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Abstract. The numerical solution of wave scattering from large objects or from a large cluster of
scatterers requires excessive computational resources and it becomes necessary to use approximate—
but fast—methods such as the fast multipole method; however, since these methods are only approx-
imate, it is important to have an estimate for the error introduced in such calculations. An analysis
of the error for the fast multipole method is presented and estimates for truncation and numerical
integration errors are obtained. The error caused by polynomial interpolation in a multilevel fast
multipole algorithm is also analyzed. The total error introduced in a multilevel implementation is
also investigated numerically.
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1. Introduction. The major computational task in scattering problems is the
solution of dense systems of linear equations. When iterative methods are employed
to solve these systems, the computation of the product of the coefficient matrix with
a trial vector is the basic part of the algorithm and would require O(N2) operations
with traditional methods. The matrix vector product can be considered as the eval-
uation of all pairwise interactions between scatterers or parts of a scatterer. The fast
multipole method (FMM) was proposed by Greengard and Rokhlin [1] for particle
simulations and later extended for acoustic and electromagnetic scattering calcula-
tions [2, 3, 4, 5, 6, 7]. By using a multilevel fast multipole algorithm (MLFMA), all
pairwise interactions can be evaluated withO(N) complexity for a volume distribution
of scatterers.

The FMM/MLFMA algorithm is based on the diagonal forms of the spherical
addition theorem. These diagonal forms are given as integrals of truncated infinite
sums. In the numerical evaluation of these expressions, two kinds of errors are in-
troduced. First, the infinite expansions are truncated at some finite value. Second,
the integrals are evaluated by a numerical quadrature. Therefore, it is imperative to
derive estimates for these errors in terms of the basic parameters of the algorithm.
In a multilevel implementation of the fast multipole algorithm, one resorts to inter-
polating the far field expansions in order to achieve O(N) complexity resulting in a
third kind of error.
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ERROR ANALYSIS FOR THE FAST MULTIPOLE METHOD 907

The purpose of this paper is to present error estimates for the errors introduced
by FMM and MLFMA in the solution of scalar wave equations. The algorithm is
described in detail in [7]. An analysis of the errors in the FMM algorithm for the
monopole and dipole terms is given in [8] and [9]. This work extends the error anal-
ysis to higher-order multipole terms, and includes an analysis for integration and
interpolation errors.

2. Scalar addition theorem. The scalar wave functions are the characteristic
solutions of the scalar wave equation

∇2u+ k2u = 0,(2.1)

which form a complete set. In spherical coordinates, such a set of characteristic
solutions which satisfy the radiation condition (outgoing wave functions) are given by

Ψlm(k, r) = h
(1)
l (kr)Ylm(θ, φ),(2.2)

where (r, θ, φ) are the spherical coordinates of the vector r, h
(1)
l (·) denotes the spherical

Hankel function of the first kind, and

Ylm(θ, φ) = (−1)m
[

(l −m)!

(l +m)!

2l + 1

4π

]1/2

Pml (cos θ) eimφ(2.3)

are the spherical harmonics. A time dependence of e−iωt is assumed and the associated
Legendre functions Pml (cos θ) are as defined in [10]. We will also use the shorthand
notation Ylm(̂s) to denote the spherical harmonics where ŝ is a unit vector whose
direction is defined by the spherical angles θ and φ.

In many scattering problems it becomes necessary to express a scalar wave func-
tion in a different coordinate system. An outgoing wave function with the origin at
a point O can be expanded into a sum of regular wave functions with the origin at a
point O′ since these fields do not have a singularity at O′. This expansion, known as
the addition theorem for the scalar wave functions [11, 12], is given as

Ψlm(k, r) =
∞∑
l′=0

l′∑
m′=−l′

RgΨl′m′(k, r
′)αl′m′,lm(k, r′′),(2.4)

where r′′ is a vector from O to O′ and RgΨlm(k, r) = jl(kr)Ylm(θ, φ) with jl(·)
denoting the spherical Bessel function of order l. This relation is valid provided that
|r′| < |r′′|, and the coefficients αl′m′,lm(k, r′′) are given as

αl′m′,lm(k, r′′) =
l+l′∑

n=|l−l′|
i(l
′−l+n) Yn,m−m′(θ′′, φ′′)h(1)

n (kr′′)

(−1)m
′
[

4π(2l + 1)(2l′ + 1)

(2n+ 1)

]1/2

(l l′ 0 0|l l′ n 0), (l l′ −mm′|l l′ n −m+m′),(2.5)

where (j1 j2m1m2|j1 j2 j3m3) are the Clebsch–Gordan coefficients as defined in [10].
The matrix representation of a translation operator has entries αl′m′,lm(k, r′′)

and, in general, is a full matrix. It was shown by Rokhlin [13] that the spherical
translation operators have diagonal representations when expressed in terms of their
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908 S. KOC, JIMING SONG, AND W. C. CHEW

plane wave spectra. The diagonal translation theory was later summarized by Epton
and Dembart [14]. A different derivation based on plane wave expansions is given in
[15]. The basic result is to express the coefficients αl′m′,lm(k, r′′) as

αl′m′,lm(k, r′′) = lim
Nα→∞

∮
il
′−l Ylm(k̂) α̃Nα;D(k̂)Y ∗l′m′(k̂) eik·d dk̂,(2.6)

where r′′ = D + d and

α̃Nα;D(k̂) =

Nα∑
n=0

in (2n+ 1)h(1)
n (kD)Pn

(
k̂ · D̂

)
,(2.7)

and k̂ and D̂ denote the unit vectors in the direction of respective vectors.
In order to obtain (2.6), the order of an integration and an infinite summation

must be exchanged—which is not permissible in the strict sense. As a result, the
infinite sum in the expression of α̃∞;D(k̂) does not converge. However, we need to
truncate the infinite sum at some Nα for numerical purposes. Thus the series can be
truncated first, after which exchanging the order of integration and a finite sum does
not pose a problem. The number of terms that must be kept in the summation, Nα,
depends on the value of kd, as well as the desired accuracy. As d is increased, more
terms are required to keep the accuracy at the desired level. On the other hand, if
too many terms are used so that Nα is large, the spherical Hankel functions oscillate
wildly with exponentially large values, causing numerical inaccuracies. This occurs
when the order exceeds the argument, hence the condition

Nα <∼ kD(2.8)

must be satisfied.

3. Error analysis. There are two kinds of errors introduced in the single-level
FMM calculations. First, the infinite sum over n in the expression for α̃∞;D(k̂) is
truncated. Second, the integral appearing in (2.6) is computed numerically, resulting
in discretization error. In a multilevel algorithm, an error due to interpolation is also
introduced which propagates through levels.

3.1. Truncation error. We first write (2.6) as

αl′m′,lm(k, r′′) = lim
Nα→∞

∮
il
′−l Ylm(k̂) α̃Nα;D(k̂)Y ∗l′m′(k̂) eik·d dk̂

=

∞∑
n=0

in−l+l
′
(2n+ 1)h(1)

n (kD)

∮
Ylm(k̂)Pn(k̂ · D̂)Y ∗l′m′(k̂) eik·d dk̂,(3.1)

where the order of integration and summation has been exchanged. The integrals in
this equation will be denoted by

I
(n)
lm,l′m′(D̂,d) =

∮
Ylm(k̂)Pn(k̂ · D̂)Y ∗l′m′(k̂) eik·d dk̂,(3.2)

and we define the truncation error as

εT = αl′m′,lm(k, r′′)−
Nα∑
n=0

in−l+l
′
(2n+ 1)h(1)

n (kD) I
(n)
lm,l′m′(D̂,d))

=

∞∑
n=Nα+1

in−l+l
′
(2n+ 1)h(1)

n (kD) I
(n)
lm,l′m′(D̂,d).(3.3)
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ERROR ANALYSIS FOR THE FAST MULTIPOLE METHOD 909

The exponential term appearing in the integral I
(n)
lm,l′m′(D̂,d) can be expanded into

a spherical harmonic series as

eik·d =
∞∑
ν=0

iν (2ν + 1) jν(kd)Pν(k̂ · d̂),(3.4)

and using the addition theorem

Pn(k̂ · D̂) =
4π

2n+ 1

n∑
µ=−n

Y ∗nµ(D̂)Ynµ(k̂) ,(3.5)

the integrals can be rewritten as

I
(n)
lm,l′m′(D̂,d) =

(4π)2

2n+ 1

∞∑
ν=0

iν jν(kd)
n∑

µ=−n
Y ∗nµ(D̂)

ν∑
µ′=−ν

Yνµ′(d̂)∮
Ylm(k̂)Y ∗νµ′(k̂)Ynµ(k̂)Y ∗l′m′(k̂) dk̂.(3.6)

The integral of the product of four spherical harmonics can be evaluated by using the
formulas in [11], yielding

I
(n)
lm,l′m′(D̂,d) =

4π
√

(2l + 1)(2l′ + 1)√
2n+ 1

∑
ν

, iν
√

2ν + 1jν(kd)
∑
µ

Y ∗nµ(D̂)Yν,µ+m−m′(d̂)

(−1)m
′+µ

∑
η

(2η + 1)

(
l l′ η
0 0 0

)(
l l′ η
m −m′ −m+m′

)
(
n ν η
0 0 0

)(
n ν η
µ −µ−m+m′ m−m′

)
.(3.7)

Due to the Wigner 3-j symbols, the summations in this formula are all finite, and
their ranges are

max {0, |l − l′| − n, n− l − l′} ≤ ν ≤ n+ l + l′,
max {−n,−m+m′ − ν} ≤ µ ≤ min {−m+m′ + ν, n} ,

max {|l − l′|, |n− ν|} ≤ η ≤ min {l + l′, n+ ν} .
(3.8)

3.1.1. Monopole-to-monopole translations. The special case of monopole-
to-monopole translation, i.e., l = l′ = 0, is of particular importance since, in many
scalar scattering problems and the potential formulation of the vector scattering prob-
lem, one requires only monopole-to-monopole translations given by

α00,00(k, r′′) = h
(1)
0 (kr′′) = −ie

ikr′′

kr′′
,(3.9)

which is the Green’s function of the problem. It is easy to show that

I
(n)
00,00(D̂,d) =

1

4π

∮
Pn(k̂ · D̂) eik·d dk̂ = inPn(D̂ · d̂)jn(kd),(3.10)

and the truncation error becomes

εT =
∞∑

n=Nα+1

(−1)n (2n+ 1)h(1)
n (kD)Pn(D̂ · d̂)jn(kd).(3.11)
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910 S. KOC, JIMING SONG, AND W. C. CHEW

To obtain an error bound, we observe that the error is maximum when D and d are
collinear, and assuming that kD → ∞ we replace the spherical Hankel functions by
their large-argument asymptotic forms to get

|εT |≤
∞∑

n=Nα+1

(2n+1)
∣∣∣h(1)
n (kD)Pn(D̂ · d̂)jn(kd)

∣∣∣≤ 1

kD

∞∑
n=Nα+1

(2n+1) |jn(kd)| ,(3.12)

which can also be interpreted as the truncation error in the radiation pattern of a
source [6, 7]. If kd is sufficiently small (i.e., kd ≤ Nα), jn(kd) for n > Nα + 1 are all
positive, and we have

|εT | ≤ 1

kD
(2Nα + 3) jNα+1(kd) ≤ 1

kD

(kd)(Nα+1)

(2Nα + 1)!!
,(3.13)

where (2n+ 1)!! denotes the product of all odd integers from 1 up to 2n+ 1. The last
inequality, obtained by using the upper bound for Bessel functions given by [10], is

|Jν(z)| ≤ |z/2|
Γ(ν + 1)

(
ν ≥ −1

2

)
,(3.14)

which can be restated for the spherical Bessel functions as

|jn(z)| ≤ zn

(2n+ 1)!!
∼
√
e

2

(ez)n

(2n+ 1)n+1
.(3.15)

Equation (3.13) shows that the decrease in the truncation error, as Nα is in-
creased, is faster than exponential. However, there are two important points to be
considered for the choice of Nα. First, its value also determines the number of quadra-
ture points to be used for numerical integration (as will be discussed in section 3.2).
Thus its value must be as small as possible to keep the computational load at a min-
imum. Second, the expression for α̃Nα;D(k̂) given in (2.6) is a divergent sum; hence
Nα should be small enough to avoid numerical problems.

To obtain a more detailed analysis for finite values of kD, we can divide the sum
in (3.11) into two parts in which the index of summation runs from Nα + 1 to N1

for the first sum, and it runs from N1 + 1 up to infinity for the second sum where
N1 ∼ kD. For the first sum, we have kd < n < kD, and since the magnitude of the
spherical Hankel function is a slowly varying function of the order in this interval, we

can replace it by h
(1)
Nα

(kD) and, using (3.15) for the spherical Bessel functions, we get

|(2n+ 1)h(1)
n (kD) jn(kd)| ∼ h(1)

Nα
(kD)

(kd)n

(2n+ 1)!!
,(3.16)

which is a rapidly decreasing function of the order, n. Therefore, this sum can be
represented by its first term, i.e.,

S1
4
=

N1∑
n=Nα+1

(2n+ 1) |h(1)
n (kD) jn(kd)| ∼ h(1)

Nα+1(kD)
(kd)Nα+1

(2Nα + 1)!!
.(3.17)

For the second sum, we have kd < kD < n and we can use the large-order
asymptotic forms of both the spherical Hankel and Bessel functions to obtain

|(2n+ 1)h(1)
n (kD) jn(kd)| ∼ 1

kD

(
d

D

)n
.(3.18)
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ERROR ANALYSIS FOR THE FAST MULTIPOLE METHOD 911

Thus, the second sum is approximated by a geometric series and we get

S2
4
=

N1∑
n=Nα+1

(2n+ 1) |h(1)
n (kD) jn(kd)| ∼ 1

kD

(d/D)N1+1

1− d/D .(3.19)

The total truncation error is bounded by the sum of S1 and S2 and, for a given value
of Nα, it decreases as the ratio d/D decreases. However, it is important to note that
the relative error, which is defined as the ratio of the truncation error to the actual
value of translation coefficient, has a nonzero limiting value as kD → ∞. On the
other hand, for a given d/D ratio, the error can be decreased by increasing Nα.

Figure 3.1 shows a typical behavior of the relative error along with the error
estimates given by (3.13) and S1 + S2. It can be seen that these formulas are quite
satisfactory. This result also shows that, for small d/D, the error is only weakly
dependent on D, and the converse is true for larger d/D.

3.1.2. Multipole-to-multipole translations. It is quite difficult to put a tight
bound on the summations in (3.7) since the ranges of the summations depend on each
other. On the other hand, the bound obtained for monopole-to-monopole translations
is given by the asymptotic behavior of the error for small kd. Motivated by this result,
we will investigate the asymptotic behavior of the error for the multipole-to-multipole
translation.

For this purpose, we first observe that if n > l+ l′, the dominant term in (3.7) is
for ν = n− l− l′, and for this value of ν the only possible value of η is l+ l′, reducing
the summation over η to a single term. We get

(3.20)

|I(n)
lm,l′m′(D̂,d)|

≈ 4π
√

(2l + 1)(2l′ + 1)√
2n+ 1

√
2ν + 1 jν(kd) W (l,m, l′,m′) S(n, l + l′,m−m′, D̂, d̂),

where

(3.21)

W (l,m, l′,m′) = (2l + 2l′ + 1)

∣∣∣∣( l l′ l + l′

0 0 0

)(
l l′ l + l′

m −m′ −m+m′

)∣∣∣∣ ,
(3.22)

S(n,L,M, D̂, d̂) =
∑
µ

∣∣∣∣Ynµ(D̂)Yν,µ+M (d̂)

(
n ν L
0 0 0

)(
n ν L
µ −µ−M M

)∣∣∣∣
with L = l + l′, ν = n− L, M = m−m′.

By expanding the Wigner 3-j terms, it can be shown that

W (l,m, l′,m′) ≤ ClL√
C2l

2L

≤ 1,(3.23)

where Cmn = n!/(m!(n−m)!) denotes the binomial coefficients.
The function S(n,L,M, D̂, d̂) attains its maximum value when M = 0 and D̂ =

d̂ = âz, which is

Smax(n,L) =
1

4π

√
2ν + 1

2n+ 1

(
CLn
)2

C2L
2n

,(3.24)
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912 S. KOC, JIMING SONG, AND W. C. CHEW

Actual relative error

Eq. (3.13)             

S +S                 1 2

5 10 15 20 25 30

10
−1

kD/kd

R
el

at
iv

e 
er

ro
r

Fig. 3.1. Comparison of the error estimates and the actual error for kd = 1, Nα = bkd +
log(kd+ π)c = 2 as a function of kD.

from which follows

4π
√

(2l + 1)(2l′ + 1)√
2n+ 1

√
2ν + 1 S ≤

√
(2l + 1)(2l′ + 1)

2ν + 1

2n+ 1

(
CLn
)2

C2L
2n

≤ (2L+ 1)(2ν + 1)

2n+ 1

(
CLn
)2

C2L
2n

≤ 1.(3.25)

Combining all these results gives

|I(n)
lm,l′m′(D̂,d)| ≈ jν(kd) ≈ (kd)ν

(2ν + 1)!!
, ν = n− l − l′.(3.26)

The asymptotic behavior of the truncation error is also determined by the first
term of the sum in (3.3), and for kD →∞, we can write

|εT | ≈ 2Nα + 3

kD

(kd)P

(2P + 1)!!
,(3.27)

where P = Nα+1− l− l′. It must be noted that, although this expression is obtained
by assuming kd → 0, numerical experimentation shows that this is indeed a bound
for the truncation error.

Finally, by using Stirling’s formula to approximate the factorial, we get

|εT | ≤ 2Nα + 3

kD

1√
2

(
ekd

2P

)P
,(3.28)

which shows that the decrease in the truncation error with Nα is faster than expo-
nential.

An analysis for finite values of kD follows the lines described at the end of the
previous section and again shows that the rate of decrease of the truncation error with
Nα is faster than exponential.
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ERROR ANALYSIS FOR THE FAST MULTIPOLE METHOD 913

3.2. Numerical integration error. In implementation, the integral represen-
tation for the translation coefficient appearing in (2.6) must be evaluated numerically.
For this purpose, we note that the product formula

∮
f(x, y, z)dŝ =

∫ 2π

0

∫ π

0

f(θ, φ) sin θ dθ dφ =

Nθ∑
i=1

2Nθ∑
j=1

wgiw
c
jf(θi, φj)(3.29)

is exact for polynomials xαyβzγ if α+ β + γ < 2Nθ (see [16]), where θi are chosen as
the Gauss–Legendre points, φj are 2Nθ equally spaced points over the interval [−π, π],
wgi are the Gauss–Legendre weights, and wcj = π/Nθ. Since the spherical harmonics
Ynm(θ, φ) are also polynomials of order n on the surface of the sphere, the above
quadrature rule is exact for harmonics of order n < 2Nθ. A more efficient method for
numerical quadrature on the sphere is given in [17].

The integrals I
(n)
lm,l′m′(D̂,d) can be expanded as in (3.6). If a numerical integration

with Nθ × 2Nθ points is used, the product of four spherical harmonics appearing in
(3.6) can be integrated exactly provided that 2Nθ − 1 ≥ l + ν + n + l′. Since the
upper limit of the summation over ν is n + l + l′, choosing Nθ = n + l + l′ + 1 will
result in exact integration for all the nonzero terms in (3.6). However, although the
higher-order terms are analytically zero, their numerical evaluation will not be zero.

Thus the error due to numerical integration of I
(n)
lm,l′m′(D̂,d) will be

εi(n) =
(4π)2

2n+ 1

∞∑
ν=2Nθ−n−l−l′

iν |jν(kd)|
n∑

µ=−n
Y ∗nµ(D̂)

ν∑
µ′=−ν

Yνµ′(d̂)

∮–
Ylm(k̂)Y ∗νµ′(k̂)Ynµ(k̂)Y ∗l′m′(k̂) dk̂,(3.30)

where
∮–

is used to denote numerical integration which is bounded by∣∣∣∣∣
∮–
Ylm(k̂)Y ∗νµ′(k̂)Ynµ(k̂)Y ∗l′m′(k̂) dk̂

∣∣∣∣∣ ≤
√

(2l + 1)(2ν + 1)(2n+ 1)(2l′ + 1)

4π
.(3.31)

Replacing this upper bound in (3.30) yields

|εi(n)| ≤
√

(2l + 1)(2l′ + 1)
∞∑

ν=2Nθ−n−l−l′
(2ν + 1) |jν(kd)|.(3.32)

The total error due to numerical integration is

|εI | =
∣∣∣∣∣
Nα∑
n=0

(2n+ 1)h(1)
n (kD)εi(n)

∣∣∣∣∣ .(3.33)

Replacing the bound for εi in this expression and using large-argument asymptotic
forms of the Hankel functions yields

|εI | ≤
√

(2l + 1)(2l′ + 1)

kD

Nα∑
n=0

(2n+ 1)
∞∑

ν=2Nθ−n−l−l′
(2ν + 1)|jν(kd)|.(3.34)
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914 S. KOC, JIMING SONG, AND W. C. CHEW

Assuming Nθ > Nα > l + l′, it can be shown that

(3.35)
Nα∑
n=0

(2n+ 1)
∞∑

ν=2Nθ−n−L
(2ν + 1)|jν(kd)|

=

∞∑
n=2Nθ−Nα−l−l′

(2n+ 1)|jn(kd)|
Nα∑

i=2Nθ−L−n
i≥0

(2i+ 1) ≤ 2.0 (2Nα − 1)
(kd)P

(2P − 1)!!
,

in which the leading factor 2.0 is obtained empirically. Finally, we have

|εI | ≤ (2Nα − 1)

√
(2l + 1)(2l′ + 1)

kD

2(kd)P

(2P − 1)!!
.(3.36)

It can be seen that if Nθ is chosen to be greater than Nα, the numerical integra-
tion error will have a behavior similar to the truncation error. When Nθ = Nα + 1
the error bounds for truncation and numerical integration appear to be of the same
order. However, the bound used in (3.31) is too high since the value of the integrand
is replaced by its maximum value for all sample points. This suggests that the in-
tegration error will be much smaller than the truncation error. Therefore, the total
numerical error can be said to be bounded by the truncation error only.

Several important points are to be noted from the foregoing derivations:
• The choice of Nθ = Nα + 1 is appropriate since all the contributing integrals

are evaluated exactly.
• The error decreases very rapidly as the number of terms in the truncated

sum, Nα, increases. This is shown in Figure 3.2.
• The error is an increasing function of kd and a decreasing function of kD, as

can be seen from Figures 3.3 and 3.4. This makes it necessary to use more
terms for larger values of kd. On the other hand, due to the Hankel functions
appearing in the expressions, the convergence is achieved if Nα < kD. It must
be noted that the relative error has a nonzero limiting value as kD →∞ for
the wave equation, which is quite different from the static case.
• The error increases as l or l′ increases, as can be seen from Figure 3.5.

An empirical formula for choosing Nα is

Nα = bkd+ Ca log(kd+ π)c+ l + l′,(3.37)

where b·c denotes the integer part, and Ca is a parameter chosen to control the
accuracy of the calculations. If Ca is chosen to be 1, then the relative error in the
evaluation of (2.6) is about 10%, and with each increase in Ca by 1 the error decreases
roughly by an order of magnitude.

Another formula for choosing Nα is

Nα = bkd+ C ′a (kd)1/3c+ l + l′,(3.38)

which can be obtained by using asymptotic expansions of the Bessel functions [18].

3.3. Interpolation error. In a multilevel implementation of the FMM (MLFMA),
the multipole expansions of groups at a certain level are aggregated (disaggregated)
to obtain the multipole expansions for the groups at a higher (lower) level. Thus, it
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: error bound 
: actual error
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−4
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−2

10
0

Nα

Fig. 3.2. Actual errors (+) and the error bound given by (3.27) (◦) as a function of Nα for
kD = 30âz, kd = âz, l = 3, l′ = 2, m = 0, m′ = 0, and Nθ = Nα + 1.

: error bound 
: actual error
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Fig. 3.3. Actual errors (solid) and the error bound given by (3.27) (dashed) as a function of
kd for kD = 30âz, kd = kdâz, l = 3, l′ = 2, m = 0, m′ = 0, Nα = 8, and Nθ = Nα + 1.
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: error bound 
: actual error
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Fig. 3.4. Actual errors (solid) and the error bound given by (3.27) (dashed) as a function of
kD for kD = kDâz, kd = âz, l = 3, l′ = 2, m = 0, m′ = 0, Nα = 8, and Nθ = Nα + 1.
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Fig. 3.5. Actual errors (+) and the error bound given by (3.27) (◦) as a function of l for
kD = 30âz, kd = âz, l′ = 0, m = 0, m′ = 0, Nα = 15, and Nθ = Nα + 1. For l < 3, the actual
error is below the machine precision.
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ERROR ANALYSIS FOR THE FAST MULTIPOLE METHOD 917

becomes necessary to evaluate the values of multipole expansions of a group at points
other than they have already been calculated. If the multipole expansions are eval-
uated at the Gauss–Legendre points to facilitate the numerical integration, the grid
structures of different levels will be quite different and nonuniform. Since the multi-
pole expansion aggregated at a group is a spherical harmonic function of finite order,
and if a sufficient number of points are used, it is possible to obtain the exact value
of the multipole expansion at any point. However, such an approach does not reduce
the computational complexity compared with a single-level algorithm. Therefore, it
is necessary to use an appropriate interpolation algorithm. Since the grid points are
nonuniform, the Lagrangian interpolation is a candidate for the purpose. However,
other interpolators are possible as will be mentioned later in this section. Multilevel
implementations of the three-dimensional MLFMA are described in [5, 6, 7].

The error in a polynomial interpolation is given by the Cauchy remainder formula
[19, Chap. 3].

Theorem 3.1. Let f(x) ∈ C[a, b] and suppose that f (n)(x) exists at each point
of (a, b).

If a ≤ x1 < x2 < · · · < xn ≤ b, then

Rn(f ;x)
4
= f(x)− pn(f ;x) =

(x− x1)(x− x2) · · · (x− xn)

(n)!
f (n)(ξ),

where pn(f ;x) is a polynomial approximation of order (n− 1) to the function f . The
point ξ depends upon x, x1, x2, . . . , xn and f and is restricted as min(x, x1) < ξ <
max(x, xn).

In general the value of ξ is not known, and the following estimate becomes more
useful.

Corollary 3.2. If f(x) ∈ Cn[a, b], then

|Rn(f ;x)| ≤
{

max
a≤x≤b

∣∣∣f (n)(x)
∣∣∣} |x− x1||x− x2| · · · |x− xn|

(n)!
.

To put this error bound into a more useful form, we need an estimate for the
bound of the derivative of the function, and the following theorem for trigonometric
polynomials (see Bernstein [20, Chap. 11]) proves useful.

Theorem 3.3. If f(x) =
∑N
k=−N cke

ikx is a trigonometric polynomial of degree
N, and M is the maximum of |f(x)|, then

|f ′(x)| ≤ NM,

which immediately gives the following corollary.

Corollary 3.4. For a trigonometric polynomial of the form f(x) =
∑N
k=−N cke

ikx

we have

|f (n)(x)| ≤ NnM.

If we choose n = 2p, (i.e., even number of points) and restrict the interpolation
point to the center, xp ≤ x ≤ xp+1, it can be easily verified that

|x− x1||x− x2| · · · |x− x2p| ≤
[

(2p)!

p!

]2 [
h

4

]2p

(3.39)
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918 S. KOC, JIMING SONG, AND W. C. CHEW

where h
4
= maxi{xi − xi−1}, i = 2, . . . , 2p, and the error estimate becomes

|Rn(f ;x)| ≤M (2p)!

(p!)2

(
Nh

4

)2p

.(3.40)

For interpolation over the surface of a unit sphere, the polynomial approximation
is applied in θ and φ variables separately, with Nθ = Nα + 1 Gauss–Legendre points
in θ variable and Nφ = 2Nθ equally spaced points in φ variable.

The functions to be interpolated are the far field expansions of groups of radii
d/2, which means that the spherical harmonic expansion coefficients decay rapidly for
orders greater thanNα/2. Thus, these functions are oversampled by a factor of 2. This
is because the sampling rate is dictated by the harmonic content of the translation
coefficients. From (2.6), in which the vector d is the sum of the translations within
two groups, we can see that the spherical harmonic coefficients of the translation
coefficient are significant up to order Nα.

With these observations, the estimate for the relative error can be written as

δ =
|Rn(f ; θ, φ)|

M
≤ (2p)!

(p!)2

(
Nαhθ

8

)2p

+
(2q)!

(q!)2

(
Nαhφ

8

)2q

.(3.41)

It can be shown that

hθ, hφ <
π

Nα
,

which yields

δ ≤ 2
(2p)!

(p!)2

[π
8

]2p
,(3.42)

where we have taken q = p. Finally, using the Stirling’s formula to approximate the
factorials gives

δ ≈
√

2

πn

(π
4

)n
.(3.43)

This result reveals that the interpolation error decreases exponentially as the number
of interpolation points is increased.

There are other interpolation schemes for the interpolation of fields over spherical
surfaces [21, 22]. These algorithms use the approximate prolate spheroid series [23]
and the sampling window (Chebyshev sampling series) [24] with an oversampling
factor χ defined as the ratio between the actual sampling rate and the Nyquist rate.
Both algorithms have small error bounds (smaller than that given in (3.43)) and
exhibit exponential decrease in error with the number of retained samples and the
oversampling factor. However, these algorithms use uniformly spaced samples and
are not suitable for integration. Furthermore, with an oversampling factor of 2, the
error for polynomial interpolation becomes almost as small as the error for these
algorithms.

The most important feature of the foregoing analysis is that the interpolation error
does not depend on the harmonic content (bandwidth) of the function being approx-
imated, which can be intuitively understood by noting the fact that as the harmonic
content of the function is increased, the sampling rate is also increased. Hence the use
of the same number of interpolation points at each level of the MLFMA is justified,
even though the functions being interpolated get richer in harmonic content as we go
up through the levels.
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Fig. 3.6. Relative error as a function of the number of points used for interpolation for different
values of Ca and number of levels.

3.4. Total error. It is quite difficult to obtain an error bound for the total error
in the MLFMA algorithm since there are different sources of errors which propagate
through levels. To investigate the total error introduced by the MLFMA, the trans-
lation matrix αLL′(k, r) is calculated. The calculation of this matrix requires only a
single matrix-vector multiplication. The relative error is defined as

εrel =
||αLL′(k, r)− α̂LL′(k, r)||

||αLL′(k, r)|| × 100,(3.44)

where || · || denotes a matrix norm and α̂LL′(k, r) denotes the value calculated by the
MLFMA. In the calculations, kr = 30(âx + ây + âz) is used and the α matrices are
truncated at nt = 3, resulting in a 16×16 matrix.

Figure 3.6 shows the relative error as a function of the number of points, n, used
in the interpolation for different number of levels and accuracy parameter Ca. It
can be seen that for any given Ca and number of levels, the error decreases almost
exponentially up to a certain value of n after which no improvement can be observed.
The limiting value of the error as n increases is determined solely by the accuracy
parameter Ca.

Figure 3.7 shows the relative error for a five-level MLFMA algorithm, as a function
of Ca for different values of n (the number of points used in the interpolation). As
Ca is increased, more terms are being included in the multipole expansions and the
number of sampling points is increased accordingly. Also, the number of neighbors
of a scatterer increases, thus more interactions are calculated directly. This increases
the amount of work appreciably. It can be seen from the figure that the error for
Ca = 1, n = 5 is smaller than the error for Ca = 3, n = 2 or 3. In the latter case the
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Fig. 3.7. Relative error as a function of Ca for different values of the number of points used
for interpolation for a five-level MLFMA algorithm.

CPU time is much larger. Thus, Ca must be chosen as small as possible, but it must
be large enough to give the desired accuracy. Numerical experimentation shows that
Ca = 1 and n = 4 is an appropriate choice for a 10% relative error.

4. Conclusions. The truncation error and numerical integration error intro-
duced by the dynamic FMM algorithm are analyzed and estimates are obtained.
These estimates can be used in the implementation for choosing the values of several
parameters with an a priori estimate of the overall error.

The two parameters that control the error in the MLFMA are Ca and p. The
former controls the value of Nα that will be used at each level and the latter is the
number of interpolation points used which is independent of the levels. This also
means that the value of p is not affected by the problem size and is determined solely
by the required accuracy, implying that the complexity of the MLFMA is indeed
O(N) for volume problems and O(N logN) for surface problems.

The main result of this study is to show that the decrease in the error, when either
Ca or p is increased, is faster than exponential. Thus an increase in these parameters
will decrease the error exponentially while the numerical work will be increased only
linearly.
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