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Abstract

Background: Following fear conditioning (FC), ex vivo evidence suggests that early dynamics of cellular and molecular
plasticity in amygdala and hippocampal circuits mediate responses to fear. Such altered dynamics in fear circuits are
thought to be etiologically related to anxiety disorders including posttraumatic stress disorder (PTSD). Consistent with this,
neuroimaging studies of individuals with established PTSD in the months after trauma have revealed changes in brain
regions responsible for processing fear. However, whether early changes in fear circuits can be captured in vivo is not
known.

Methods: We hypothesized that in vivo magnetic resonance diffusion tensor imaging (DTI) would be sensitive to rapid
microstructural changes elicited by FC in an experimental mouse PTSD model. We employed a repeated measures paired
design to compare in vivo DTI measurements before, one hour after, and one day after FC-exposed mice (n = 18).

Results: Using voxel-wise repeated measures analysis, fractional anisotropy (FA) significantly increased then decreased in
amygdala, decreased then increased in hippocampus, and was increasing in cingulum and adjacent gray matter one hour
and one day post-FC respectively. These findings demonstrate that DTI is sensitive to early changes in brain microstructure
following FC, and that FC elicits distinct, rapid in vivo responses in amygdala and hippocampus.

Conclusions: Our results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear
conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in
individuals at risk for developing PTSD.
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Introduction

Posttraumatic stress disorder (PTSD) can occur in persons who

experience an intensely fearful event. Although individual

symptoms of PTSD are present to a variable extent in almost all

people in the days and weeks following trauma exposure [1], only

some will develop full-blown PTSD, which is defined by sustained

symptoms for more than one month following exposure [2]. Early

treatment of those at risk for PTSD prior to development of the

chronic disorder has been proven to be effective [3]. However,

such treatment opportunity is greatly limited by the lack of an

established biomarker for PTSD [4]. To date, a few potential

biomarkers have been suggested, including ‘p11’ which may be

measured using a blood test [5], magnetoencephalography indices

(MEG) [6], as well as response in a conditional discrimination

paradigm [7].

Neuroimaging studies have found that the brain of patients

with PTSD is structurally and functionally different from

unaffected control individuals [8]. It is thought that changes in

cellular morphology and accompanying alterations in brain

volume contribute to this neural plasticity or remodeling that

underlies the onset of PTSD [9]. However, human studies have

been complicated by heterogeneous findings, most likely due to

the complexity of individual past experiences and variable

individual physiological baseline [8,10]. Thus, animal models of

PTSD, which are considered to have face and construct validity

for aspects of this complex clinical disorder, enable a ‘proof of

principle’ study under experimental conditions [11,12] and there

are many PTSD-specific models available to reproduce aspects of
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PTSD [13]. Models involving inescapable shock have been

demonstrated to produce a range of behavioral and biological

characteristics with similarities to PTSD [14,15,16,17]. Among

the various paradigms involving inescapable shock, classical fear

conditioning (FC) has been widely employed. It has been

proposed that the main clinical features of PTSD, including re-

experiencing phenomena, avoidance and hyperarousal, might

reflect strong associative learning akin to FC [18,19].

The neurobiology of FC in terms of its anatomical, functional,

and molecular pathways is well documented [20,21]. Specifically,

FC depends on neurocircuitry incorporating amygdala and

hippocampal projections [10,22,23,24]. The creation of stable

and persistent long-term fear memory not only requires gene

expression and the resultant synthesis of new proteins but also

involves structural changes in synaptic morphology in these key

brain regions [25,26,27,28,29]. Persistent synaptic changes,

rapidly mediated by cytoskeletal molecules as early as thirty

minutes after FC, occur in parallel with and as a result of protein

synthesis [30]. Therefore, a non-invasive tool that is sensitive to

cytoskeletal/cell microstructural changes could potentially identify

brain regions most susceptible to fear motivated learning.

In vivo magnetic resonance imaging (MRI) has been shown to be

a useful probe for cerebral structural alterations that accompany

a range of psychiatric disorders [31,32,33,34,35], including PTSD

[36,37,38,39]. We, and others, have shown that parallel MRI

differences can be identified in rodent models of psychiatric

conditions [40,41,42]. Thus MRI may hold promise as a trans-

lational tool for investigation of diagnostic and treatment bio-

markers in rodent models of PTSD.

Diffusion tensor imaging (DTI) is an MRI technique that can

characterize tissue microstructure quantitatively [43,44,45,46]. It

has been shown that DTI is sensitive for microstructural

alterations in PTSD patients [47,48,49,50,51]. In addition,

recent DTI studies have shown detection of more subtle plasticity

changes in human brain using various training paradigms

[52,53,54]. Animal studies also confirm neuronal plasticity can

be probed quantitatively by DTI indices [55,56,57]. These

studies indicate that DTI can detect long-term neural plasticity

weeks to months following relatively extensive periods of training

in animals. In a recent DTI study on neuroplasticity in human

and rats, learning-induced regional DTI index changes were

detected after 2 hours of training [58]. However, a longitudinal

study on rapid plasticity within a short period (within 24 hours)

after learning has not been carried out. This is important to do

because observing the time course of training-evoked changes by

neuroimaging methods may help to narrow down candidate

mechanisms [59,60]. Thus we selected FC, which typically

occurs over a short timescale (in minutes), as a paradigm for

study.

Previous invasive, ex vivo studies have shown that microstruc-

tural changes such as dendritic branching, synaptogenesis, and

change in dendritic spine density are induced by FC [30,61,62]. In

vivo DTI measurements, and specifically FA, are thought to

directly index these tissue microscopic characteristics by describing

their directional and voxel-averaged tissue diffusion properties

[63,64,65]. Therefore in this Proof of Principle study we tested the

hypothesis that in vivo DTI in combination with voxel-wise analysis

would detect changes in brain regions linked to FC as early as one

hour following exposure.

Methods and Materials

Ethics Statement
All experiments were approved by the Committee on the Use of

Live Animals in Teaching and Research (CULATR) at The

University of Hong Kong, and were in compliance with the

CULATR guidelines for the use and care of laboratory animals

(permit number: 2196-10).

Animals and Behavioral Method
A total of 18 male C57BL/6N mice (90–95 days old) were bred

and mated by The University of Hong Kong, Laboratory Animal

Unit (LAU). All mice were maintained on a 12 h day/night cycle

with access to food and water, and underwent two MRI scans

conducted in the light phase. During scanning, mice were

anesthetized with a mixture of isoflurane/air (2.5% for induction

and 1.5% for maintenance) via a nose cone [66]. Animals were

kept warm using a warming pad with circulating water.

Respiration rate was consecutively monitored (SA-Instruments,

Stony Brook, NY) and kept in normal range throughout the MRI

experiments [40].

The FC paradigm involves the association of a neutral

environmental cue, the conditioned stimulus (CS), with an

inescapable foot-shock, the unconditioned stimulus (US). After

a few such pairings, the CS alone elicits physiological and

behavioral fear reactions [67,68]. The experimental setup has

been previously described in detail [69]. In brief, on the training

day, mice were placed individually into a conditioning chamber

(25625625 cm3) for 6 minutes of habituation where the mice

explored the chamber freely. This was followed by 3 paired

presentations of a clicker as the CS (30 sec, 4 Hz, 80 dB) and

footshock which was applied to the floor grid of the chamber as the

US (2 sec, 0.5 mA). The inter-pair interval was 2 minutes with 2

minutes rest after the final clicker/shock pairing in the chamber.

The chambers were cleaned with 70% alcohol between each

training session.

Standard contextual and cued tests, where mice were re-

exposed to the context and explicit cue in the absence of foot-

shock, were performed on eight out of eighteen animals one month

after FC, following the methods described previously [69]. A

video-tracking system EthoVision XT7 (Noldus, Wageningen, The

Netherlands) was used for monitoring and recording throughout

the training and memory test sessions. The videos were saved for

later behavioral analysis [70].

MRI Protocol
All imaging experiments were conducted using a 7T MRI

scanner with a maximum gradient of 360 mT/m (70/16

PharmaScan, Bruker Biospin GmbH, Germany). A quadrature

RF coil with 23 mm inner diameter was used. All animals were

scanned one day before, one hour after, and one day after FC

training. To obtain geometric localization using identical land-

mark among animals, high resolution anatomical images were

acquired in axial, coronal, and sagital views respectively before

DTI acquisition. In vivo diffusion-weighted (DW) images were then

acquired using a SE 8-shot EPI sequence with the following

parameters: TR/TE=3000/28.6 ms, d/D=5/17 ms, 15 non-

collinear gradient directions with a single b-value = 1000 s/mm2,

and five additional images with b-value = 0 (b0 images) [71]. The

geometric parameters were: FOV=2.862.8 cm2, acquisition

matrix = 1286128 (zero-filled to 2566256), 12 slices with

0.48 mm thickness and 0.07 mm inter-slice gap. The diffusion

protocol was repeated four times for signal averaging. The DTI

data acquisition took 32 minutes, and the entire MRI protocol
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lasted approximately 50 minutes per animal. This protocol was

optimized to minimize geometric distortion, and the fiber

directions were confirmed to be unbiased in the color FA maps.

In order to ensure schedule of scanning was comparable for every

animal, two of the authors worked together to transfer each mouse

from FC apparatus to MRI scanner. Transportation between FC

test room and the MRI scanner took less than 10 minutes.

Following well-practiced routines in our laboratory, induction of

anesthesia followed by positioning in the scanner took 10 minutes.

Anatomical localization images were acquired over 20 minutes

prior to diffusion image acquisition, and all procedures were

complete within one hour.

Data Processing and Analysis
For each animal, diffusion data were first corrected for the eddy

current induced displacements using a rigid-body registration to

the average of the b0 images with A.I.R 5.2.5 [71,72,73,74]. The

registered images were screened for motion artifacts using

DtiStudio 3.0.2, only images without observable artifacts were

used to generate DTI index maps by an in-house written

MATLAB program [74]. Fractional anisotropy (FA), mean

diffusivity (MD), radial diffusivity (lH) and axial diffusivity (l//)
maps were calculated by fitting a tensor model to the corrected

diffusion data at each voxel using the method described previously

[64,71,75,76,77].

Statistical tests were performed on the repeated measures within

the entire group, where each mouse brain volume was normalized

to a custom template using a 12-degree-of-freedom affine trans-

formation with 0.1 mm smoothing for transformation parameter

estimation. The normalization and statistical procedures were

performed using SPM5 (http://www.fil.ion.ucl.ac.uk/̃spm/). First,

the average pre-FC b0 image from a representative animal was

spatially normalized to the corresponding average post-FC b0

image. Then the post-FC b0 image and the normalized pre-FC b0

image were averaged to generate a custom b0 template. The five

b0 images from each animal and each time point were averaged

and normalized to the custom b0 template. Finally the trans-

formation matrix from each b0 normalization was applied to

normalize the corresponding DTI parametric maps (FA, MD, lH,

l//) respectively. Normalization quality was checked, and fine

adjustments were made manually to further improve the

normalization accuracy.

Following normalization, voxel-wise t-tests were performed for

FA, MD, lH and l// maps respectively, using a factorial design

with two factors: the animal (n = 18) and the time point (with 3

repeated measures) in SPM5. Planned comparisons were designed

for hypotheses of a transient or short-term effect. The transient

effect shows microstructural changes occurred at 1-hr post-FC but

reversed at 1-day post-FC. In this test the contrast weight was (21

2 21) or (1 22 1) on the time point factor. The short-term effect

shows increasing or decreasing trend after FC, this was tested

using contrast weight (23 1 2) or (2 123) on the time point factor.

For these comparisons, statistical maps with main effects (animal

and time point) were obtained with statistical threshold p,0.005

considered to be significant.

The resultant significant clusters from each test were saved as

region of interests (ROIs). These ROIs were overlaid to each

animal’s DTI index maps at each time point to confirm that the

voxels were located on the same region in each brain, and also to

further identify their locations with reference to the Paxinos and

Watson stereotactic atlas [78].

To examine the FC training effects on DTI quantitation, ROI

analysis was performed on the brain structures identified from the

statistical tests. For each structure, repeated measures ANOVA

was performed with 2 degrees of freedom for time points and

17 (Amg or CG) or 8 (HP) degrees of freedom for mice. Post-hoc

tests with Tukey’s multiple comparison test was employed to

compare the DTI measurements between different time points

using Prism 5.00 (GraphPad Software Inc., California, USA).

For behavioral analysis, percentage of freezing behavior (i.e.,

absence of movement) throughout the entire FC training, cue test

and contextual test sessions were automatically measured using

EthoVision XT7 respectively. Data from the first 6 minutes of FC

training (pre-shock, free exploring) was compared with those from

the later 7.5 minutes of FC training (CS-US pairing period), cue

test and contextual test respectively. One-way ANOVA with

Dunnett’s multiple comparison test was performed in Prism 5.00

(GraphPad Software Inc., California, USA).

Results

Transient Fear Learning Effects (One Hour)
Freezing behavior increased during CS-US pairing period

compared to pre-shock period in FC training (Fig. 1), confirming

that fear-elicited associative learning was quickly acquired. In

order to characterize the early effect of fear learning using DTI,

planned comparisons were performed. Two slices located poster-

iorly were excluded in nine out of eighteen animals according to

the screening criteria described in methods (due to motion

artifacts). Therefore, the sample size for HP analyses (n = 9) was

smaller than that for Amg or CG (n= 18).

Significant, but distinct changes in FA were evident in clusters

located in amygdala and hippocampi bilaterally (Fig. 2, upper

row). In amygdala (Amg, p,0.005, 9 and 22 voxels on the left and

right hemisphere respectively), FA first increased at 1-hr post-FC

then decreased at 1-day post-FC. Whereas, in hippocampus (HP,

p,0.005, 21 and 12 voxels on the left and right hemisphere

respectively), FA first decreased then increased. The post-FC FA

values were normalized to individual pre-FC FA for each animal

in Fig. 2 (lower row), confirming the effect was consistent among

animals. There was no significant cluster located in non-CSF brain

regions on other DTI indices.

Short-term Fear Learning Effects (One Day)
In the cue and contextual tests one month post-FC, freezing

duration significantly increased compared to that in the pre-shock

period (p,0.001, Fig. 1), confirming that fear memory had been

Figure 1. Freezing behavior analysis. Percentage of freezing
behavior during pre-shock period (free exploration), FC period (three
paired CS with US), and cue/contextual test performed one month post-
FC. One-way ANOVA with Dunnett’s multiple comparison test was
employed (***p,0.001). Error bars represent the standard error of the
mean (n = 8).
doi:10.1371/journal.pone.0051704.g001
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established successfully in the trained mice. As shown Fig. 2 (upper

row), planned comparison revealed that FA continued increasing

among time points in the clusters located in cingulum and adjacent

gray matter (CG, p,0.005, 30 voxels on the left anterior

hemisphere, 11 voxels on the right anterior hemisphere and 8

voxels on the right posterior hemisphere, n= 18). Post-FC FA

values were normalized to individual pre-FC FA for each animal

in Fig. 2 (lower row, mean 6 standard deviation), confirming this

short-term effect was consistent among animals. No significant

cluster located in non-CSF brain regions was found in the short-

term effect tests on other DTI index comparisons.

DTI Quantification
To further examine the effects on each DTI index, the resultant

clusters (Amg, HP and CG) from voxel-wise analysis were selected

for ROI (shown in Fig. 3) analysis with repeated measures

ANOVA. Fig. 4 plotted the DTI index measurements at each time

point. There was a significant effect of time on FA measures in

Amg (F2,17 = 28.54, p,0.0001), HP (F2,8 = 12.61, p,0.0005), and

CG (F2,17 = 19.56, p,0.0001). The effect of time was also

significant for l// in Amg (F2,17 = 3.82, p = 0.032) and CG

(F2,17 = 3.81, p = 0.032). This was explained by an acute increase

in FA and l// in Amg, (13.566.1%, p,0.001) and (4.167.4%,

p,0.05) respectively. In contrast, in HP FA decreased significantly

(22.368.5%, p,0.01). These changes reversed one day after FC,

that is: FA decreased (7.766.6%, p,0.001) and l// decreased

(0.764.3%, not significant) in Amg; FA increased (31.2624.7%,

p,0.01) in HP. The pattern of FA changes in CG was rather

different. FA initially increased by 9.7610.4% 1-hr post-FC

(p,0.01), and continued to increase by a total of 15.3610.5%

(p,0.001) one day post-FC compared to pre-FC. l// also

increased by 4.266.9% (p,0.05) one day post-FC compared to

pre-FC. There was no significant change in MD or lH across time

in any of these three structures. (Percentage change in DTI indices

is expressed as mean 6 standard deviation).

Discussion

Combining in vivo DTI and voxel-wise analysis, significant FA

increase in amygdala and decrease in hippocampus were found

bilaterally one hour after FC, and these changes were reversed one

day after FC. In addition, increasing FA was observed in cingulum

and adjacent gray matter bilaterally one hour and one day after

FC. These regions are known to be crucial for FC. Our results

therefore provide the first evidence to support the principle that

DTI is sensitive to acute and dynamic fear-mediated structural

plasticity changes in this rodent model.

Acute Microstructural Plasticity Following FC
Studies of the time scale of neural plasticity suggest microstruc-

tural changes occur rapidly, within hours after training [58,79,80].

It has been proposed that synaptic structural modification is

mediated by cytoskeletal molecules over hours or days after

learning, and these changes contribute to short-term plasticity and

memory [28,81]. Evidence from gene and protein expression

studies suggests that neuronal morphogenesis and structural

plasticity in amygdala and hippocampus can indeed be observed

as quickly as half an hour after FC training [30,82]. These

neuronal alterations have been found to be accompanied by rapid

glial-neuron interaction and functional changes [83]. For example,

electrophysiological techniques detected an activity peak in the

basolateral amygdala 30–50 min after a one-trial fear learning task

[84].

Figure 2. Statistical maps from voxel-wise planned comparisons between time points for FA. Upper row: statistical maps (colored
regions) from planned comparisons are overlaid on a mean fractional anisotropy (FA) map (shown in corresponding axial, coronal and sagital views
respectively) averaged from all animals. In the clusters indicated by arrows, FA first increased then decreased in amygdala (Amg, p,0.005, 31 voxels,
n = 18), first decreased then increased in hippocampus (HP, p,0.005, 33 voxels, n = 9), and kept increasing in cingulum (CG, p,0.005, 49 voxels,
n = 18) 1-hr, 1-day post-FC respectively. Colors are coded according to the threshold they exceeded. Lower row: corresponding FA values were
presented by normalization of pre-FC at all time points within the significant voxels. Error bars represent mean 6 standard error of the mean (n = 18
for Amg and CG, n = 9 for HP).
doi:10.1371/journal.pone.0051704.g002
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Interpretation of DTI findings is intrinsically challenging due to

the intricate diffusion properties of complex biological systems and

signal averaging in the voxel probed by DTI. Neuronal plasticity

processes, such as synaptogenesis and dendritic branching, as well

as non-neuronal changes (glial remodeling) such as modification of

astrocyte processes are candidate mechanisms underlying learn-

ing-induced MRI changes [59]. Although glial remodeling would

be expected to reduce the volume fraction of extracellular space in

tissue, the microenvironment is also rapidly modulated by active

neurotransmission. During astrocytic transformation in particular,

astrocytic processes exhibit enhanced motility and directional

protrusive activity towards dendrites in a matter of minutes [85].

Synaptic formation can also occur within an hour, and is reversible

within hours [85]. Therefore, it is possible that the bulk effect of

Figure 3. ROI illustration. ROIs obtained from the significant clusters pointed in Figure 2. ROIs were overlaid on an FA map averaged from all
animals. Cingulum and adjacent gray matter (red), amygdala (blue) and hippocampus (green) are shown from anterior to posterior (left to right, up to
down).
doi:10.1371/journal.pone.0051704.g003

Figure 4. DTI quantification on the ROIs. FA, MD (in mm2/ms), radial diffusivity (lH in mm2/ms) and axial diffusivity (l// in mm2/ms) between time
points were compared using repeated measures ANOVA with Tukey’s multiple comparison test (*p,0.05, **p,0.005, ***p,0.001). Error bars
represent standard error of the mean (n = 18 for Amg and CG, n= 9 for HP).
doi:10.1371/journal.pone.0051704.g004
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this early transient plasticity would be to alter the geometry and

directional diffusion properties of both intracellular and extracel-

lular spaces.

In addition to FA changes, we observed that axial diffusivity

changes were more prominent than MD changes. This disagrees

with previous DTI studies of brain plasticity that have reported

significant MD changes accompanying FA changes in GM regions

[56,57,58]. It is possible that the different training protocol

timescale (13.5 minutes versus hours to weeks), as well as the

cellular responses in the acute and chronic phases post-training,

account for this discrepancy [28,85].

Non-specific vascular changes may also affect acute DTI

measurements after learning [86,87]. However, we reported in

our previous study of FA and hypercapnia that, any contribution

from vasculature to observed changes in FA distributes globally

across both gray and white matter, and induced less than 2%

change in FA [88]. In the current study, when voxel-wise planned

comparisons were employed, any non-specific/global effect was

largely filtered out by using a high statistic threshold.

Regional Microstructural Plasticity Revealed by DTI
The amygdala has been widely investigated in FC studies [89].

Studies of fear-elicited memory formation have indicated profilin-

induced, rapid morphological alterations such as postsynaptic

density enlargement and synapse length increase in amygdala

[30,90]. Rapid formation of dendritic spines in motor cortex has

also been observed one hour after motor-skill learning revealed by

two-photon microscopy imaging [91]. In gray matter, which is

mostly constructed of neuronal cell bodies, glial cells, and

capillaries, the microscopic environment normally exhibits low

anisotropy. It is likely that any enhanced cellular morphological

rearrangement that introduces preferential water diffusion di-

rection may contribute to FA and axial diffusivity changes probed

by in vivo DTI.

For example, during active glial-neuronal interaction, structural

modification of astrocyte enhances the motility of astrocytic

processes dramatically, and the astrocyte shows directional

protrusive activity towards dendrites. Meanwhile, the geometry

and diffusivity properties of extracellular space is influenced by

such structural modification and become more isotropic. As

a result, bulk diffusion anisotropy likely becomes more dominated

by the intracellular component with an overall enhanced

anisotropy of diffusion environment. In addition, this astrocytic

process motility is regulated by diffusible factors from adjacent

neuronal elements, and it can be triggered in minutes and is

reversible within hours [85]. Extrapolating these findings to our

DTI results in amygdala, significant FA changes at 1-hr and 1-day

post-FC may reflect these known dynamic interactions of glial cells

and neurons, while the enhanced synaptic transmission may play

a role in the significant axial diffusivity increase.

The hippocampus holds central importance in PTSD. It is

considered to be one of the most ‘‘responsive’’ brain structures due

to its rapid plasticity at molecular, cellular, structural, and

functional levels. It has also been proposed to be a promising

target for PTSD treatment [92]. In this study, the most substantial

change observed was FA decrease 1-hr post-FC in hippocampus.

This finding was consistent with a recent manganese-enhanced

MRI study of a mouse model of PTSD using inescapable

footshock, where the authors reported hippocampus volume loss

due to a general decrease in axonal structures signaled by a down-

regulation of growth-associated protein-43 [93]. Interestingly, our

data also showed a clear return to baseline on FA quantitation 24-

hr post-FC. In a previous study of axonal reorganization in mice,

a net gain of axonal length of 56.5% was observed 5.5 hours after

whisker plucking [94]. Supported by this evidence, our data

implied that axonal structures may be capable of rapid re-

organization after fear learning. In addition, as FC is ‘stressful’,

reduced hippocampal neurogenesis and cell survival after acute

stress may also affect FA measurements [95,96]. Therefore, as

a result of rapid neuronal alterations, it is possible that local axonal

structure remodeling contributed to the significant FA changes

detected here.

The cingulum is a collection of white matter fibers allowing

communication between hippocampus, amygdala and anterior

thalamic nuclei, all of which are involved in emotion formation

and processing, learning, and memory. Myelination is known to be

modifiable by experience and maturation [83,97]. An activity-

dependent myelination mechanism has been proposed in a recent

human study of motor training, where the observed FA change in

white matter was accompanied by adjacent gray matter density

alterations as well [98]. However, in our short-term dynamic data,

the FA increase was attributed to a significant axial diffusivity

increase, whereas little radial diffusivity change was detected. Our

observations could be partly explained by fiber reorganization

[59], such as reduce fiber crossings leading to an ‘enhanced’

connectivity between distributed brain regions triggered by fear

learning after FC [99]. Further histological examinations would

help to better understand the underlying cellular mechanisms.

However, as demonstrated in other and our previous studies

[43,46,100], diffusion imaging findings reflect complex bulk effects

from multiple cellular components (intracellular and extracellular)

and their active interactions.

The FA values in hippocampus and caudate putamen observed

here were broadly similar to those reported in the literature, with

a variation within about 10–20% found in other regions

(summarized in Table 1) [101,102]. Variation across studies could

be partly due to differences in ROI definition and the

heterogeneous anisotropy within gray matter regions. Differential

diffusion parameters used to accomplish different study aims could

also play an important role in determining values of DT indices

measured. For example, MD measurements reported by Kumar

M et al. are higher than those from our study, and this is probably

due to the lower b-value = 786.73 s/mm2 used by that group. The

b-value dependence of diffusivity quantitation has been demon-

strated previously [71], therefore taken together, we believe the

measurements from the current study are likely to be reliable.

Distinct Microstructural Changes in Amygdala and
Hippocampus
Evidence for the differential contributions of amygdala and

hippocampus to FC was presented by Phillips and LeDoux [103].

Subsequent investigations of the underlying biological process and

coordination between component regions of FC neurocircuitry

have confirmed distinctly different changes in amygdala and

hippocampus. For example, there are reports of gene up-

regulation in amygdala and down-regulation in hippocampus

after FC [82], and hippocampal neurite loss versus dendritic

growth in basolateral amygdala were found in chronic stress

models [25,104,105]. In parallel, studies of PTSD patients have

also found deficient hippocampal function versus exaggerated

amygdala responses [10]. In this study, the observation that FA

significantly increased in amygdala but decreased in hippocampus,

generally agreed with evidence suggesting distinct direction of

changes in amygdala and hippocampus following FC.

Fear Conditioning as a Model of PTSD
Given the diversity of factors influencing the development of

PTSD and its range of symptoms, it is unlikely that any single
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model can fully capture all of its components [13]. With this caveat

in mind, FC is still considered a valuable model to study the

neurocircuitry and psychobiological mechanisms of PTSD

[10,24]. FC can be translated to PTSD since individuals initially

react to a traumatic event (US) with arousal and fear (un-

conditioned response), and then continue to show arousal

(conditioned response) when confronted with trauma-related cues

(CS) after trauma [2]. From previous studies using the FC model

and PTSD patients, the most consistent finding is the increased

activation in amygdala, establishing its pivotal role in fear

neurocircuitry [10,106,107].

Conclusions
In vivo DTI is sensitive to rapid microstructural changes reflected

by FA. We found that FA increased in amygdala and decreased in

hippocampus 1-hr post-FC, and it reversed in both regions 1-day

post-FC. These imaging findings were consistent with distinct

plasticity phenomena in amygdala and hippocampus after FC, and

confirmed that measureable dynamic changes occur shortly after

FC. In cingulum and adjacent gray matter, FA was increasing in

the post-FC time points, suggesting that ‘enhanced’ connectivity in

cingulum followed fear learning. As a corollary, we propose that

DTI could be explored as a translational tool to capture potential

early biological changes in individuals at risk for developing

PTSD.
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