 Experiment 3-7 Experiment 3-8 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
2 1 6.85 1 1 5.49 3 1 5.38 1 1 7.13 
3 1 8.70 6 1 2.89 5 1 4.45 3 1 5.92 
6 1 5.34 12 1 4.72 7 1 3.13 4 1 5.24 
7 1 3.51 14 1 7.85 9 1 6.23 7 1 3.69 
11 1 4.49 15 1 9.21 14 1 7.56 8 1 4.48 
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14 1 7.73 17 1 9.63 16 1 10.19 9 1 6.50 
18 1 9.43 21 1 8.67 17 1 13.42 16 1 8.65 
20 1 10.97 23 1 6.29 18 1 10.72 19 1 11.00 
21 1 10.26 24 1 7.13 19 1 12.32 21 1 10.31 
22 1 6.19 25 1 13.64 21 1 8.34 22 1 7.88 
23 1 7.24 27 1 10.30 24 1 6.79 23 1 9.44 
26 1 12.89 30 1 11.26 25 1 11.36 24 1 12.15 
31 1 13.93 33 1 14.64 26 1 9.23 29 1 12.74 
33 2 15.26 34 1 12.16 31 1 14.74 30 1 13.64 
34 2 13.50 38 1 15.24 32 1 15.52 31 1 14.40 
39 2 14.35 41 2 12.86 34 2 10.29 34 1 15.07 
40 2 16.29 45 1 16.63 35 2 12.63 38 2 12.56 
41 2 12.68 51 2 11.99 36 1 16.55 39 2 13.28 
44 2 9.41 52 2 11.27 37 2 10.93 42 2 9.99 
45 2 10.21 53 2 8.57 38 1 12.79 44 2 11.73 
47 2 11.84 54 2 6.36 39 2 9.26 47 2 10.77 
50 2 10.98 56 2 7.77 41 2 11.78 53 2 9.12 
51 2 7.40 57 2 3.41 42 2 7.59 55 2 6.50 
55 2 5.31 59 2 5.00 43 2 6.14 57 2 4.64 
56 2 6.03 60 2 7.01 49 2 8.46 58 2 3.15 
60 2 4.42 62 2 10.44 52 2 6.85 62 2 5.42 
63 2 8.25 64 2 9.63 53 2 5.35 64 2 7.25 
65 2 6.72 68 2 5.72 57 2 4.53 65 2 8.13 
68 2 3.28 69 2 4.29 58 2 3.49 67 2 3.95 
69 2 2.37 70 2 2.43 70 2 2.73 70 2 2.30 
Experiment 3-9 Experiment 3-10 Experiment 3-11 Experiment 3-12 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
1 1 6.20 2 1 5.80 1 1 6.91 5 1 6.15 
2 1 4.75 3 1 4.24 4 1 5.52 6 1 3.96 
4 1 5.39 6 1 3.12 5 1 5.01 7 1 4.84 
5 1 3.26 12 1 5.04 6 1 4.32 11 1 5.46 
9 1 6.88 17 1 13.96 7 1 3.52 14 1 11.00 
11 1 4.10 18 1 10.63 10 1 6.22 15 1 10.36 
13 1 9.19 19 1 7.20 18 1 7.79 16 1 8.06 
14 1 7.73 21 1 9.75 22 1 8.79 21 1 8.44 
19 1 10.31 22 1 7.87 24 1 9.84 23 1 6.92 
23 1 10.92 23 1 6.48 25 1 13.16 25 1 12.51 
25 1 14.01 24 1 8.99 29 1 11.51 27 1 11.68 
27 1 13.17 26 1 11.44 30 1 13.92 29 1 13.92 
29 1 9.68 28 1 13.55 32 1 10.66 30 1 13.22 
30 1 8.36 33 1 14.78 33 2 12.26 31 1 9.35 
35 1 12.05 35 1 12.25 34 1 12.45 34 2 12.70 
36 2 12.78 36 2 12.91 37 2 10.85 35 2 11.22 
38 2 8.63 37 2 11.94 38 2 8.57 37 2 9.64 
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40 2 11.86 38 2 9.39 43 2 5.52 39 1 14.75 
41 2 9.86 40 2 13.76 44 2 10.22 40 1 15.60 
42 2 7.33 42 2 7.06 47 2 14.32 49 2 11.82 
45 2 11.33 45 2 10.09 48 2 13.50 50 2 10.44 
46 2 10.55 46 2 14.56 49 2 12.84 52 2 6.11 
53 2 5.90 47 2 11.12 50 2 9.39 54 2 4.75 
55 2 4.89 55 2 5.47 51 2 11.38 58 2 3.25 
58 2 3.36 58 2 3.91 53 2 7.13 61 2 5.44 
61 2 6.52 60 2 4.69 60 2 4.61 62 2 7.50 
62 2 8.05 64 2 8.59 62 2 6.38 64 2 8.98 
64 2 9.31 65 2 7.90 63 2 7.88 65 2 8.34 
65 2 4.16 66 2 6.27 68 2 3.56 67 2 6.83 
69 2 1.96 68 2 3.05 69 2 2.80 69 2 3.91 
Experiment 3-13 Experiment 3-14 Experiment 3-15 Experiment 3-16 

Position Exit Time Position Exit Time Position Exit Time Position Exit Time 
1 1 8.93 4 1 5.86 3 1 5.32 2 1 7.75 
2 1 7.51 5 1 4.44 4 1 6.11 3 1 6.54 
3 1 8.20 8 1 3.69 5 1 4.36 4 1 9.43 
5 1 3.74 13 1 8.59 12 1 4.81 5 1 5.89 
6 1 2.39 15 1 6.97 13 1 12.35 6 1 3.63 
9 1 4.94 16 1 9.16 15 1 8.42 8 1 4.84 
14 1 9.91 17 1 12.97 18 1 11.63 10 1 7.07 
16 1 11.44 18 1 11.31 20 1 9.12 14 1 10.03 
18 1 12.12 22 1 5.22 22 1 7.83 15 1 8.38 
21 1 6.53 24 1 7.69 23 1 7.24 16 1 11.94 
23 1 5.65 25 1 9.83 25 1 15.09 18 1 14.35 
26 1 10.71 33 2 16.40 26 1 10.29 19 1 8.88 
28 1 13.83 34 1 12.17 27 1 13.91 26 1 10.97 
29 1 14.86 37 1 10.51 29 1 13.11 28 1 12.64 
30 1 12.92 39 2 14.53 31 1 11.01 30 1 13.35 
34 2 12.37 41 2 11.99 35 2 13.93 31 1 14.96 
35 1 15.45 44 2 11.20 38 2 13.21 32 1 15.50 
36 2 11.66 45 2 13.78 40 1 15.82 33 2 12.04 
39 2 11.14 51 2 9.38 42 2 6.88 43 2 6.01 
42 2 10.32 52 2 15.53 44 2 11.19 44 2 7.86 
44 2 7.46 53 2 10.33 45 2 14.68 45 2 11.36 
47 2 9.52 54 2 3.68 46 2 12.18 46 2 10.67 
49 2 8.15 55 2 7.78 50 2 9.52 49 2 9.87 
50 2 6.22 57 2 6.98 51 2 7.76 50 2 8.53 
53 2 8.78 60 2 5.41 52 2 10.38 51 2 9.23 
56 2 4.54 62 2 6.12 53 2 8.54 53 2 5.18 
57 2 3.53 63 2 8.51 57 2 5.17 58 2 3.43 
62 2 6.80 64 2 12.89 59 2 4.26 65 2 6.95 
66 2 5.52 68 2 4.53 65 2 6.01 67 2 4.37 
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68 2 2.43 69 2 2.75 69 2 3.30 70 2 2.36 
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