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Abstract. We introduce a generalized camera calibration model that is
able to determine the camera parameters without requiring perfect rectan-
gular road-lane markings, thus overcoming the limitations of state-of-the-
art calibration models. The advantage of the new model is that it can cope
in situations where road-lane markings do not form a perfect rectangle,
making calibration by trapezoidal patterns or parallelograms possible.
The model requires only four reference points—the lane width and the
length of the left and right lane markings—to determine the camera param-
eters. Through real-world surveying experiments, the new model is shown
to be effective in defining the 2D/3D transformation (or vice versa) when
there is no rectangular pattern on the road, and can also cope with trap-
ezoidal patterns, near-parallelograms, and imperfect rectangles. This
development greatly increases the flexibility and generality of traditional
camera calibration models. © 2013 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.OE.52.1.017006]
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1 Introduction
The main purpose of camera calibration is to compute the
camera parameters that define the relationship between
two-dimensional (2-D) image coordinates and three-dimen-
sional (3-D) world coordinates, which is essential for deter-
mining the dimensions and speeds of vehicles in visual traffic
surveillance (VTS).1,2 The role of camera recalibration is
even more important in the case of surveillance cameras,
which commonly contain pan-tilt-swing (PTZ) functions.3,4

Producing man-made markers, such as erecting two posts on
the roadside or marking a specific pattern on the road, is
generally ineffective and impractical for calibration.5,6 It is
preferable to use existing patterns, such as road-lane mark-
ings, that can readily be found on the road as the reference
points for calibration.7

State-of-the-art camera calibration models such as those
proposed by Fung et al.8 and He and Yung9 rely on perfect
rectangles defined by the four endpoints of road-lane mark-
ings [Fig. 1(a)]. In reality, lane markings do not always form
perfect rectangles, especially when they are misaligned in the
direction of the road, causing serious errors in calibration
[Fig. 1(b)].4 In some cases, such as in crosswalk areas
where there are no road-lane markings, alternative markers
such as crosswalk markings or box-markings need to be used
for calibration, although they seldom form perfect rectangles
(Fig. 2). The models of Fung et al.8 and He and Yung9 are not
applicable in such circumstances.

To overcome this limitation, the models in Refs. 8 and 9
need to be generalized so that the camera parameters can be
determined even when the existing rectangular pattern is
imperfect or there is no rectangular pattern at all. This

would make camera calibration possible under these chal-
lenging but inevitable situations. It is the aim of this paper
to propose and test such a generalized calibration model.

The remainder of this paper is organized as follows. The
problem analysis and literature review are presented in
Secs. 2 and 3. The mathematical details of the proposed gen-
eralized camera calibration model are discussed in Sec. 4.
The experimental results are presented and discussed in
Sec. 5, and the conclusions are drawn in Sec. 6.

2 Problem Analysis
Geometrically, a perfect rectangle defined by lane markings
has two degrees of freedom: the length (L) and width (W)
[Fig. 3(a)]. However, in reality, lane markings may not be
perfectly aligned [Fig. 3(b)]. In this case, if it is considered
as a perfect rectangle, then the actual width W 0 will be mis-
interpreted as W, thus introducing an error, ε, which is the
offset between the two lane markings. It can be observed
from Fig. 3(b) that W 0 will increase as ε increases, thus
jW 0 −Wj will also increase, resulting in even greater misin-
terpretation. In such cases, the models in Refs. 8 and 9 pro-
duce unacceptable errors. The situation is even worse when
the offset between points A and C is not equal to that between
points B and D.

With this observation in mind, a deviation variable (ε) can
be added to the perfect rectangular pattern in Fig. 3(a) to
model the case with an offset rectangle, as in Fig. 4(a).
As the offset between points A and C may differ from
that between points B and D, it is logical to separate ε
into two individual parameters, εAC and εBD, which represent
the misalignment of the upper and lower parts of the calibra-
tion pattern, respectively [Fig. 4(b)]. Note that it is equivalent
to separate the length variable (L) into LAB and LCD to re-
present the different lengths of the left and right lane0091-3286/2013/$25.00 © 2013 SPIE

Optical Engineering 017006-1 January 2013/Vol. 52(1)

Optical Engineering 52(1), 017006 (January 2013)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/15/2013 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1117/1.OE.52.1.017006
http://dx.doi.org/10.1117/1.OE.52.1.017006
http://dx.doi.org/10.1117/1.OE.52.1.017006
http://dx.doi.org/10.1117/1.OE.52.1.017006
http://dx.doi.org/10.1117/1.OE.52.1.017006
http://dx.doi.org/10.1117/1.OE.52.1.017006


markings, respectively. The new calibration model is con-
structed based on the geometric conditions of the four cal-
ibration points, taking these variables into account. The
detailed mathematics of the proposed model are discussed
in Sec. 4.

3 Related Works
The problem of camera calibration has been intensively
investigated in the past few decades in the context of com-
puter vision and the forensic sciences.10,11 For road traffic

applications, researchers have attempted to use various
shapes in the 3-D space to develop calibration models that
define the most representative relationship between the 2-D
and the 3-D space.8,9,12–18 Selected works with technological
significance are discussed below in chronological order.

Fukui12 used a diamond-shaped calibration pattern placed
on a wall to determine the location and horizontal deviation
of the camera with respect to the calibration pattern (Fig. 5).
The method assumes that the optical center and the calibra-
tion pattern must be set at the same height, and the dimen-
sions of the calibration pattern must be known a priori.
In reality, although diamond-shaped objects may be found
on the road, surveillance cameras are usually located at dif-
ferent heights, thus preventing the application of Fukui’s
model in VTS. Although Courtney et al.7 relaxed this uni-
level restriction, the calibration pattern is still not general
enough for real application.

Instead of using man-made patterns, Chou and Tsai13

used the corner between a wall and a ceiling for their cali-
bration pattern (Fig. 6). The three intersecting lines of the
planes form a ‘Y-shape,’ which varies according to the view-
ing angle of the camera. The camera parameters can be cal-
culated if the distance between the camera and ceiling is
known in advance. In reality, however, although walls and
ceilings can be found indoors, they can hardly be found

Fig. 1 A rectangular calibration pattern and its limitation (models in
Refs. 8 and 9). (a) Rectangular lane marking pattern. (b) Misalignment
of lane markings.

Fig. 2 Crosswalk markings form an imperfect rectangle.

Fig. 3 Rectangle formed by lane markings. (a) Rectangle defined
without offset. (b) Offset lane markings.

Fig. 4 Degrees of freedom for an imperfect rectangle. (a) Case 1:
Misalignment of lane markings. (b) Case 2: Different lengths of
lane markings.
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in road images, thus precluding the application of the model
in traffic surveillance.

Tsai14 proposed using the corners of 16 black squares
as calibration points, as depicted in Fig. 7. Perspective
projection with pin-hole geometry was used to transform
these points for calibration, and optimization techniques
such as steepest descent were used to correct lens distortion.
The major drawback of this approach is that a large amount
of 3-D data (64 corners) has to be handled during calibra-
tion, compared with the four corner points used in
most methods.8,9,12 Moreover, as with the previous two
models, it is almost impossible to find 16 squares on
the road.

Whereas other researchers have focused on using square
patterns for calibration, Wang and Tsai15 were the first to
investigate the feasibility of using hexagonal patterns, due

to the availability of vanishing points (Fig. 8). Ideally, a van-
ishing line can be formed when the hexagon is projected
from a 3-D image onto a 2-D image. For nonideal cases,
a least-squares algorithm can be employed to fit a straight
line to the vanishing points, and the camera parameters
can be calculated based on the geometric hints of the fitted
line. Similar to Tsai’s model,14 the difficulty of finding ideal
hexagonal objects on the road means that it is preferable to
use simple patterns for calibration, such as rectangles or
parallelograms.

Bas and Crisman16 initiated the use of road-lane markings
for calibration, using the edges of the road shoulder in their
calibration model. Four points, a, b, c and d were selected
arbitrarily from the left and right shoulder (Fig. 9). Assuming
that the camera height and tilt angle are known a priori, the
vanishing point can be used to compute the rest of the camera
parameters. The advantage of this model is that it does not
require predefined shapes for calibration. The drawback is
that in reality, specific camera parameters such as the camera
height are not always known in advance, which limits the
practicality of the model.

Rather than using fixed objects on the road for calibration,
Schoepflin and Dailey17 identified parallel and perpendicular

Fig. 5 Diamond-shaped calibration pattern used in Fukui’s model.12

Fig. 6 Wall and ceiling corners used in Chou and Tsai’s model.13

Fig. 7 An array of 16 squares in Tsai’s model.14

Fig. 8 Hexagonal pattern and vanishing line used in Wang and Tsai’s
model.15

Fig. 9 Defined points of road edges used in Bas and Crisman’s
model.16
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lines on the road through the analysis of extracted vehicle
blobs (Fig. 10). An activity map of the traffic flow is created
to identify lines that are parallel to the road direction, and the
bottom edges of vehicles are used to identify perpendicular
lines. This allows two vanishing points to be formed to
compute the camera parameters. The major drawback of
this model is that creating an activity map would be inaccu-
rate in situations where vehicles frequently change lanes,
thus preventing the application of this method in such
situations.

Lai18 employed a ‘H-shape’ by drawing two lines along
the road-lane direction (pq and rs) with an additional line
perpendicular to the road (mn) (Fig. 11). This model is sim-
ilar to Bas and Crisman’s model,16 with an extra horizontal
line (mn) defined by the top or bottom edge of one lane
marking. The advantage of this model is that it is capable
of determining a more complete set of camera parameters
than the aforementioned models. The drawback is that it
ignores an important parameter (i.e., the swing angle), which
may affect the accuracy of calibration. Moreover, drawing a
horizontal line with reference to just one lane marking may
result in inaccuracies.

Fung et al.8 used a rectangular shape defined by road-lane
markings to form two vanishing points for calibration

(Fig. 12). The model requires the lane width (w), which
should be easily obtainable from the road database. This cal-
ibration pattern is readily found in road images, and the set of
computed camera parameters is the most complete among
the above-mentioned models. However, as mentioned in
Sec. 2, if two side-by-side road-lane markings are not com-
pletely aligned, then a rectangle is unlikely to be formed.
Another drawback is that the model depends on two vanish-
ing points. This can create a problem when the camera view-
ing angle is parallel to the road direction, because one of the
vanishing points reaches infinity, leading to serious error in
the estimated parameters.

To solve this problem, He and Yung9 proposed a criterion
for selecting only one of the two vanishing points if one
of them is approaching infinity, thus reducing the error in
parameter estimation. The improved model was shown to
yield consistent performance in near-parallel cases. How-
ever, an additional piece of information, the length of the
lane markings (l), is needed in this model (Fig. 12). More-
over, as with the Fung et al. model,8 a regular rectangle is
required for calibration. This motivates us to refine the model
to eliminate this restriction.

4 Proposed Methodology

4.1 Camera Model

The generic camera model originally proposed by Fung
et al.,8 based on Haralick’s perspective transformation,19

was adopted as the foundation of the newly proposed camera
calibration model. He and Yung9 improved Fung’s camera
model by using the camera height (h) instead of the length
of the optical axis (l) to make the model more descriptive. As
the camera height is a very important quantity in VTS, we
adopted the latter version of the camera model as the basis of
our development (Fig. 13). Other camera parameters, includ-
ing the pan angle (p), tilt angle (t), swing angle (s), and focal
length (f) remain unchanged.

Let Q ¼ ðXQ; YQ; ZQÞ be an arbitrary point in the 3-D
world coordinates, and let q ¼ ðxq; yqÞ be point Q projected
onto the 2-D image coordinates (Fig. 13).9 The forward
projection, which projects point Q to q from 3-D to 2-D
(i.e., q ¼ ΦfQg), can be defined in terms of the camera
parameters as:

Fig. 10 Activity map used in Schoepflin and Dailey’s model.17

Fig. 11 Defined ‘H-shape’ used in Lai’s model.18

Fig. 12 Defined rectangle used in the Fung et al. model8 and He and
Yung model.9
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xq ¼
f · ½XQðcos p cos sþ sin p sin t sin sÞ þ YQðsin p cos s − cos p sin t sin sÞ þ ZQ cos t sin s�

−XQ sin p cos tþ YQ cos p cos tþ ZQ sin tþ h∕ sin t
; (1)

and

yq ¼
f · ½XQð− cos p sin sþ sin p sin t cos sÞ þ YQð− sin p sin s − cos p sin t cos sÞ þ ZQ cos t cos s�

−XQ sin p cos tþ YQ cos p cos tþ ZQ sin tþ h∕ sin t
: (2)

The inverse projection, which projects point q toQ from 2-D back to 3-D (i.e.,Q ¼ Φ−1fqg), can also be defined in terms
of the same set of camera parameters as:

XQ ¼ h sin p∕ sin t · ðxq sin sþ yq cos sÞ þ h cos pðxq cos s − yq sin sÞ
xq cos t sin sþ yq cos t cos sþ f sin t

; (3)

and

YQ ¼ −h cos p∕ sin t · ðxq sin sþ yq cos sÞ þ h sin pðxq cos s − yq sin sÞ
xq cos t sin sþ yq cos t cos sþ f sin t

: (4)

In Eqs. (3) and (4), it is assumed that the 3-D coordinate of
point Q lies on the ground for calibration purposes (i.e.,
ZQ ¼ 0). For real transformation, it is necessary to include
the expression Φ−1, which includes the case of ZQ ≠ 0,
because an image point q ¼ ðxq; yqÞ does not always re-
present a point on the ground but may be the height of a
person’s head or the roof of a vehicle. For the transforma-
tion where ZQ ≠ 0, please refer to Appendix A1.

4.2 Proposed Camera Calibration Methodology

Based on the camera model described in the previous sec-
tion, in this section, we introduce and develop the proposed
camera calibration model. For the detailed proofs of the
mathematics and equations, please refer to Appendices A1
to A4. First, in our model, the X-axis is defined along the
direction of the road in the 3-D world coordinate system,
and the Y-axis is defined as the axis that is perpendicular
to the road direction (Fig. 14). It is assumed that the road
surface is flat and is represented by the X-Y world plane
at Z ¼ 0. It is also assumed that the road under surveillance
is reasonably straight and the lane markings approximate
straight lines and are almost parallel to each other.

The four corner points used for calibration are A, B, C,
and D, with world coordinates ðXA; YA; 0Þ, ðXB; YB; 0Þ,
ðXC; YC; 0Þ and ðXD; YD; 0Þ, respectively. AB and CD are
the lane markings of the left-hand and right-hand side,

respectively. Considering the parallelogram or trapezoidal
patterns discussed in Sec. 2 [Fig. 4(a) and 4(b)], the adopted
variables in the model are first, LAB and LCD, which re-
present the length of the left and right lane markings, respec-
tively, second, εAC and εBD, which represent the deviation of
the two top corners and the two bottom corners of the lane
markings, respectively, and third, W, which represents the
lane width (Fig. 14).

4.2.1 Calibration conditions

With the above-mentioned settings, the new calibration
model is designed to allow the computation of the camera
parameters from the length of lane markings (LAB and
LCD) and the lane width (W). These variables can easily
be obtained from the road using simple surveying devices
or from specifications. To allow comparison with the models
in Refs. 8 and 9, five conditions are modeled based on the
geometrical properties of the calibration points and variables,
as depicted in the first column of Table 1. For comparative
purposes, the conditions of the Fung et al.8 and He and Yung9

models are shown in the two right-hand

Fig. 13 Adopted camera model. Fig. 14 Variables in the new camera calibration model.
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YA ¼ YB (5)

YC ¼ YD (6)

XB − XA ¼ LAB (7)

XD − XC ¼ LCD (8)

YC − YA ¼ W (9)

columns of Table 1. It can be seen from the table that con-
ditions 1, 2 and 5 [i.e., Eqs. (5), (6), and (9)] are the same for
all three models, whereas conditions 3 and 4 [i.e., Eqs. (7)
and (8)] vary substantially in the new model.

4.2.2 Assumptions of the model

The camera parameters mentioned in Sec. 4.1 (i.e., p, t, s, f
and h) can be determined by conditions 1 to 5 [i.e., Eqs. (5)
through (9)] with the inverse projection (Φ−1) [i.e., Eqs. (3)
and (4)]. A detailed description of the method used to deter-
mine these parameters is provided in the following subsec-
tion. The assumptions of the calibration model used in Ref. 9
are also applied here; i.e., fs; t; f; p; hg, fsþ π; t;−f; p; hg
and fs; t; f; pþ π;−hg are sets of equivalent solutions.
However, the constraints f > 0, h > 0 and −π∕2 < t < 0
are imposed to reflect the physical configuration of the cam-
era in real situations. Therefore, the only acceptable set of
parameters is fs; t; f; p; hg.

4.2.3 Case 1: trapezoidal case

To obtain the camera parameters when the calibration pattern
is a trapezoid, the length of the two lane markings that define
the trapezoid (i.e., LAB and LCD), and the width between the
two lane markings (W) are needed (Fig. 14). These dimen-
sions can be obtained with simple surveying devices, or from
specifications or databases if they are available. Assume that
LAB and LCD are obtainable, and if LAB ≠ LCD then the
numeric solution for the swing angle (s) can be obtained
by the following optimization equation:

arg min
s

jð−κ1 þ κ3Þ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − 4κ4

q
Þj; (10)

where κ1 ¼ LAB
W · βABC;CAB−νAB ·αABC;CABαABC;BAC

, κ2 ¼ νAB·βABC;BAC
αABC;BAC

, κ3 ¼
LCD
W · βADC;CAD−νAB ·αADC;CAD

αCDA;DAC
, and κ4 ¼ νAB ·βCDA;DAC

αCDA;DAC
.

The primitive variables ν, α, and β are defined as

νAB ¼ ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

;

αheihfihgi;hhihiihji ¼ ΓheiðΛhfi þ φÞðΛhgi þ φÞ − ΓhhiðΛhii þ φÞ
ðΛhji þ φÞ, and βheihfihgi;hhihiihji ¼ΛheiðΛhfi þφÞðΛhgiþ
φÞ−ΛhhiðΛhii þφÞðΛhji þφÞ.

For example, αABC;BAC ¼ ΓAðΛB þ φÞðΛC þ φÞ−
ΓBðΛA þ φÞðΛC þ φÞ, and βABC;CAB¼ΛAðΛBþφÞðΛCþφÞ−
ΛCðΛAþφÞðΛBþφÞ:

The elementary variables ΛQ, ΓQ, and φ are defined as:

ΛQ ¼ xq sin sþ yq cos s; ΓQ ¼ xq cos s − yq sin s;

and

φ¼−
ðΓAΛB−ΓBΛAÞðΛC−ΛDÞ−ðΓCΛD−ΓDΛCÞðΛA−ΛBÞ

ðΓA−ΓBÞðΛC−ΛDÞ−ðΓC−ΓDÞðΛA−ΛBÞ
:

Once we have the swing angle (s), the tilt angle (t) can be
calculated by:

t ¼ sin−1
�
−κ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

p
2

�
; (11)

where � is chosen such that −1 < ð−κ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

p
Þ∕

2 < 0, because t is bounded by −π∕2 and 0 according to
the condition stated in Sec. 4.2.2, and an arcsine with a value
greater than 1 or smaller than −1 is meaningless.

The pan angle (p) can be computed in terms of t by:

p ¼ tan−1
�
νAB
sin t

�
; (12)

where the definition of νAB is the same as that in Eq. (10).
Focal length (f) can be calculated as:

f ¼ φ

tan t
; (13)

and if f < 0, then f ¼ −f and s ¼ sþ π.
Finally, the camera height (h) can be computed as follows:

h¼W sin t cos t
cos p

×
�
ΓC tan p sin t−ΛC

ΛCþφ
−
ΓA tan p sin t−ΛA

ΛAþφ

�
−1
; (14)

and if h < 0, then h ¼ −h and p ¼ pþ π.
This gives a complete solution for the whole set of camera

parameters fs; t; f; p; hg from the four defined points in the
image, i.e., q ¼ fðxq; yqÞjq ∈ a; b; c; dg, the lane width (W),
and the length of the lane markings (LAB and LCD).

4.2.4 Case 2: parallelogram case

If the calibration pattern is a parallelogram, then LAB ¼ LCD
and εAC ¼ εBD. In such a case, the swing angle (s) can be
obtained by the following closed-form equation:

Table 1 Calibration conditions.

New model Fung et al.8 He and Yung9

Condition 1 (5) YA ¼ YB YA ¼ YB

Condition 2 (6) YC ¼ YD YC ¼ YD

Condition 3 (7) XA ¼ XC XB − XA ¼ L

Condition 4 (8) XB ¼ XD XD − XC ¼ L

Condition 5 (9) YC − YA ¼ W YC − YA ¼ W
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s ¼ tan−1
�ðς4;2;3;1 − ς3;2;4;1 þ ς1;4;2;3 − ς4;2;1;3 þ ς3;2;1;4 − ς1;3;2;4 þ ς1;3;4;2 − ς1;4;3;2Þ
ðυ4;2;3;1 − υ3;2;4;1 þ υ1;4;2;3 − υ4;2;1;3 þ υ3;2;1;4 − υ1;3;2;4 þ υ1;3;4;2 − υ1;4;3;2Þ

�
; (15)

where ςhai;hbi;hci;hdi ¼ γhaiγhbiχhciζhdi and υhai;hbi;hci;hdi ¼
χhaiχhbiγhciζhdi; ‘1’ represents AB, ‘2’ represents CD,
‘3’ represents AC, and ‘4’ represents BD. For example,
ς4;2;3;1 ¼ γBDγCDχACζAB and υ3;2;4;1 ¼ χACχCDγBDζAB,
etc. Moreover, χPQ ¼ xq − xp, γPQ ¼ yq − yp, and ζPQ ¼
xpyq − xqyp.

The remaining camera parameters, including t, p, f, and
h, can be calculated by Eqs. (11)–(14), respectively.

4.2.5 Case 3: rectangular case

The newly proposed calibration model is essentially a gen-
eralized version of the models in Refs. 8 and 9. In another
words, both of these models are particular cases of our gen-
eralized model, which exploits a rectangle for calibration.
Therefore, LAB ¼ LCD ¼ L and εAC ¼ εBD ¼ 0, hence the
tilt angle (t) can be computed by:

t ¼ sin−1
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−νACνAB

p �
; (16)

where νPQ ¼ ðΛP − ΛQÞφ∕½ΓPΛQ − ΓQΛP þ ðΓP − ΓQÞφ�,
and the definitions of ΛPQ, ΓPQ and φ are the same as in
Sec. 4.2.3.

The remaining camera parameters, including s, p, f, and
h, can be computed by Eqs. (12)–(15), respectively, and the
only information required for calibration is W.

4.2.6 Summary of each case

In summary, trapezoid, parallelogram, or rectangular shapes
can be used for calibration with the new model. For a trap-
ezoid, the camera parameters fs; t; f; p; hg can be determined
using LAB, LCD, and W with Eqs. (10) through (14), respec-
tively. In the case of a parallelogram, AC and BD are parallel
to each other but not necessarily to the Y axis, in which case
the camera parameters can be computed using L and W with
Eqs. (15) and (11) through (14), respectively. Finally, for a
rectangle, the model is the same as the Fung and He models,
in which the camera parameters can be determined byW with
Eqs. (15), (16) and (12) to (14), respectively.

5 Results and Discussion
The proposed methodology was tested in both a laboratory
and a real-world environment to establish the accuracy of
camera parameter extraction. In the laboratory, bricks were
placed on the floor as a reference point. Trapezoid- or par-
allelogram-shaped pieces of paper were glued onto the floor
to form the four corner points, A, B, C and D of the calibra-
tion pattern [Fig. 15(b)]. Test objects such as paper boxes
were placed in the scene for testing the accuracy of calibra-
tion, and various points were chosen to form a set of test
lengths for the evaluation of accuracy [Fig. 15(c)].

Images of the scene were taken by a digital camera
(Canon IXUS 870 IS) and transferred to a desktop for further
analysis [Fig. 15(a)]. The dimensions of the calibration pat-
tern, i.e., LAB, LCD and W, and the set of test lengths were

measured by ruler and recorded by hand. The 2-D coordinates
of the four calibration points were then recorded from the
image, and the camera parameters were computed according
to the proposed methodology, as described in Sec. 4.2. To
test the accuracy of calibration, the image coordinates of
the test points were transformed from 2-D to 3-D world coor-
dinates by Eqs. (3) and (4) using the extracted camera param-
eters. This allowed the experimental lengths of these test
lines to be computed from the Euclidean distance between
two points in the 3-D world coordinates.

To act as the control experiment, additional markings
were chosen to form a rectangular shape for calibration
[e.g., points A, F, G and D in Fig. 15(b)]. The dimensions
of the rectangle (i.e., W 0 and L 0) were again measured by
ruler, and the camera parameters were computed using the
Fung et al.8 and He and Yung9 models to allow comparison
with the proposed model.

For the outdoor experiments, road scenes that included
patterns such as box-markings or crosswalk markings were
taken by digital camera [Fig. 17(a)]. These patterns do not
usually form perfect or accurate rectangles, thus the only
available patterns for calibration tend to be trapezoids,
near-parallelograms, or imperfect rectangles. Points A, B,
C and D were chosen to form the imperfect pattern for cal-
ibration, similar to the one in Fig. 17(b), using the proposed
method. For the control experiment, four additional points
[e.g., points E, F, G and H in Fig. 17(b)] were chosen to
form a rectangle for calibration using the Fung et al.8 and
He and Yung9 models.

The dimensions of the calibration and control patterns (i.e.,
LAB, LCD, W, W 0 and L 0) were measured with a Leica Total
Station, an electronic optical surveying instrument. It is well
known that the Total Station can extract the coordinates of
points with a high degree of accuracy. This device can record
the distance and direction of each point from the reference
point, so that the distance between two points can be calcu-
lated by a simple cosine rule. The camera parameters can then
be computed from this calibration information.

To evaluate the accuracy of the outdoor trial, points were
chosen from the markings and objects on the ground, such as
a drainage cover, parking space markings, a railway track,
and even vehicles on the road. The baseline dimensions
of these reference lengths were measured by Total Station,
or by referring to specifications such as the railway gauge
or the dimensions of vehicles. Similar to the indoor experi-
ment, the lengths of these reference lines were estimated by
the extracted camera parameters, and the percentage accura-
cies were computed and analyzed. The experimental results
of the aforementioned trials are discussed in detail below. For
details of the ground truth and experimental values, please
refer to Tables 2 to 6 in Appendix A5.

5.1 Indoor, Nonparallelogram

The first set of images contained a tetrahedron with a pair of
parallel lines and a pair of nonparallel lines, referred to here
as the ‘nonparallelogram’ calibration pattern [Fig. 15(a)].
Two tiny paper strips were stuck onto two bricks in the
top-right and bottom-left corners representing points G

Optical Engineering 017006-7 January 2013/Vol. 52(1)

Pang et al.: Generalized camera calibration model for trapezoidal patterns. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/15/2013 Terms of Use: http://spiedl.org/terms



and F, respectively, which created rectangle AFGD for the
control experiment [Fig. 15(b)]. In Fig. 15(b), note that lines
AB and CD form LAB and LCD, line FD forms W and W 0,
and line GD forms L 0.

The camera parameters extracted by the models in Refs. 8
and 9 and the proposed method are depicted in Fig. 15(d). As
shown in the table, the three methods produced similar swing
and tilt angles. The obtained pan angle seems reasonable, as
according to the image it should be larger than 90-deg if the
view from the left side represents 0-deg. The photos were
taken from a height of around 60 cm, and all three methods
were capable of extracting this value.

To evaluate the accuracy, a wooden box was placed
along the right edge of the calibration pattern [Fig. 15(c)]
and twenty test lengths (L1 to L20) were chosen for evalu-
ation. The experimental lengths were extracted by the afore-
mentioned method of coordinate transformation and
Euclidean distance computation. The mean percentage accu-
racy and standard deviation of each method were computed
and shown in the right two columns of Fig. 15(d). All
three methods produced highly accurate length estimates
with mean accuracy of around 98.9%, although the proposed
method produced the highest mean accuracy (i.e., 99.0%).
The overall accuracy is >96% for all three methods except
for one trial.

5.2 Indoor, Trapezoidal Pattern

The second set of images contained a trapezoidal pattern,
ABCD, taken in a laboratory environment [Fig. 16(a)].

Two additional points, G and H, were marked to form the
rectangle ABGH for the control experiment; note that L 0
and LAB are formed by points A and B,W 0 andW are formed
by points B and H, and LCD is formed by points C and D
[Fig. 16(b)].

Figure 16(d) shows that the extracted swing angles of all
three models are around 4-deg, which agrees with each other.
The tilt angles computed by the model in Ref. 9 and the pro-
posed method are around −51.2-deg, whereas the angle com-
puted by the model in Ref. 8 is slightly offset as −53.11-deg.
The obtained pan angle is around 71-deg for all three meth-
ods, which seems reasonable as the pan angle should be
smaller than 90-deg according to the image. For height esti-
mation, the ground truth is 54 cm; both the model in Ref. 9
and the proposed model accurately estimated this value, but
the estimate of the model in Ref. 8 was about 2 cm less than
the measured value.

Accuracy was evaluated by placing three boxes around
the calibration pattern. The percentage accuracies are
shown in the right two columns of Fig. 16(d). The perfor-
mance of the model in Ref. 8 was not as good as that of
the model in Ref. 9 or the proposed model: the mean accu-
racy was 98.2% for the model in Ref. 8, 98.7% for both the
model in Ref. 9, and 98.6% for the proposed model. It is
likely that the model in Ref. 8 suffers from the problem
of ill-conditioning when the pan angle is closer to 90-deg
than to 0-deg, thus reducing its accuracy. However, neither
the model in Ref. 9 nor the proposed model suffer from this
problem.

Fig. 15 Indoor nonparallelogram. (a) Image taken; (b) calibration pattern; (c) test lengths; and (d) computed camera parameters and percentage
accuracy of length extraction.
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5.3 Outdoor, Trapezoidal Pattern

The third set of images contained box-markings taken in a
parking lot area [Fig. 17(a)]. However, the corners of the
box-markings did not form a perfect rectangle, as the outline
of the box contained more than four corners. Therefore,
points A, B, C and D were chosen to be the corners of the
calibration pattern, forming a trapezoid in which line AB is
parallel to line CD, and lines AC and BD are not parallel to
each other [Fig. 17(b)]. Consequently, W does not corre-
spond to the length of BD, as BD is not perpendicular to
lines AB and CD. Therefore, W should be measured as
the horizontal distance between LAB and LCD by construct-
ing a horizontal line between these two lines. Points E, F, G
and H were chosen to form a rectangle with dimension L 0
and W 0 for the control experiment [Fig. 17(b)]. Although
they do not form an ideal rectangle, they serve as the cali-
bration pattern for the models found in Refs. 8 and 9.

The computed camera parameters are shown in Fig. 17(d).
The pan angle computed by the models in Refs. 8 and 9 is
around 101-deg and the angle computed by the newly pro-
posed model is 55.82-deg. This difference is to be expected,
because the patterns used in the models have different ori-
entations, as can be seen in Fig. 17(b). However, both values
are consistent with their own pattern, which should be
smaller than 90-deg for trapezoid ABCD, but larger than
90-deg for rectangle EFGH. According to the Total
Station measurement, the ground truth camera height is
around 534 cm, which is very close to the height estimated
by the proposed model (i.e., 533.27 cm).

In terms of accuracy, the model in Ref. 8 is generally less
accurate than that of the model in Ref. 9 and the new model,
with one estimated value even lower than 95%. Again, this is
probably due to the ill-condition problem in the model in
Ref. 8. Neither the model in Ref. 9 nor the new model has
this problem, with mean accuracies of 98.7% and 98.8%,
respectively [Fig. 17(d)]. However, a considerable drawback
of the model in Ref. 9 is that it cannot use a trapezoid as the
calibration pattern; hence, it would be unable to extract the
camera parameters and would be unable to estimate the test
lengths accurately if the road did not feature a rectangular
pattern. This situation will become apparent in the sub-
sequent two examples.

5.4 Outdoor, Close to Parallelogram

The fourth set of images was taken in a crosswalk area with a
shape close to a parallelogram [Fig. 18(a)]. It is not strictly a
parallelogram as the markings at point A are worn, which
means that line AC is not completely parallel to line BD
[Fig. 18(b)]. For the control experiment, there were no points
to form a perfect rectangle, except around the two drainage
covers at the far end of the pavement, which formed a tiny
rectangle EFGH. It is highly unlikely that such a small pat-
tern would provide accurate calibration, as accuracy would
be seriously compromised by pixel error. However, it is the
only choice in this case.

The computed camera parameters in Fig. 18(d) indicate
that the models found in Refs. 8 and 9 produced quite similar
swing angle and focal length estimations, and these are quite

Fig. 16 Indoor trapezoidal pattern. (a) Image taken; (b) calibration pattern; (c) test lengths; and (d) computed camera parameters and percentage
accuracy of length extraction.
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Table 2 Extracted lengths for the indoor nonparallelogram case
(Sec. 5.1).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

1 L1 AV 47.0 46.3 46.6 46.7

2 L2 CV 12.5 12.0 12.1 12.1

3 L3 EV 16.5 16.6 16.7 16.4

4 L4 DW 2.2 2.3 2.3 2.3

5 L5 DX 4.1 4.2 4.2 4.3

6 L6 RX 18.5 18.2 18.2 18.1

7 L7 RH 14.0 13.5 13.5 13.6

8 L8 JB 8.8 8.8 8.8 8.8

9 L9 KB 10.0 9.6 9.6 9.5

10 L10 PB 14.8 14.8 14.7 14.4

11 L11 JR 21.5 22.0 22.1 22.1

12 L12 BR 18.2 18.2 18.2 18.2

13 L13 IJ 25.5 25.0 25.0 24.8

14 L14 LJ 18.0 18.2 18.3 18.8

15 L15 JK 4.0 4.0 4.0 4.0

16 L16 OR 17.2 17.9 17.9 18.0

17 L17 PR 15.2 15.5 15.5 15.5

18 L18 UW 37.2 37.1 37.2 36.5

19 L19 ZW 19.5 19.2 19.2 19.3

20 L20 YW 19.9 19.6 19.5 19.4

21 LAB AB 61.0 60.8 61.0 59.8

22 LCD CD 31.0 31.0 31.1 30.5

23 LAC AC 36.5 36.2 36.4 36.4

24 LBD BD 32.0 32.2 32.2 32.0

25 LAD AD 59.3 58.9 59.2 58.8

26 LCB CB 50.9 51.4 51.5 50.5

27 LGH GH 61.0 60.7 61.0 59.8

28 LAG AG 30.5 30.3 30.5 30.5

Table 2 (Continued).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

29 LBH BH 30.5 30.5 30.5 30.5

30 LAH AH 68.0 67.5 67.8 67.1

31 LGB GB 68.0 68.4 68.6 67.1

Table 3 Extracted lengths for the indoor trapezoidal case (Sec. 5.2).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

1 L1 JK 26.3 26.5 26.6 26.6

2 L2 LM 26.3 26.8 26.8 26.8

3 L3 JL 19.5 18.7 18.5 18.6

4 L4 KM 19.5 18.9 18.9 18.9

5 L5 NO 26.3 26.8 26.8 26.8

6 L6 JO 29.1 29.6 29.6 29.6

7 L7 NK 29.1 29.6 29.6 29.6

8 L8 NM 26.6 27.5 27.5 27.5

9 L9 LO 26.6 27.4 27.4 27.4

10 L10 IS 68.1 68.1 68.2 68.2

11 L11 IG 43.1 43.2 43.3 43.3

12 L12 IC 38.1 38.3 38.4 38.4

13 L13 ID 43.1 43.1 43.1 43.1

14 L14 IF 30.5 30.4 30.4 30.4

15 L15 IP 30.5 29.8 29.8 29.8

16 L16 IQ 43.0 42.2 42.2 42.3

17 L17 IA 30.5 30.6 30.6 30.6

18 L18 AR 30.5 30.5 30.6 30.6

19 L19 PR 68.2 68.4 68.4 68.4

20 L20 PF 43.0 42.4 42.3 42.4

21 LAB AB 45.8 45.9 45.9 45.9
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different from the estimates computed by the new model.
This inaccuracy could be due to the small size of the cali-
bration pattern, EFGH. The new model accurately estimated
the ground truth height value of 665.6 cm, although the mod-
els in Refs. 8 and 9 were less accurate [Fig. 18(d)].

Twenty test lengths were chosen from the crosswalk,
pavement settings, or the height of vehicles (e.g., L7, L14

and L10, respectively) [Fig. 18(c)]. Models in Refs. 8 and 9
both produced very poor length estimates, with most trials
between 65% and 85% accurate and a mean accuracy of
around 82% [Fig. 18(d)]. The inaccuracy is solely due to
the small calibration pattern. However, this is unavoidable as
the models in Refs. 8 and 9 can only use rectangles for their
calibration patterns, and rectangle EFGH was the only
pattern that could be found in this case. The new model over-
comes this drawback as it can use one of the many trapezoi-
dal patterns in the scene for calibration. Therefore, accuracy
was very high, with a mean of 96.6% [Fig. 18(d)].

5.5 Outdoor, Imperfect Rectangle

The fifth set of images was taken at a light rail transit inter-
section. As the box-markings at the intersection do not form

Table 3 (Continued).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

22 LCD CD 53.5 53.5 53.5 53.5

23 LAC AC 31.3 31.4 31.4 31.5

24 LBD BD 34.0 34.3 34.3 34.3

25 LAD AD 68.0 68.2 68.2 68.2

26 LCB CB 49.0 49.2 49.2 49.2

27 LAF AF 61.0 61.0 61.0 61.0

28 LGD GD 61.0 61.0 61.0 61.0

29 LAG AG 30.5 30.5 30.5 30.5

30 LFD FD 30.5 30.5 30.5 30.5

31 LGF GF 68.0 68.2 68.2 68.2

Table 4 Extracted lengths for the outdoor trapezoidal case
(Sec. 5.3).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

1 L1 IJ 187.0 184.1 183.0 180.0

2 L2 MN 231.2 232.1 230.6 227.4

3 L3 OP 238.1 236.7 235.3 232.6

4 L4 QR 439.4 424.6 418.0 420.4

5 L5 ST 114.6 113.2 112.9 108.6

6 L6 UV 198.4 198.3 198.3 198.0

7 L7 WZ 198.8 198.6 198.6 195.8

8 L8 A1A2 199.6 202.5 198.3 196.2

9 L9 B1B2 95.1 95.2 93.3 91.9

10 L10 C1C2 40.2 40.4 41.9 42.0

11 L11 D1D2 54.3 52.8 52.8 54.5

12 L12 E1E2 72.0 72.1 70.6 72.0

13 L13 F 1F 2 20.0 20.7 20.7 20.6

14 L14 KL 186.4 184.3 183.3 180.7

Table 4 (Continued).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

15 L15 G1G2 200.5 197.1 196.0 195.0

16 L16 H1H2 99.0 97.1 96.6 97.7

17 L17 I1I2 58.0 57.0 56.1 56.5

18 L18 J1H 279.2 284.1 279.9 274.1

19 L19 K 1K 2 461.4 469.5 459.8 445.0

20 L20 K 1K 3 281.0 284.4 280.0 277.9

21 LAB AB 427.4 432.7 426.1 417.0

22 LCD CD 250.3 252.1 250.3 257.6

23 LAC AC 1156.3 1146.3 1142.9 1144.1

24 LBD BD 1120.4 1111.8 1105.3 1138.7

25 LAD AD 1198.1 1185.1 1185.1 1196.5

26 LCB CB 1170.5 1171.1 1158.5 1173.7

27 LEF EF 419.0 427.3 418.4 413.7

28 LGH GH 417.8 427.3 418.4 418.7

29 LEG EG 198.4 198.1 198.1 193.2

30 LFH FH 197.7 198.1 198.1 197.6

31 LEH EH 460.6 471.0 461.3 449.8

32 LGF GF 465.3 471.0 464.5 469.5
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Table 5 Extracted lengths for the outdoor near-parallelogram case
(Sec. 5.4).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

1 L1 IJ 79.0 83.1 65.0 103.8

2 L2 KL 50.0 52.6 59.1 59.0

3 L3 MN 54.5 53.9 40.2 60.7

4 L4 OP 49.0 47.4 35.7 53.8

5 L5 QR 75.0 71.8 60.8 60.8

6 L6 ST 456.7 466.6 495.8 616.8

7 L7 UV 457.8 474.2 477.2 584.8

8 L8 SU 148.5 144.7 120.5 187.1

9 L9 TV 153.2 151.6 102.3 154.3

10 L10 WZ 214.0 219.4 248.7 221.4

11 L11 A1A2 66.1 68.1 60.1 66.4

12 L12 A2B1 105.5 101.3 112.4 143.3

13 L13 B2B1 59.5 59.5 45.8 69.6

14 L14 A1B2 131.4 128.3 146.1 174.4

15 L15 C1C2 59.8 50.1 41.0 59.3

16 L16 C2D1 133.7 134.7 89.1 92.9

17 L17 D2D1 86.9 80.4 54.7 86.9

18 L18 C1D2 132.7 138.2 123.3 131.4

19 L19 E1E2 32.0 35.2 43.7 37.9

20 L20 F 1F 2 31.5 33.1 39.6 34.7

21 LAB AB 408.1 408.5 447.9 562.6

22 LCD CD 431.6 446.3 415.2 488.5

23 LAC AC 510.0 512.5 406.0 615.8

24 LBD BD 526.1 534.2 352.3 526.8

25 LAD AD 828.0 844.2 649.6 1010.9

26 LCB CB 451.2 447.1 486.5 426.3

27 LEF EF 155.0 158.5 184.9 211.8

28 LGH GH 155.0 159.2 184.9 211.8

29 LEG EG 43.5 45.7 43.5 43.5

Table 5 (Continued).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

30 LFH FH 43.5 43.0 43.5 43.5

31 LEH EH 161.0 163.6 165.3 216.2

32 LGF GF 161.0 166.9 211.8 216.2

Table 6 Extracted lengths for the outdoor imperfect rectangle case
(Sec. 5.5).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

1 L1 IJ 143.5 141.0 118.4 118.5

2 L2 KL 143.5 146.6 128.1 128.2

3 L3 MN 143.5 139.5 134.0 134.1

4 L4 OP 143.5 145.3 141.1 141.2

5 L5 QR 65.5 63.6 62.4 62.4

6 L6 ST 97.0 94.8 102.2 102.2

7 L7 UV 87.0 84.6 90.6 90.6

8 L8 WZ 87.0 78.1 83.6 83.6

9 L9 A1A2 97.0 93.6 103.7 103.7

10 L10 B1B2 97.0 92.8 109.5 109.5

11 L11 AE 484.1 524.0 550.7 551.9

12 L12 AF 711.5 729.0 773.2 775.0

13 L13 AG 568.0 602.3 552.8 553.8

14 L14 AH 785.1 840.0 774.9 776.4

15 L15 FD 482.7 519.4 452.6 453.3

16 L16 AD 1144.7 1159.6 1171.5 1174.1

17 L17 GD 609.1 580.2 652.8 654.3

18 L18 HD 392.5 433.0 430.3 431.2

19 L19 CG 443.9 412.9 455.3 455.3

20 L20 CH 385.1 352.9 451.2 451.3

21 LAB AB 770.8 793.2 891.2 892.6

22 LCD CD 628.5 647.0 764.2 765.3

Optical Engineering 017006-12 January 2013/Vol. 52(1)

Pang et al.: Generalized camera calibration model for trapezoidal patterns. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/15/2013 Terms of Use: http://spiedl.org/terms



a perfect rectangular shape [Fig. 19(a)], an imperfect
rectangle, ABCD, was chosen as the calibration pattern
[Fig. 19(b)]. Line AC is perpendicular to AB and CD,
hence W is defined along line AC. For the control experi-
ment, no better rectangle than EFGH could be selected
from the scene, so the models in Refs. 8 and 9 both used
this as their calibration pattern.

Figure 19(d) shows that the estimated values (including
tilt and swing angles and focal length) for the models in
Refs. 8 and 9 are similar, and are different from the
estimates of the new model. Again, this is probably because
EFGH is not a perfect rectangle, which reduces the
accuracy of the models in Refs. 8 and 9. The ground
truth camera height is 763.8 cm; the new model estimated
the height accurately, whereas the estimates of the models
in Refs. 8 and 9 were almost correct within experimen-
tal error.

Points such as the railway gauge, the lengths within the
box-markings, and roadside posts were selected for accu-
racy evaluation. Again, the results show that the models
in Refs. 8 and 9 did not perform as well as the new
model; the accuracy of the former ranged from 85% to
90% with a mean of around 92%, whereas the new
model did not fall below 90%, and the mean accuracy
was as high as 95.6% [Fig. 19(d)]. This is entirely due
to the fact that the calibration shape EFGH was not a per-
fect rectangle, which could not be tolerated in the models in
Refs. 8 and 9.

5.6 Overall Accuracies

The mean accuracies for each model are shown in Table 7.
The models in Refs. 8 and 9 performed well in trials 1 and 2,
as rectangular shapes could be found in the laboratory envi-
ronment. Their performance in trial 3 was still acceptable, as
it was possible to define a reasonable rectangular pattern,
EFGH, within the box-markings. However, the performance
of the models in Refs. 8 and 9 deteriorated considerably in
trials 4 and 5 because only a tiny rectangle could be defined

Table 6 (Continued).

Trial Line
End
points

Real
length
(cm)

New
model
(cm)

Model in
Ref. 9
(cm)

Model in
Ref. 8
(cm)

23 LAC AC 938.1 938.1 883.9 884.6

24 LBD BD 939.0 914.6 807.9 808.3

25 LAD AD 1144.7 1159.6 1171.5 1174.1

26 LCB CB 1191.8 1175.3 1190.5 1190.5

27 LEF EF 234.4 250.2 228.8 229.3

28 LGH GH 223.2 241.9 228.8 229.3

29 LEG EG 309.7 327.9 308.8 308.8

30 LFH FH 307.8 328.5 308.8 308.8

31 LEH EH 428.1 412.7 384.4 384.6

32 LGF GF 334.7 324.9 384.1 384.6

Fig. 17 Outdoor trapezoidal pattern. (a) Image taken; (b) calibration pattern; (c) test lengths; and (d) computed camera parameters and percentage
accuracy of length extraction.
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Fig. 18 Outdoor pattern with shape close to a parallelogram. (a) Image taken; (b) calibration pattern; (c) test lengths; and (d) computed camera
parameters and percentage accuracy of length extraction.

Fig. 19 Outdoor pattern with an imperfect rectangle. (a) Image taken; (b) calibration pattern; (c) test lengths; and (d) computed camera parameters
and percentage accuracy of length extraction.
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in trial 4, and only an imperfect rectangle could be defined in
trial 5.

In contrast, the performance of the new model remained
high throughout the five trials because it can accept imperfect
rectangles for calibration. The average performance of the new
model across the five trials was 97.7%, compared with 93.9%
and 94.1% for the models in Refs. 8 and 9, respectively.

6 Conclusion
A generalized camera calibration model is proposed that
eliminates the limitation of previous models, which require
a perfect rectangle as a calibration pattern. The major advan-
tage of the new model is that it can cope even in situations
where there is no perfect rectangle, thus avoiding the deterio-
ration in camera parameter estimation due to the use of

imperfect or nonideal rectangular patterns. The correct
computation of camera parameters is an important step in
defining the 2-D/3-D transformation, which provides essen-
tial information for analyzing vehicle speeds and pedestrian
flows and for estimating traffic parameters.

The proposed model was tested in both laboratory and
outdoor environments, and performance was evaluated
based on the length estimation of test points in 3-D. The
experimental results revealed that the new model achieved
an outstanding performance of 97.7%, compared with
93.9% for the model in Ref. 8 and 94.1% for the model
in Ref. 9, both of which suffered from the lack of ideal rec-
tangular patterns for calibration. The proposed method can
potentially be generalized for use in a wide range of appli-
cations, such as for modeling traffic or pedestrian behavior,
vehicle speed enforcement, and image metrology for forensic
purposes.

Appendix: Derivation of Equations for p, t , s, f
and h

A1 Inverse Projection when ZQ ≠ 0

Using the original expression from Fung’s model8 and by
substituting l ¼ h∕ sin t, we obtain

XQ ¼ sinpðh∕ sin tþ ZQ sin tÞðxq sin sþ yq cos sÞ þ cos pðhþ ZQÞðxq cos s − yq sin sÞ − ZQf cos t sin p

xq cos t sin sþ yq cos t cos sþ f sin t
; (17)

and

YQ ¼ − cos pðh∕ sin tþ ZQ sin tÞðxq sin sþ yq cos sÞ þ sin pðhþ ZQÞðxq cos s − yq sin sÞ þ ZQf cos t cos p

xq cos t sin sþ yq cos t cos sþ f sin t
: (18)

Substitute ZQ ¼ 0, and the above equations become
Eqs. (3) and (4). Equations (17) and (18) can be used to
determine the 3-D coordinate of a point in the image
above ground level (i.e., ZQ ≠ 0). The height of the point
needs to be entered into the equation to estimate its XQ
and YQ 3-D world coordinates (i.e., Q ¼ Φ−1fq; ZQg).1 If
the height information for that point is not available, it can
be estimated by transforming two points with the same XQ
and YQ coordinates (but with different heights) from 2-D to
3-D using Eqs. (17) and (18). Then enter ZQ into the
equation for the upper point by trial-and-error until the
XQ and YQ coordinates of both points match each other
in 3-D space.

A2 Proof of Case I: Trapezoidal Case (LAB ≠ LCD )
First, let the four corners A, B, C and D of the calibration
pattern, defined by the lane markings in the image, be
aðxa; yaÞ, bðxb; ybÞ, cðxc; ycÞ and dðxd; ydÞ, respectively.
To simplify the inverse projection equations (Φ−1), let
ΛQ ¼ xq sin sþ yq cos s, and ΓQ ¼ xq cos s − yq sin s,
and substitute into Eqs. (3) and (4):

XQ ¼ h sin p · ΛQ∕ sin tþ h cos p · ΓQ

cos t · ΛQ þ f sin t

¼ h cos p
sin t cos t

·

�
ΛQ tan pþ ΓQ sin t

ΛQ þ f tan t

�
;

and

YQ ¼ −h cos p · ΛQ∕ sin tþ h sinp · ΓQ

cos t · ΛQ þ f sin t

¼ h cos p
sin t cos t

·

�
ΓQ tanp sin t − ΛQ

ΛQ þ f tan t

�
:

Further, let φ ¼ f tan t, then

XQ ¼ h cos p
sin t cos t

·

�
ΛQ tan pþ ΓQ sin t

ΛQ þ φ

�
; (19)

and

YQ ¼ h cos p
sin t cos t

·

�
ΓQ tan p sin t − ΛQ

ΛQ þ φ

�
: (20)

Table 7 Overall accuracies.

Method Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

Ref. 8 98.5% 98.2% 98.0% 82.2% 92.6% 93.9%

Ref. 9 98.5% 98.7% 98.7% 81.9% 92.6% 94.1%

Proposed 99.0% 98.6% 98.8% 96.6% 95.6% 97.7%
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A2.1 Equating Conditions 1 and 2 to Form an
Expression for p and φ

Equate condition 1 (i.e., YA ¼ YB) by expressing it in terms
of Eq. (20) for YA and YB:

ΓA tan p sin t − ΛA

ΛA þ φ
¼ ΓB tan p sin t − ΛB

ΛB þ φ
:

Therefore,

tan p ¼ 1

sin t
·

� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

�
: (21)

Equate condition 2 (i.e., YC ¼ YD) in the same manner:

tan p ¼ 1

sin t
·

� ðΛC − ΛDÞφ
ΓCΛD − ΓDΛC þ ðΓC − ΓDÞφ

�
: (22)

Combine Eqs. (21) and (22) to find an expression for φ:

ðΛA−ΛBÞφ
ΓAΛB−ΓBΛAþðΓA−ΓBÞφ

¼ ðΛC−ΛDÞφ
ΓCΛD−ΓDΛCþðΓC−ΓDÞφ

Therefore,

φ¼−
ðΓAΛB−ΓBΛAÞðΛC−ΛDÞ−ðΓCΛD−ΓDΛCÞðΛA−ΛBÞ

ðΓA−ΓBÞðΛC−ΛDÞ−ðΓC−ΓDÞðΛA−ΛBÞ
:

(23)

A2.2 Equating Conditions 3 and 5 to Form an
Expression for p

Apply Eq. (19) to condition 3: XB − XA ¼ LAB,

ΛB tan pþ ΓB sin t
ΛB þ φ

−
ΛA tan pþ ΓA sin t

ΛA þ φ

¼ LAB sin t cos t
h cos p

: (24)

Apply Eq. (20) to condition 5: YC − YA ¼ W,

ΓC tan p sin t − ΛC

ΛC þ φ
−
ΓA tan p sin t − ΛA

ΛA þ φ

¼ W sin t cos t
h cos p

: (25)

Divide Eq. (24) by Eq. (25):

ΛB tan pþ ΓB sin t
ΛB þ φ

−
ΛA tan pþ ΓA sin t

ΛA þ φ

¼ LAB

W

�
ΓC tan p sin t − ΛC

ΛC þ φ
−
ΓA tan p sin t − ΛA

ΛA þ φ

�
:

To solve p:

tan p ¼

�
LAB
W ½ΛAðΛB þ φÞðΛC þ φÞ − ΛCðΛA þ φÞðΛB þ φÞ�
þ½ΓAðΛB þ φÞðΛC þ φÞ − ΓBðΛA þ φÞðΛC þ φÞ� sin t

�
� ½ΛBðΛA þ φÞðΛC þ φÞ − ΛAðΛB þ φÞðΛC þ φÞ�
þ LAB

W ½ΓAðΛB þ φÞðΛC þ φÞ − ΓCðΛA þ φÞðΛB þ φÞ� sin t

� : (26)

A2.3 Combine p from A2.1 and A2.2 to Derive an Expression for t

Combining Eqs. (21) and (26):

1

sin t
·

� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

�
¼

�
LAB
W ½ΛAðΛB þ φÞðΛC þ φÞ − ΛCðΛA þ φÞðΛB þ φÞ�
þ½ΓAðΛB þ φÞðΛC þ φÞ − ΓBðΛA þ φÞðΛC þ φÞ� sin t

�
� ½ΛBðΛA þ φÞðΛC þ φÞ − ΛAðΛB þ φÞðΛC þ φÞ�
þ LAB

W ½ΓAðΛB þ φÞðΛC þ φÞ − ΓCðΛA þ φÞðΛB þ φÞ� sin t

� :

Expanding it produces the following quadratic form:

sin2 t½ΓAðΛB þ φÞðΛC þ φÞ − ΓBðΛA þ φÞðΛC þ φÞ�

þ sin t
LAB

W

� ½ΛAðΛB þ φÞðΛC þ φÞ − ΛCðΛA þ φÞðΛB þ φÞ�
−½ΓAðΛB þ φÞðΛC þ φÞ − ΓCðΛA þ φÞðΛB þ φÞ�

�
ðΛA−ΛBÞφ

ΓAΛB−ΓBΛAþðΓA−ΓBÞφ

��

þ ½ΛAðΛB þ φÞðΛC þ φÞ − ΛBðΛA þ φÞðΛC þ φÞ�
� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

�
¼ 0.

(27)
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Let νAB ¼ ðΛA−ΛBÞφ
ΓAΛB−ΓBΛAþðΓA−ΓBÞφ ,

αheihfihgi;hhihiihji ¼ ΓheiðΛhfi þ φÞðΛhgi þ φÞ
− ΓhhiðΛhii þ φÞðΛhji þ φÞ;

and
βheihfihgi;hhihiihji ¼ ΛheiðΛhfi þ φÞðΛhgi þ φÞ

− ΛhhiðΛhii þ φÞðΛhji þ φÞ;
e.g.,
αABC;BAC ¼ ΓAðΛB þ φÞðΛC þ φÞ − ΓBðΛA þ φÞðΛC þ φÞ;
and

βABC;CAB ¼ ΛAðΛB þ φÞðΛC þ φÞ − ΛCðΛA þ φÞðΛB þ φÞ:
Applying these expressions in Eq. (27) gives

αABC;BAC sin
2 tþ LAB

W
ðβABC;CAB − νAB · αABC;CABÞ sin t

þ νAB · βABC;BAC ¼ 0.

Therefore,

sin2 tþ LAB

W
·
βABC;CAB − νAB · αABC;CAB

αABC;BAC
sin t

þ νAB · βABC;BAC
αABC;BAC

¼ 0. (28)

Further, let κ1¼LAB
W ·βABC;CAB−νAB ·αABC;CABαABC;BAC

and κ2 ¼ νAB ·βABC;BAC
αABC;BAC

,
then Eq. (28) becomes

sin2tþ κ1 sin tþ κ2 ¼ 0. (29)

Solving for sin t, we have:

sin t ¼ −κ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

p
2

: (30)

A2.4 Equating Conditions 4 and 5 to Form Another
Expression for t

From conditions 4 and 5 (i.e., XD − XC ¼ LCD and
YC − YA ¼ W), we can obtain the following according to
the steps in Secs. A2.2 and A2.3:

sin t ¼ −κ3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − 4κ4

p
2

; (31)

where κ3 ¼ LCD
W · βADC;CAD−νAB·αADC;CAD

αCDA;DAC
and κ4 ¼ νAB ·βCDA;DAC

αCDA;DAC
.

A2.5 Combining Both Expressions of t to Form a
Numerical Solution for s

Combining Eqs. (30) and (31) gives:

− κ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

q
¼ −κ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − 4κ4

q
: (32)

Therefore, solving the swing angle (s) is equivalent to the
following minimization problem:

arg min
s

jð−κ1 þ κ3Þ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − 4κ4

q
Þj; (33)

which becomes Eq. (10).

A2.6 Equations for the Remaining Camera
Parameters

From Eq. (30), the tilt angle (t) can be computed as

t ¼ sin−1
�
−κ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4κ2

p
2

�
; (34)

which becomes Eq. (11).
Using Eq. (21) to calculate the pan angle (p):

p ¼ tan−1
�

1

sin t
·

� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

��
:

Substituting the expression νAB as defined in Sec. A2.3,
the equation becomes:

p ¼ tan−1ðνAB∕ sin tÞ (35)

which becomes Eq. (12).
The focal length (f) can be calculated from the original

definition of φ at the beginning of Sec. A2, which forms
Eq. (13):

f ¼ φ∕ tan t: (36)

Using Eq. (25) to compute h becomes Eq. (14):

h¼W sin tcos t
cosp

×
�
ΓC tanp sin t−ΛC

ΛCþφ
−
ΓA tanp sin t−ΛA

ΛAþφ

�
−1
: (37)

This forms a complete derivation for the set of equations
in Sec. 4.2.3 when LAB ≠ LCD.

A3 Proof of Case II: Parallelogram Case
(LAB � LCD and εAC � εBD ≠ 0)

A3.1 Manipulating Conditions 3 and 4
in Terms of ε

When LAB ¼ LCD ¼ L, Conditions 3 and 4 become
XB − XA ¼ XD − XC ¼ L. Rearranging the terms, it
becomes XC − XA ¼ XD − XB.

Let

XC − XA ¼ XD − XB ¼ ε; (38)

where ε is a constant, which corresponds to Fig. 4(a)
in Sec. 2.

A3.2 Combining Eq. (38) and Condition 5 to Form
an Expression for p

Apply Eq. (19) to Eq. (38): XC − XA ¼ ε,
ΛC tan pþ ΓC sin t

ΛC þ φ
−
ΛA tan pþ ΓA sin t

ΛA þ φ

¼ ε sin t cos t
h cos p

: (39)

Optical Engineering 017006-17 January 2013/Vol. 52(1)

Pang et al.: Generalized camera calibration model for trapezoidal patterns. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/15/2013 Terms of Use: http://spiedl.org/terms



Divide Eq. (39) by Eq. (25) in Sec. A2.2,

ðΛC tan pþ ΓC sin tÞðΛA þ φÞ
− ðΛA tan pþ ΓA sin tÞðΛC þ φÞ

¼ ε

W
½ðΓC sin t tan p − ΛCÞðΛA þ φÞ

− ðΓA sin t tan p − ΛAÞðΛC þ φÞ�: (40)

Isolating tanp gives the following equation:

tan p¼
ε
W ðΛC−ΛAÞφþ ½ΓCΛA −ΓAΛCþðΓC −ΓAÞφ� sin t
ðΛA −ΛCÞφþ ε

W ½ΓCΛA −ΓAΛCþðΓC −ΓAÞφ� sin t
:

(41)

A3.3 Combining Eq. (38) and Another Compatible
Version of Condition 5

Apply Eq. (19) to the other term of Eq. (38): XD − XB ¼ ε,

ΛD tan pþ ΓD sin t
ΛD þ φ

−
ΛB tan pþ ΓB sin t

ΛB þ φ

¼ ε sin t cos t
h cos p

: (42)

Another compatible version of condition 5 is
YD − YB ¼ W. Applying Eq. (20) to this condition gives

ΓD tan p sin t − ΛD

ΛD þ φ
−
ΓB tan p sin t − ΛB

ΛB þ φ

¼ W sin t cos t
h cos p

: (43)

Similarly, divide Eq. (42) by (43), then isolate tan p to
obtain

tan p¼
ε
W ðΛD−ΛBÞφþ½ΓDΛB−ΓBΛDþðΓD−ΓBÞφ�sin t
ðΛB−ΛDÞφþ ε

W ½ΓDΛB−ΓBΛDþðΓD−ΓBÞφ�sin t
:

(44)

A3.4 Combine p from A3.2 and A3.3 to Solve for φ

Combine Eqs. (41) and (44), and isolating φ gives

φ¼−
ðΓCΛA−ΓAΛCÞðΛD−ΛBÞ−ðΓDΛB−ΓBΛDÞðΛC−ΛAÞ

ðΓC−ΓAÞðΛD−ΛBÞ−ðΓD−ΓBÞðΛC−ΛAÞ
:

(45)

A3.5 Combine Both Expressions of φ to
Solve for s

Equating Eqs. (23) and (45), we have

ðΓAΛB−ΓBΛAÞðΛC−ΛDÞ−ðΓCΛD−ΓDΛCÞðΛA−ΛBÞ
ðΓA−ΓBÞðΛC−ΛDÞ−ðΓC−ΓDÞðΛA−ΛBÞ

¼ ðΓCΛA−ΓAΛCÞðΛD−ΛBÞ−ðΓDΛB−ΓBΛDÞðΛC−ΛAÞ
ðΓC−ΓAÞðΛD−ΛBÞ−ðΓD−ΓBÞðΛC−ΛAÞ

:

(46)

Let χPQ ¼ xq − xp, γPQ ¼ yq − yp, and ζPQ ¼ xpyq−
xqyp, then ΛP − ΛQ ¼ −χPQ sin s − γPQ cos s, ΓP − ΓQ ¼

−χPQ cos sþ γPQ sin s, and ΓPΛQ−ΓQΛP¼ ζPQ.
Equation (46) then becomes

ζABð−χCD sin s−γCD cos sÞ−ζCDð−χAB sin s−γAB cos sÞ�ð−χAB cos sþγAB sin sÞð−χCD sin s−γCD cos sÞ
−ð−χCD cos sþγCD sin sÞð−χAB sin s−γAB cos sÞ

�

¼ζACð−χBD sin s−γBD cos sÞ−ζBDð−χAC sin s−γAC cos sÞ�ð−χAC cos sþγAC sin sÞð−χBD sin s−γBD cos sÞ
−ð−χBD cos sþγBD sin sÞð−χAC sin s−γAC cos sÞ

� :

(47)

By isolating s in Eq. (47), the closed-form solution of s
[i.e., Eq. (15)] can be derived.

A4 Reduction of Model Case III: Rectangular
Case (LAB � LCD and εAC � εBD � 0)

Combine Eqs. (21) and (41):

1

sin t

� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

�

¼
ε
W ðΛC − ΛAÞφþ ½ΓCΛA − ΓAΛC þ ðΓC − ΓAÞφ� sin t

ðΛA − ΛCÞφþ ε
W ½ΓCΛA − ΓAΛC þ ðΓC − ΓAÞφ� sin t

:

(48)

Cross multiplying both sides and reorganizing the fraction
gives the quadratic equation

sin2 tþ ε

W

� ðΛA − ΛCÞφ
ΓAΛC − ΓCΛA þ ðΓA − ΓCÞφ

−
ðΛA − ΛBÞφ

ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ
�
sin t

þ
� ðΛA − ΛCÞφ
ΓAΛC − ΓCΛA þ ðΓA − ΓCÞφ

�

×
� ðΛA − ΛBÞφ
ΓAΛB − ΓBΛA þ ðΓA − ΓBÞφ

�
¼ 0. (49)

To simplify the quadratic form, let νPQ ¼
ðΛP−ΛQÞφ

ΓPΛQ−ΓQΛPþðΓP−ΓQÞφ and substitute into the equation, so that

sin2 tþ ε

W
ðνAC − νABÞ sin tþ νACνAB ¼ 0. (50)

Solving the quadratic equation, we have

sin t ¼ −
ε

2W
ðνAC − νABÞ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ε

W
ðνAC − νABÞ

�
2

− 4νACνAB

s
: (51)

When ε ¼ 0, Eq. (51) becomes

t ¼ sin−1
�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4νACνAB

p �
¼ sin−1

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−νACνAB

p �
;

(52)

which is essentially Eq. (16).

Optical Engineering 017006-18 January 2013/Vol. 52(1)

Pang et al.: Generalized camera calibration model for trapezoidal patterns. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/15/2013 Terms of Use: http://spiedl.org/terms



A5 Details of the Extracted Lengths
The extracted lengths are depicted in Tables 2 to 6.
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