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Abstract 

The coalescence of nano-crystals during sintering is often found to result in interesting 

crystalline structures such as multi-fold twins, and yet the plasticity mechanism accompanying 

their formation is unclear. In this work, the sintering behavior of two unsupported copper 

nanoparticles initially at room temperature is investigated by molecular dynamics simulations 

under the constant-energy ensemble. The results reveal that once the two nanoparticles are 

brought into contact, they often go through drastic structural changes with the inter-particle grain 

boundary quickly eliminated, and single- and multi-fold twinning occurs frequently in the 

coalesced product. Whereas the formation of single twins is found to be via the more usual 

mechanism of emission of Shockley partials on {111} planes, the formation of five-fold twins, 

however, takes place via a novel dislocation-free mechanism involving a series of shear and 

rigid-body rotation processes caused by elastic waves with amplitudes not corresponding to any 

allowable Burgers vector in the fcc lattice. Such a lattice-wave, dislocation-free twinning 

mechanism has never been reported before. 
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1. Introduction 

The sintering of nanoparticles is a crucial mechanism occurring in a number of 

fabrication processes. During gas phase synthesis of materials and coatings, the interaction 

between nanoparticles is generally considered to comprise two sequential processes (Ulrich and 

Subramanian 1977), namely, collision of the approaching particles to form agglomerates, and 

sintering of these agglomerates, usually nonspherical in shape, to form more spherical ones by 

solid-state diffusion. Nanocrystalline materials can be manufactured by sintering nanoparticles as 

building blocks (Gleiter 1989). For monolayer nanoparticles dispersed on substrates, Ostwald 

ripening and coalescence, i.e. the overall interparticle growth where the initial stages comprise 

the agglomeration of separate particles followed by subsequent sintering, contribute to 

dimensional changes of the particles (José-Yacamán et al. 2005). The understanding of 

nanoparticle sintering is therefore essential for obtaining nanoparticles or nanocrystalline 

materials with desired physical and chemical properties. 

Several phenomenological models have been proposed for the sintering of particles 

(Koch and Friedlander 1990; Friedlander and Wu 1994; German 1996; Olevsky and Molinari 

2000). In the neck growth model for two-particle sintering, the curvature gradient from point to 

point is regarded as the driving force for atomic flux. In its simplest form, the neck size ratio, i.e. 

the ratio of the neck diameter to particle diameter, is expressed as a power law of the isothermal 

sintering time and the inverse of the particle diameter, with the power exponents and other 

normalizing constants depending on the sintering stage (German 1996). In a linear-rate law 

(Koch and Friedlander 1990; Friedlander and Wu 1994), it is assumed that the coalescence rate 

of an agglomerated particle is directly proportional to its surface area in excess of that of the 

spherical state.  

These phenomenological models all treat the sintering particles as continuum, i.e. their 

volume and surface area rather than their crystallographic structure are considered. The crystal 

structures of the sintered particles are mostly not described in these models, and whether grain 

boundaries, twins, stacking faults and dislocations exist in the sintered particles is unclear, and 

the crystal orientations of the sintered particles in relation to the initial ones are not considered. 
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On the other hand, several experimental observations have elucidated that the sintered 

nanoparticles are often far from a simple combination of the initial particles with a grain 

boundary in the neck region. Dai et al. (2001) found the existence of twin boundaries but the 

absence of grain boundaries in coalesced FePt nanocrystals. Ng and Ngan (2002) performed in 

situ annealing experiments in the transmission electron microscope (TEM) and observed the real-

time coalescence of Ni-Al nanograins with complete removal of the grain boundaries in between.  

José-Yacamán et al. (2005) detected two very small Pd nanoparticles coalescing into a single fcc 

crystal using high-resolution TEM (HRTEM), but they also showed that a grain boundary still 

remained after the coalescence between two 11 nm bimetallic Au-Pd nanoparticles. Single 

twinning and multiple twinning are observed under HRTEM in the coalescence of FePt, Si, Au 

and CoPt nanocrystals (Wang et al. 2004; Wang et al. 2005; Penuelas et al. 2008; Wang et al. 

2009). The crystal structural change during sintering is worth investigating, because defects such 

as grain boundaries, twins and dislocations in general can affect mechanical and electrical 

properties of the sintered particles. Also analyzing the crystal structure can provide extra insights 

into the nanoparticle sintering mechanism.  

In contrast to the phenomenological models described above, molecular dynamics (MD) 

simulations do not require a priori knowledge of the responsible mechanism as input, and any 

crystallographic structures of the particles are also directly considered.  MD simulations have 

therefore been used in a number of reports on the sintering between two homogeneous 

nanoparticles (Zhu and Averback 1996; Lewis et al. 1997; Raut et al. 1998; Zeng et al. 1998; 

Lehtinen and Zachariah 2001; Hendy et al. 2003; Liu et al. 2003; Arcidiacono et al. 2004; Ding 

et al. 2004; Hawa and Zachariah 2006; Koparde and Cummings 2008; Karkin et al. 2008; Pan et 

al. 2008; Kart et al. 2009; Ding et al. 2009; Karkin et al. 2010; Song and Wen 2010; Moitra et al. 

2010; Antúnez-García et al. 2011). In these studies, two adjacent and unsupported nanoparticles 

were equilibrated under a certain condition for investigation. However, the crystallographic 

detail of the sintered nanoparticles has not been thoroughly investigated. Here we highlight 

several reports that are most relevant to this issue. Zhu and Averback (1996) found two 

misoriented Cu nanoparticles ending up with a low-energy boundary in between, while two 

aligned nanoparticles became a single fcc crystal after rapid sintering lasting for 100 ps at 700K. 

Pan et al. (2008) showed the slip mechanism during initial neck growth at a low temperature. 

Ding et al. (2009) concluded that the different types of necks between particles (either with or 
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without a grain-boundary) lead to different mechanisms of mass redistribution. Karkin et al. 

(2010) discovered the formation of twins and, in particular, fivefold ones, during the coalescence 

of Ni nanoparticles at temperature T = 780–1350 K. Antúnez-García et al. (2011) performed 

simulations on the collision of small gold clusters and found that two small clusters can merge 

into a larger one with a regular crystal structure by reorganization. Despite these studies, the 

knowledge base on the change of crystal structure during nanoparticle sintering is far from 

systematic and comprehensive, and in particular, issues that are poorly understood include: (i)  

the description of possible outcomes and their probability of occurrence, (ii) the influence from 

initial conditions (e.g. temperature, crystal orientation, particle shape and size), and (iii) the 

governing mechanism. 

In the present work, we investigate the sintering process of two adjacent and unsupported 

copper nanoparticles initially at room temperature using MD simulations under the constant-

energy ensemble. Our emphasis is to identify and characterize the crystal configurations of the 

sintered nanoparticles. Indeed, we found drastic change of crystal structure of nanoparticles 

during the sintering. We performed simulations with particles of different shapes, sizes and 

crystal orientations, and by analyzing both the coalesced products and the evolution history, we 

attempt to characterize the different outcomes under various conditions and determine the 

governing mechanisms.  

 

2. Simulation method  

The MD program employed made use of the leap-frog formulation with a time step of 6 

fs. Trial runs showed that the simulation results by using this time step are convergent with those 

obtained using a shorter time step of 1 fs. Atoms were allowed to interact through an EAM 

potential for Cu developed by Sheng et al. (2011). This potential was found to provide 

reasonable estimates of the surface energies, as well as stacking fault and twin energies, for Cu 

(Sheng at al. (2011)). Prior to the sintering simulations, each generated fcc copper nanoparticles 

was equilibrated under a constant temperature of 300K for 0.6 ns (100,000 time steps), and none 

of the particles underwent structural transition during the equilibration. During the subsequent 

sintering simulations, two individually relaxed fcc single copper nanoparticles were allowed to 
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interact for 1.2 ns (200,000 time steps) under the constant-energy ensemble starting from T = 

300K. Snapshots of the atomic structure were periodically stored. To facilitate the subsequent 

examination, after the sintering simulations, the sintered products were quenched to 0K by using 

the conjugate gradient minimization technique.  

A key aspect to study crystal structures is to locate any grain boundaries in them.  To do 

this, the coordination number (CN), i.e. the number of nearest neighbors, of each atom was 

checked, and if an atom has CN exactly equal to 12 within a cut-off distance of  , 

we label it as an atom within a single fcc crystal, while noting that this does not rule out the atom 

to be on a twin boundary or a stacking fault. In a twinned crystal, the atom can be in the fcc 

lattice, on hcp stacking or on the symmetrical axis of a fivefold twin, and to differentiate between 

these cases, we used the common neighbor analysis (Honeycutt 1987). 

Besides the analytical methods described above, we also inspected the crystal structures 

graphically by plotting the positions of the atoms in a 3-D space. Another approach used was to 

calculate sections of the reciprocal lattice of the atomic structure. 

 

3. Results 

3.1 Overview of the simulated configurations and results 

The present work focuses on the sintering behavior between two unsupported fcc single 

copper nanoparticles initially separated by a small displacement. In addition to temperature, the 

final structure of the sintered particles may depend on the following degrees of freedom: 

(i) the shapes and sizes of the two initial nanoparticles, 

(ii) the orientations of the initial crystals,  

(iii) the initial velocities and the separation of the two particles (e.g. the gap in 

between),  and 

(iv) the atomic disregistry factor taking into account the atomic scale displacements 

within crystalline periodicity of the two crystals with respect to their mathematical 

centers. 
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In an MD study like the present work, the task to exhaust all the degrees of freedom 

above is a formidable one and hence the scope has to be limited somehow.  For this reason, we 

restricted the initial shape of the two fcc nanoparticles to be either cubic or spherical, although 

nanoparticles can take various other morphologies (Marks 1994; Henry 2005). The number of 

atoms in each particle ranged from about 650 to 3000 (2nm < particle diameter < 4nm). The 

system was constructed in the following fashion: 1) two identical fcc crystals were generated 

with their [100], [010] and [001] direction parallel to x, y and z axes, respectively, 2) one of the 

particles was rotated around the z axis by 0, 15, 30 or 45º, and 3) the centers of the two particles 

were placed along the x axis with no initial velocity. The gap in between was always set to be 4Å, 

and the atomic site at the center of each particle was set to coincide with the x axis. A starting 

temperature of 300 K was chosen to slow down atomic diffusion and to avoid the melting of 

crystals. The condition of constant-energy ensemble was applied based on the assumption that 

the nanoparticles were freely floating in vacuum. 

After allowing the two particles to interact under the assumed atomic potentials for 1.2 ns, 

we analyzed the crystal structure of the sintered particles and mid-products. Within all the 

simulated cases in the present work, two unsupported spherical or cubic copper nanoparticles 

(2nm < particle diameter < 4nm) were often found to go through drastic structural changes. The 

grain boundary between the two initial particles often annihilates during sintering, and single and 

multiple twinning often exists in the sintered nanoparticle.  

The subsequent part of this section is organized as follows. Section 3.2 describes the 

crystal structures of the sintered nanoparticles in our simulations, with particular emphasis on the 

twinning configurations. The effect of particle shape, size and orientation is discussed in Section 

3.3. We also analyzed the reaction rime for the structural transition to occur. Section 3.4 

characterizes the major processes during the crystal structural change. Section 3.5 discusses the 

specific mechanisms for twinning. 

 

3.2 The crystal structures of sintered nanoparticles 

The sintered nanoparticles adopt different crystal structures. In the total of 40 simulation 

cases in the present work, the crystal structures of the sintered particles can be divided into 



7 
 

several categories as shown in Fig. 1. Fig. 1(a) shows an fcc crystal at the end of the sintering. 

Since the reciprocal lattice of the fcc lattice is bcc, the reciprocal lattice of fcc crystal viewed 

from the [110] lattice direction appears as a rectangular lattice as illustrated in the right panel of 

Fig. 1(a). Among the 40 simulation cases in the present work, single fcc crystals (case (a)) 

appeared 4 times.  

Fig.1 (b) shows another sintered product comprising two misoriented fcc crystals with a 

grain boundary in between. The reciprocal lattice section on the right panel is the superposition 

of two lattices from each crystal, and the grid lines shown single out one lattice when viewed 

along its [110] direction. The structure of the sintered products in this case (case (b)) can be 

viewed as the simple adhesion between two initial particles without significant structural change. 

In 11 cases out of 40, this was the final outcome. 

Fig. 1(c) illustrates the third type of sintered product which is a grain boundary-free 

crystal containing single twinning, the boundaries of which are marked as red lines in the left 

panel. The sintered resultants of this type usually have two parallel twin boundaries. The two sets 

of reciprocal lattices can also be viewed as mirror images about a plane orthogonal to the twin 

boundary. Since an intrinsic stacking fault is geometrically equivalent to a single twin with the 

thickness of one atomic layer spacing, we also characterize single crystals with stacking faults in 

the same category as single twinning. The sintered products with single twinning (case (c)) 

occurred in 7 simulation cases, among which the crystal had an intrinsic stacking fault in two 

cases. 

A fivefold twin in a sintered nanoparticle is evident from Fig. 1(d). This structure consists 

of five crystals which are twin related to one another, with five twin boundaries intersecting on a 

common [110] axis. The fivefold symmetry is also revealed from the reciprocal lattice section on 

the right panel, where five mirror planes orthogonal to the twin planes are shown. Each of the 

five crystals are bounded by two {111} planes which are also the twin planes, but in this fivefold 

twinned structure, the apex angle of each of the five crystals is 360º/5 = 72º, whereas the angle 

between two intersecting {111} in the perfect fcc lattice is only 70.53º. This means that the five 

crystals in this structure are elastically strained from the perfect fcc state. This fivefold twinned 

configuration (case (d)) appeared just once among the 40 simulations.  
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A threefold twinned structure is shown in Fig. 1(e). Here, only two twin boundaries 

meeting at a [110] axis can be identified, and as revealed by the reciprocal lattice pattern on the 

right, this structure consists of three crystalline parts, instead of five as in Fig. 1(d). Two adjacent 

pairs of crystalline parts are twin related to each other with a twin boundary in between, and the 

other pair in the lower part of the left panel is not twin related and the boundary in between is a 

short relaxed coincident-site-lattice grain boundary. The remaining grain boundary is often as 

short as a few atomic spacing. After classifying the atoms in the crystal according to which 

initial particle they come from, the remaining grain boundary is found to coincide with a small 

section of the initial inter-particle gap, and each twin boundary in the sintered crystal is located 

within one of the initial particles. In 6 simulation cases the sintered particles exhibited this 

threefold twinned structure (case (e)).  

Fig. 1(f) shows a variant of the fivefold twinned structure, consisting of two fivefold 

twins with different orientations, each arising within one of the initial particles. The two fivefold 

twin structures share two common crystalline parts, while the remaining three crystalline parts 

are not shared (see Fig. 2(b)). The two symmetrical axes from each fivefold twins are 60º apart, 

and Fig. 1(f) shows the view along the axis of the structure on the right side. Along this viewing 

direction, the fivefold twin structure on the right part of the sintered particle exhibits the same 

appearance as that in Fig. 1(d) where the [110] lines of atoms project onto single atomic sites and 

the five {111} twin boundaries project as the five red lines shown, but the other fivefold twin 

structure on the left part of the particle is less obvious. The reciprocal lattice pattern on the right 

panel shows the fivefold twin relation similar with that in Fig. 1(d), with a set of extra dots 

corresponding to the other fivefold twin. The dual fivefold twinned structure (case (f)) appeared 

9 times in the simulation resultants.  

Besides the six typical crystal structures shown in Fig. 1, a quasi-dual fivefold twin (case 

(g)) and triple fivefold twin structure (case (h)) also emerged once each in the simulation 

resultants. The quasi-dual fivefold twin structure has one fivefold twin and one threefold twin, 

and the triple fivefold twin contains three fivefold twins, which is one more comparing with the 

dual fivefold twin structure shown in Fig. 1(f). These are not shown in Fig. 1 in the interest of 

space. 
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The conditions under which the different sintered products occur will be described in the 

next section. Here, we note the common occurrence of the different variants of the fivefold twin 

structure. Fivefold twins are widely observed in nanosized crystals (Wang et al. 2012), see 

Hofmeister (1998), Gryaznov et al. (1999), and Hofmeister (2004) for extensive reviews. Ino 

(1966) proposed a scheme to illustrate the structures of multiple twins by arranging twin-related 

tetrahedra packed along {111} faces. Fig. 2 is an illustration of the fivefold twin (Fig. 2(a)) and 

the dual fivefold twin (Fig. 2(b)) structures corresponding to case (d) and case (f) respectively. 

Also shown in the lower panels of Fig. 2 are the schematics according to the Ino method.   

Besides twinning, dislocations were found to be present in 5 sintered single crystals 

among the 40 cases simulated. In Section 3.4, relative displacement plots are used to illustrate 

such dislocations.  

3.3 Reaction time and initial conditions 

We are interested in how fast the structural change of the nanoparticles takes place during 

sintering. The reaction time is defined as the time span for the nanoparticles to go through 

structural transformation and adopt one of the particular crystal structures specified in Section 

3.2. For case (b), Fig. 1(b), the structural change is not significant and therefore the reaction time 

cannot be unambiguously identified, but for all the other cases, there exists a time instant at 

which the crystal structure of the sintering particles just becomes stabilized and ceases changing. 

One of the means to determine such a reaction time is to examine the snapshots at different time 

instants. Within the reaction time, the snapshots usually show tremendous variations and are 

noticeably different from the final sintered product. After the reaction time, however, the crystal 

structure by and large remains identical thereafter, except that a few surface atoms may change 

their positions within a small range. Another way to obtain the reaction time is by exploiting the 

temperature variation during sintering. As a constant-energy ensemble is used throughout the 

simulations, temperature is allowed to rise as the potential energy is released when two 

nanoparticles bond together. It is found that the temperature change of the system is closely 

related to the crystallinity of the nanoparticles. Here we use the case of cubic initial particles 

each with 666 atoms misoriented by 45º as an illustration. The evolution of the temperature and 

crystallinity of the structure is plotted in Fig. 3. The sintering process can be divided into three 

stages: Stage 1 starts from the beginning of the sintering and lasts for 6 ps, during which the 
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temperature rises drastically and the fraction of the crystalline regions shrinks to a minimum 

value. The two initial particles are attracted to one another until they bombard and release 

surface energy, which causes the rapid temperature rise during this stage. Stage 2 spans from 6 

ps to 57 ps, where the temperature increases at a slower rate comparing with stage 1, and 

crystallinity restores to the maximum level. The rises in temperature and crystallinity are almost 

simultaneous – temperature rise is retarded if crystallinity increment is stalled at each time 

interval. As the structure becomes crystalline, potential energy is released and is converted to the 

kinetic energy of the atoms. The reaction time is marked by the end of stage 2. Stage 3 begins 

from 57 ps onwards, where the crystal structure has ceased transforming, and so both the 

temperature and crystallinity are stable in this stage. The temperature rise in our simulations is 

usually around 50K-300K. For larger initial particles, the rise in temperature is smaller.  

We obtained the reaction times for the sintering simulations from the two methods above, 

and usually, the two methods yield results within less than 10 ps. Along with the reaction times, 

the sintered crystal structures under different conditions are summarized in Tables 1 and 2 for 

spherical and cubic initial particle shapes respectively.  

From Tables 1 and 2, it can be seen that the probability for a major crystal structural 

change to occur is quite high for both initial spherical and cubic nanoparticles smaller than ~4 

nm. The reaction time is typically on the order of tens to hundreds of picoseconds. The data 

vaguely reveals some connections between the final crystal configurations and initial conditions: 

(i) it is more likely for initial particles with smaller sizes and misorientations to undergo 

transition, (ii) the transformation rate is slightly higher for cubic particles than for spherical ones, 

and (iii) single twinning (case c) is quite likely for spherical particles while for cubic particles 

multiple twinning (cases d to h) is more frequent. However, Tables 1 and 2 do not seem to reveal 

any systematic trend between the initial conditions and final crystallographic configurations, or 

the reaction time.  

 

3.4 Mechanisms of crystal structural change   

To reveal the mechanism for the structural changes during the sintering simulations, 

relative displacement plots are used to identify how nearest-neighbor atoms in the initial particles 
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are displaced relative to one another during the sintering process. Fig. 4 shows the relative 

displacement plots of typical sintered products. Here, the atoms in two adjacent  planes in 

the center of one of the initial particles before sintering are plotted in blue color, and the 

horizontal and vertical axes with respect to the lattice direction of initial nanocrystal are marked 

in each plot.  Note that the initial crystals under analysis have their [100], [010] and [001] lattice 

direction parallel to x, y and z axes of the simulation system at the beginning of sintering, 

respectively. For each pair (i,j) of nearest-neighbor atoms in the plot, their relative displacement 

 is the displacement of atom i relative to that of atom j, and to distinguish the direction of , 

we define atom i to be always on the right hand side of atom j, or when they have the same 

horizontal coordination, atom i to be above atom j. In Fig. 4, the in-plane component of  is 

represented in both magnitude and direction by a black arrow drawn between each atomic pair, 

and the out-of-plane component of  is represented by a vertical red arrow that points upward if 

the out-of-plane component of  is out of the paper and downward if into the paper. All cases 

shown in Fig. 4 are quenched states after the end of the simulation. 

Fig. 4(a) shows a case where the sintered product is a single fcc crystal in case (a), and, 

as mentioned above, only atoms in one of the two initial particles, i.e. one half of the sintered 

product, are shown. In this case, both particle rigid-body rotation and dislocation slip are noted, 

and in Fig. 4(b), the rotation is subtracted from the overall relative displacements in Fig. 4(a) to 

make the dislocation slip events more visible. The slip events shown in Fig. 4(b) are produced by 

a screw dislocation with Burgers vector  which has cross-slipped from a  plane onto 

a  plane and slipped out of the nanocrystal.  

For the twinned sintered products, each successive  planes in the twinned region is 

displaced by a shear vector identical to the Shockley partial Burgers vector  . In this case, 

all the Shockley partials on each slip plane are the same. In a few circumstances, we observed 

the slip of partials with different Burgers vectors. Fig. 4(c) shows the final relative displacements 

corresponding to the formation of a single twin in case (c), and the case of threefold multiple 

twin in case (e) is also similar. When the newly formed twin boundaries in the two sintering 

nanoparticles are not parallel to each other, the resultant is a threefold twin. Fig. 4(d) shows the 
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relative displacement map after a fivefold twin in case (f) has been formed. The events involved 

are quite complicated and will be discussed separately in Section 3.5 together with those 

involved in the single twin formation.   

Irrespective of the sintered products in the present simulation, Fig. 4 reveals that, except 

for a few atoms on the edges or corners of the nanoparticles, the atoms rearrange during the 

sintering process in a highly organized way, with no long-range relative movements of 

neighboring atoms. Hence, even without going into the details of the evolution history, the 

governing mechanism for the sintering and crystal structural changes in our simulations can be 

narrowed down from what has been proposed in the literature. For micron-sized particles, a quite 

comprehensive body of theories for solid-state sintering has been developed, and six different 

mechanisms are believed to be contributing, namely, surface diffusion, lattice diffusion, vapor 

transport, grain boundary diffusion, viscous flow, and dislocation plasticity (German 1996). It is 

also believed that grain growth is absent in the initial stage of sintering (German 1996). However, 

large relative displacements would be expected if diffusion or viscous flow mechanisms are 

involved. The “dislocation plasticity” in this body of literature refers to the glide of pre-existing 

dislocations in the initial particles, and since the present nanoparticles are dislocation-free, this 

mechanism is also not directly relevant, although in Fig. 4(a,b) and other examples, we did 

observe new dislocations nucleated from free surfaces and glided into the particles during the 

sintering. Furthermore, these conventional mechanisms are not able to explain the quick 

elimination of the inter-particle grain boundary, and the emergence of extensive twinning in our 

simulations. The melting of the nanoparticles due to the surface energy release was observed in 

some MD works (Hendy et al. 2003; Arcidiacono et al. 2004), but again, melting would cause 

the relative displacement map to be much more chaotic than what is shown in Fig. 4. Besides, we 

also performed a number of sintering simulations under a constant-temperature ensemble at 

300K, and the quick annihilation of the inter-particle grain boundary and twinning were still 

observed. 

From the relative displacement maps such as those shown in Fig. 4, we were able to 

identify three processes, namely, particle rotation, dislocation slip and an elastic-wave induced 

mode of twinning, and these will be discussed in detail below. Rigid-body particle rotation was 

observed in a number of MD works (Zhu and Averback (1996); Arcidiacono et al. (2004); Ding 
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et al. (2009)). Zhu and Averback (1996) concluded that nanoparticle sintering involves a 

dislocation mechanism as the high shear stresses in the neck region exceed the theoretical 

strength of the material. In the following section, we will examine the specific mechanisms of 

twinning as observed from the present MD simulations. 

 

3.5 The formation mechanisms of twinning 

3.5.1 Single twinning 

Fig. 5 and Fig. 6 show snapshots of relative displacement maps at different time instants 

during the formation of a single twin in case (c). The notations used in the maps are the same as 

in Fig. 4, except that the mid-products in the sintering here are not quenched, and so thermal 

noises are not eliminated. The initial crystal has [100], [010] and [001] lattice direction parallel 

to x, y and z axes of the simulation system, and is on the negative x axis direction of two particles 

under sintering. In Fig. 5, two  planes are plotted, and at t = 2.7 ps, two Shockley partials 

( = [ ] = [ ]) are emitted from upper right and lower right corners, respectively, to the 

interior of the crystal on different slip systems. At t = 3.6 ps, a few more partials have been 

emitted into the system, followed by more in the next few ps. Although the Shockley partial 

dislocations are localized in the right part of the crystal, their emission is not sequential on 

adjacent {111} planes, and they propagate very quickly in the nanocrystal. Meanwhile, a few 

stacking faults in the system, for instance the one trailing dislocation , disappear. At time 5.4 

ps, the density of partials inside the crystal reaches a high value, and afterwards, probably due to 

the accumulated potential energy, the structure rearranges to form a single twin. Twinning slip 

over a large part of the crystal is evident from Fig. 5(e).  

To further illustrate the glide of Shockley partials, in Fig. 6 some selected snapshots of 

relative displacement plots of two ( ) planes parallel to the green lines in Fig. 5(a), are shown. 

Two Shockley partials ( ) with the same Burgers vector [ ], one on the upper right and 

the other at the bottom, are emitted from the free surface at around t = 2.7 ps. From t = 3.0 ps 

onwards, partials ( ) gliding on intersecting planes start to produce displacements on 

the two ( ) planes shown and block the glide motion of the partial , while the partial  
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continues to glide. We calculated the propagation velocity for a number of partial dislocations 

and the results vary from around 2000m/s for the fastest one to several hundred m/s for the 

slower ones.  

Relative displacement maps are only capable of illustrating the distortions in a thin layer 

of atoms, and to provide three-dimensional visualization of the structural changes, we also plot in 

Fig. 7 the atoms with a large enough maximum displacement relative to their nearest neighbors 

for the (unquenched) mid-products. Here, the maximum relative displacement  for atom i is 

defined as:  

, 

where j includes all the nearest neighbors of atom i, and  are the displacement between 

atom i and j at time t and at time zero when the lattice arrangements are perfect, respectively 

(Ngan et al. (2004)). If , then atom i is marked by large blue circles in Fig. 7, 

and here,  is the magnitude of the Shockley Burgers vector. By this method, stacking 

faults, twinning as well as other defects can be identified, and from Fig. 7, the thickening and 

extension of such defects along close packing planes are evident. Together with the relative 

displacement maps in Fig. 5 and Fig. 6, it can be concluded that the defected region in the 

sintered nanocrystal in case (c) is indeed twinning, and this is formed by the generation and glide 

of Shockley partial dislocations. 

 

3.5.1 Fivefold twinning 

Fig. 8 shows the formation process of the fivefold twin in case (f), and only the atoms 

belonging to the initial crystal on the positive x axis direction of two particles, which has [100], 

[010] and [001] lattice direction parallel to x, y and z axes of the system before sintering 

simulation, are shown. In contrast to the single twin, little evidence on the gliding of Shockley 

partials can be found in the relative displacement maps of the unquenched mid-products during 

fivefold twin formation. Before time 3.6ps, a shear wave that is mainly out-of-plane in nature (i.e. 

along ) is initiated on the left surface of the crystal where impact by the other crystal is 
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made, and this shear wave quickly transmits towards the other side of the crystal. Here, the shear 

vectors are much smaller in magnitude than the Shockley Burgers vector, which is the smaller 

Burgers vector allowed in the fcc lattice. After around t = 4.5 ps, in-plane displacement vectors 

(i.e. those normal to ) start to appear, and these produce two effects, (i) coupling with the 

initial  out-of-plane shear to produce twinning of the left part of the crystal, and (ii) a 

clockwise rotation of the upper region, and an anti-clockwise rotation of the lower region of the 

crystal. The in-plane shear wave and hence the rotations propagate to the right side of the crystal 

at a velocity of ~3000m/s which is much higher than the ~800m/s of the out-of-plane shear wave. 

For the sake of comparison, the present atomic potentials give the travelling speeds of 

longitudinal, out-of-plane and in-plane elastic shear waves at the long wave limit along [110] at 

0K as 8200 m/s, 3000 m/s and 1680m/s, respectively (Sheng (2012); Kittel (1953)). In mere 0.6 

ps, the right-most part of the nanocrystal is under the effect of in-plane vectors, and because of 

the opposite rotations of the upper and lower parts of the crystal, the right part of the crystal gets 

squeezed, and twinning occurs there as well. The fivefold twinned structure is formed and 

stabilized after 6ps. Throughout the whole process, the crystal structural changes are rather 

symmetrical about the horizontal mid-plane. 

As shown in Fig. 8(f), the finally sintered crystal can be divided into five twinned parts, 

with a discontinuity of the relative displacement vectors on going from one part to an adjacent 

part. To assist the understanding of the rather complicated twining processes that lead to such a 

fivefold structure, Fig. 9 shows schematics to illustrate the transformation of each of the parts in 

Fig. 8(e). Since the structural changes are symmetric with respect to the horizontal mid-plane, 

only the changes in parts DAC, CAB and BAF in Fig. 8(e) are shown. As shown in Fig. 9, the 

crystal part CAB rotates clockwise as a rigid body causing the apex angle of DAC to enlarge and 

angle BAF to shrink. The deformation in the part DAC comprises two components: twinning and 

rotation. In the crystal part DAC, each successive ( ) planes parallel to the eventual twin 

boundary AC are displaced by the same twinning vector [ ], although this is accomplished 

by first an out-of-plane shear wave mainly in the  direction but not of any allowed Burgers 

vector in the fcc lattice, followed by an in-plane shear wave, i.e. Shockley partial dislocations are 

not involved at all in the twinning process of DAC. Simultaneously, the later in-plane shear wave 

also causes part DAC to rotate clockwise so as to keep plane DA horizontal, as shown in the top 
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row of schematics in Fig. 9. On the other side of AC, part CAB also rotates clockwise as 

mentioned above, and a twin relation thus develops between DAC and CAB. Also as mentioned 

before, the opposite rotations of parts CAB and EAF squeeze the part BAF, and this triggers a 

double twinning process as shown in the bottom row of Fig. 9. Each successive ( ) planes in 

the crystal part BAF are displaced by a twin vector  [ ], and meanwhile, the successive ( ) 

planes in the same region are displaced by the twin vector  [ ], and again, the relative 

displacement snapshots in Fig. 8 indicate that Shockley partial dislocations are not involved in 

such a double twinning process.  The combined effect of the two twinning steps corresponds to a 

shear of part BAF with the apex angle BAF now becoming smaller, and this accommodates the 

opposite rotations of parts CAB and EAF as mentioned above, and causes DAF to develop a twin 

relationship with CAB and EAF. 

To give further evidence for the absence of involvement of dislocations in the formation 

of the fivefold twinned structure, Fig. 10 shows plots of the atoms with large enough maximum 

displacements relative to nearest neighbors during the fivefold twin formation. Unlike the single 

twinning case shown in Fig. 7, the propagation of the defected regions is generally not on close 

packing planes, and takes place in a rather chaotic manner. In conclusion, the formation of the 

fivefold twinned structure takes place via a series of twinning shear and rigid-body rotation 

processes that are not affected by dislocation glide, but by a combination of elastic waves the 

amplitude of each of which does not correspond to any allowable Burgers vector in the fcc lattice. 

 

4. Discussions 

In the present work, we found that copper nanoparticles of 2nm to 4nm sizes initially at 

room temperature may go through major crystal structural changes during sintering coalescence. 

Conventional sintering mechanisms for micro-sized particles, such as the various diffusion 

processes, vapor transport and viscous flow (German 1996) are inconsistent with the present 

observed processes, which all involve short-ranged, coordinated relative displacements between 

neighboring atoms. Several such processes are identified in this work, including particle rotation, 

dislocation slip, and elastic wave-induced twinning, which are likely to be responsible for the 
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plastic deformation in nanoparticles sintering during gas phase production, for example. Also, 

the twinning mechanism can provide an alternative explanation for the origin of the multiply 

twinned particles manufactured in gas-phase synthesis. 

Although deformation twinning has been extensively observed in nanocrystalline 

materials and thin films (Hofmeister (2004); Zhu et al. (2012)), it is not generally conceived for 

nanoparticles beforehand. Multiple twinned particles were assumed to grow layer by layer from 

embryos, or form by repeated cyclic twinning (Hofmeister (2004)). The present work 

demonstrates that, at least theoretically, single and multiple deformation twins can emerge from 

nanoparticle coalescence. The simulated defected products at the end of the nanoparticle 

sintering are believed to be quite stable for two reasons. First, the major plasticity mechanisms 

during sintering (i.e. twinning, dislocation slip, etc.) are generally completed within the first 

hundred to a few hundred ps of sintering, and after that the crystal structures of the particles 

exhibit no noticeable changes until the end of the simulation up to 1.2 ns. If these structures are 

unstable, some signs of changes during this time span should appear, but these are never 

observed in all of the 40 cases simulated. Secondly, multiply twinned particles (i.e. nanoparticles 

with twin defects) have been found to be naturally occurring with high yield during a number of 

experimental gas-phase synthesis studies, and can usually last long at room temperature (Marks 

1994). 

By analyzing relative displacement maps during the formation of single twins, we are 

able to characterize different twinning mechanisms. For single twinning, we found the emission 

of Shockley partial dislocations from free surfaces of the sintering particles, although this does 

not always take place on adjacent slip planes. When many partial dislocations are accumulated in 

a particular region in the nanoparticle, they intersect and cause rearrangement of the emission 

and glide processes to eventually produce a metastable single-twinned structure of the crystal. 

For fivefold twinning, the present results indicate that no dislocation mechanism is involved in 

the formation process. Instead, sequential emission of elastic lattice waves occurs upon impact of 

the two sintering particles, and this leads to a complicated chain of events involving twinning 

shear and rigid-body rotations, all accomplished by the elastic waves which have amplitudes not 

corresponding to any allowable Burgers vector in the fcc lattice. To our knowledge, this mode of 

twin formation has never been observed before. 
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It should also be mentioned that the pole and ratchet mechanism for deformation 

twinning in bulk fcc materials (Christian and Mahajan 1995) is not applicable for the sintering of 

nanoparticles in the present work. The plasticity in nanocrystalline, yet bulk sized, Cu has 

received a lot of attention (Farrokh and Khan 2009, Barai and Weng 2009), but compared to a 

nano-grain inside a nanocrystalline material, the present simulated situation of two supported 

nano-crystals is different in terms of the surrounding constraints. For bulk sized, nanocrystalline 

materials, Yamakov et al. (2002) performed MD simulations and concluded that the successive 

emission of Shockley partials from grain boundaries onto neighboring planes is a key mechanism. 

Zhu et al. (2005) proposed a formation mechanism of fivefold deformation twins in 

nanocrystalline fcc metals, which involves different series of partial dislocations emitted from 

twin boundaries or grain boundaries. A single twin is formed first before it is transformed into a 

threefold, fourfold and fivefold twin in sequence. For copper nanoparticles in the present study, 

our observations are entirely different from Zhu et al.’s mechanism for nanocrystalline materials.  

For the single twin, the partials in our case are emitted from the free surfaces of the particles and 

they do not always glide on neighboring planes. For fivefold twinning, the five regions emerge 

rather simultaneously than sequentially, and no dislocation is involved.  

The initiation of the two modes of twinning – single twinning involving Shockley 

dislocation generation and five-fold twinning not involving dislocations – is an interesting issue 

which deserves further investigation. The occurrence of both twin structures evidently depends 

on a chain reaction (see fig. 8 and 9) following impact, so a straight-forward comparison of the 

energy of the end products would provide little information on the selectivity between the two 

mechanisms. Whichever mechanism occurs should be the outcome of a competition between 

dislocation-mode and phonon-mode dispersion of the impact pressure, and to understand this, a 

detailed analysis of the impact dynamics needs to be carried out in the future.  

Also, while the current simulations were carried out at 300K, the effects of higher 

temperatures to the coalescence process are a very interesting issue to investigate. As a first step, 

we also ran some simulation cases on starting at 700K. For each set of initial particle size and 

orientation, the higher starting temperature sometimes changes the final crystal structure of the 

sintered products, comparing to the results obtained at 300K. However, both single and multiple 

twinning are still extensively observed for simulations starting from 700K.  Therefore, although 
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higher temperatures may influence the sintering process, the governing twinning mechanisms 

may not be altered. For similar reasons, the choice of the constant-temperature (constant-NVT) 

ensemble, instead of the constant-energy (constant-NVE) ensemble, should also be explored. For 

nanoparticle sintering, very rapid heat release happens on contact due to the decrease of surface 

area. For instance, Fig. 3 illustrates a case where the temperature rises by about 250K in a mere 

60 ps. When the nanoparticles are placed on a substrate with good heat conduction, the released 

heat can be quickly absorbed into the heat bath. However, in gas phase production, for example, 

the nanoparticles are floating in the surroundings of a thin inert gas, and so heat can only be 

slowly dissipated through the rare collision events with the inert gas molecules. To model this 

scenario, the NVE ensemble was chosen to avoid the possible artifacts arising from rapid 

quenching in thermostat control. In some of the previous work, probably for the same 

considerations, the NVE ensemble was also employed to model the sintering of nanoparticles 

(Lehtinen and Zachariah 2001; Hendy et al. 2003). However, using the NVT ensemble should 

also be fruitful, especially for investigating the effects of temperature and a contacting substrate, 

and this should be carried out as future work. 

 

5. Conclusions 

Through MD simulations, we have identified and characterized the crystal structural 

transition processes involved in the sintering of Cu nanoparticles. Important findings include: 

(i) Two unsupported copper nanoparticles each containing less than 3000 atoms 

(diameter < 4nm) are very likely to go through significant structural change during 

sintering. The coalesced nanoparticle may contain frequent twinning, including single, 

fivefold, threefold and dual fivefold twinned configurations.  

(ii) The crystal structural changing process is a kinetic process largely affected by 

initial conditions such as particle shape, size and relative crystal orientations. The 

reaction time for the transformation process is usually in tens or hundreds of picoseconds. 

(iii) Diffusion and viscous flow are not found in our simulations. Instead, coordinated 

nearest-neighbor movements including dislocation slip and elastic-wave induced 

twinning shear, as well as rigid-body rotation, contribute to the structural changes of the 
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nanoparticles. In particular, the single deformation twin is formed by the emission of 

Shockley partial dislocations from free surfaces, followed by some intersection and 

rearrangement processes. The formation of fivefold twinning does not involve 

dislocations, but is via a series of twinning shear and rigid-body rotation events that are 

accomplished by elastic waves of amplitudes not corresponding to any allowable Burgers 

vector in the fcc lattice. 
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Table 1: Crystal structure of sintered products and reaction time for spherical nanoparticles with 

different initial sizes and misorientations.  

Number of atoms in each 

initial particle/ diameter D 

0 degree 15 degrees 30 degrees 45 degrees 

627  (D=2.4nm) Case (c) in 10 ps  Case (e*) in 300 ps Case (e) in 30 ps Case (e) in 600 ps 

959  (D=2.8nm) Case (a) in 20 ps Case (c) in 10 ps Case (c) in 50 ps Case (b) 

1505 (D=3.2nm) Case (a) in 20 ps Case (b) Case (e*) in 300 ps Case (b) 

2093 (D=3.6nm) Case (b)  Case (b) Case (b) Case (b) 

3055 (D=4.0nm) Case (a) in 20 ps Case (a) in 20 ps Case (b) Case (b) 

Note: Cases (a) to (e) are according to Fig. 1(a-e) respectively. The reaction time above has a 

maximum error of 10 ps. “*” denotes that dislocations are in the sintered products. 

 

 

 

 

 

 

 

Table 2: Crystal structure of sintered products and reaction time for cubic nanoparticles with 

different initial sizes and misorientations. 
Number of atoms in each 

initial particle/ diameter D 

0 degree 15 degrees 30 degrees 45 degrees 

666  (D=2.5nm) Case (c) in 30 ps Case (f) in 50 ps Case (f) in 120 ps  Case (d) in 60 ps 

1099 (D=2.6nm) Case (f) in 60 ps Case (f) in 70 ps Case (f*) in 140 ps Case (c) in 300 ps 

1688 (D=3.3nm) Case (c) in 10 ps Case (f*) in 30 ps Case (g) in 80 ps Case (e) in 120 ps 

2048 (D=3.6nm) Case (f) in 30 ps Case (f) in 20 ps Case (h) in 130 ps Case (b) 

2916 (D=4.0nm) Case (c) in 270 ps Case (f) in 500 ps Case (e*) in 200 ps Case (b) 

Note: Cases (a) to (e) are according to Fig. 1(a-e) respectively. The reaction time above has a 

maximum error of 10 ps. “*” denotes that dislocations are in the sintered products. 
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Figure Captions 

 

Fig. 1   Crystal structure of resultants after 1.2 ns of sintering. Left: All the atoms are plotted as 

points in the 3-D space along the common [110] lattice direction for all or some of the crystal 

parts. Notice that under such a perspective, any line of atoms along [110] projects into one single 

atom, twin boundaries appear as lines, and fivefold symmetrical axis emerges as a point. Twin 

boundaries are marked by red lines. Coincident-site-lattice grain boundary is marked in case (e) 

by a blue line. Right: The projections of the reciprocal lattice along [110] direction. The 

intersection points of each set of colored grid lines denote the reciprocal lattice of one fcc 

crystalline fraction. Dense grey lines denote mirror planes. 

Fig. 2  The sintered products with (a) fivefold twin and (b) dual fivefold twin structures 

corresponding to case (d) and (f) respectively. Black dots: atoms in fcc lattice or on the surface. 

Blue dots: atoms on a twin boundary. Blue lines: bonds unique for hcp stacking. Red dots: atoms 

on fivefold symmetrical axis. Red line: bonds unique for fivefold symmetrical axes. The 

identification was accomplished by common neighbor analysis (Honeycutt 1987). The lower 

panels show schematics of the structures according to the method by Ino (1966).  

Fig. 3   Temperature and crystallinity evolution during sintering of two cubic initial particles 

each with 666 atoms misoriented by 45º. Crystallinity is the fraction of atoms with 12 CN. The 

mid-products are quenched prior to the CN checking analysis. Note that crystallinity can never 

reach unity for nanoparticles because of surface atoms. 

Fig. 4   Relative displacement maps for typical sintered products after quenching at the end of 

the simulation. The initial conditions are specified below each plot in the form of (number of 

atoms in each initial particles)_(crystal misorientation).  

Fig. 5  Relative displacement map of two  planes for the sintering of two aligned cubic 

initial particles each with 2916 atoms. Time is indicated below each snapshot. The left part of the 

crystal, in which little deformation occurs, is not drawn to save space.   

Fig. 6  Relative displacement map of two ( ) planes for the case shown in Fig. 5. Time is 

indicated below each snapshot. 
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Fig. 7 Crystal structure change during the formation of single twin in the case shown in Figs. 5 

and 6. Atoms with large maximum relative displacements are marked by large blue circles. Other 

atoms are indicated by small black dots. Only atoms belonging to the initial crystal on the 

negative x axis are drawn. The box frame indicates the approximate shape of the particle. Time is 

indicated below each snapshot.  

Fig. 8  Relative displacement maps for sintering of two cubic initial particles each with 2048 

atoms misoriented by 15º, to form a fivefold twinned structure as in case (f). Time is indicated 

below each snapshot. 

Fig. 9  Schematic illustration for the formation of fivefold twin. Solid frames and dashed frames 

represent the shape of each part after and before each operation. Blue lines indicate twin 

boundaries. 

Fig. 10 Crystal structure change during the formation of fivefold twin. Atoms with large 

maximum relative displacement are marked by large blue circle. Other atoms are indicated by 

small black dots. Only atoms belonging to the initial crystal on the positive x axis are drawn. The 

box frame indicates the approximate shape of the particle. Time is indicated below each snapshot. 

 

 

 

 

 

 

 

 

 



28 
 

 
 

(a) fcc single crystal, case (a) 

  

(b) Two misoriented crystals, case (b) 

 
 

(c) Single twinning, case (c) 
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(d) fivefold twinning, case (d) 

 
 

(e) threefold twinning, case (e) 

 
 

(f) dual fivefold twinning, case (f) 
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Fig. 1  Crystal structure of resultants after 1.2 ns of sintering. Left: All the atoms are plotted as 

points in the 3-D space along the common [110] lattice direction for all or some of the crystal 

parts. Notice that under such a perspective, any line of atoms along [110] projects into one single 

atom, twin boundaries appear as lines, and fivefold symmetrical axis emerges as a point. Twin 

boundaries are marked by red lines. Coincident-site-lattice grain boundary is marked in case (e) 

by a blue line. Right: The projections of the reciprocal lattice along [110] direction. The 

intersection points of each set of colored grid lines denote the reciprocal lattice of one fcc 

crystalline fraction. Dense grey lines denote mirror planes. 
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(b) 

 

Fig. 2  The sintered products with (a) fivefold twin and (b) dual fivefold twin structures 

corresponding to case (d) and (f) respectively. Black dots: atoms in fcc lattice or on the surface. 

Blue dots: atoms on a twin boundary. Blue lines: bonds unique for hcp stacking. Red dots: atoms 

on fivefold symmetrical axis. Red line: bonds unique for fivefold symmetrical axes. The 

identification was accomplished by common neighbor analysis (Honeycutt 1987). The lower 

panels show schematics of the structures according to the method by Ino (1966).  
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Fig. 3   Temperature and crystallinity evolution during sintering of two cubic initial particles 

each with 666 atoms misoriented by 45º. Crystallinity is the fraction of atoms with 12 CN. The 

mid-products are quenched prior to the CN checking analysis. Note that crystallinity can never 

reach unity for nanoparticles because of surface atoms.  
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(a) 3055_15degree, case (a) 

 

(b) 3055_15degree (rotation removed) 

 

(c) 959_15degree, case (c)  

 

 

(d) 1099_15degree, case (f) 
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Fig. 4   Relative displacement maps for typical sintered products after quenching at the end of 

the simulation. The initial conditions are specified below each plot in the form of (number of 

atoms in each initial particles)_(crystal misorientation).  
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(a) t =2.7 ps 

 

(b) t = 3.6 ps 

 

(c) t = 5.4 ps 

 

(d) t = 30.0 ps 
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(e) t =1200.0 ps 

 

Fig. 5  Relative displacement map of two  planes for the sintering of two aligned cubic 

initial particles each with 2916 atoms. Time is indicated below each snapshot. The left part of the 

crystal, in which little deformation occurs, is not drawn to save space.   
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(a) t = 2.7 ps 

 

(b) t = 3.0 ps 

 

(c) t = 3.3 ps 

 

(d) t = 5.1 ps 

 

Fig. 6  Relative displacement map of two ( ) planes for the case shown in Fig. 5. Time is 

indicated below each snapshot. 
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(a) t =3.0 ps 

 

(b) t = 3.9 ps 

 

(c) t = 5.1 ps 

 

Fig. 7 Crystal structure change during the formation of single twin in the case shown in Figs. 5 

and 6. Atoms with large maximum relative displacements are marked by large blue circles. Other 

atoms are indicated by small black dots. Only atoms belonging to the initial crystal on the 

negative x axis are drawn. The box frame indicates the approximate shape of the particle. Time is 

indicated below each snapshot.  
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(a) t = 3.0 ps 

 

(b) t = 3.6ps 
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(c) t = 4.5 ps 

 

(d) t = 5.1 ps 
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(e) t = 6.0 ps 

 

(f) t = 1200.0 ps 
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Fig. 8  Relative displacement maps for sintering of two cubic initial particles each with 2048 

atoms misoriented by 15º, to form a fivefold twinned structure as in case (f). Time is indicated 

below each snapshot. 

 

 

 

 

 

Fig. 9  Schematic illustration for the formation of fivefold twin. Solid frames and dashed frames 

represent the shape of each part after and before each operation. Blue lines indicate twin 

boundaries. 
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(a) t = 3.0 ps 

 

(b) t = 3.9 ps 

 

(c) t = 4.8 ps 

Fig. 10 Crystal structure change during the formation of fivefold twin. Atoms with large 

maximum relative displacement are marked by large blue circle. Other atoms are indicated by 

small black dots. Only atoms belonging to the initial crystal on the positive x axis are drawn. The 

box frame indicates the approximate shape of the particle. Time is indicated below each snapshot.  


