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Abstract A traveling wave solution to the Aw-Rascle traffic flow model that includes the
relaxation and diffusion terms is investigated. The model can be approximated by the
well-known Kortweg-de Vries (KdV) equation. A numerical simulation is conducted by
the first-order accurate Lax-Friedrichs scheme, which is known for its ability to capture
the entropy solution to hyperbolic conservation laws. Periodic boundary conditions are
applied to simulate a lengthy propagation, where the profile of the derived KdV solution
is taken as the initial condition to observe the change of the profile. The simulation shows
good agreement between the approximated KdV solution and the numerical solution.
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1 Introduction

As a remarkable improvement on the classical LWR model [1, 2], the higher-order traffic flow
model [3–7] is able to reproduce more complex traffic flow phenomena, such as metastable states,
phase transitions, and stop-and-go waves. In addition to the mass conservation

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (1)

where ρ(x, t) is the density and v(x, t) is the average velocity, a higher-order model usually
takes acceleration into account to derive more complete equations. In the Aw-Rascle (AR)
model [8], the acceleration is assumed to equal the convective derivative of −p(ρ), where p(ρ)
is the “pressure”. A Riemann invariant v + p(ρ) can be equivalently assumed, which gives
d(v + p(ρ))/dt = 0, or ∂(v + p(ρ))/∂t + v∂(v + p(ρ))/∂x = 0. As a further improvement, a
relaxation term τ−1(ve(ρ)− v) has been added to the equation [9].

Here, we further include a diffusion term νρ−1∂2v/∂x2 to study solitary waves in traffic
flow, where the constant ν > 0 is the viscosity coefficient. The resultant equation gives

∂v

∂t
+ [v − ρp′(ρ)]

∂v

∂x
=

1

τ
[ve(ρ)− v] +

ν

ρ

∂2v

∂x2
. (2)

We use the same procedure to that in [8], in that we multiply Eq. (1) by v + p(ρ) and Eq. (2)
by ρ and then add the two together to obtain the conservation form of Eq. (2)

∂(ρ(v + p(ρ)))

∂t
+

∂(ρv(v + p(ρ)))

∂x
=

ρve(ρ)− ρv

τ
+ ν

∂2v

∂x2
, (3)
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with a standard diffusion term.
Greenberg [10] discussed the traveling wave solution of this model for ν = 0 using the La-

grangian coordinate, and found that the system was significantly related to a car-following
model (see also discussions in [11]). Zhang and Wong and their collaborators focused on the
study of a wide cluster solution with determined characteristic parameters in this and other
inviscid higher-order models [11–14]. They found that for a small-viscosity coefficient ν > 0, the
asymptotic theory could be applied to study traveling wave solutions in these models. However,
as indicated in [14], such solutions are asymptotic to those with a vanishing viscosity coefficient
(see also discussions in [15,16]).

For large viscosity coefficients ν >> 0, such as ν ≥ ν0, where ν0 > 0 is a constant, this
study adopts the technique used in Berg et al. [17] and Ge and Han [18] to obtain a solitary
wave solution to the discussed model (Section 2). We also simulate the evolution of a derived
solitary solution to show the stability of the solution and the small change in the wave profile
(Section 3). Although the discussion and simulation are limited, we conclude the paper with
some suggestions for future studies (Section 4).

2 Solitary wave solution of the model

We assume a smooth travel wave solution ρ(x, t) = ρ(z), v(x, t) = v(z), and q(x, t) = q(z),
where the flow q = ρv, z = x− ct, and the constant c is the wave speed. The application of the
solution variables ρ and q to Eqs (1) and (2) yields

−c
dρ

dz
+

dq

dz
= 0, (4)

and
[q − ρ2p′(ρ)− cρ](cρ− q)

ρ2
dρ

dz
=

1

τ
[qe(ρ)− q] +

ν(cρ− q)

ρ2
[
d2ρ

dz2
− 2

ρ
(
dρ

dz
)2], (5)

where qe(ρ) = ρve(ρ) is the fundamental diagram. A similar derivation is given in [3, 6, 12–14]
to study traveling wave solutions in a higher-order model.

As we propose to derive a KdV equation, we assume that q is sufficiently close to qe(ρ) and
that there exists ∆z such that q(ρ(z)) = qe(ρ(z+∆z)), which is approximated by the following
second-order Taylor expansion.

q = qe(ρ) + a1
dρ

dz
+ a2

d2ρ

dz2
. (6)

Here, the coefficients a1 and a2 depend on ρ and ∆z. However, we choose

a1 = τ [c− ve(ρ) + ρp′(ρ)][c− ve(ρ)], (7)

a2 =
τν

ρ
[c− ve(ρ)],

to balance the lower-order terms in Eq. (5). The solution ρ is assumed to be a small perturbation
ρ̂ to a constant state ρ∗, that is, ρ(z) = ρ∗ + ρ̂(z). The coefficients in Eq. (6) are thus
approximated by a1 = a1(ρ

∗) and a2 = a2(ρ
∗) and the function by

qe(ρ) = qe(ρ
∗) + q′e(ρ

∗)ρ̂+
1

2
q′′e (ρ

∗)ρ̂2.

The substitution of q in Eq. (4) by Eq. (6) yields the following ODE.

[q′e(ρ
∗) + q′′e (ρ

∗)ρ̂− c]
dρ̂

dz
+ a1(ρ

∗)
d2ρ̂

dz2
+ a2(ρ

∗)
d3ρ̂

dz3
= 0. (8)
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By setting a1(ρ
∗) = 0 and a2(ρ

∗) < 0, by which Eq. (7) gives the traveling wave speed

c = ve(ρ
∗)− ρ∗p′(ρ∗), (9)

Eq. (8) can be transformed into the standard KdV equation

∂U

∂T
+ U

∂U

∂X
+

∂3U

∂X3
= 0,

with

X =

√
−1

a2
x, T = −

√
−1

a2
t, U = −[q′e(ρ

∗) + q′′e (ρ
∗)ρ̂(x− ct)].

This suggests a solitary wave solution U = 3|c|sech2[
√
|c|(X + cT )/2], which turns out to be

ρ = ρ∗ − q′e(ρ
∗)

q′′e (ρ
∗)

− 3|c|
q′′e (ρ

∗)
sech2[

1

2

√
−|c|ρ∗

τν(c− ve(ρ∗))
(x− ct)]. (10)

3 Numerical Simulation

Even with a diffusion term, the numerical solutions of the model equations are mostly
discontinuous, which means that the conservative equations of (1) and (3) must be adopted for
the numerical simulation [14]. The system is rewritten as

ut + f(u)x = R(u, vxx), (11)

where u = (ρ, s)T , s = ρ(v + p(ρ)), f(u) = (s − ρp(ρ), ρ−1s2 − sp(ρ))T , and R(u, vxx) =
(0, τ−1(qe(ρ)− s+ ρp(ρ))+ νvxx)

T . In Eq. (11), ρ and s are taken as two conservative solution
variables and v is the function of ρ and s, which is given by v = s/ρ − p(ρ). A first-order
conservative scheme of Eq. (11) can be generally written as

u
(n+1)
i = u

(n)
i −

f̂(u
(n)
i , u

(n)
i+1)− f̂(u

(n)
i−1, u

(n)
i )

∆x
+R(u

(n)
i , vxx|(n)i ).

We then take the Lax-Friedrichs flux

f̂(u
(n)
i , u

(n)
i+1) =

1

2
(f(u

(n)
i ) + f(u

(n)
i+1)− α(n)(u

(n)
i+1 − u

(n)
i )),

where α(n) = max
u

max(|λ1(u)|, |λ2(u)|), λ1 and λ2 are two eigenvalues of the system, and the

maximum is taken over u
(n)
i . The viscous term is approximated by

vxx|(n)i =
v
(n)
i+1 − 2v

(n)
i + v

(n)
i−1

∆x2
, v

(n)
i = s

(n)
i /ρ

(n)
i − p(ρ

(n)
i ).

We apply the formula ∆t(n) = CFL∆x2(α(n)∆x+2ν/ρjam)−1 for numerical stability, and take
CFL = 0.3 and ∆x/L = 4× 10−3.

The initial condition ρ(x, 0) is taken as a KdV solution of Eq. (10) by setting ct = 0.5L
with L = 10000m, where [0, L] is the computational interval. The initial states are assumed
to be at equilibrium when s(x, 0) = ρ(x, 0)(ve(ρ(x, 0)) − p(ρ(x, 0))). The periodic boundary
conditions are applied to observe the evolution of the profile. For certainty, the pressure and
the velocity-density relationship are given by

p(ρ) = 4vf (ρ/ρjam)0.4, ve(ρ) = vf ((1 + e
ρ/ρm−0.25

0.06 )−1 − (1 + e
0.75
0.06 )−1),
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Fig. 1 Evolution of the KdV solution, (a) comparison between the original profile and the evolved
profile; (b) comparison between the solution phase-plot and the fundamental diagram.

with vf = 30m/s. In Eqs (10) and (11), we set τ = 10s, ν = 0.00015Lvfρjam, and ρ∗ =
0.13ρjam. Because the density ρ is scaled by its maximum ρjam and x by the length L in the
computation and illustration, the value of ρjam is not needed in the aforementioned formulas.

Fig. 1 shows the numerical result at t = 10000s. Fig. 1(a), indicates that the KdV solution
is stable and that the profile remains approximately the same even after a long propagation
time. Fig. 1(b) shows that the phase plot of the numerical solution is almost a straight line,
which can also be approximately described by Eq. (4) or by q = cρ+q0, where q0 is the integral
constant. The phase plot is also very close to the fundamental diagram. However, the difference
explains the change in solution profile in Fig. 1(a) according to the discussion in the context
of Eq. (6).

The simulation futher indicates that the profile will become unstable when ν increases to a
certain larger value. This agrees with the analytical conclusion in [19] that in the KK model
ν/τ must be bounded by a constant to maintain the stability of the traveling wave solution.

4 Conclusions

We derive a KdV solution by including the relaxation and viscous terms in the AR model.
A numerical example shows that the KdV solution gives a good approximation of a traveling
wave in the model. However, there are multiple choices for the three parameters ρ∗, τ , and ν
in the solution, and future studies should seek to determine the most appropriate choices for
these parameters based upon sound theoretical analysis to give a better approximation. The
numerical schemes could also be improved by incorporating the relaxation and viscous terms
into a convective term give a better resolution.
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