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Abstract

Background: The way we formulate a mathematical model of an infectious disease to capture symptomatic and
asymptomatic transmission can greatly influence the likely effectiveness of vaccination in the presence of vaccine effect for
preventing clinical illness. The present study aims to assess the impact of model building strategy on the epidemic
threshold under vaccination.

Methodology/Principal Findings: We consider two different types of mathematical models, one based on observable
variables including symptom onset and recovery from clinical illness (hereafter, the ‘‘observable model’’) and the other
based on unobservable information of infection event and infectiousness (the ‘‘unobservable model’’). By imposing a
number of modifying assumptions to the observable model, we let it mimic the unobservable model, identifying that the
two models are fully consistent only when the incubation period is identical to the latent period and when there is no pre-
symptomatic transmission. We also computed the reproduction numbers with and without vaccination, demonstrating that
the data generating process of vaccine-induced reduction in symptomatic illness is consistent with the observable model
only and examining how the effective reproduction number is differently calculated by two models.

Conclusions: To explicitly incorporate the vaccine effect in reducing the risk of symptomatic illness into the model, it is
fruitful to employ a model that directly accounts for disease progression. More modeling studies based on observable
epidemiological information are called for.
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Introduction

There are two intriguing characteristics in quantitatively

modeling infectious disease data. First, the risk of infection to an

individual is dependent on the risks of other individuals in the

same population unit. Second, the infection event is seldom

directly observable. Among these two, the dependence has been

addressed during the process of model building, e.g., a heteroge-

neous contact structure has been explicitly considered in various

types of models [1] and sometimes by examining the conditional

risk of infection at a confined setting (e.g. household). On the other

hand, it has been common to address the unobservable nature of

infection event by employing a convolution equation, i.e. the so-

called ‘‘backcalculation method’’, to infer the time of infection

based on the dataset of illness onset [2–5]. However, the

deconvolution procedure has been frequently dealt with as a

statistical technique that is independent of the transmission model

[6], and the process of model building tended to be separated from

the unobservable character of infection event.

Ignoring the unobservable nature during model formulation

would complicate the model fitting to empirical data. In many

instances, a temporal distribution of infected individuals (i.e. an

epidemic curve) is analyzed, and most frequently, the best

available dataset is the daily counts of cases. The data are usually

collected based on observable information only, e.g. counts of

cases according to the date of diagnosis of clinically apparent

illness. Only in the better case, epidemiologists are granted an

access to the daily frequency of illness onset. Nevertheless, the data

generating process of the empirical information is rather different
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from assumed transition mechanism within the so-called SIR

(susceptible-infectious-removed) model. The SIR model is consid-

ered as inconsistent with the data, because the transition from S to

I state is determined by the event of infection (which is

unobservable) and the other transition from I to R state is

determined by the loss of infectiousness (which is even more

difficult to observe) [7]. In light of a need to construct a model that

better adheres to the observable information, a previous study

proposed a novel modeling approach that classifies infected

individuals into asymptomatic and symptomatic ones while still

adopting a common multistate model structure [8]. In the case of

the unobservable SEIR (susceptible-exposed-infectious-removed)

model, the model handles unobservable information within the

multistate structure, classifying infected individuals into pre-

infectious (exposed) and infectious individuals [7,8] that are not

directly distinguishable from each other in empirical observation.

Although a previous study recognized the importance of

asymptomatic transmission in considering the feasibility of non-

pharmaceutical public health interventions (e.g. contact tracing

and case isolation) [9], the impact of correctly and precisely

capturing the natural course of ‘‘illness’’ on the effectiveness of

interventions (e.g. vaccination) has yet to be discussed. In the past,

the contribution of asymptomatic individuals to the transmission

dynamics tended to be modeled by employing the widely adopted

SEIR model while splitting infectious individuals (I-class) into

symptomatic and asymptomatic cases (e.g. [10]). The underlying

assumptions and any potential drawbacks for employing the SEIR

model on this matter have not been clarified, and thus, we would

like to examine if an epidemic threshold (which yields the critical

vaccination coverage) is greatly influenced by the abovementioned

difference in model building approaches.

Employing a mathematical modeling approach, the present

study aims to assess the impact of model building strategy on the

transmission dynamics of an infectious disease under vaccination

practice. In particular, we investigate differential values of

epidemic threshold between models that rest on observable and

unobservable information.

Materials and Methods

Two models
We consider two different types of mathematical models, one

based on observable variables including symptom onset and

recovery from clinical illness (hereafter referred to as the

‘‘observable model’’) and the other based on unobservable

information including infection event and infectiousness (the

‘‘unobservable model’’). Whereas the unobservable model in the

following is a variant of the SEIR model [10], the observable

model considers the transition of infected individuals based on

illness onset and the disappearance of symptoms that are directly

visible in the field data [8] (Figure 1A and 1B). The word

‘‘observable’’ is intended to reflect the presence of observable

symptoms (i.e. not including those observed or detected by

employing laboratory testing during the asymptomatic period).

Thus, the observable model might also be referred to the

‘‘symptom-based’’ model. Similarly, the unobservable model

may be referred to as the ‘‘contagiousness-dependent’’ model.

Here we briefly describe the time-dependent growth of an

epidemic based on the observable model, the compartments of

which are drawn in Figure 1A. Let JA(t,t) and JS(t,s) be the

numbers of asymptomatic and symptomatic cases at calendar time

t, infection-age t since infection and disease-age s since illness

onset. The growth of cases is described by:

L
Lt

z
L
Lt

� �
JA(t,t)~{(g(t)zcA(t))JA(t,t),

L
Lt

z
L
Ls

� �
JS(t,s)~{cS(s)JS(t,s),

ð1Þ

where g(t) is the rate at which asymptomatic cases develop

symptoms, and cA(t) and cS(s) are the rates at which asymptomatic

and symptomatic cases are fully recovered. We consider an initial

growth phase of an epidemic at which the depletion of susceptible

individuals S0 is negligible. Let l(t) be the force of infection, or the

rate at which susceptible individuals are infected. Two boundary

conditions, i.e., the new infection and new illness onset, are written

as

JA(t,0)~l(t)S0,

JS(t,0)~

ð?
0

g(t)JA(t,t)dt,
ð2Þ

Figure 1. Compartments of observable and unobservable
models. A. The compartment of an observable model. The model
describes the transitions depending on illness onset and recovery from
clinical symptoms. Once infected, all infected individuals experience
asymptomatic period, JA, some of which fully recover from infection
without symptoms, and the remaining develop symptoms, JS. B. The
compartment of an unobservable model. The model describes the
transitions depending on acquirement or disappearance of infectious-
ness. Upon infection, infected individuals experience the latent period
(i.e. Exposed compartment (E)) after which each acquires infectiousness
and is classified as either symptomatic (IS) or asymptomatic (IA) one. C.
The compartment of the special case of the observable model. The
model describes the transitions based on symptoms, but partially
accounts for infectiousness too. To let it be similar to model B, we
decomposed asymptomatic individuals, JA of the observable model
(panel A) into pre-symptomatic individuals, HS and fully asymptomatic
individuals with or without infectivity. U represents recovered
individuals.
doi:10.1371/journal.pone.0062062.g001

Observable and Unobservable Modeling Approaches

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e62062



where l(t) is, by adopting a mass action principle, parameterized

as:

l(t)~

ð?
0

bA(t)JA(t,t)dtz

ð?
0

bS(s)JS(t,s)ds, ð3Þ

where bA(t) and bS(s) are the infection-age and disease-age

dependent rates of secondary transmission, respectively. It should

be noted that the recovered individuals in Figure 1A are assumed

as no longer infectious. An advantage of this modeling approach is

that a reasonable computation of epidemiological measurements

(e.g. the reproduction number, the generation time and the serial

interval) can be achieved, adhering to observed available

information [8]. Moreover, transitions from the asymptomatic

state to the symptomatic or recovered state are in line with the

actual clinical course of infection, i.e., only a part of asymptomatic

individuals develop symptoms and the rest of infected individuals

recover from infection without symptoms.

The basic reproduction number of this model is computed as

follows ([8]):

R0~R1zaR2, ð4Þ

where R1, R2 and a are the average number of secondary cases

generated by a single asymptomatic case (only during the

asymptomatic period), the average number of secondary cases

generated by a single symptomatic case throughout the course of

the symptomatic period, and the conditional probability of

developing symptom given infection, respectively. The probability

of symptomatic illness, a is multiplied to R2 only, because all

infected individuals experience asymptomatic class while only the

fraction a of infected individuals result in symptomatic infection.

The model (1) is a stage-structured model in which the

reproduction number is calculated from the integral kernel of

the specific class of host in its renewal equation [11]. R1, R2 and a
are defined as

R1~S0

ð?
0

bA(t) exp {

ðt
0

(g(a)zcA(a))da

0
@

1
Adt,

R2~S0

ð?
0

bS(s) exp {

ðs
0

cS(a)da

0
@

1
Ads,

a~

ð?
0

g(x) exp {

ðx
0

(g(s)zcA(s))ds

0
@

1
Adx,

ð5Þ

which we will use in later discussion.

The other type of a model, i.e., the unobservable model, can be

said to be the infection-age structured SEIR model that further

classifies infectious individuals into symptomatic and asymptom-

atic cases [10] (Figure 1B). Let E(t,t), IA(t,t,s) and IS(t,t,s) be the

numbers of pre-infectious individuals, asymptomatic infectious

individuals and symptomatic infectious individuals, respectively, at

calendar time t, infection-age t and disease-age s. The dynamics is

described by

L
Lt

z
L
Lt

� �
E(t,t)~{e(t)E(t,t),

L
Lt

z
L
Lt

� �
IS(t,t)~ke(t)E(t,t){kS(t)IS(t,t),

L
Lt

z
L
Lt

� �
IA(t,t)~(1{k)e(t)E(t,t){kA(t)IA(t,t),

ð6Þ

where e(t), kA(t) and kS(t) represent the rate of acquiring

infectiousness, and the recovery rates among asymptomatic and

symptomatic infectious individuals, respectively. k is the weight

(0#k#1) of the rate at which exposed individuals acquire

infectiousness that determines the probability of developing

symptom. A boundary condition for new infections is

E(t,0)~l(t)S0, ð7Þ

where the force of infection is

l(t)~

ð?
0

b(y) mIA(t,y)zIS(t,y)ð Þdy, ð8Þ

where b(t) represents the rate of secondary transmission at

infection-age t, and m represents the relative infectiousness of

asymptomatic cases as compared to symptomatic cases. The basic

reproduction number, R0, for this unobservable model is given by

R0~kR3z(1{k)R4, ð9Þ

where R3 and R4 are the average numbers of secondary cases

generated by a single asymptomatic case and a single symptomatic

case throughout the course of infectiousness, respectively. In

equation (9), k and (12k) are multiplied to R3 and R4, respectively,

because the probabilities of an infected individual to experience

symptomatic and asymptomatic infections are given by k and

(12k), respectively. Again, the reproduction numbers, R3 and R4,

are calculated from the integral kernel of the renewal process, i.e.,

we define

R3~S0

ð?
0

b(t)

ðt
0

e(x) exp {

ðx
0

e(y)dy{

ðt
x

kS(y)dy

0
@

1
Adxdt,

R4~mS0

ð?
0

b(t)

ðt
0

e(x) exp {

ðx
0

e(y)dy{

ðt
x

kA(y)dy

0
@

1
Adxdt:

ð10Þ

Using these two models under a homogeneously mixing

assumption, we investigate the importance of appropriately

capturing the observable natural course of infection in epidemi-

ological models.

Analytical and numerical analyses
To explicitly account for the observable clinical course of

infection, underlying assumptions of using a parameter k in the

Observable and Unobservable Modeling Approaches
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unobservable model as the probability of symptomatic infection

remain unclear (Figure 1B and system (6); because the transition

from E to I state does not have anything to do with illness onset).

Moreover, it is fruitful to identify different model assumptions

between two models and their practical relevance to infectious

disease control. Thus, here we take two different approaches to

identify the structural differences and different assumptions

between two models. First, we impose additional assumptions to

the observable model, thereby permitting it to resemble the SEIR-

like unobservable model. A simplistic analytical computation is

performed to mathematically determine the difference between

the two models. Second, we numerically compute the basic

reproduction numbers based on the two models. It is clear, even

intuitively, that the presence of pre-symptomatic transmission is a

major difference between the observable model and the unob-

servable SEIR type model. Thus, we examine the sensitivity of the

basic reproduction number to the proportion of pre-symptomatic

secondary transmissions among the total of asymptomatic

transmissions.

Subsequently, we investigate the differential impact of vaccina-

tion on the reproduction number (or, on the epidemic threshold) of

the two models. In a published study, the next-generation matrix

was employed to incorporate various different biological actions of

vaccination into the transmission dynamics under vaccination

[12]. However, the derivation of the next-generation matrix in the

published study remained heuristic, and moreover, the computa-

tion rested only on the unobservable SEIR-like model. Thus, here

we derive the next-generation matrix based on the linearized

system of both (1) and (6), measuring the impact of differential

model formulation on the reproduction number. When analyti-

cally computing the matrix, various different effects of vaccination

are considered, including not only the reductions in susceptibility

and infectiousness but also the reduction in the risk of symptomatic

illness [13].

Parameter values
For numerical illustration, we examine the plausible parameter

space for four different viral infectious diseases. Table 1 shows the

parameter values that are adopted to numerically calculate the

threshold quantities and other associated variables of observable

and unobservable models [8–10,12,14–24]. Smallpox is consid-

ered for the exposition of the similarity between two different

models, because it involves very few asymptomatic transmissions

[14,25,26]. HIV/AIDS is the opposite example of smallpox with

respect to the proportion of asymptomatic transmissions among

the total of secondary transmissions. Namely, the secondary

transmission mostly occurs before the onset of AIDS [8]. Influenza

and varicella are considered as examples that lie between smallpox

and HIV/AIDS. In particular, influenza is considered, because (i)

the unobservable model with asymptomatic and symptomatic

infectious individuals was initially employed with an application to

influenza [10] and (ii) a variety of vaccine effects have been

quantified based on challenge and community-based studies [12],

which offers a suitable condition to explore the impact of model

formulation on the transmission dynamics in the presence of

vaccination. It should be noted that successful vaccine of HIV has

yet to be offered [27] and the corresponding vaccine effect

parameters were only hypothetically assumed.

Results

Using observable model to mimic unobservable model
To analytically describe the difference between two modeling

approaches, we consider the unobservable model as a special case

of the abovementioned observable model. Figure 1C shows the

compartments of a variant of the observable model that are

intended to mimic the SEIR structure. To do this, we divide the

asymptomatic infected individuals JA(t,t) in Figure 1A into three

sub-populations, i.e., (i) pre-symptomatic individuals who are

supposed to develop symptom after spending the incubation

period, HS(t,t), (ii) asymptomatic non-infectious individuals who

will not become symptomatic throughout the course of infection,

HA(t,t), and (iii) asymptomatic infectious individuals, I(t,t). The

fate of experiencing symptomatic infection is determined upon

infection with a probability a, similarly to that taking place when

acquiring infectiousness in the SEIR model (Figure 1B). In the

following, those who remain asymptomatic throughout the

course of infection (i.e. HA+I) is referred to as ‘‘fully’’

asymptomatic, while those who eventually develop symptoms,

HS is referred to as ‘‘pre-symptomatic’’ for clarity. Recovered

individuals at calendar time t is denoted by U(t). The transition

rates from HS to JS, HA to I, JS to U, and I to U are g(t)/a, r(t),

cS(s), and fA(t), respectively, where t and s again represent the

infection-age and the disease-age, respectively. For consistency

between the observable and unobservable models, the transition

from Hs to Js is artificially scaled by a, because Js in the

observable model welcomes only the fraction a of infected

individuals to symptomatic class, which occurs not only during

the transition from Hs to Js but also when infected individuals

enter to Hs. The time-dependent growth of infected individuals is

described by

L
Lt

z
L
Lt

� �
HS(t,t)~{

g(t)

a
HS(t,t),

L
Lt

z
L
Lt

� �
HA(t,t)~{r(t)HA(t,t),

L
Lt

z
L
Ls

� �
JS(t,s)~{cS(s)JS(t,s),

L
Lt

z
L
Lt

� �
I(t,t)~r(t)HA(t,t){fA(t)I(t,t),

ð11Þ

with the following boundary conditions:

HS(t,0)~al(t)S0,

HA(t,0)~(1{a)l(t)S0,

JS(t,0)~
1

a

ðt
0

g(t)HS(t,t)dt,

ð12Þ

where the force of infection, l(t), is parameterized as

l(t)~m

ð?
0

bS(t)I(t,t)dtz

ð?
0

bH (t)HS(t,t)dtz

ð?
0

bS(s)JS(t,s)ds,

ð13Þ

where m is the relative infectiousness among those who remain

asymptomatic, bH and bS are the rates of transmission caused by

Observable and Unobservable Modeling Approaches
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pre-symptomatic and symptomatic individuals, respectively. It

should be noted that m is multiplied to only the first integral

term, because m is defined as the infectiousness of ‘‘fully’’

asymptomatic individuals relative to that among those who

experience symptomatic state in the observable model

(Figure 1B), as was defined elsewhere [10]. This scaling was

required to let the model in Figure 1A mimic the model in

Figure 1B. It is evident from Figure 1C that for the

unobservable model (Figure 1B) to agree with the observable

one (Figure 1C), the incubation period and the latent period

must be identical. Moreover, the recovery from an infectious

state should also be identical to the recovery from symptomatic

illness. Two models become consistent from each other if the

following conditions are met:

(a) a = k (i.e. assumed probabilities of symptomatic infection in

two models are identical),

(b) e(t) = g(t)/a = r(t) (i.e. the incubation period is identical to

the latent period; or equivalently, bH(t) = 0 for any t),

and (c) kS(t) = cS(s) and kA(t) = fA(s) (i.e., the recovery rates of

both models are an identical constant).

Writing in the way we computed the observable model in (4),

the basic reproduction number is computed as

R0~R
0
1zaR

0
2, ð14Þ

where

R
0
1~mS0

ð?
0

bS(t)

ðt
0

r(x) exp {

ðx
0

r(y)dy{

ðt
x

fA(y)dy

0
@

1
Adxdt

zS0

ð?
0

bH (t) exp {

ðt
0

g(x)

a
dx

0
@

1
Adt,

R
0
2~

S0

a

ð?
0

bS(s)

ðs
0

g(y) exp {

ðy
0

g(x)

a
dx{

ðs
y

cS(z{y)dz

0
B@

1
CAdyds:

ð15Þ

In summary, two models are rather different and can be

consistent only in the case that the model could be written by

ordinary differential equations and only when the incubation

period can be equated to the latent period.

Comparison of the basic reproduction number
We continue to compare the special case of the observable

model (Figure 1C) with the unobservable SEIR type model

(Figure 1B). As was implicated from abovementioned conditions

(a)–(c) to ensure consistency between the two models, it should be

noted that there is no concept of pre-symptomatic transmission in

Table 1. Parameter values for observable and unobservable models of directly transmitted infectious diseases.

Description Notation Parameter values References/Assumptions

Smallpox Influenza HIV Varicella

The average number of secondary
cases produced by an asymptomatic
case

R1 0.69 0.60 3.67 3.24 [14] & calculated

The average number of secondary
cases produced by a symptomatic
infection

R2 6.18 1.20 0.00 3.24 [14] & calculated

The average number of secondary
cases produced by a fully
asymptomatic case

Ra 1.37 0.96 6.12 6.47 [14] & calculated

Probability of developing symptoms
in the unobservable model

a (or k) 1.00 0.75 0.80 1.00 [10] & assumed

Basic reproduction number of the
observable model

R0 6.87 1.50 3.67 6.47 [14,15,16,17,18]

Proportion of asymptomatic
transmissions among all secondary
transmissions

h 0.10 0.40 1.00 0.50 [8,9,21,22]

Proportion of pre-symptomatic
transmissions among all
asymptomatic infection

g 1.00 0.60 0.67 1.00 [23] & calculated

Vaccine efficacy of reducing
infectiousness

VEI 0.80 0.15 0.60 0.80 [12,17,19,20,21,22,24] & assumed

Vaccine efficacy of reducing
susceptibility

VES 0.95 0.41 0.40 0.50 [12,17,19,20,21,22,24] & assumed

Vaccine efficacy of preventing
progression to symptomatic illness

VEP 0.87 0.67 0.60 0.50{ [12,17,19,20,21,22,24] & assumed

{assumed.
doi:10.1371/journal.pone.0062062.t001
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the unobservable model. On the contrary, the special case

(Figure 1C) can still account for pre-symptomatic transmission as

long as we assume that bH(t).0. Let g represent the proportion of

pre-symptomatic transmissions among the total of asymptomatic

transmissions, then the basic reproduction number of the special

case model (14) is rewritten as follows:

R0~gR
0
1z(1{g)R

0
1zaR

0
2: ð16Þ

Let Ra and Rpre be the average numbers of secondary cases

generated by a single (fully) asymptomatic and pre-symptomatic

case, respectively. Using the weighted average of the reproduction

numbers with the proportion of symptomatic infections (e.g. as

practiced in (9)), R0 of the model that is intended to bridge the

observable model with the unobservable one (Figure 1C) can also

be expressed as

R0~(1{a)Raza(RprezR
0
2): ð17Þ

The average number of secondary cases generated by a single

fully asymptomatic case should be identical between (16) and (17),

i.e.,

(1{g)R
0
1~(1{a)Ra: ð18Þ

Similarly, the average number of secondary cases generated by

a single pre-symptomatic case should also be identical between the

two models as follows:

gR
0
1~aRpre: ð19Þ

Figure 2 examines the impact of g on the resulting estimate of

the basic reproduction number, varying only g (and the

corresponding a) in the model and using fixed values for all other

parameters in equations (16) and (17) (see Table 1). Note that g = 0

is the special case in which the observable model (Figure 1C) is

fully consistent with the unobservable model. As g increases, R0 for

smallpox and influenza are elevated. However, R0 for HIV and

varicella are lowered as a function of g. Assuming that Rpre is

proportional to Ra, the differential sensitivity is understood by

considering the weighted average in (16) and (17). That is, we have

g~
aRpre

aRprez(1{a)Ra

, ð20Þ

or a = gRa/{(12g)Rpre+gRa}, indicating that the larger g, the larger

a has to be. Consequently, if the number of fully asymptomatic

transmissions is smaller than other transmissions (in the case of

influenza and smallpox), R0 is an increasing function of g.

However, when there are substantial pre-symptomatic transmis-

sions (e.g. HIV/AIDS), the relationship between R0 and g is

reversed.

Model building and vaccination
In the following, a comparison of the reproduction numbers

under vaccination is made between the observable model

(Figure 1A) and the unobservable model (Figure 1B). Because a

randomly mixing population is divided into vaccinated and

unvaccinated ones, we introduce the next-generation matrix. Let

p, 12qS, 12qI, and 12qD be the vaccination coverage, vaccine

efficacy in reducing susceptibility, infectiousness, and efficacy of

preventing symptomatic illness, respectively. As heuristically

derived elsewhere [12,13], the next-generation matrix that

describes secondary transmission between and among vaccinated

and unvaccinated cases is employed. Let y(t) be the so-called

reproduction kernel of the renewal process of the observable

model that describes the class-age dependent rate of secondary

transmission per single infected individual [28], i.e.,

y(t)~S0

(1{p) bA(t)L1(t)zbS(t)L2(t)L3(t)ð Þ

qSp bA(t)L1(t)zbS(t)L2(t)L3(t)ð Þ

 

qI (1{p) bA(t)L1(t)zqDbS(t)L2(t)L3(t)ð Þ

qSqI p bA(t)L1(t)zqDbS(t)L2(t)L3(t)ð Þ

!
,

ð21Þ

where the first row represents the exposure to unvaccinated

susceptible individuals. It should be noted that qD appears inside

parenthesis in the second column (i.e. secondary transmissions

caused by vaccinated cases). The survival rates L1(t), L2(t) and

L3(t) in (21) are written as

L1(t)~ exp {

ðt
0

(g(a)zcA(a))da

0
@

1
A,

L2(t)~ exp {

ðt
0

cS(a)da

0
@

1
A,

L3(t)~g(t) exp {

ðt
0

(g(a)zcA(a))da

0
@

1
A:

ð22Þ

The next-generation matrix of the observable model under

vaccination is given by the integral of y(t), i.e.,

K1~

ð?
0

y(t)dt

~
(1{p) R1zaR2ð Þ qI (1{p) R1zaqDR2ð Þ

qSp R1zaR2ð Þ qSqI p R1zaqDR2ð Þ

 !
:

ð23Þ

Let F(s) and L(s) be matrices that describe the class-age

dependent rate of the appearance of new infections and the

proportion of those who remain infectious, respectively, i.e.,

F (s)~S0

(1{p) kb(s)z(1{k)mb(s)½ �

qSp kb(s)z(1{k)mb(s)½ �

 

qI (1{p) kqDb(s)z(1{kqD)mb(s)½ �

qSqI p kqDb(s)z(1{kqD)mb(s)½ �

)
,

ð24Þ
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L(s)~

Ðs
0

e(x) exp {
Ðx
0

e(y)dy{
Ðs
x

kS(y)dy

 !
dx

0

0
BB@

0

Ðs
0

e(x) exp {
Ðx
0

e(y)dy{
Ðs
x

kA(y)dy

 !
dx

1
CA:

ð25Þ

The next-generation matrix of the unobservable model is

obtained from ([28]):

K2~

ð?
0

y(s)ds~

ð?
0

F(s)L(s)ds

~R3

(1{p) kzw(1{k)½ � qI (1{p) kqDzw(1{kqD)½ �

qSp kzw(1{k)½ � qSqI p kqDzw(1{kqD)½ �

 !
,

ð26Þ

where w is the ratio of R4 to R3 and is identical to m if kA = kB.

Note that qD only changes the weight of R3 (or R4) inside the

bracket of all elements. The effective reproduction number is the

dominant eigenvalue of these matrices, i.e.,

Rv,obs~(1{p) R1zaR2ð ÞzqSqI p R1zaqDR2ð Þ,

Rv,non~(1{p)R3 kzw(1{k)½ �zqSqI pR3 kqDzw(1{kqD)½ �,
ð27Þ

where Rv,obs and Rv,non correspond to the reproduction numbers of

the observable and unobservable models, respectively. It should be

noted that only Rv,obs is consistent with the data generating process

of qD, while this is not the case for Rv,non, because qD in the

equation of Rv,non is assumed to have had an impact on the

transition rate from pre-infectious to infectious period (in addition

to the impact on the probability of symptom development alone;

Figure 1B).

To understand the extent of the different impact of qD on the

reproduction number between two models, Figure 3 compares the

values of Rv,obs and Rv,non for selected four diseases as a function of

vaccine-induced reduction in symptomatic illness, qD. By varying

qD, different patterns of variation in the reproduction number are

seen. For the examined three diseases, i.e., smallpox, influenza and

Figure 2. The basic reproduction number and the pre-symptomatic transmission. The impact of varying the proportion of pre-
symptomatic transmissions among all asymptomatic transmissions (the horizontal axis; denoted by g in the main text) on the basic reproduction
number, R0. Only the value of g (and the corresponding a) in the model is varied. All other parameters are fixed (see Tableô 1). Shaded area represents
the plausible parameter region of the proportion of pre-symptomatic transmissions among the total asymptomatic transmissions, g, for a specific
disease.
doi:10.1371/journal.pone.0062062.g002
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varicella, Rv,non was greater than Rv,obs. The relationship was

reversed for HIV, and in particular, Rv,obs of HIV was

independent of qD due to the assumed absence of secondary

transmission following the onset of AIDS. Although the difference

is subtle for smallpox and varicella, the critical level of influenza is

clearly different between two models for influenza. Moreover, it

should be noted that the critical coverage is an inverse function of

the reproduction number, and a slightly greater reproduction

number based on the unobservable model could incorrectly

indicate us to vaccinate as many as additional 5–10% of the

population as compared to the coverage calculated from the

observable model. The difference in the critical coverage was most

apparent for HIV/AIDS.

Discussion

The present study analyzed and compared observable and

unobservable modeling approaches. Two major tasks have been

completed. First, by rewriting the observable model as if it were an

SEIR-type unobservable model, we aimed to clarify underlying

assumptions of the unobservable model that involves asymptom-

atic transmission. For the two models to be identical, we have

Figure 3. The effective reproduction number under vaccination practice. Effective reproduction numbers for the observable model and the
unobservable model are compared as a function of vaccine-induced reduction in symptomatic illness. To permit comparison, in the absence of
vaccination practice, the epidemic threshold values of the two models were assumed as identical. Vaccination coverage is fixed at 50%. The solid line
shows the reproduction number of the unobservable model under vaccination. The dashed line shows the reproduction number of the observable
model under vaccination. Except the vaccine-induced reduction in symptomatic illness, all parameters were fixed (see Tableô 1). For the
unobservable model, relative infectiousness of asymptomatic individuals (compared to symptomatic individuals), m (or w), was arbitrarily fixed at 0.5
for three diseases other than varicella to which we assigned 0.7 (these particular values were arbitrarily chosen to visually demonstrate the difference
between two models).
doi:10.1371/journal.pone.0062062.g003
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demonstrated that it is essential that the incubation period has to

be identical to the latent period and also that no pre-symptomatic

transmission occurs in both models. Only the observable model

can directly incorporate vaccine-induced reduction in symptom-

atic illness (in the manner that the corresponding vaccine effect

data is generated), and the probability of symptomatic infection in

the unobservable model was shown to be multiplied to the

transition rate from pre-infectious to infectious state without

phenomenological justification. Second, we numerically solved

both models and examined the sensitivity of R0 to the frequency of

pre-symptomatic transmission. We identified that the ignorance of

pre-symptomatic transmission in the unobservable model can lead

to an overestimate of R0. Moreover, we have shown that the

critical coverage of vaccination can be different between two

models, because the vaccine efficacy of preventing symptomatic

illness would influence the threshold in different mathematical

manners.

The present study emphasizes that an appropriate model

formulation would be essential to answer the corresponding

scientific or public health question. As we have shown, an explicit

formulation would also help clarify underlying assumptions that

tend to be hidden in common model structures. Considering a

practical example of vaccination that influences the symptom

onset, we have shown that the modeling approach to tackle this

issue requires a model building approach that can explicitly

account for the natural course of infection including asymptomatic

and symptomatic states. Since the use of SEIR structure with two

or more types of I-classes with different levels of symptom or

clinical severity has also partially accounted for this matter of

differential severity of symptom, and because the unobservable

modeling approach to this issue has been proposed relatively early

[10], the similar model structure has become widely adopted in a

variety of settings in studying influenza and other directly

transmitted infectious diseases [29–35]. However, we have shown

that the unobservable model has to inherently adopt an

assumption that there is no pre-symptomatic transmission, and

in this model, vaccine-induced reduction in symptomatic illness

has to influence the transition from pre-infectious to infectious

state [12]. To explicitly and appropriately incorporate the vaccine

effect in reducing the risk of a symptomatic disease into the model,

it is fruitful to employ a model that directly accounts for disease

progression.

Although our discussion might read as if we regard the

observable model as always better than the unobservable one,

this preference cannot always be true. In fact, the observable

model is not perfect, largely missing the information of infectious-

ness in the model structure. However, if we handle the model

fitting to the incidence of illness onset, the observable model must

be most useful, because the renewal equation of only symptomatic

cases can be computed and directly fitted to the data [8]. If our

study objective was not to quantitatively measure model param-

eters based on observable empirical data (e.g. model fitting to real

data), the unobservable model may be more useful in many other

objectives (e.g. in considering the loss of infectiousness during the

isolation period). Rather than emphasizing that we should regard

the observable model as a default, we would like to emphasize that

writing this particular issue from multiple angles would be useful

for mathematical modeling studies; the present study was a single

study that focused on symptom-based modeling approach in

contrast to a classical one. Moreover, it should be noted that

‘‘theoretically’’ the best model in this context would be the one

that accounts for both observable and unobservable information

within a single model. Such a model can easily address the

dependence structure between clinical illness and infectiousness

[36], and indeed, the potential dependence and difference between

the incubation period and the latent period are known as critical

factors in determining the effectiveness of public health interven-

tions including contact tracing and case isolation [9,37–39]. As

demonstrated by animal experiments for foot and mouth disease

[38], an appropriate combination of well-designed experiments (or

observations) and statistical inference could shed light on the

scientific approach to (i) considering both illness and infectiousness

and (ii) identifying ideal modeling strategy in the future [40].

Four limitations should be noted and described briefly. First, we

conducted only univariate sensitivity analysis, ignoring any

possible dependence between the frequency of pre-symptomatic

transmissions among the total asymptomatic transmissions and

other epidemiological variables. Ignoring such dependence struc-

ture could sometimes lead to overestimating the effectiveness of

public health interventions [41]. Second, we focused on the basic

reproduction number, and did not extend epidemiological insights

into other important quantities (e.g. growth rate of infections)

[42,43]. Third, to keep the matter as simple as possible, our

arguments rested on homogeneously mixing assumptions. Fourth,

whereas our model rested on fixed compartment structures

(Figure 1), the structure of model ultimately depends on specific

diseases and study objectives [44].

Considering that we were successful in gaining useful epidemi-

ological insights into future quantitative modeling by formulating

the vaccination issue using an observable model, it is suggested

that more studies based on observable epidemiological variables

are conducted. Future studies can also tackle the issue of

abovementioned dependence between clinical illness and infec-

tiousness based on an explicit model with both pieces of

information as variables and analyzing individual datasets with

multiple dimensions.
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