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Electroresistance (ER) effects and current-induced metastable states in the thin film of

Pr0.5Sr0.5MnO3 were investigated. The initial state was insensitive to weak currents and susceptible

to high-density currents. As the current density reached a certain value, metastable states, which

were very sensitive to weak currents at low temperatures, were excited. It was found that as the

excited current increased, the induced metastable state showed a larger electroresistance in a wider

temperature range. Interfacial effects related to electrodes could be ruled out. The observed effects

might be related to the coexistence and instability of the multiphases in manganites. VC 2013 AIP
Publishing LLC [http://dx.doi.org/10.1063/1.4800841]

Manganites with perovskite-like structures belong to the

family of strongly correlated systems. They came to the eyes

of physicists as early as 1950s and have been a continuing

focus since the early 1990s,1–5 when the unexpected sensitiv-

ity of resistance to applied magnetic fields, namely “colossal

magnetoresistance (CMR),” was discovered. In these materi-

als, the complex couplings between different degrees of

freedoms (spin, charge, orbital, and lattice) give rise to rich

electronic phases and many tantalizing electromagnetic

properties. It is found that these various phases in manganites

have close energies and may coexist in a single chemical

phase. The intricate balance between competing phases is

readily susceptible to external stimuli,6–15 which can cause

drastic effects. This feature actually not only offers an arena

to understand the physics of strong correlation but also pro-

vides an opportunity to develop practical devices.

Electric fields/currents are frequently used to tune the

properties of manganites. An early demonstration of electric

fields/currents effects in manganites was reported in single

crystals of Pr0.7Ca0.3MnO3 by Asamitsu et al.6 They showed

that the electrical insulating charge-ordered state was melt

by the electric fields/currents, which lead to a resistance drop

of several orders. Currents of high densities can also excite

highly resistive metastable states, which shows pronounced

electroresistance (ER), from ferromagnetic metallic states.7

More intriguingly, asymmetric conduction, resistance steps,

negative differential resistance, and low-temperature persis-

tent conductivity can also be induced by electric fields/

currents.8–10 Accumulating studies pointed out that phase

separation/competition is a crucial ingredient for understand-

ing these unusual phenomena. Half-doped manganite

Pr0.5Sr0.5MnO3 (PSMO) is a typical example of phase

competition.16–19 Upon cooling, it exhibits a high-temperature

paramagnetic insulator-ferromagnetic metal transition and

a low-temperature ferromagnetic metal-antiferromagnetic

insulator transition. There have been studies on how PSMO

responses to magnetic field, hydrostatic pressure, and

light.16,20,21 However, no investigation on current-induced

effects in this interesting material has been carried out. In this

paper, we report electroresistance and current-induced meta-

stable states in the thin film of PSMO.

The thin film of PSMO was grown on (001)-oriented

SrTiO3 (STO) by using pulsed laser ablation.22 The deposi-

tion was carried out in flowing oxygen and the pressure of

chamber was kept at 30 Pa. Throughout the growth, the sub-

strate holder was maintained at �800 �C, as monitored by the

k-type thermal couple. To avoid possible oxygen deficiency,

the sample was annealed subsequent to deposition in 0.5 bar

oxygen at grown temperature for 30 min. As determined with

a Dektak stylus profiler, the film thickness is �60 nm.

Microbridges (see the inset of Fig. 1) were made by photoli-

thography. The ohmic contacts were achieved by using silver

electrodes, which were deposited through thermal evapora-

tion. The transport properties were measured in a four-probe

configuration. The magnetization was measured in a field of

20 Oe parallel to film surface by a Superconducting Quantum

Interference Device (SQUID).

The structural properties were assessed by x-ray diffrac-

tion (XRD). Figure 1 displays the XRD pattern (h-2h scan) for

PSMO on STO. Only reflection peaks from (00l) planes of

PSMO (for PSMO, pseudocubic index is used) and STO are

visible, indicating the grown layer is c-axis oriented. The U
scans of the (113) reflection (see Ref. 22) demonstrate the

cubic-on-cubic epitaxy. The out-of-plane lattice constant of

the PSMO film, calculated from the reflection peak, is

c� 3.77 Å. For bulk PSMO, the pseudocubic lattice constant

ap is �3.84 Å. The reduced value of out-of-plane lattice

constant suggests the compressive out-of-plane strain

[ezz¼ (c� ap)/ap¼�1.8%]. The relation between the in-plane

strain exx and out-of-plane strain ezz is exx¼�ezz(1� �)/(2�),

where � is the Poisson ratio. Typical reported � for mangan-

ites ranges from 0.3 to 0.5. Thus, a negative ezz (compressive

strain) means a positive exx (tensile strain).
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Shown in Fig. 2 are the temperature (T) dependences of

resistance (R) and magnetization (M) for our PSMO film.

Upon cooling, the conduction first changes from insulating/

semiconducting behavior to metallic one at TP� 263 K.

Further lowering the temperature leads to a second transition

at TMIN� 208 K, from metallic conduction to insulating con-

duction. There are also two transitions in the M-T curve

when the temperature decreases. Around TP, there is a steep

increase in magnetization. At T� 150 K, magnetization

begins to decrease with decreasing temperature very slowly.

Similar features were also reported by Wagner et al.23 In sin-

gle crystalline PSMO, there is a structural change accompany-

ing the FMM-AFI transition.17 The structures are tetragonal

and monoclinic in the FM and AFI states,18 respectively.

When PSMO is deposited on STO, the substrate-imposed

tetragonal symmetry makes such a structural transition diffi-

cult.22 The appearance of low-temperature metal-insulator

transition in thin PSMO film on STO may be owing to the

enhanced Jahn-Teller distortion as a result of large strain.22

To study the electric current-induced effects, the sam-

ples were patterned to microbridges by using standard photo-

lithography technique. R-T curves for all microbridges are

essentially the same, with slight fluctuation from one bridge

to another. This indicates that our film is uniform. Figure

3(a) displays the typical temperature dependence of resist-

ance for patterned PSMO measured with currents ranging

from 1 to 2000 lA. Changing the current from 1 lA to 50 lA

has no appreciable influence on the R-T curve. In other

words, the as-prepared PSMO film is not sensitive to low-

density current. As the current increases from 50 to 200 lA,

while high-temperature resistance keeps unchanged, the low-

temperature resistance is suppressed substantially. When the

current is further increased, the reduction of low-temperature

resistance becomes significant. At the same time, there are

considerable changes at high-temperature regions. The evo-

lutions of TP and peak resistance RP are summarized in

Fig. 3(b). As the current reaches a certain value, TP becomes

lower with the increase of current density. This is similar to

previous reports.24 Such a phenomenon is probably related

to the self Joule heating, which can cause a temperature gra-

dient between sample surface and sample holder. For the

current induced suppression of low-temperature resistance,

Joule heating should have a non-ignorable contribution.

Nevertheless, such a heating effect cannot influence the

value of peak resistance RP.24 It should be emphasized that

after each large current, R-T curve was re-measured with a

bias current of 1 lA. Even after the application of 2000 lA,

there was no observable change. Thus, the current depend-

ence of RP should be an intrinsic property of PSMO and not

related to the current excited states.7,9 In hole doped

La0.7Ca0.3MnO3 and La0.85Ba0.15MnO3, it was found that RP

decreased monotonously with the increase of current density.

For our PSMO film, with the increase of current density, RP

first keeps unchanged, then increases, and finally decreases.

The origin of the unusual relation between RP and I is not

very clear.

For PSMO, metastable states could also be excited by

large currents. Current processing [electrodes Iþ and I�
were connected to the current source] was conducted at

room temperature and the duration was fixed to be 20 min.

After each processing, a R-T curve was measured under a

bias current of 1 lA. Detectable changes appeared as the

processing current became larger than �4 mA. Shown in

Fig. 4(a) are the metastable states induced by different

currents. After current processing, the resistance becomes

FIG. 1. XRD pattern (h-2h scan) of PSMO/STO. Shown in the inset is the

layout of the microbridge and the four-probe configuration used to measure

all R-T curves in Figs. 3 and 4.

FIG. 2. Temperature dependences of resistance (left) and magnetization

(right) for the PSMO film. The applied field of the dc magnetic measurement

is 20 Oe.

FIG. 3. (a) Temperature dependences of resistance measured with different

currents (I¼ 1, 50, 100, 200, 500, 1000, and 2000 lA) for the initial state;

(b) TP and RP as a function of bias current I.
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higher in the whole temperature range. The increase of re-

sistance is much larger at low temperatures. It is found that

the larger the excite current, the more dramatic the resistance

change. With the increase of excite current, the temperature

range of metallic state becomes smaller. As the processing

current reaches 6 mA, the excited state is insulating in

the whole temperature range. To study the properties of

these current-induced metastable states, R-T curves were

measured under small currents of different polarities [see

Fig. 4(b)]. The magnitude of resistance is essentially inde-

pendent of current direction. At low temperatures, the re-

sistance is greatly reduced by weak currents. With the

definition ER¼ 100%� [R(9 lA)�R(1 lA)]/R(1 lA), tem-

perature dependences of ER for different metastable states

were calculated and illustrated in the inset of Fig. 4(b). For

each state, ER is negligible at high temperatures and becomes

significant at low temperatures. As the excited current

increases, the induced metastable state shows a larger ER in a

wider temperature range.

The induced highly resistive metastable states are

intrinsic properties rather than interfacial effects.7–10 There

were no substantial changes in the resistance measured

between electrodes Iþ and Vþ (also between V� and I�,

see the inset of Fig. 1) before and after current processing.

The conduction between Iþ and Vþ (or V� and I�) kept

linear and symmetric in the whole temperature range. Thus,

the main changes should took place in the narrow part

(30 lm� 100 lm) of the bridge, where the current density

was one order larger than that between Iþ and Vþ (and

between V� and I�). Current-induced metastable states were

observed in other manganite films, such as Pr0.7Sr0.3MnO3,10

Nd0.7Sr0.3MnO3,8 and La1�xCaxMnO3 (x¼ 0.2 and 0.3).7 To

understand such metastable states and the enhanced sensitiv-

ity to weak currents, it would be helpful to note that mangan-

ites are electronically soft.4 There are cross couplings

between different degrees of freedom (spin, charge, lattice,

and orbit), which give rise to diverse electronic ground states

with very close free energy. Application of large electric

fields/currents may drive it from one state to another in local

areas, shifting the balance of competing phases. It is known

that phase competition is at the heart of many intriguing prop-

erties of manganites. A shifted balance may induce new prop-

erties, such as the enhanced sensitivity to weak currents. To

get beyond this qualitative schematic picture and discover the

exact mechanism, more further theoretical and experimental

efforts should be made.

Current-induced effects in microbridges of PSMO were

studied. Upon cooling, PSMO exhibited a high-temperature

insulator-metal transition and a low-temperature metal-insu-

lator transition. As-prepared film had a weak sensitivity to

low-density currents. With the increase of current density,

the low-temperature resistance was reduced significantly.

The peak resistance showed an unusual dependence on cur-

rent density. Metastable states were excited by currents with

higher densities. With the increase of excite current, the met-

astable state had a larger resistance and an enhanced electro-

resistance. The observed phenomena were discussed in a

phase separation/competition scheme.
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FIG. 4. (a) Metastable states induced by currents of different magnitudes.

The measured current is fixed to be 1 lA; (b) temperature dependences of re-

sistance measured with different currents (61, 63, and 69 lA) for the state

induced by a current of 5.3 lA. The inset summarizes the temperature of

ER¼ 100%� [R(9 lA)�R(1 lA)]/R(1 lA) for metastable states induced by

different currents.
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