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Abstract

In this paper, we study the discounted free Gerber-Shiu function for the compound binomial

risk model with by-claims and randomized dividend policy. Specifically, explicit expression for

the discounted free Gerber-Shiu function is obtained. This result allows us to derive formulae

for some useful insurance quantities, including the ruin probability, the probability function of

the deficit at ruin, the joint probability function of the surplus immediately before ruin and the

deficit at ruin, and the probability function of the claim causing ruin.
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1 Introduction

Research concerning the compound binomial risk model with i.i.d. claims began from Gerber

(1988), in which he derived formulae for the ruin probability, the distribution of the deficit at

ruin, and the distribution of the surplus immediately before ruin when the initial surplus is zero.

Since then, this topic has been extensively studied by many authors including Shiu (1989), Willmot

(1993), and Pavlova and Willmot (2004). Since the independence assumption imposed on claims in

the classical model is not realistic, generalizations of the model with various kinds of dependency

were considered in the literature. Among others, Yuen and Guo (2001) considered the compound

binomial model with the so-called by-claims, that is, every (main) claim causes a by-claim whose

time of occurrence may be delayed to the next time period. In their paper, they stated the practical

background of the model and obtained the recursive formula for the finite time ruin probability

as well as the explicit expressions for ultimate ruin probabilities in special cases. Recently, Xiao

and Guo (2007) studied the by-claim model further, and derived the recursive formula for the joint

probability function of the surplus immediately before ruin and the deficit at ruin. For continuous-

time risk models with delayed claims, see, for example, Yuen, Guo and Ng (2005). Instead of
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introducing dependency to the claims, Tan and Yang (2006) modified the compound binomial

model in the way that the insurer may pay dividend with a certain probability if the surplus

is greater than or equal to a fixed nonnegative integer. They derived the recursive formula and

asymptotic estimate for the discounted free Gerber-Shiu function for their model with the so-called

randomized dividend policy.

In the present paper, we consider the compound binomial risk model with by-claims under

the randomized dividend policy. Besides adopting the by-claim set-up in Yuen and Guo (2001),

we assume that the insurer may pay a randomized dividend of 1 with a certain probability at

the beginning of every time period until ruin occurs. Different from all the above-mentioned

references in which explicit formulae are derived only in the special case of zero initial surplus, we

obtain explicit formula for the discount free Gerber-Shiu function for all nonnegative initial surplus.

Furthermore, based on the derived formula, we study some useful insurance quantities including

the ruin probability, the probability function of the deficit at ruin, the joint probability function

of the surplus immediately before ruin and the deficit at ruin, and the probability function of the

claim causing ruin.

The rest of this paper is organized as follows. In Section 2, we introduce the compound bi-

nomial risk model with by-claims and randomized dividends. In Section 3, explicit formula for

the discounted free Gerber-Shiu function is derived. In Section 4, we study some useful insurance

quantities using the formula obtained in Section 3.

2 The model

The discrete-time risk model considered in this paper is

Ut = u+ t−
t∑

i=1

ζi1(Ui−1≥0) −
t∑

i=1

Zi, t = 0, 1, 2, . . . , (2.1)

where

Z1 = ξ1(X1 + η1Y1)

Zi = ξi(Xi + ηiYi) + ξi−1(1− ηi−1)Yi−1, i = 2, 3, . . . . (2.2)

Here, the nonnegative integers u and t are the initial surplus and time period, respectively. A

premium of 1 is received at the beginning of every period, and 1A is the indicator function of an

event A. Main claim amounts Xi and by-claim amounts Yi are positive integer-valued i.i.d. random

variables with probability functions, P (X = k) = fk and P (Y = l) = gl for k, l = 1, 2, . . ., and

means E(X) = µX and E(Y ) = µY . Furthermore, ζi, ξi, and ηi are indicator random variables.

Specifically, ζi = 1 with probability α indicates that a dividend of 1 is paid at the beginning of the

ith period if ruin does not occur, and ζi = 0 with probability 1 − α indicates that no dividend is

paid at the beginning of the ith period; ξi = 1 with probability p indicates that there is a main

claim in the ith period (main claim amount is payable at the end of the ith period), and ξi = 0 with

probability 1 − p indicates that there is no main claim in the ith period; ηi = 1 with probability

θ indicates that the by-claim induced by the main claim in the ith period is paid at the the end

of the ith period (both the main claim and its induced by-claim are payable at the end of the ith

period), and ηi = 0 with probability 1 − θ indicates that the by-claim induced by the main claim
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in the ith period is paid a period later. As a result, Zi defined in (2.2) is the total of the main

claim and by-claim amounts payable at the end of the ith period. As usual, it is assumed that {ζi},
{ξi}, {ηi}, {Xi} and {Yi} are independent. On the other hand, it is clear that every two successive

claims Zi−1 and Zi are correlated. Additionally, we set
∑b

a = 0 if a > b, and assume that the

positive safety loading condition 1 − α − p(µX + µY ) > 0 holds to guarantee that ruin does not

occur with probability 1.

In risk model (2.1), if α = 0, the model reduces to the by-claim model without dividends in Yuen

and Guo (2001), while if θ = 1, by-claims always occur together with their corresponding main

claims and hence the model collapses to that in Tan and Yang (2006) with zero dividend-bound

and claims Zi = Xi + Yi. Certainly, if θ = 1 and α = 0, model (2.1) degenerates to the classical

compound binomial model which has been studied extensively.

Gerber and Shiu (1998) introduced the expected discounted penalty function with respect to

the time of ruin, the surplus immediately before ruin and the deficit at ruin, which has proved to

be a powerful analytical tool in risk theory. Let τ = inf{t;Ut < 0} be the ruin time of model (2.1),

with τ = ∞ if ruin does not occur. Then, given τ < ∞, Uτ− is the surplus immediately before ruin,

and |Uτ | is the deficit at ruin. For any nonnegative bounded function ω(v1, v2) and any discount

factor 0 < v ≤ 1, the Gerber-Shiu expected discounted penalty function for model (2.1) is defined

as

mv(u) = E
(
vτω

(
Uτ−, |Uτ |

)
1(τ<∞)|U0 = u

)
. (2.3)

Here, we only consider the case with v = 1 and study the discounted free Gerber-Shiu function

m(u) = E
(
ω
(
Uτ−, |Uτ |

)
1(τ<∞)|U0 = u

)
. (2.4)

3 Explicit expression for m(u)

Following Yuen and Guo (2001), we define an auxiliary process

U ′
t = u+ t−

t∑
i=1

ζi1(U ′
i−1≥0) −

t∑
i=1

Zi − Y ′1(t≥1), (3.1)

where Y ′ has the same probability probability function as Yi’s. Denote by m′(u) the discounted free

Gerber-Shiu function for U ′
t . We will see that the process U ′

t plays an important role in deriving

our main results.

For model (2.1), there are several cases at time 1 according to whether a main claim occurs or

not, whether the associated by-claim occurs simultaneously or occurs in the next period, whether

the dividend is paid or not, and whether ruin occurs or not. Taking into account all these cases

and using the law of total probability, we have
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m(u)= q(1− α)m(u+ 1) + qαm(u) + pθ(1− α)
u+1∑

k+l=2

m(u+ 1− k − l)fkgl

+pθ(1− α)

∞∑
k+l=u+2

ω(u+ 1, k + l − u− 1)fkgl
+ pθα

u∑
k+l=2

m(u− k − l)fkgl

+pθα
∞∑

k+l=u+1

ω(u, k + l − u)fkgl
+ p(1− θ)(1− α)

u+1∑
k=1

m′(u+ 1− k)fk

+p(1− θ)(1− α)
∞∑

k=u+2

ω(u+ 1, k − u− 1)fk + p(1− θ)α
u∑

k=1

m′(u− k)fk

+p(1− θ)α

∞∑
k=u+1

ω(u, k − u)fk. (3.2)

Similarly, for model (3.1), we obtain

m′(u)= q(1− α)

u+1∑
l=1

m(u+ 1− l)g
l
+ q(1− α)

∞∑
l=u+2

ω(u+ 1, l − u− 1)g
l
+ qα

u∑
l=1

m(u− l)g
l

+qα

∞∑
l=u+1

ω(u, l − u)g
l
+ pθ(1− α)

u+1∑
l+k+n=3

m(u+ 1− l − k − n)g
l
fkgn

+pθ(1− α)
∞∑

l+k+n=u+2

ω(u+ 1, l + k + n− u− 1)g
l
fkgn + pθα

u∑
l+k+n=3

m(u− l − k − n)g
l
fkgn

+pθα
∞∑

l+k+n=u+1

ω(u, l + k + n− u)g
l
fkgn + p(1− θ)(1− α)

u+1∑
k+l=2

m′(u+ 1− k − l)fkgl

+p(1− θ)(1− α)

∞∑
k+l=u+2

ω(u+ 1, k + l − u− 1)fkgl
+ p(1− θ)α

u∑
k+l=2

m′(u− k − l)fkgl

+p(1− θ)α
∞∑

k+l=u+1

ω(u, k + l − u)fkgl
. (3.3)

Let

W1(u) =

∞∑
k+l=u+1

ω(u, k + l − u)fkgl
, (3.4)

W2(u) =
∞∑

k=u+1

ω(u, k − u)fk, (3.5)

W3(u) =

∞∑
l=u+1

ω(u, l − u)g
l
, (3.6)

W4(u) =
∞∑

l+k+n=u+1

ω(u, l + k + n− u)g
l
fkgn , (3.7)

and denote by f1 ∗ f2 the convolution of f1 and f2 with f1 ∗ f2(u) =
∑u

i=0 f1(u − i)f2(i). Then,

(3.2) and (3.3) can be simplified as
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(1− qα)m(u) = q(1− α)m(u+ 1) + pθ(1− α)m ∗ f ∗ g(u+ 1) + pθαm ∗ f ∗ g(u)

+p(1− θ)(1− α)m′ ∗ f(u+ 1) + p(1− θ)αm′ ∗ f(u) + pθ(1− α)W1(u+ 1)

+pθαW1(u) + p(1− θ)(1− α)W2(u+ 1) + p(1− θ)αW2(u),

(3.8)

and

m′(u) = q(1− α)m ∗ g(u+ 1) + qαm ∗ g(u) + pθ(1− α)m ∗ f ∗ g∗2(u+ 1) + pθαm ∗ f ∗ g∗2(u)

+p(1− θ)(1− α)m′ ∗ f ∗ g(u+ 1) + p(1− θ)αm′ ∗ f ∗ g(u) + p(1− θ)(1− α)W1(u+ 1)

+p(1− θ)αW1(u) + q(1− α)W3(u+ 1) + qαW3(u) + pθ(1− α)W4(u+ 1) + pθαW4(u).

(3.9)

In the rest of this paper, we put a tilde on top of a function to denote its generating function,

for example f̃(z) =
∑∞

i=0 z
ifi, W̃1(z) =

∑∞
i=0 z

iW1(i), and so on. Multiplying (3.8) and (3.9) by

zu+1 and summing over u from 0 to ∞, we obtain[
(1− qα)z − q(1− α)− pθ(1− α)f̃(z)g̃(z)− pθαzf̃(z)g̃(z)

]
m̃(z)

=
[
p(1− θ)(1− α)f̃(z) + p(1− θ)αzf̃(z)

]
m̃′(z) +

[
pθ(1− α) + pθαz

]
W̃1(z)

+
[
p(1− θ)(1− α) + p(1− θ)αz

]
W̃2(z)− q(1− α)m(0)− pθ(1− α)W1(0)

−p(1− θ)(1− α)W2(0), (3.10)

and [
q(1− α)g̃(z) + qαzg̃(z) + pθ(1− α)f̃(z)g̃2(z) + pθαzf̃(z)g̃2(z)

]
m̃(z)

=
[
z − p(1− θ)(1− α)f̃(z)g̃(z)− p(1− θ)αzf̃(z)g̃(z)

]
m̃′(z)−

[
q(1− α) + qαz

]
W̃3(z)

−
[
p(1− θ)(1− α) + p(1− θ)αz

]
W̃1(z)−

[
pθ(1− α) + pθαz

]
W̃4(z)

+p(1− θ)(1− α)W1(0) + q(1− α)W3(0) + pθ(1− α)W4(0). (3.11)

Then, it follows from (3.10) and (3.11) that[
(1− qα)z − pαzf̃(z)g̃(z)− q(1− α)− p(1− α)f̃(z)g̃(z)

]
m̃(z)

=
[(

pθα− p2θ(1− θ)α2f̃(z)g̃(z) + p2(1− θ)2α2f̃(z)
)
z +

(
pθ(1− α)− 2p2θ(1− θ)α(1− α)f̃(z)g̃(z)

+2p2(1− θ)2α(1− α)f̃(z)
)
+

(
p2(1− θ)2(1− α)2f̃(z)− p2θ(1− θ)(1− α)2f̃(z)g̃(z)

)1

z

]
W̃1(z)

+
[(

p(1− θ)α− p2(1− θ)2α2f̃(z)g̃(z)
)
z +

(
p(1− θ)(1− α)− 2p2(1− θ)2α(1− α)f̃(z)g̃(z)

)
−p2(1− θ)2(1− α)2f̃(z)g̃(z)

1

z

]
W̃2(z)

+
[
p(1− θ)α2f̃(z)z + 2p(1− θ)α(1− α)f̃(z) + p(1− θ)(1− α)2f̃(z)

1

z

](
qW̃3(z) + pθW̃4(z)

)
−
[
q(1− α)− pq(1− θ)α(1− α)f̃(z)g̃(z)− pq(1− θ)(1− α)2f̃(z)g̃(z)

1

z

]
m(0)

−
[(

pθ(1− α)− p2θ(1− θ)α(1− α)f̃(z)g̃(z) + p2(1− θ)2α(1− α)f̃(z)
)

+
(
p2(1− θ)2(1− α)2f̃(z)− p2θ(1− θ)(1− α)2f̃(z)g̃(z)

)1

z

]
W1(0)

−
[(

p(1− θ)(1− α)− p2(1− θ)2α(1− α)f̃(z)g̃(z)
)
− p2(1− θ)2(1− α)2f̃(z)g̃(z)

1

z

]
W2(0)

−
[
p(1− θ)α(1− α)f̃(z) + p(1− θ)(1− α)2f̃(z)

1

z

](
qW3(0) + pθW4(0)

)
. (3.12)
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It is easy to see that if we set z = 1 in (3.12), then the left-hand side of (3.12) becomes 0 and

hence

m(0) =


[
pθ(q + pθ) + p2(1− θ)2

]( ∞∑
i=1

W1(i) + αW1(0)
)
+ p(1− θ)(q + pθ)

( ∞∑
i=1

W2(i) + αW2(0)
)

+pq(1− θ)
( ∞∑

i=1

W3(i) + αW3(0)
)
+ p2θ(1− θ)

( ∞∑
i=1

W4(i) + αW4(0)
)


q(q + pθ)(1− α)

.

(3.13)

Moreover, by comparing the coefficients of zu+1 on both sides of (3.12), one can derive a recursive

formula for m(u). For notational convenience, write

hi = P (X + Y = i) = f ∗ g(i), i = 2, 3, . . . . (3.14)

Then, after some tedious calculation and rearrangement, we obtain from (3.12) that

q(1− α)m(u+ 1)

=(1− qα)m(u)−p
u−1∑
i=0

m(i)
[
(1−α)hu−i+1+ αhu−i

]
−pq(1−θ)(1−α)m(0)

[
(1−α)hu+2+ αhu+1

]
−pθ

[
(1− α)W1(u+ 1) + αW1(u)

]
− p(1− θ)

[
(1− α)W2(u+ 1) + αW2(u)

]
+p2(1− θ)α

[
θW1(0) + (1− θ)W2(0)

][
(1− α)hu+1 + αhu

]
+p2(1− θ)

u∑
i=1

[
θW1(i) + (1− θ)W2(i)

][
(1− α)2hu−i+2 + 2α(1− α)hu−i+1 + α2hu−i

]
−p(1− θ)α

[
p(1− θ)W1(0) + qW3(0) + pθW4(0)

][
(1− α)fu+1 + αfu

]
−p(1− θ)

u+1∑
k=1

[
p(1−θ)W1(k)+ qW3(k)+ pθW4(k)

][
(1−α)2fu−k+2+ 2α(1−α)fu−k+1+ α2fu−k

]
.

(3.15)

So, combining (3.13) and (3.15) gives a recursive formula for m(u).

Use capital letters to denote distribution functions, and capital letters with a bar on top to

denote survival functions. For example, F (n) =
∑n

k=1 fk, F (n) = 1 − F (n) =
∑∞

k=n+1 fk and so

on. For any t ≥ 0, summing u from t to ∞ in (3.15) and rearranging terms yield

0=p
∞∑

u=t+1

m(u) + (1− qα)m(t)− p
∞∑
u=t

u−1∑
i=0

m(i)
[
(1− α)hu−i+1 + αhu−i

]
− pA(t)

=p
∞∑

j=t+1

m(j)+(1−qα)m(t)−p
∞∑
j=0

m(j)+p
t−1∑
j=0

m(j)
[
(1−α)H(t− j) + αH(t− j − 1)

]
−pA(t)

=q(1− α)m(t)− p

t−1∑
j=0

m(j)
[
(1− α)H(t− j) + αH(t− j − 1)

]
− pA(t), (3.16)
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where

A(u)= q(1− θ)(1− α)m(0)
[
(1− α)H(u+ 1) + αH(u)

]
+θ

∞∑
j=u

[
(1− α)W1(j + 1) + αW1(j)

]
+ (1− θ)

∞∑
j=u

[
(1− α)W2(j + 1) + αW2(j)

]
−p(1− θ)α

[
θW1(0) + (1− θ)W2(0)

][
(1− α)H(u) + αH(u− 1)

]
−p(1− θ)

∞∑
j=u

j∑
i=1

[
θW1(i)+(1− θ)W2(i)

][
(1−α)2hj−i+2 + 2α(1−α)hj−i+1 + α2hj−i

]
+(1− θ)α

[
p(1− θ)W1(0) + qW3(0) + pθW4(0)

][
(1− α)F (u) + αF (u− 1)

]
+(1− θ)

∞∑
j=u

j+1∑
k=1

[
p(1−θ)W1(k)+ qW3(k)+ pθW4(k)

][
(1−α)2fj−k+2+ 2α(1−α)fj−k+1+ α2fj−k

]
.

(3.17)

Note that the second equality in (3.16) is derived by interchanging the order of summation in the

third term in the first line of (3.16). Putting t = u in (3.16), we have

q(1− α)m(u) = p

u−1∑
j=0

m(j)
[
(1− α)H(u− j) + αH(u− j − 1)

]
+ pA(u). (3.18)

Finally, m(u) can be solved explicitly from (3.18) using the technique of generating functions.

Theorem 3.1 For every u = 0, 1, 2, . . ., the discounted free Gerber-Shiu function m(u) for model

(2.1) can be expressed explicitly as

m(u) =
p

1− α− p(µX + µY )

u∑
j=0

A(u− j)σ(j) =
p ·A ∗ σ(u)

1− α− p(µX + µY )
, (3.19)

where 

σ(0) =
λ

1 + λ
+

λ

1 + λ

∞∑
n=1

(
1

1 + λ

)n

ρ∗n(0),

σ(j) =
λ

1 + λ

∞∑
n=1

(
1

1 + λ

)n

ρ∗n(j), j = 1, 2, . . . ,

(3.20)

with

λ =
1− α− p(µX + µY )

p(α+ µX + µY )
, (3.21)

and

ρ(j) =
1

α+ µX + µY

[
(1− α)H(j) + αH(j − 1)

]
, j = 0, 1, 2, . . . . (3.22)

Proof. Using (3.21) and (3.22), one can rewrite (3.17) as

m(u) =
p

1− qα

u∑
j=0

m(u− j)
[
(1− α)H(j) + αH(j − 1)

]
+

p

1− qα
A(u)

=
1

1 + λ

u∑
j=0

m(u− j)ρ(j) +
1

1 + λ
B(u), (3.23)
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where B(u) = A(u)/(α+ µX + µY ). From (3.23), it is easy to see that

m̃(z) =
B̃(z)

1 + λ− ρ̃(z)
. (3.24)

On the other hand, it follows from (3.20) that

σ̃(z) =
∞∑
j=0

zjσ(j) =
λ

1 + λ− ρ̃(z)
. (3.25)

Then, substituting (3.25) into (3.24) leads to

m̃(z) =
1

λ
σ̃(z)B̃(z). (3.26)

Thus, matching the coefficients of zu on both sides of (3.26) yields (3.19). �

4 Applications

In this section, we apply explicit expression (3.19) to derive some important actuarial quantities

which are just special cases of m(u) with different choices of ω(v1, v2).

4.1 Ruin probability

We first consider the ruin probability Ψ(u) defined by

Ψ(u) = P
(
τ < ∞

∣∣U0 = u
)
. (4.1)

From (2.4), m(u) reduces to Ψ(u) if ω(v1, v2) = 1. In this case, (3.4)-(3.7) become

W1(u) =
∞∑

i=u+1

hi = H(u), with W1(0) = 1, (4.2)

W2(u) =

∞∑
k=u+1

fk = F (u), with W2(0) = 1, (4.3)

W3(u) =

∞∑
l=u+1

g
l
= G(u), with W3(0) = 1, (4.4)

W4(u) =

∞∑
j=u+1

γj = Γ(u), with W4(0) = 1, (4.5)

where

γj = P (X1 + Y1 + Y2 = j) = f ∗ g∗2(j). (4.6)

Similar to (3.14) and (4.6), let

γ
′
j = P (X1 +X2 + Y1 = j) = f∗2 ∗ g(j),

πj = P (X1 +X2 + Y1 + Y2 = j) = f∗2 ∗ g∗2(j).
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Then, we have, for ν = 0, 1, 2,

∞∑
j=u

j∑
i=1

W1(i)hj−i+ν =

∞∑
j=u

j∑
i=1

H(i)hj−i+ν =

∞∑
j=u

j−1+ν∑
i=ν

H(j − i+ ν)hi

=

∞∑
j=u

P (X1 + Y1 +X2 + Y2 > j + ν, X2 + Y2 ≤ j − 1 + ν)

=
∞∑
j=u

[
P (X1 + Y1 +X2 + Y2 > j + ν)− P (X2 + Y2 > j − 1 + ν)

]
=

∞∑
j=u

[
Π(j + ν)−H(j − 1 + ν)

]
. (4.7)

Along the same line, we obtain

∞∑
j=u

j+1∑
k=1

W1(k)fj−k+ν =

∞∑
j=u

[
Γ′(j + ν)− F (j − 1 + ν)

]
, (4.8)

∞∑
j=u

j∑
i=1

W2(i)hj−i+ν =
∞∑
j=u

[
Γ′(j + ν)−H(j − 1 + ν)

]
, (4.9)

∞∑
j=u

j+1∑
k=1

W3(k)fj−k+ν =

∞∑
j=u

[
H(j + ν)− F (j − 1 + ν)

]
, (4.10)

and
∞∑
j=u

j+1∑
k=1

W4(k)fj−k+ν =

∞∑
j=u

[
Π(j + ν)− F (j − 1 + ν)

]
. (4.11)

Substituting (4.2)-(4.5) and (4.7)-(4.11) into (3.18), we get

AΨ(u) = −q(1− θ)(1− α)
(
1−Ψ(0)

)[
(1− α)H(u+ 1) + αH(u)

]
+

∞∑
j=u+1

H(j) + αH(u). (4.12)

This together with Theorem 3.1 yields the following corollary.

Corollary 4.1 For every nonnegative initial surplus u, the ruin probability for risk model (2.1) is

Ψ(u) =
p

1− α− p(µX + µY )

u∑
j=0

AΨ(u− j)σ(j), (4.13)

where σ(j) and AΨ(u) are defined in (3.20) and (4.12), respectively.

When the initial surplus u = 0,

Ψ(0) =
p

1− α− p(µX + µY )
AΨ(0)σ(0). (4.14)

From (3.20)-(3.22), one can show that

σ(0) =
λ

1 + λ
+

λ

1 + λ

∞∑
n=1

(
1

1 + λ

)n

ρ∗n(0)

=
1− α− p(µX + µY )

1− qα

[
1 +

∞∑
n=1

(
p(α+ µX + µY )

1− qα

)n( 1

α+ µX + µY

)n
]

=
1− α− p(µX + µY )

q(1− α)
. (4.15)
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Also, by (4.12), we have

AΨ(0) = q(1− θ)(1− α)Ψ(0) + µX + µY − (1− α)
[
1 + q(1− θ)

]
. (4.16)

Finally, substituting (4.15) and (4.16) into (4.14) gives

Ψ(0) =
p
[
µX + µY − (1− α)

[
1 + q(1− θ)

]]
q(q + pθ)(1− α)

. (4.17)

Remark 4.1 If α = 0,

Ψ(0) =
p[µX + µY − 1− q(1− θ)]

q(q + pθ)
,

which coincides with (15) of Xiao and Guo (2007). Note that a main claim occurs with probability

q rather than p in their paper. And, if θ = 1,

Ψ(0) =
p[µX + µY − (1− α)]

q(1− α)
,

which is equivalent to (5.3) of Tan and Yang (2006). �

4.2 Probability function of the deficit at ruin

Set ω(v1, v2) = 1(v2=y) in (2.4) for y = 1, 2, . . .. Then,

m(u) = P
(
|Uτ | = y, τ < ∞

∣∣U0 = u
)
= f(y|u),

which is the probability function of the deficit at ruin. In this case,

W1(u) =

∞∑
i=u+1

1(i−u=y)hi = hu+y, with W1(0) = hy, (4.18)

W2(u) =

∞∑
k=u+1

1(k−u=y)fk = fu+y, with W2(0) = fy, (4.19)

W3(u) =

∞∑
l=u+1

1(l−u=y)gl = gu+y, with W3(0) = gy, (4.20)

W4(u) =

∞∑
j=u+1

1(j−u=y)γj = γu+y, with W4(0) = γy, (4.21)

and for ν = 0, 1, 2,

∞∑
j=u

j∑
i=1

W1(i)hj−i+ν = H(y)−
u−1∑
i=1

hi+yH(u− i− 1 + ν), (4.22)

∞∑
j=u

j+1∑
k=1

W1(k)fj−k+ν = H(y)−
u∑

k=1

hk+yF (u− k − 1 + ν), (4.23)

∞∑
j=u

j∑
i=1

W2(i)hj−i+ν = F (y)−
u−1∑
i=1

fi+yH(u− i− 1 + ν), (4.24)

10



∞∑
j=u

j+1∑
k=1

W3(k)fj−k+ν = G(y)−
u∑

k=1

gk+yF (u− k − 1 + ν), (4.25)

∞∑
j=u

j+1∑
k=1

W4(k)fj−k+ν = Γ(y)−
u∑

k=1

γk+yF (u− k − 1 + ν). (4.26)

By inserting (4.18)-(4.26) into (3.18), we have

A
f(y|u)

(u)

= q(1− θ)(1− α)f(y|0)
[
(1− α)H(u+ 1) + αH(u)

]
+
[
θH(u+ y) + (1− θ)F (u+ y)

]
+ α

[
θhu+y + (1− θ)fu+y

]
−p(1− θ)α

[
θhy + (1− θ)fy

][
(1− α)H(u) + αH(u− 1)

]
+(1− θ)α

[
p(1− θ)hy + qgy + pθγy

][
(1− α)F (u) + αF (u− 1)

]
−p(1− θ)

[
θH(y) + (1− θ)F (y)

]
+ (1− θ)

[
p(1− θ)H(y) + qG(y) + pθΓ(y)

]
+p(1− θ)

u−1∑
i=1

[
θhi+y+(1− θ)fi+y

][
(1−α)2H(u− i+ 1) + 2α(1−α)H(u− i) + α2H(u− i− 1)

]
−(1− θ)

u∑
k=1

[
p(1−θ)hk+y+ qgk+y+ pθγk+y

][
(1−α)2F (u− k + 1)+ 2α(1−α)F (u− k)+ α2F (u− k − 1)

]
.

(4.27)

So, we have

Corollary 4.2 For risk model (2.1), the probability function of the deficit at ruin is

f(y|u) = p

1− α− p(µX + µY )

u∑
j=0

A
f(y|u)

(u− j)σ(j), y = 1, 2, . . . , (4.28)

where σ(j) and A
f(y|u)

(u) are defined in (3.20) and (4.27), respectively.

In particular,

A
f(y|0)

(0) = q(1− θ)(1− α)f(y|0)

+(q + pθ)
[
θH(y) + (1− θ)F (y)

]
+ (1− θ)

[
p(1− θ)H(y) + qG(y) + pθΓ(y)

]
+(q + pθ)α

[
θhy + (1− θ)fy

]
+ (1− θ)α

[
p(1− θ)hy + qgy + pθγy

]
.

(4.29)

Combining (4.29) with (4.15) and (4.28), we obtain

f(y|0) =

{
p(q + pθ)

[
θH(y) + (1− θ)F (y)

]
+ p(1− θ)

[
p(1− θ)H(y) + qG(y) + pθΓ(y)

]
+p(q + pθ)α

[
θhy + (1− θ)fy

]
+ p(1− θ)α

[
p(1− θ)hy + qgy + pθγy

] }
q(q + pθ)(1− α)

. (4.30)

Remark 4.2 If θ = 1 in (4.30), then

f(y|0) = p[H(y) + αhy]

q(1− α)
,
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and the corresponding distribution function is given by

F (y|0) = p

q(1− α)

y∑
j=1

[H(j) + αhj ],

which is equivalent to (5.9) of Tan and Yang (2006). �

4.3 Joint probability function of the surplus immediately before ruin and the

deficit at ruin

Now, let ω(v1, v2) = 1(v1=x,v2=y) in (2.4) for x = 0, 1, . . . and y = 1, 2, . . .. Then,

m(u) = P
(
Uτ− = x, |Uτ | = y, τ < ∞

∣∣U0 = u
)
= f(x, y|u),

which is the joint probability function of the surplus immediately before ruin and the deficit at

ruin. In this case,

W1(u) =

∞∑
i=u+1

1(u=x,i−u=y)hi = 1(u=x)hx+y, with W1(0) = 1(x=0)hy, (4.31)

W2(u) =

∞∑
k=u+1

1(u=x,k−u=y)fk = 1(u=x)fx+y, with W2(0) = 1(x=0)fy, (4.32)

W3(u) =
∞∑

l=u+1

1(u=x,l−u=y)gl = 1(u=x)gx+y, with W3(0) = 1(x=0)gy, (4.33)

W4(u) =

∞∑
j=u+1

1(u=x,j−u=y)γj = 1(u=x)γx+y, with W4(0) = 1(x=0)γy, (4.34)

and for ν = 0, 1, 2,

∞∑
j=u

j∑
i=1

W1(i)hj−i+ν = 1(x≥1)

[
1(u≤x)hx+y + 1(u≥x+1)hx+yH(u− x− 1 + ν)

]
, (4.35)

∞∑
j=u

j+1∑
k=1

W1(k)fj−k+ν = 1(x≥1)

[
1(u≤x−1)hx+y + 1(u≥x)hx+yF (u− x− 1 + ν)

]
, (4.36)

∞∑
j=u

j∑
i=1

W2(i)hj−i+ν = 1(x≥1)

[
1(u≤x)fx+y + 1(u≥x+1)fx+yH(u− x− 1 + ν)

]
, (4.37)

∞∑
j=u

j+1∑
k=1

W3(k)fj−k+ν = 1(x≥1)

[
1(u≤x−1)gx+y + 1(u≥x)gx+yF (u− x− 1 + ν)

]
, (4.38)

∞∑
j=u

j+1∑
k=1

W4(k)fj−k+ν = 1(x≥1)

[
1(u≤x−1)γx+y + 1(u≥x)γx+yF (u− x− 1 + ν)

]
. (4.39)
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Inserting (4.31)-(4.39) into (3.18) yields

A
f(x, y|u)

(u)

=q(1− θ)(1− α)f(x, y|0)
[
(1− α)H(u+ 1)+ αH(u)

]
+
[
θhx+y + (1− θ)fx+y

][
1(u≤x−1) + α1(u=x)

]
−p(1− θ)α1(x=0)

[
θhy + (1− θ)fy

][
(1− α)H(u) + αH(u− 1)

]
+(1− θ)α1(x=0)

[
p(1− θ)hy + qgy + pθγy

][
(1− α)F (u) + αF (u− 1)

]
−p(1− θ)1(x≥1)

[
θhx+y+(1− θ)fx+y

][
1(u≥x+1)H(u− x+ 1) + 1(u≤x)

+α1(u≥x+1)

(
(2− α)hu−x+1 + αhu−x

)]
+(1− θ)1(x≥1)

[
p(1−θ)hx+y+ qgx+y+ pθγx+y

][
1(u≥x)F (u− x+ 1) + 1(u≤x−1)

+α1(u≥x)

(
(2− α)fu−x+1 + αfu−x

)]
.

(4.40)

Thus, we have

Corollary 4.3 For risk model (2.1), the joint probability function of the surplus immediately before

ruin and the deficit at ruin is

f(x, y|u) = p

1− α− p(µX + µY )

u∑
j=0

A
f(x, y|u)

(u− j)σ(j), x = 0, 1, . . . , y = 1, 2, . . . , (4.41)

where σ(j) and A
f(x,y|u)

(u) are defined in (3.20) and (4.40), respectively.

For u = 0,

A
f(x, y|0)

(0) = q(1− θ)(1− α)f(x, y|0)

+1(x≥1)

[
(q + pθ)[θhx+y + (1− θ)fx+y]+ (1− θ)[p(1− θ)hx+y + qgx+y + pθγx+y]

]
+α1(x=0)

[
(q + pθ)[θhy + (1− θ)fy]+ (1− θ)[p(1− θ)hy + qgy + pθγy]

]
.

(4.42)

Combining (4.42) with (4.15) and (4.41) leads to

f(x, y|0) =

{
p1(x≥1)

[
(q + pθ)[θhx+y + (1− θ)fx+y]+ (1− θ)[p(1− θ)hx+y + qgx+y + pθγx+y]

]
+pα1(x=0)

[
(q + pθ)[θhy + (1− θ)fy]+ (1− θ)[p(1− θ)hy + qgy + pθγy]

] }
q(q + pθ)(1− α)

. (4.43)

Remark 4.3 If α = 0 in (4.43),

f(x, y|0) =
p1(x≥1)

[
(q + pθ)[θhx+y + (1− θ)fx+y]+ (1− θ)[p(1− θ)hx+y + qgx+y + pθγx+y]

]
q(q + pθ)

,

which is equivalent to (14) of Xiao and Guo (2007). �

Remark 4.4 (4.30) can also be derived by summing x from 0 to ∞ in (4.43). �
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4.4 Probability function of the claim causing ruin

Finally, consider ω(v1, v2) = 1(v1+v2=s) in (2.4) for s = 1, 2, . . .. Then,

m(u) = P
(
Uτ− + |Uτ | = s, τ < ∞

∣∣U0 = u
)
= f∗(s|u),

which is the probability function of the claim causing ruin. In this case,

W1(u) =
∞∑

i=u+1

1(i=s)hi = 1(u≤s−1)hs, with W1(0) = hs, (4.44)

W2(u) =
∞∑

k=u+1

1(k=s)fk = 1(u≤s−1)fs, with W2(0) = fs, (4.45)

W3(u) =

∞∑
l=u+1

1(l=s)gl = 1(u≤s−1)gs, with W3(0) = gs, (4.46)

W4(u) =
∞∑

j=u+1

1(j=s)γj = 1(u≤s−1)γs, with W4(0) = γs, (4.47)

and for ν = 0, 1, 2,

∞∑
j=u

j∑
i=1

W1(i)hj−i+ν =1(s≥2)hs

[
1(u≤s−1)(µX + µY + 1− ν) + 1(u≥s)

∞∑
j=u

H(j − s+ ν)

+1(u≤s−2)(s− u− 1)−
∞∑
j=u

H(j − 1 + ν)
]
, (4.48)

∞∑
j=u

j+1∑
k=1

W1(k)fj−k+ν =1(s≥2)hs

[
1(u≤s−2)(µX + 2− ν) + 1(u≥s−1)

∞∑
j=u

F (j − s+ ν)

+1(u≤s−3)(s− u− 2)−
∞∑
j=u

F (j − 1 + ν)
]
, (4.49)

∞∑
j=u

j∑
i=1

W2(i)hj−i+ν =1(s≥2)fs

[
1(u≤s−1)(µX + µY + 1− ν) + 1(u≥s)

∞∑
j=u

H(j − s+ ν)

+1(u≤s−2)(s− u− 1)−
∞∑
j=u

H(j − 1 + ν)
]
, (4.50)

∞∑
j=u

j+1∑
k=1

W3(k)fj−k+ν =1(s≥2)gs

[
1(u≤s−2)(µX + 2− ν) + 1(u≥s−1)

∞∑
j=u

F (j − s+ ν)

+1(u≤s−3)(s− u− 2)−
∞∑
j=u

F (j − 1 + ν)
]
, (4.51)

∞∑
j=u

j+1∑
k=1

W4(k)fj−k+ν =1(s≥2)γs

[
1(u≤s−2)(µX + 2− ν) + 1(u≥s−1)

∞∑
j=u

F (j − s+ ν)

+1(u≤s−3)(s− u− 2)−
∞∑
j=u

F (j − 1 + ν)
]
. (4.52)
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Inserting (4.44)-(4.52) into (3.18), we get

A
f∗(s|u)

(u)

= q(1− θ)(1− α)f∗(s|0)
[
(1− α)H(u+ 1) + αH(u)

]
+
[
θhs + (1− θ)fs

][
(1− α)1(u≤s−2)(s− u− 1) + α1(u≤s−1)(s− u)

]
−p(1− θ)α

[
θhs + (1− θ)fs

][
(1− α)H(u) + αH(u− 1)

]
+(1− θ)α

[
p(1− θ)hs + qgs + pθγs

][
(1− α)F (u) + αF (u− 1)

]
−p(1− θ)1(s≥2)

[
θhs + (1− θ)fs

]{[
1(u≤s−1)(µX + µY − 1) + 1(u≥s)

∞∑
j=u

H(j − s+ 2)

+1(u≤s−2)(s− u− 1)−
∞∑
j=u

H(j + 1)
]

+2α1(u≤s−1) + α(2− α)
[
1(u≥s)H(u− s+ 1)−H(u)

]
+α2

[
1(u≥s)H(u− s)−H(u− 1)

]}

+(1− θ)1(s≥2)

[
p(1−θ)hs+ qgs+ pθγs

]{[
1(u≤s−2)µX + 1(u≥s−1)

∞∑
j=u

F (j − s+ 2)

+1(u≤s−3)(s− u− 2)−
∞∑
j=u

F (j + 1)
]

+2α1(u≤s−2) + α(2− α)
[
1(u≥s−1)F (u− s+ 1)− F (u)

]
+α2

[
1(u≥s−1)F (u− s)− F (u− 1)

]}
. (4.53)

Therefore, we have the following result.

Corollary 4.4 For risk model (2.1), the probability function of the claim causing ruin satisfies

f∗(s|u) =
p

1− α− p(µX + µY )

u∑
j=0

A
f∗(s|u)

(u− j)σ(j), s = 1, 2, . . . , (4.54)

where σ(j) and A
f∗(s|u)

(u) are defined in (3.20) and (4.53), respectively.

Again, for u = 0,

A
f∗(s|0)

(0) = q(1− θ)(1− α)f∗(s|0)

+(s− 1 + α)
[
(q + pθ)

[
θhs + (1− θ)fs

]
+ (1− θ)

[
p(1− θ)hs + qgs + pθγs

]]
.

(4.55)

Combining (4.55) with (4.15) and (4.54), we have

f∗(s|0) =
(s− 1 + α)p

[
(q + pθ)

[
θhs + (1− θ)fs

]
+ (1− θ)

[
p(1− θ)hs + qgs + pθγs

]]
q(q + pθ)(1− α)

. (4.56)

Remark 4.5 If θ = 1 and α = 0 in (4.56), then f∗(s|0) = (p/q)(s − 1)hs which is equivalent to

the last relation in Pavlova and Willmot (2004). �
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Remark 4.6 All the formulae for the case of zero initial surplus, including (4.17), (4.30), (4.43) and

(4.56), can also be obtained directly from (3.13). The reason why we utilize (3.19) is to illustrate

the usage of Theorem 3.1. �
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