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Abstract

In this article, some new inequalities about polar duals of convex and star bodies are
established. The new inequalities in special case yield some of the recent results.
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1 Notations and preliminaries
The setting for this article is n-dimensional Euclidean space R

n(n > 2). Let Kn denotes

the set of convex bodies (compact, convex subsets with non-empty interiors) in R
n.

We reserve the letter u for unit vectors, and the letter B for the unit ball centered at

the origin. The surface of B is Sn-l. The volume of the unit n-ball is denoted by ωn.

We use V(K) for the n-dimensional volume of convex body K. h(K, ·) : Sn−1 → R,

denotes the support function of K ∈ Kn; i.e., for u Î Sn-l

h(K, u) = Max{u · x : x ∈ K}, (1:1)

where u · x denotes the usual inner product u and x in R
n.

Let δ denotes the Hausdorff metric on Kn, i.e., for K, L ∈ Kn, δ(K, L) = |hK − hL|∞,
where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn-l).

Associated with a compact subset K of Rn, which is star-shaped with respect to the

origin, is its radial function ρ(K, ·) : Sn−1 → R, defined for u Î Sn-l, by

ρ(K, u) = Max{λ ≥ 0:λu ∈ K}. (1:2)

If r(K, ·) is positive and continuous, K will be called a star body. Let Sn denotes the

set of star bodies in R
n. Let δ̃ denotes the radial Hausdorff metric, as follows, if K, LÎ

Sn, then δ̃(K, L) = |ρK − ρL|∞ (See [1,2]).

1.1 Lp-mixed volume and dual Lp-mixed volume

If K, L ∈ Kn, the Lp-mixed volume Vp(K, L) was defined by Lutwak (see [3]):

Vp(K, L) =
1
n

∫
Sn−1

h(L, u)pdSp(K, u), (1:3)

where Sp(K, ·) denotes a positive Borel measure on Sn-1.

The Lp analog of the classical Minkowski inequality (see [3]) states that: If K and L

are convex bodies, then
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Vp(K, L) ≥ V(K)(n−p)/nV(L)p/n, (1:4)

with equality if and only if K and L are homothetic.

If K, L Î Sn, p ≥ 1, the Lp-dual mixed volume Ṽ−p(K, L) was defined by Lutwak (see

[4]):

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ(K, u)n+p
ρ(L, u)−pdS(u), (1:5)

where dS(u) signifies the surface area element on Sn-1 at u.

The following dual Lp-Minkowski inequality was obtained in [2]: If K and L are star

bodies, then

Ṽ−p(K, L)n ≥ V(K)n+pV(L)−p, (1:6)

with equality if and only if K and L are dilates.

1.2 Mixed bodies of convex bodies

If K1, . . . , Kn−1 ∈ Kn, the notation of mixed body [K1,..., Kn-1] states that (see [5]): cor-

responding to the convex bodies K1, . . . , Kn−1 ∈ Kn in R
n, there exists a convex body,

unique up to translation, which we denote by[K1,..., Kn-1].

The following is a list of the properties of mixed body: It is symmetric, linear with

respect to Minkowski linear combinations, positively homogeneous, and for

Ki ∈ Kn, i = 1, . . . , n, L1 ∈ Kn and li> 0,

(1) V1([K1, ..., Kn-1], Kn) = V(K1, ..., Kn-1, Kn);

(2) [K1 + L1, K2, ..., Kn-1] = [K1, K2, ..., Kn-1] + [L1, K2, ..., Kn-1];

(3) [l 1 K 1, ..., ln-1Kn-1] = l1... ln-1 · [K1, ..., Kn-1];

(4)
[K, . . . , K]︸ ︷︷ ︸

n−1

= K
.

The properties of mixed body play an important role in proving our main results.

1.3 Polar of convex body

For K ∈ Kn, the polar body of K, K* is defined:

K∗ = {x ∈ R
n : x · y ≤ 1, y ∈ K}.

It is easy to get that

ρ(K, u)−1 = h(K∗, u). (1:7)

Bourgain and Milman’s inequality is stated as follows (see [6]).

If K is a convex symmetric body in R
n, then there exists a universal constant c>0

such that

V(K)V(K∗) ≥ cnω2
n . (1:8)

Different proofs were given by Pisier [7].
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2 Main results
In this article, we establish some new inequalities on polar duals of convex and star

bodies.

Theorem 2.1 If K, K1, ..., Kn-1 are convex bodies in R
nand let L = [K1, ..., Kn-1], then

the Lp-mixed volumes Vp(K, L), Vp(K*, L), Vp(B, L) satisfy

Vp(K, L)Vp(K∗, L) ≥ Vp(B, L)2. (2:1)

Proof From (1.1) and (1.2), it is easy

h(K, u) ≥ ρ(K, u), K ∈ Kn. (2:2)

By definition of Lp-mixed volume, we have

Vp(K, L) =
1
n

∫
Sn−1

h(K, u)pdSp(L; u), (2:3)

and

Vp(K∗, L) =
1
n

∫
Sn−1

h(K∗, u)pdSp(L, u). (2:4)

Multiply both sides of (2.3) and (2.4), in view of (1.7) and (2.2) and using the Cau-

chy-Schwarz inequality (see [8]), we obtain

n2Vp(K, L)Vp(K∗, L)

=

⎛
⎝ ∫

Sn−1

h(K, u)pdSp(K1, . . . , Kn−1; u)

⎞
⎠

⎛
⎝ ∫

Sn−1

1

ρ(K, u)p dSp(K1, . . . , Kn−1; u)

⎞
⎠

≥

⎛
⎜⎜⎝

∫
Sn−1

h(K, u)

p

2 · 1

ρ(K, u)

p

2

dSp(K1, . . . , Kn−1; u)

⎞
⎟⎟⎠

2

≥
⎛
⎝ ∫

Sn−1

dSp(K1, . . . , Kn−1; u)

⎞
⎠

2

= n2V2
p (B, L).

Taking p = n - 1 in (2.1) and in view of the property (1) of mixed body, we obtain

the following result: If K, K1, . . . , Kn−1 ∈ Kn, then

V(K, K1, . . . , Kn−1)V(K∗, K1, . . . , Kn) ≥ V(B, K1, . . . , Kn−1)2. (2:5)

This is just an inequality given by Ghandehari [9].

Let L = B, we have the following interesting result:

Let K be a convex body and K* its polar dual, then

Vp(K, B)Vp(K∗, B) ≥ ω2
n . (2:6)

Taking p = n-1 in (2.6), we have the following result which was given in [9]:

Wn−1(K)Wn−1(K∗) ≥ ω2
n ,
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with equality if and only if K is an n-ball.

Corollary 2.2 The Lp-mixed volume of K and K*, Vp(K, K*) satisfies

Vp(K∗, K)n ≥ ω
2(n−p)
n V(K)2p−n. (2:7)

Proof In view of the property (4) of the mixed body, we have

Vp(K, [K, . . . , K]) = Vp(K, K) = V(K).

Form (1.4) and taking for K1 = K2 = ... = Kn-1 = K in (2.1), we have

V(K)Vp(K∗, K) ≥ V2
p (B, K)

≥ V(B)

2(n− p)
n V(K)

2p

n

= ω

2(n− p)
n

n V(K)

2p
n .

Taking p = n-1 in (2.7), we have the following result:

V(K∗, K, . . . , K︸ ︷︷ ︸
n−1

)n ≥ ω2
nV(K)n−2.

This is just an inequality given by Ghandehari [9]. The cases p = 1 and n = 2 give

Steinhardt’s and Firey’s result (see [7]).

A reverse inequality about Ṽ(K∗, K, . . . , K︸ ︷︷ ︸
n−1

) was given by Ghandehari [9].

Ṽ(K∗, K, . . . , K︸ ︷︷ ︸
n−1

)n ≤ ω2
nV(K)n−2.

Theorem 2.3 Let K be a star body in R
n, K* be the polar dual of K, then there exist a

universal constant c>0 such that

V(K)n+2pṼ−p(K∗, K)n ≥ (cnω2
n)n+p, (2:8)

where c is the constant of Bourgain and Milman’s inequality.

Proof From (1.6) and (1.8), we have

Ṽ−p(K∗, K) ≥ V(K∗)
n + p

n V(K)
−

p
n

= (V(K∗)V(K))

n + p
n V(K)

−
n + 2p

n

≥ (cnω2
n)

n + p

n V(K)
−

n + 2p

n .

The following theorem concerning Lp-dual mixed volumes will generalize Santaló

inequality.

Theorem 2.4 Let K1 and K2 be two star bodies, K∗1and K∗2be the polar dual of K1 and

K2, then there exists a constant c, Lp-dual mixed volumes Ṽ−p(K1, K2)and

Ṽ−p(K1, K2)Ṽ−p(K∗1, K∗2) ≥ cnω2
n .satisfy

Ṽ−p(K1, K2)Ṽ−p(K∗1, K∗2) ≥ cnω2
n . (2:9)
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Proof From (1.6), we have

Ṽ−p(K1, K2) ≥ (K1)

n + p
n V(K2)

−
p
n .

(2:10)

For K∗1 and K∗2, we also have

Ṽ−p(K∗1, K∗2) ≥ V(K∗1)

n + p
n V(K∗2)

−
p
n .

(2:11)

Multiply both sides of (2.10) and (2.11) and using Bourgain and Milman’s inequality,

we obtain

Ṽ−p(K1, K2)Ṽ−p(K∗1, K∗2) ≥ (V(K1)V(K∗1))
−

p
n (V(K2)V(K∗2))

−
p
n

≥ (cnω2
n)

n + p

n (cnω2
n)
−

p

n

= cnω2
n .

Taking for K1 = K2 = K in (2.9) and in view of Ṽ−p(K1, K2) = Ṽ−p(K, K) = V(K), (2.9)

changes to the Bourgain and Milman’s inequality (1.8).
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