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Abstract

Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in
many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming.
This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality
following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change
partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have
been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last
century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals
contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for
genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that
symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts
to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general.
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Introduction

Many diverse cnidarians, including scleractinian corals and

their alcyonarian and gorgonian soft coral relatives have evolved

obligate, intra-cellular symbioses with dinoflagellate algae of the

genus Symbiodinium. These algae are themselves diverse, represent-

ing at least 9 divergent lineages or ‘‘clades’’ [1,2]. Some of these

clades contain considerable diversity (‘types’), suggesting that

species level boundaries may exist at sub-clade resolutions [3].

Currently, our understanding of the functional significance of

symbiont diversity is based on zonation patterns of symbiont

clades within and among corals distributed across the reefscape

[4,5], and carbon-centered metrics of photosynthetic performance

under varied conditions [6,7]. These physiological differences may

be linked to a range of tolerances to environmental stressors

including sedimentation, high irradiance, and most importantly,

extreme temperatures among corals hosting distinct Symbiodinium

clades [8–11]. Global observations of thermal tolerance and

maintenance of symbiosis (bleaching resistance) exhibited by

various clades and sub-clade types have led to the hypothesis that

the process of bleaching may itself be an adaptive mechanism for

acquiring novel, stress-tolerant symbionts, which could serve to

increase the host’s survival during bouts of environmental change

[12–13]. To test this hypothesis is to ask; have symbiont types

changed since the onset of anthropogenic climate warming over

the last century?

One way of answering this question is by identifying

Symbiodinium from corals sampled prior to major anthropogenic

global change. Sources of such materials can be found in museum

archives [14]. Unfortunately, as scleractinian morphological

taxonomy is based on skeletal structures, most museum held hard

coral specimens collected over the last 200 years have been

bleached to remove all organic tissues, while wet collections of

hard corals are less common. Alternatively, gorgonian corals are

often preserved dry with the outer tissues (coenenchyme), in-

cluding the polyps and their Symbiodinium intact. The Smithso-

nian’s National Museum of Natural History contains over 6,000

specimens of gorgonian corals, with a large representation of dried

specimens. Remarkably, the collection is not limited to individual

type specimens and contains many lots of independent colonies

contemporaneously collected from the same geographic areas thus

providing important replication for genetic analyses.

Gorgonians are globally distributed but the majority of species

hosting Symbiodinium spp. are found on shallow reefs in the

Caribbean Sea. These octocorals exhibit different colony

morphologies, (primarily rod, fan, and plume) as well as variation

in polyp size which is hypothesized to be related to prey-capture

and therefore, reflective of the relative reliance on auto- vs.

heterotrophic nutrition [15]. Thus, gorgonian species may differ

with respect to their reliance on autotrophic nutrition translocated

from their symbionts. Moreover, current observations on the

flexibility of gorgonian-algal symbioses suggests that they are more

constrained than scleractinians ([16]; but see also [17]). Nearly

90% of Caribbean gorgonians are primarily found in symbiosis

with clade B Symbiodinium [18], though there are some examples of
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clade flexibility. For instance, Plexaura homomalla and Eunicea

tourneforti have been observed hosting multiple types from clade C

as well as clade B Symbiodinium [14]. Furthermore, experimental

infections of newly settled juveniles of Plexaura kuna and Pseudoplex-

aura porosa demonstrated flexibility in host associations with clades

A, B, and C [19]. Like scleractinians, the diversity of gorgonian-

symbiont associations may explain patterns of holobiont tolerance

to environmental stressors.

Published studies on the bleaching response to thermal stress

among gorgonians have shown that some species are highly

resistant [20–22] while others are susceptible [23] and can

subsequently succumb to mortality [24–26]. Following the mass

bleaching of 2005 in Puerto Rico, Prada (2010) observed

widespread bleaching (observed whitening) among many genera,

including Muricea, Muriceopsis, Pseudoplexaura, Briarium, Pterogorgia

and Plexaurella, while Gorgonia, Eunicea (with the exception of E.

flexuosa) and Pseudopterogorgia did not visibly bleach. However,

visible signs of bleaching may only manifest after substantial loss of

symbiont cells has already occurred [27] and host-derived

pigments, particularly carotenoids associated with gorgonian

sclerites may confound visual assessments of bleaching in

gorgonian corals [28]. Nevertheless we can conclude from these

limited observations that many gorgonians bleach and there is

substantial variation in bleaching susceptibility among various

genera. Given that living gorgonians have displayed instances of

flexible symbioses with clade B and C sub-types [29], and the

observation that bleached gorgonians can acquire novel symbionts

from the water column [30] there is a basis for questioning

whether anthropogenic change over the last century is associated

with a shift in the predominant symbiont clades hosted by modern

gorgonian corals.

Whether or not the process of bleaching is an adaptive

mechanism, it seems clear that Symbiodinium diversity is tied to

a spectrum of environmental tolerances. Therefore, shifts to

tolerant types via natural selection over time would be indicative of

adaptation to environmental stress. Given the near +1.0uC
warming of the surface ocean over the last 150 years has pushed

corals to the limits of their thermal tolerance and increased the

occurrence of mass bleaching events [31] the main goal of this

study was to determine if shifts in dominant symbiont types hosted

by several gorgonian species has occurred. We also tested the null

hypothesis that past populations of gorgonians separated by

distance host the same clades, and that all host species associated

with the same symbiont types.

Methods

Sample Collection and Preparation
Historical gorgonian specimens (n = 82) were obtained from the

dry collection of the Smithsonian National Museum of Natural

History (NMNH; Table 1). Most of these specimens were small

(,50 cm) and we estimate that these colonies were, on average,

,20 years old at the age of collection based on size and band

counts of basal cross-sections obtained from select specimens (data

not shown). Thus, we estimate that the specimens sampled in this

study likely represent up to 9 generations. We selected from the

most abundant species in the NMNH collection, including the sea

fans Gorgonia ventalina and G. flabellum, the sea plume Pseudopter-

ogorgia acerosa, and the sea rod Eunicea flexuosa. These species have

been found in association with several sub-clade types. Gorgonia

and Pseudopterogorgia have been found in symbiosis with B1, and

Eunicea flexuosa with B1, B1b, B2, and B8 [32].

All museum specimens were collected from the Florida Keys

and the Bahamas, though 3 specimens from Cuba were added to

the Florida sample set. Each specimen or lot was accessed from

storage cabinets organized by geographic origin and time of

collection. Most specimens were enclosed in heavy plastic bags.

For comparison, modern specimens of G. ventalina (n = 7) and E.

flexuosa (n=10) were collected offshore of Summerland Key, FL in

2007 and G. ventalina (n = 5) was collected from Lee Stocking

Island, Bahamas in 2010 (Table 1). All modern samples were oven

dried at 60uC to constant weight, ground into a powder, and

stored in individual sealed tubes.

The storage and subsequent handling of both modern and

museum specimens was conducted at separate locations through-

out the duration of this study to eliminate the risk of cross-

contamination between modern and historical specimens. Tissue

grinding, DNA extraction, PCR, and cleanup were conducted in

separate laboratories at different times using independent equip-

ment and reagent kits up to the point of sequencing [33]. First,

museum specimen work was conducted at the Laboratories of

Analytical Biology at the Smithsonian’s Museum Support Center.

Subsequently, all modern specimens were processed at the

Geophysical Laboratory of the Carnegie Institution of Washing-

ton. Neither facility had conducted work on Symbiodinium DNA

prior to this study. Approximately 3 g of tissue was removed by

hand or using scissors and then homogenized using a mortar and

pestle. To reduce cross contamination between samples, all

equipment was washed with soap, rinsed with tap water, soaked

in a bleach solution, and rinsed several times with deionized water

followed by a final ethanol rinse to enhance drying. In between

sets of samples from different species each mortar and pestle was

autoclaved following the washing protocol.

Approximately 0.5–1 mL (vol.) of homogenized sample was

placed in a 2.0 mL microcentrifuge tube, rehydrated with 1 mL of

0.2 mM sterile-filtered 0.5 mM EDTA buffer solution and

vortexed. The contents were allowed to settle at 5uC, and the

overlying liquid was decanted into a sterile tube. This step was

repeated if further settlement of large particles was observed. The

resulting liquids were spun at 10,0006g for 5 minutes, resulting in

a pellet primarily composed of Symbiodinium cells and debris. This

was followed by two spins at lower speed (5006g) to rinse the pellet

and reduce host-derived material. While pellets from older

specimens were visually similar to modern specimens in yield

and color, microscopy revealed that older samples contained few

intact theca, within which pigments were clearly degraded or

absent.

DNA Extraction, Quantification, and Amplification
Genomic DNA was extracted from whole Symbiodinium pellets

using a Mo Bio Power Soil DNA isolation kit (Mo Bio

Laboratories, Inc. Carlsbad, CA, USA). Pellets were first

resuspended in buffer, transferred to bead tubes and spun at

10,0006g following the wet soil sample protocol. The resulting

extracts were screened using ethidium bromide gel electrophoresis,

and DNA concentrations and estimates of purity were determined

using a NanoDrop spectrophotometer. Amplification of the ITS2

sub-region was conducted using the primers ‘ITSintfor2’ (forward)

and ‘ITS2CLAMP’ (reverse) following the ‘touchdown’ amplifi-

cation protocol described in Lajeunesse et al. (2002) using a BIO-

RAD T100 thermal cycler. Post-PCR screening for bands of

,300 bp revealed amplification success in 63 of 89 museum

samples (70.7%). Troubleshooting on failed PCR reactions using

different PCR recipes and various DNA polymerases was rarely

successful, thus we attributed a failed PCR reaction to low DNA

concentrations and/or DNA fragmentation. All amplicons were

cleaned using an Exo:SAP enzyme protocol. Following cleanup,

1 mL of the PCR product was cycle sequenced in both directions

aDNA from Octocoral Associated Symbiodinium
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using Big Dye 3.1 (Applied Biosystems, Foster City, USA). The

resulting product was filtered through a Sephadex column, dried

at 95uC, and directly sequenced using a 37306l DNA analyzer

(Applied Biosystems/Hitachi).

Verification
A subset of museum specimens representing each host species

(n = 14), and the additional species Eunicea succinea (n = 1) and

Pterogorgia anceps (n=1) were resampled to verify that our results

could be repeated. All sample preparation, DNA extraction, PCR,

and pre-sequencing reactions were conducted at a third, in-

dependent laboratory with no history of Symbiodinium research

(EG3, NMNH). BLAST searches using these sequences aligned

with Symbiodinum clades which corroborated our main conclusions.

These data were included in the final analysis.

Sequence Analysis
Chromatograms were screened for quality, edited, and com-

plementary sequences were aligned using Geneious Pro v.5.4.6

(Biomatters Ltd.) [34]. Consensus sequences representing replicate

samples of each species from each region/time were assembled

and BLAST searches yielded close matching with Symbiodinium

clade B. Thus, unique sequence characters from a minority of

individuals (24%) were ignored by our analysis if they differed

from the consensus sequence. We then aligned our sequences with

known sequences of Symbiodinium sub-types within clade B

obtained from GeoSymbio [32]. A phylogenetic tree was created

with a clade A sequence (A3; Geosymbio) was used as an outgroup

using neighbor-joining with 1,000 bootstrapped iterations. All

sequences resulting from this study are archived in NCBI’s

GenBank with the following accession numbers: KC461830-

KC461901. URL: http://www.ncbi.nlm.nih.gov/genbank/.

Results and Discussion

We have demonstrated that short genetic markers like the ITS2

sub-region of the nuclear rDNA are recoverable from Symbiodinium

obtained from 6 species of dried gorgonian octocorals collected

more than a century ago. Preliminary attempts at amplifying other

common markers for genotyping, such as 18 s, were unsuccessful.

Based on electrophoresis of genomic DNA extracts we observed

high fragmentation, thus, given the relatively large size of 18 s

(,1800 bp) the probability of extracting a complete template was

likely very low. However, amplification and sequencing of the

smaller Symbiodinium ITS2 (,200 bp) from dry-preserved living

and historical octocorals specimens was successful and there was

no apparent effect of preservation time on the percentage of

samples that were successfully sequenced and aligned. Of the

Table 1. Summary of specimens.

Catalog
Number Scientific Name n (seq.) Collector(s) Year Collected Country Precise Locality

59474 Eunicea succinea 1 (1) J.E. Benedict 1901 USA Caesar Creek, Florida

14388 Eunicea flexuosa 15 (6) W. Nye 1886 Bahamas New Providence Island

no ID 11 (8) W.L. Schmitt ,1905 USA Dry Tortugas, Florida

no ID 5 (4) unknown 1925 USA Dry Tortugas, Florida

na 10 (5) E. Bartels 2007 USA Summerland Key, Florida

14766 Gorgonia flabellum 2 (1) W. Nye 1886 Bahamas Abaco Island

54232 12 (8) P. Bartsch 1912 Bahamas Andros Island

14400 1 (1) no data 1886 Bahamas Watlings Island

14397 Gorgonia ventalina 4 (3) W. Nye 1886 Bahamas New Providence Island

54232 6 (2) P. Bartsch 1912 Bahamas Andros Island

14400 2 (0) unknown 1886 Bahamas Watlings Island

na 5 (3) D. Baker 2010 Bahamas Lee Stocking Island

34779 3 (2) Henderon and Barson 1914 Cuba Santa Lucia Bay

8860 2 (2) E. Palmer 1884 USA Florida

8884 4 (1) E. Palmer 1884 USA Florida

95428 2 (0) E. Palmer 1884 USA Key West, Florida

33627 1 (1) P. Bartsch* 1912* USA Biscayne Bay, Florida

1625 2 (2) C. Pickering 1838–1842** USA Florida

54232 3 (1) P. Bartsch 1912 USA Biscayne Bay, Florida

na 7 (1) E. Bartels 2007 USA Summerland Key, Florida

8862 Pseudopterogorgia acerosa 6 (3) E. Palmer 1884 USA Carysfort Reef, Florida

8866 1 (0) E. Palmer 1884 USA Salt Pond Key, Florida

33614 11 (8) J.E. Benedict 1901 USA Carysfort Reef, Florida

6913 Pterogorgia anceps 1 (1) H. Hemphill 1884 USA Tampa Bay, Florida

n= total number of specimens sampled for this study.
(seq.) = total number of specimens yielding consensus sequences used in Fig. 1.
**Estimated year: Charles Pickering was a crew member of the United States Exploring Expedition at this time.
*Year estimated by collector/catalog number.
doi:10.1371/journal.pone.0055057.t001
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living specimens extracted, 52.2% resulted in high quality and

aligned sequences compared to 65.8% of the museum specimens.

This difference is probably due to experimental error in the

process of extraction through sequencing and not a function of

sample preservation. Indeed, DNA concentrations of modern

sample extracts were as high as 38.6 ng mL21 vs. 17.3 for museum

specimens. However the mean DNA concentration obtained from

living samples was no different than museum specimens (8.1 vs.

8.9 ng mL21, Student’s t-test (two-tailed); t = 0.33, df = 42,

p=0.74). These findings illustrate that sufficient Symbiodinium

aDNA for genotyping can be obtained from small quantities of

dry-preserved coral tissues, and suggests that drying is a tractable

option for DNA preservation when the use of liquid fixatives is not

feasible.

Our sequence data show that Symbiodinium types hosted by

Caribbean octocorals collected between 98–172 years ago are

indistinguishable from recently collected specimens. Both groups

were found to contain representatives of clade B (Fig. 1). While our

recent sample size was small, the results we obtained are in line

with several previous works that have genotyped Symbiodinium from

these host species [14,18,22,32,35]. Both recent and historical

specimens of G. ventalina, and historical specimens of G. flabellum,

and P. acerosa were 100% identical to GenBank sequences of

Symbiodinium clade B1. E. flexuosa and E. succinea were found to host

a different genotype, B1L, characterized by a substitution of

cytosine for thymine at base pair 117, relative to B1 (Fig. 1). B1L

has been previously described in symbiosis with Eunicea spp. [35]

and other sea rods of the genus Pseudoplexaura and Plexaurella [36].

However, unique sequences that differed from the clade reference

were found in 24% of the individuals. E. flexuosa had the highest

occurrence of such characters with 4 out of 20 (5%) having 4 or

fewer unique substitutions. One of these substitutions, a guanine

for adenine substitution at base pair 189, was present in all four

individuals which were all museum specimens collected at or

before 1905. We found no similar SNP in GenBank or the

Geosymbio database. While the sample size is low, we suggest that

further sampling be conducted to determine if this is a new and/or

extirpated Symbiodinium clade.

Overall, there was no apparent genetic structure or clade-

specificity based on the geographic location of collection. Speci-

mens collected from Florida and the Bahamas consistently

grouped together (Fig. 1). This is not surprising given that the

majority of Caribbean gorgonians associate with clade B

Symbiodinium. However, using microsatellite markers, Andras et al.

(2011) recently illustrated significant genetic structure among clade

B1 symbionts hosted by G. ventalina from the Bahamas and the

Florida Keys, possibly due to the strong Florida Current

preventing mixing among these populations [37]. Moreover,

Finney et al (2010) used a combined ITS2/microsatellite approach

to reveal that diversity within clade B is high, reflecting divergence

among lineages that are host- and habitat-specific [36]. Thus,

a logical future step is to target microsatellite loci of Symbiodinium

B1 obtained from museum specimens for comparison with modern

populations as such markers may be better suited for quantifying

change in symbiont populations and testing the hypothesis that

population level shifts in genetic diversity have occurred in

response to global change [37,38].

Our results yielded no evidence that there have been shifts in

symbiont type hosted by gorgonian corals since human-induced

global change. This finding poses two important questions; 1) is

the gorgonian-algal symbiosis static and inflexible, and 2) has the

severity of global change not been sufficient to drive major shifts in

symbiont types hosted by gorgonian corals?

First, there is evidence that some gorgonians possess flexible

symbioses as has been observed in several species of hard corals

[39]. Newly settled polyps are capable of acquiring multiple

symbiont types during early ontogeny [30]. As adults, several

species have been found in symbiosis with clade A and C

Symbiodinium as well as clade B [14,19] and early studies may have

failed to describe the presence of cryptic clades [35]. Yet, these

examples of flexibility are apparently rare. More common are

examples of symbiont stability over space and time. Goulet and

Coffroth (2003) monitored Symbiodinium within individual colonies

of Plexaura kuna and saw no clade-level variation over a period of

10 years [40]. Similarly, LaJeunesse et al. (2004) revealed that

symbiont identities among an introduced population of Fungia

retained their Pacific Symbiodinium 35 years after introduction to

the Caribbean [41]. These examples are supportive of the

hypothesis that host-symbiont associations are highly specific,

reflecting a long evolutionary history [42].

Yet, it remains to be tested whether or not different symbiont

types confer thermal tolerance to gorgonian hosts. This is an

interesting hypothesis to test as bleaching is not uncommon among

gorgonians, and the severity of bleaching appears to be species-

specific [20]. For example, long-term records of temperature and

symbiont densities of the sea rod Plexaura kuna from the Bahamas

suggested that this species resists bleaching whereas other sea rods

like Plexaurella spp. appear to bleach readily during warm periods

[20,23]. The potential for certain sub-clade types to enhance

tolerance to environmental stress has recently been illustrated in

hard corals [43]. Although differential bleaching susceptibility

among Pacific Alcyonaceans is apparently not explained by

Symbiodinium identity, this has yet to be tested in gorgonian

octocorals [44].

Second, the bleaching threshold for many coral species is near

maximal summer temperatures, therefore apparently small in-

creases in ocean temperature have large consequences for

increasing mass coral bleaching events. Coincident with these

events are observations of differential mortality [45] and to a lesser

extent symbiont shuffling among scleractinian coral species,

primarily to Symbiodinum types which have been found to be

tolerant to high irradiance (e.g. A3) or sedimentation and thermal

stress (e.g. clade D) [46,47]. If we assume that zooxanthellate

octocoral symbioses are functionally analogous to scleractinians,

we might expect to find similar shifts among gorgonian corals over

time. The absence of genetic evidence in this study may indicate

that gorgonians are inflexible with respect to their symbiotic

partners as may be the case for most corals [48], or perhaps

gorgonians are overall more resilient in the midst of ocean

warming. We contend that neither hypothesis is parsimonious and

posit that significant changes in symbiont genotypes among coral

host populations are not likely to be ecologically significant under

the punctuated stress of climate change over the last century. This

reflects the evolution of the symbiosis between Caribbean

gorgonians and clade B Symbiodinium since the Pleistocene [42].

Our successful demonstration of aDNA extraction and ampli-

fication of informative taxonomic markers from Symbiodinium holds

great promise for future studies. It has been argued that

scleractinian corals are more flexible in their symbiotic associations

than gorgonians, particularly at the clade level [16,17]. If this is

true, aDNA studies of scleractinian corals is a high priority for

future research, though a significant challenge exists in finding

intact tissues or skeletal reservoirs of preserved Symbiodinium cells.

We attempted DNA extraction from one museum specimen of

Montastrea cavernosa (NMNH #255089), collected in 1864, which

appeared to have some remaining surface tissues. Unfortunately,

we recovered very small quantities of DNA and were unable to

aDNA from Octocoral Associated Symbiodinium
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amplify ITS2. Even so, milling of subsurface skeletal materials

from archived scleractinians, and perhaps even fossil and sub-fossil

skeletons may yet yield preserved Symbiodinium containing sufficient

DNA for genotyping and warrants further study.
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