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Abstract

In this paper, we consider the optimal dividend strategy under the diffusion model with

regime switching. In contrast to the classical risk theory, the dividends can only be paid at

the arrival times of a Poisson process. By solving an auxiliary optimal problem, we show that

the optimal strategy is the modulated barrier strategy. The value function can be obtained by

iteration or by solving system of differential equations. We also provide a numerical example to

illustrate the effects of the restriction on the timing of the payment of dividends.
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1 Introduction

Since it was proposed by De ?, the optimization of dividend strategy has become a classical and im-
portant problem in actuarial science. This problem is usually phrased as the management’s problem
of determining the optimal timing and size of dividend payments in the presence of bankruptcy risk.
There is a vast literature on this topic. Most of them assume that the insurer can choose any time
to pay the dividends, or the dividends can be paid continuously, and the ruin (stopping the business)
occurs whenever the surplus is negative.

However, in practice, it is more reasonable that the dividends can only be paid at some discrete
time points rather than continuously, and an insurer with a negative surplus maybe continue her
business as usual until bankruptcy takes place. To capture these features, ? and ? assume that the
surplus process can only be observed at random times. Then ruin can only occur and the dividends
can only be paid at these random discrete observation times. With the assumption that the surplus
process is observed at the arrival times of a Poisson process, ? shows that the optimal strategy is a
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band strategy if the surplus process is modeled by a general Lévy process, and the optimal strategy
reduces to the barrier strategy if the surplus process is a diffusion or the compound Poisson model
withe exponential claims.

Recently, ? proposes the Gamma-Omega model which extends the diffusion model in two ways.
First, if the surplus x is negative, the probability of bankruptcy within dt time units is ω(x)dt, where
ω(x) > 0 is the decreasing bankruptcy rate function defined on (−∞,0]. Second, the dividends can
only be paid to the shareholders at the arrival times of a Poisson process with rate γ > 0. ? studies
the optimal barrier strategy, and ? proves that the optimal barrier strategy obtained by ? is indeed
the optimal strategy among all the admissible dividend strategies under the Gamma-Omega model.

In this paper, we consider the diffusion model with regime switching. Mainly, we consider the
case where the dividends can only be paid at the arrival times of a modulated Poisson process (a Cox
process) as in ?, and ruin is still defined as in the classical risk theory, i.e., the company is ruined and
has to go out of business whenever the surplus is negative. In ? and our paper, the surplus processes
are observed continuously, but we restrict ourselves to the case where the dividends can only be paid
at some random discrete times. From this point of view, the problem considered in our paper is
similar to ?.

Under diffusion model with regime switching, the optimal dividend strategy is studied by ? and
?. While the former solves this problem with two regimes by the standard method, i.e., guessing
a candidate optimal solution and then verifying its optimality, the latter solves a general case by
following a different method. They construct the candidate value function by directly employing
a dynamic programming equation, and prove that the value function is the fixed point of a certain
contraction operator which is given with the initial data, derives an explicit iterative algorithm to
calculate the value function, which ‘decouples’ the different regimes such that at any stage one-
dimensional control problems are solved. In contrast to prove the value function is the fixed point
of a contraction operator, we modify the procedure of ? by constructing a sequence of functions
that converges to the value function. Then we study the functions of this sequence by an auxiliary
optimal problem which depends on only one regime. With such a sequence, we do not need to find
priori bounds for the value function (or the initial data of the contraction operator), which is required
in ?. The idea of introducing such a sequence is stimulated by ? and ? which consider the optimal
control problem under piecewise deterministic processes. In fact, by this method, we reduce the
original problem to a Markov decision process (MDP) ∗ which is also used in ?. Similar to ? and ?,
our optimal strategy is still the modulated barrier strategy.

The remainder of the paper is organized as follows. In Section 2 we present the model and the
problem. In Section 3, we introduce a sequence of functions that converges to the value function,
and prove the dynamic programming equation. And the original problem is reduced to an MDP.
In Section 4, in order to study the sequence constructed in Section 3, we study an auxiliary optimal
problem which is the one-stage problem of the MDP. In Section 5, we go back to our original optimal
problem. We show two methods to get the value function and the optimal barrier levels.

∗We thank the referee for pointing out this fact as well as Remarks 3.4 and 3.7.
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2 The Model

Suppose that {J(t)}t≥0 be a homogenous, irreducible continuous-time Markov chain taking values
in a finite set J = {1,2, · · · ,K} and with generator Q =

(
qi j

)
K×K

where −qii = qi > 0 for i ∈ J. Let
Xi(t) = µit+σiW(t), where µi,σi > 0 for all i ∈ J, and {W(t)}t≥0 is a standard Brownian motion which
is independent of {J(t)}t≥0. The surplus process of the insurer is given by

X(t) = x+
K∑

i=1

∫ t

0
1{J(s)=i}dXi(s),

where x > 0 is the initial surplus.
When the state of the Markov chain is i ∈ J, we assume that the dividends can only be paid at the

arrival times of a Poisson process with rate γi > 0. Considering dividends, the surplus process (still
denoted by {X(t)}t≥0) is given by

X(t) = x+
K∑

i=1

∫ t

0
1{J(s)=i}dXi(s)−D(t), (2.1)

where D(t) is the cumulative dividends until t. Let {Ni(t)}t≥0 be a Poisson process with intensity γi

which is assumed to be independent of {J(t)}t≥0 and {W(t)}t≥0. Then we can write

D(t) =
K∑

i=1

∫ t

0
π(s)1{J(s)=i}dNi(s),

where the process {π(s)}s≥0 determines the amount of dividends paid at the jump times of the Poisson
processes {Ni(t)}t≥0, i ∈ J.

Suppose that all the stochastic processes mentioned above are defined on the filtered probability
space (Ω,F ,P), where F = {Ft, t ≥ 0} is generated by {X(t)}t≥0 and {J(t)}t≥0 and satisfies the usual
conditions. Denote by Ex and Ex,i the expectations conditioned on {X(0) = x} and {X(0) = x, J(0) = i},
respectively.

We say a dividend strategy {π(s)}s≥0 (for convenience, we also write π for short) is admissible,
if it is F -adapted and 0 ≤ π(t) < X(t−) for t ≥ 0. Let Π be the set of all admissible strategies. With
a strategy π ∈ Π, let τπ:=inf {t ≥ 0 : X(t) ≤ 0} be the time of ruin. Without loss of generality, we
assume that X(t) ≡ 0 for t ≥ τπ. Given the initial surplus x and initial state i, the expected value of
the discounted dividends until ruin is given by

Vπ(x, i) := Ex,i

 K∑
k=1

∫ τπ

0
e−Λ(s)1{J(s)=k}π(s)dNk(s)

 ,
where Λ(s) =

∑K
i=1

∫ s
0 1{J(t)=i}δidt with δi > 0 is the discount rate at state i for i ∈ J. The objective
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functions is
V(x, i) = sup

π∈Π
Vπ(x, i), i = 1,2, · · · ,K. (2.2)

It is easy to see that V(0, i) = 0 for all i ∈ J. The problem of the shareholders is to specify a dividend
strategy π∗ ∈ Π such that V(x, i) = Vπ∗(x, i) for all i ∈ J.

3 The Dynamic Programming Equation

In the following, we adopt bold-face letters to denote the vector functions in the form of

v(x) := (v(x,1),v(x,2), · · · ,v(x,K)).

When we use ≤ (or ≥) between two vectors (or vector functions), it means that ≤ (or ≥) holds for
each element. Also, we denote by 0 the zero row vector with K elements.

Let ζ0 = 0 and
ζn := inf {t ≥ ζn−1 : J(t) , J(t−)} , n ∈ N+,

i.e., ζn is the n-th jump time of the Markov chain {J(t)}t≥0. For a testing function v(x), define the
functional operator as

Mv(x) := (Mv(x,1),Mv(x,2), · · · ,Mv(x,K)) ,

where

Mv(x, i) := sup
π∈Π

Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)v(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
. (3.1)

From the definition ofM, we have following lemmas.

Lemma 3.1. If v1(x) ≥ v2(x), then it holds thatMv1(x) ≥Mv2(x) for all x ≥ 0.

Lemma 3.2. For all x ≥ 0, let U0(x) ≡ 0 and Un+1(x) =MUn(x), for n ∈ N. Then for each i ∈ J,
{Un(·, i)}n∈N is an increasing sequence of functions.

Proof. Note that U1(x, i) = supπ∈ΠEx,i

[∫ τπ∧ζ1
0 e−δisπ(s)dNi(s)

]
≥ 0 = U0(x, i), for all x ≥ 0 and i ∈ J.

The result follows from Lemma 3.1. �

For n ∈N, define Πn = {π ∈ Π : π(s) ≡ 0, for s ≥ ζn} be the set of all the admissible strategies that
pays no dividend after the n-th jump of the Markov chain {J(t)}t≥0. Let Vn(x, i) = supπ∈Πn

Vπ(x, i).

Lemma 3.3. For all x ≥ 0, we have Vn(x) = Un(x), ∀n ∈ N.

Proof. Obviously, we have V0(x) = U0(x) ≡ 0. Let us assume that Vn(x) = Un(x), and show that
Vn+1(x) = Un+1(x).

First, we will show that Vn+1(x) ≤ Un+1(x). For any ε > 0, there is a strategy π ∈ Πn+1 such that

Vπ(x, i) ≥ Vn+1(x, i)−ε. (3.2)
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Define a strategy π̂ ∈ Πn by setting π̂(t) = π(t+τπ∧ ζ1) for t ≥ 0. By the strong Markov property, we
have

Vπ(x, i) = Ex,i

 K∑
k=1

∫ τπ

0
e−Λ(s)π(s)1{J(s)=k}dNk(s)


= Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)Vπ̂(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
≤ Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)Vn(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
= Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)Un(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
≤ Un+1(x, i). (3.3)

It follows from (3.2), (3.3) and the arbitrariness of ε that Vn+1(x, i) ≤Un+1(x, i), for all x ≥ 0 and i ∈ J.
Second, we are going to show Vn+1(x) ≥ Un+1(x). For any ε > 0, there is a strategy π′ ∈ Π such

that

Un+1(x, i) ≤ Ex,i

[∫ τπ′∧ζ1

0
e−δisπ′(s)dNi(s)+ e−δi(τπ′∧ζ1)Un(X(τπ′ ∧ ζ1), J(τπ′ ∧ ζ1))

]
+ε,

and there is a strategy π′′ ∈ Πn such that Vn(x, i) ≤ Vπ2(x, i) for any x ≥ 0, and i ∈ J. Now we can
construct a strategy π̃ ∈ Πn+1 by taking the strategy π′ before τπ′ ∧ ζ1, and then following strategy
π′′. Thus, by the strong Markov property, we have

Un+1(x, i) ≤ Ex,i

[∫ τπ′∧ζ1

0
e−δisπ′(s)dNi(s)+ e−δi(τπ′∧ζ1)Vn(X(τπ′ ∧ ζ1), J(τπ′ ∧ ζ1))

]
+ε

≤ Ex,i

[∫ τπ′∧ζ1

0
e−δisπ′(s)dNi(s)+ e−δi(τπ′∧ζ1)Vπ′′(X(τπ′ ∧ ζ1), J(τπ′ ∧ ζ1))

]
+2ε

= Vπ̃(x, i)+2ε

≤ Vn+1(x, i)+2ε.

Thus from the arbitrariness of ε, we have Un+1(x, i) ≤ Vn+1(x, i) for all x ≥ 0 and i ∈ J, which ends
our proof. �

Remark 3.4. Note that M can be interpreted as an MDP operator of a positive Markov decision
process, and our original problem boils down to solving an MDP. The following results are standard
(see e.g. ?).

Lemma 3.5. limn→∞Un(x, i) = V(x, i), for any x ≥ 0 and i ∈ J.

Proposition 3.6. The value function V is the smallest solution of the dynamic programming equation
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V =MV such that V ≥ 0, i.e.

V(x, i)= sup
π∈Π

Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)V(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
, ∀x≥ 0, i ∈ J. (3.4)

Remark 3.7. In general for positive MDPs, it is not true that a maximizer of the right-hand-side in
(3.4) yields the optimal strategy. Let Ṽ be the value function studied in ?. Then there is constant
c > 0 such that Ṽ(x, i) < x+ c for all i ∈ J. Note that the set of admissible strategy Π in this paper is
a subset of the one considered in ?. It follows that V(x, i) ≤ Ṽ(x, i) < x+ c for all x ∈ [0,∞) and i ∈ J.
For i ∈ J, define b(x, i) := 1+ x and the operator

Tov(x, i) := sup
π∈Π

Ex,i
[
e−δi(τπ∧ζ1)v(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
.

Considering a strategy π ∈ Π, let

Y(t) = x+Xi(t)−
∫ t

0
π(s)dNi(s) (3.5)

and τi be the time of ruin of {Y(t)}t≥0. For any constant θ > 0, denote by η(θ) an independent
exponential random variable with mean 1/θ. It holds that (Y(t), t < τi∧η(qi)) is in distribution equal
to (X(t), J(0) = i, t < τπ∧ ζ1). It is easy to see that

Tob(x, i) = sup
π∈Π

Ex

∫ τi

0
e−(δi+qi)s

∑
j,i

qi jb(Y(s), j)ds


≤ Ex

[∫ ∞

0
e−(δi+qi)sqi(1+ x+µis+σiW(s))ds

]
=

qi

δi+qi

(
1+ x+

µi

δi+µi

)
.

Thus, by iteration we have limn→∞T n
o b(x, i) = 0, which implies the maximizer of right-hand-side in

(3.4) always gives the optimal strategy (see e.g. ?, ?).

4 The Solution to Un(x)

From the preceding section, we know that the value function can be obtained by iteration. However,
to do this, we need to show what Un+1 is when Un is given. This is the problem studied in this
section.

4.1 An Auxiliary Optimal Problem

To solve our problem, we restrict ourselves to a special class of vector functions.
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Definition 4.1. We say a vector function u(x) ∈ D, if
(i) u(0) = 0,u(·, i) ∈C([0,∞)) is increasing and concave, for each i ∈ J;
(ii) for any θ > 0, limx→∞ e−θxu(x, i) = 0, for each i ∈ J.

For a function u ∈ D, we consider the auxiliary optimal problem

M(x, i) := sup
π∈Π

Mπ(x, i). (4.1)

where

Mπ(x, i) = Ex,i

[∫ τπ∧ζ1

0
e−δisπ(s)dNi(s)+ e−δi(τπ∧ζ1)u(X(τπ∧ ζ1), J(τπ∧ ζ1))

]
.

From the general theory of stochastic control, we consider the HJB equation

max
0≤π≤x

σ
2
i

2
m′′(x, i)+µim′(x, i)− (δi+qi+γi)m(x, i)+γi[m(x−π, i)+π]+

∑
j,i

qi ju(x, j)

 = 0, (4.2)

for the optimal problem (4.1), where m′ and m′′ are the first and second order partial derivatives with
respect to x, respectively.

Theorem 4.2. For i ∈ J, let m(·, i) ∈ C2([0,∞)) be an nonnegative function. Assume that m(x, i)
satisfies the HJB equation (4.2) for all x ≥ 0. (i) Then it holds that m(x, i) ≥ M(x, i) for all x ≥ 0;

(ii) If, in addition, m(x, i) = Mπ∗(x, i) for some π∗ ∈ Π, then π∗ is an optimal dividend strategy for the

problem (4.1) and M(x, i) ≡ Mπ∗(x, i).

Proof. (i) Considering a strategy π ∈ Π and recalling {Y(t)}t≥0 defined by (3.5), for any u ∈ D, we
have

Mπ(x, i) = sup
π∈Π

Ex

∫ τi

0
1{s<η(qi)}e

−δisπ(s)dNi(s)+1{η(qi)<τi}e
−δiη(qi)

∑
j,i

qi j

qi
u(Y(η(qi)), j)


= sup
π∈Π

Ex

∫ τi

0
e−(δi+qi)sπ(s)dNi(s)+

∫ τi

0
e−(δi+qi)s

∑
j,i

qi ju(Y(s), j)ds

 .
Let a and b be real numbers satisfying 0< a< Y(0)= x< b<∞. Define τa := inf {t ≥ 0 : Y(t) ≤ a},

τb := inf {t ≥ 0 : Y(t) ≥ b} and τab = τa∧τb. Applying the Itô formula to e−δitm(Y(t), i) yields that

e−(δi+qi)(t∧τab)m(Y(t∧τab), i)−m(Y(0), i)

=

∫ t∧τab

0
e−(δi+qi)s

[
−(δi+qi)m(Y(s), i)+µim′(Y(s), i)+

1
2
σ2

i m′′(Y(s), i)
]
ds

+

∫ t∧τab

0
e−(δi+qi)s [m(Y(s−)−π(s), i)−m(Y(s−), i)]dNi(s)

+

∫ t∧τab

0
e−(δi+qi)sσim′(Y(s), i)dW(s), for all t ≥ 0.

7



Since m(·, i) satisfies (4.2), we have∫ t∧τab

0
e−(δi+qi)sπ(s)dNi(s)+

∫ t∧τab

0
e−(δi+qi)s

∑
j,i

qi ju(Y(s), j)ds

≤ −e−(δi+qi)(t∧τab)m(Y(t∧τab), i)+m(Y(0), i)+Z1(t∧τab)+Z2(t∧τab), (4.3)

where {Z1(t)}t≥0 and {Z2(t)}t≥0 are local martingales defined as

Z1(t) =
∫ t

0
e−(δi+qi)sσim′(Y(s), i)dW(s),

Z2(t) =
∫ t

0
e−(δi+qi)s [m(Y(s−)−π(s), i)+π(s)−m(Y(s−), i)] (dNi(s)−γids) .

However, the stopped processes {Z1(t∧τab)}t≥0 and {Z2(t∧τab)}t≥0 are martingales. Recall that m(·, i)
is nonnegative. Taking conditional expectation on both sides of (4.3) yields that

m(x, i) ≥ Ex

∫ t∧τab

0
e−(δi+qi)sπ(s)dNi(s)+

∫ t∧τab

0
e−(δi+qi)s

∑
j,i

qi ju(Y(s), j)ds

 .
Letting a→ 0 and b→∞, we get τa → τi and τb →∞. Then, τab → τi. Also, letting t→∞ and
applying dominated convergence theorem yield that

m(x, i) ≥ Ex

∫ τi

0
e−(δi+qi)sπ(s)dNi(s)+

∫ τi

0
e−(δi+qi)s

∑
j,i

qi ju(Y(s), j)ds

 = Mπ(x, i).

From the arbitrariness of the strategy π and the definition of M(·, i), we conclude that m(x, i)≥M(x, i).
(ii) It is obvious from (i) and the definition of M(·, i). �

4.2 The Modulated Barrier Strategy

Motivated by ? and ?, we consider the modulated barrier strategy. Let {T1,T2, · · · } be the times at
which the dividends can be paid. Given the barrier level b = (b1,b2, · · · ,bK), the modulated barrier
strategy {πb(t)}t≥0 is an F -adapted process such that πb(Ti) = (X(Ti)−bJ(Ti))

+, for i = 1,2, · · · .
To easy the notations, let Mb(x, i) = Mπb(x, i) . We have the following propositions.

Proposition 4.3. Given b, it holds that

Mb(x, i) = γiW
(θi)
i (x)

[∫ bi

0
Mb(y, i)e−riydy+

e−ribi

ri

(
Mb(bi, i)+

1
ri

)]
−γi

∫ x

0
Mb(y, i)W(θi)

i (x− y)dy+W(θi)
i (x)

∫ ∞

0
e−riy

∑
j,i

qi ju(y, j)dy

−
∫ x

0
W(θi)

i (x− y)
∑
j,i

qi ju(y, j)dy, 0 ≤ x < bi, (4.4)
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and

Mb(x, i) = γiW
(θi)
i (x)

[∫ bi

0
Mb(y, i)e−riydy+

e−ribi

ri

(
Mb(bi, i)+

1
ri

)]
−γi

[∫ bi

0
Mb(y, i)W(θi)

i (x− y)dy+
∫ x

bi

(y−b+Mb(bi, i))W
(θi)
i (x− y)dy

]
+W(θi)

i (x)
∫ ∞

0
e−riy

∑
j,i

qi ju(y, j)dy−
∫ x

0
W(θi)

i (x− y)
∑
j,i

qi ju(y, j)dy, x ≥ bi,(4.5)

where θi = δi+qi+γi, and

W(θi)
i (x) =

2
σ2

i

· e
rix− esix

ri− si
,

and ri > 0, si < 0 are the solutions of the equation
σ2

i
2 r2+µir− θi = 0.

Proof. Denote by {Yb(t)}t≥0 and τb the process (3.5) and the time of ruin corresponding to the mod-
ulated barrier strategy b, respectively. Let Y′(t) = x+Xi(t) and τ be the time of ruin of {Y′(t)}t≥0. Let
T1 be the first time at which the dividend is paid. Then (Y′(t), t < τ∧η(γi)) is in distribution equal
to (Yb(t), t < τb∧T1). To simplify the notations, let f (x, i) =

∑
j,i qi ju(x, j) and g(y) = y− (y− bi)+.

Noting that Mb(0, i) = 0, we have

Mb(x, i) = Ex

[∫ τb∧T1

0
e−(δi+qi)s f (Yb(s), i)ds

]
+Ex

[
1{T1≤τb}e

−(δi+qi)T1(Yb(T1−)−bi)+
]

+Ex
[
1{T1≤τb}e

−(δi+qi)T1 Mb(g(Yb(T1−)), i)
]

= Ex

[∫ τ∧η(γi)

0
e−(δi+qi)s f (Y′(s), i)ds

]
+Ex

[
1{η(γi)≤τ}e

−(δi+qi)η(γi)(Y′(η(γi))−bi)+
]

+Ex
[
1{η(γi)≤τ}e

−(δi+qi)η(γi)Mb(g(Y′(η(γi))), i)
]

= Ex

[∫ ∞

0
1{s≤τ}e−θis f (Y′(s), i)ds

]
+γiEx

[∫ ∞

0
1{s≤τ}e−θis(Y′(s)−bi)+

]
+γiEx

[∫ ∞

0
1{s≤τ}e−θisMb(g(Y′(s)), i)

]
=

∫ ∞

0

[
f (y, i)+γi(y−bi)++γiMb(g(y), i)

]∫ ∞

0
e−θisPx

(
Y′(s) ∈ dy, s < τ

)
ds. (4.6)

From Corollary 8.8 of ? (or let b→∞ in Equation (4.4) of ?†), we have∫ ∞

0
e−θisPx

(
Y′(s) ∈ dy, s < τ

)
ds =

[
W(θi)

i (x)e−riy−1{x≥y}W
(θi)
i (x− y)

]
dy. (4.7)

Inserting (4.7) into (4.6) yields (4.14) and (4.5). �

†In their paper, the left-hand side of (4.4) should be divided by θi.
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Proposition 4.4. The function Mb(x, i) ∈C2([0,∞)) and satisfies

σ2
i

2
M′′b (x, i)+µiM′b(x, i)− (δi+qi)Mb(x, i)+

∑
j,i

qi ju(x, j) = 0, 0 ≤ x < bi, (4.8)

and

σ2
i

2
M′′b (x, i)+µiM′b(x, i)− θiMb(x, i)+γi [Mb(bi, i)+ x−bi]+

∑
j,i

qi ju(x, j) = 0, x ≥ bi. (4.9)

Proof. Noting that W(θi)
i (x) ∈C2([0,∞)), we know that Mb(x, i) ∈C2([0,bi)) and Mb(x, i) ∈C2([bi,∞)).

Taking first and second order derivatives of (4.4) and (4.5), it is easy to check M′′b (x, i) is continuous
at bi. Furthermore, by the using of

σ2
i

2
W(θi)′′

i (x)+µiW
(θi)′
i (x)− θiW(θi)

i (x) = 0,

it is easy to show (4.8) and (4.9) (for simplicity, we omit the details of calculations). �

From the above proposition, if u(x) ∈ D, then we have Mb(x, i) ∈ C2([0,∞)) for all i ∈ J. Since
later we will start with U0 ≡ 0 ∈ D, we can work with u ∈ D∩C2([0,∞)) in the following.

For x ≥ bi, it is easy to rewrite (4.5) as

Mb(x, i) =
2γiesix

σ2
i (ri− si)

[∫ bi

0
Mb(y, i)

(
e−siy− e−riy

)
dy+

(
1
si

e−sibi − 1
ri

e−ribi

)
Mb(bi, i)

]
+

2γiesix

σ2
i (ri− si)

 1
s2

i

e−sibi − 1
r2

i

e−ribi

+ai

(
x+Mb(bi, i)−bi+

µi

θi

)
+Γi(x), (4.10)

where ai = γi/θi, and

Γi(x) =
2esix

σ2
i (ri− si)

∫ x

0

(
e−siy− e−riy

)∑
j,i

qi ju(y, j)dy+
2(erix− esix)
σ2

i (ri− si)

∫ ∞

x
e−riy

∑
j,i

qi ju(y, j)dy.

Corollary 4.5. For any u ∈ D, we have

(i) for any θ > 0, e−θxMb(x, i)→ 0, as x→∞;

(ii) M′b(x, i)→ ai+
1
θi

∑
j,i qi ju′(∞, j), and M′′b (x, i)→ 0, as x→∞.

Proof. (i) Since Γi(x) ≥ 0, it follows from (4.10) that Mb(x, i)→∞ as x→∞. Recall that if u ∈ D,
then for any θ > 0 and i ∈ J, e−θxu(x, i)→ 0, as x→∞. It holds that

Γi(x) =
2esix

σ2
i (ri− si)si

∫ x

0
e−siy

∑
j,i

qi ju′(y, j)dy+
2erix

σ2
i (ri− si)ri

∫ ∞

x
e−riy

∑
j,i

qi ju′(y, j)dy

− 2esix

σ2
i (ri− si)ri

∫ ∞

0
e−riy

∑
j,i

qi ju′(y, j)dy+
1
θi

∑
j,i

qi ju(x, j).
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Note that
∫ x

0 e−siy ∑
j,i qi ju′(y, j)dy→∞ and

∫ ∞
x e−riy ∑

j,i qi ju′(y, j)dy→ 0 as x→∞. Hence, by the
de’l Hopital’s rule,

Γi(x)→ µi

θ2i

∑
j,i

qi ju′(∞, j)+
1
θi

∑
j,i

qi ju(∞, j), as x→∞.

Thus by (4.10), for any θ > 0, e−θxMb(x, i)→ 0, as x→∞.
(ii) Similarly, for any u ∈ D, by the de’l Hopital’s rule,

Γ′i(x) =
2esix

σ2
i (ri− si)

∫ x

0
e−siy

∑
j,i

qi ju′(y, j)dy+
2erix

σ2
i (ri− si)

∫ ∞

x
e−riy

∑
j,i

qi ju′(y, j)dy

− 2siesix

σ2
i (ri− si)ri

∫ ∞

0
e−riy

∑
j,i

qi ju′(y, j)dy

→ 1
θi

∑
j,i

qi ju′(∞, j), as x→∞.

Thus by (4.10), it is easy to see that M′b(x, i)→ ai+
1
θi

∑
j,i qi ju′(∞, j) , as x→∞.

Also,

Γ′′i (x) =
2siesix

σ2
i (ri− si)

∫ x

0
e−siy

∑
j,i

qi ju′(y, j)dy+
2rierix

σ2
i (ri− si)

∫ ∞

x
e−riy

∑
j,i

qi ju′(y, j)dy

−
2s2

i esix

σ2
i (ri− si)ri

∫ ∞

0
e−riy

∑
j,i

qi ju′(y, j)dy

→ 0, as x→∞.

�

From Section 2.1.1 of ?, the solution of (4.8) is given by

Mb(x, i) = Aieαix+Bieβix−
∫ x

0

2
(
eαi(x−y)− eβi(x−y)

)
σ2

i (αi−βi)

∑
j,i

qi ju(y, j)dy, (4.11)

where Ai and Bi are constants to be determined, and αi > 0,βi < 0 are the solutions of the equation

σ2
i

2
r2+µir− (δi+qi) = 0.

The solution of (4.9) is given by

Mb(x, i) =Cieri(x−bi)+Diesi(x−bi)−
∫ x

bi

2
(
eri(x−y)− esi(x−y)

)
σ2

i (ri− si)

∑
j,i

qi ju(y, j)dy+aix+ ci, (4.12)
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where Ci and Di are constants to be determined, and

ci =
µiai+γi [m(bi−, i)−bi]

δi+qi+γi
.

From (4.12), we have

M′′b (x, i) = Cir2
i eri(x−bi)+Dis2

i esi(x−bi)− 2
σ2

i

∑
j,i

qi ju(x, j)

−
∫ x

bi

2
(
r2

i eri(x−y)− s2
i esi(x−y)

)
σ2

i (ri− si)

∑
j,i

qi ju(y, j)dy

=

Cir2
i −

2ri

σ2
i (ri− si)

Ξi(bi)

eri(x−bi)+

Dis2
i +

2si

σ2
i (ri− si)

∑
j,i

qi ju(bi, j)

esi(x−bi)

+
2

σ2
i (ri− si)

siesix
∫ x

0
e−siy

∑
j,i

qi ju′(y, j)dy+ rierix
∫ ∞

x
e−riy

∑
j,i

qi ju′(y, j)dy

 ,
where

Ξi(bi) =
∑
j,i

qi ju(bi, j)+
∫ ∞

bi

eri(bi−y)
∑
j,i

qi ju′(y, j)dy.

Since

siesix
∫ x

0
e−siy

∑
j,i

qi ju′(y, j)dy+ rierix
∫ ∞

x
e−riy

∑
j,i

qi ju′(y, j)dy→ 0, as x→∞,

it follows from Corollary 4.5 (ii) that

Ci =
2

σ2
i (ri− si)ri

Ξi(bi).

Since Mb(0, i) = 0, from (4.11) we know that Bi = −Ai. From the smooth-fit conditionsMb(bi−, i) = Mb(bi+, i),

M′b(bi−, i) = M′b(bi+, i),

we have

Ai =
1

si
δi+qi
θi

hi(bi)−h′i(bi)

Λi(bi)−
2
σ2

i ri
Ξi(bi)+ si

µiai

θi
−ai

 ,
Di =

δi+qi

θi

Aihi(bi)−
∫ bi

0
W(δi+qi)

i (bi− y)
∑
j,i

qi ju(y, j)dy

−Ci−
µiai

θi
,
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where hi(bi) = eαibi − eβibi , and

Λi(bi) = si
δi+qi

θi

∫ bi

0
W(δi+qi)

i (bi− y)
∑
j,i

qi ju(y, j)dy−
∫ bi

0
W(δi+qi)′

i (bi− y)
∑
j,i

qi ju(y, j).

Now we consider the optimal modulated barrier strategy, i.e., we want to find the bi that maxi-
mizes Ai. For convenience, we define the function

Ai(b) =
1

si
δi+qi
θi

hi(b)−h′i(b)
∆i(b),

where
∆i(b) = Λi(b)− 2

σ2
i ri
Ξi(b)+ si

µiai

θi
−ai.

Then the first order conditionA′i(b) = 0 implies that

∆′i(b)
[
si
δi+qi

θi
hi(b)−h′i(b)

]
= ∆i(b)

[
si
δi+qi

θi
h′i(b)−h′′i (b)

]
. (4.13)

In the Appendix, we show that equation (4.13) admits a root in (0,∞). Note that, for any x ≥ 0,

σ2
i

2
h
′′
i (x)+µih′i(x)− (δi+qi)hi(x) = 0. (4.14)

It follows from (4.13) and (4.14) that(δi+qi)+
σ2

i

2
· si
δi+qi

θi
·
∆′i(b)
∆i(b)

hi(b) =

σ2
i

2
· si
δi+qi

θi
+µi+

σ2
i

2
·
∆′i(b)
∆i(b)

h′i(b). (4.15)

Proposition 4.6. Let b∗i > 0 be a solution of equation (4.13), then M′b∗(b
∗
i , i) = 1 and M′′b∗(b

∗
i , i) ≤ 0,

where the i-th element of b∗ is b∗i .

Proof. From (4.11), we know that

M′b∗(b
∗
i , i) = Ai(b∗i )h′i(b

∗
i )−

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy

=
h′i(b

∗
i )

si
δi+qi
θi

hi(b∗i )−h′i(b
∗
i )
∆i(b∗i )−

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy.

It follows from (4.15) that

h′i(b
∗
i )

si
δi+qi
θi

hi(b∗i )−h′i(b
∗
i )
=
θi∆i(b∗i )+

σ2
i

2 si∆
′
i(b
∗
i )

∆i(b∗i ) (siµi− θi)ai
.

13



The above equation yields that

M′b∗(b
∗
i , i) =

θi∆i(b∗i )+
σ2

i
2 si∆

′
i(b
∗
i )

(siµi− θi)ai
−

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy

= 1− 2θi
σ2

i s2
i ai

Λi(b∗i )− 2
σ2

i ri
Ξi(b∗i )

− 1
siai

Λ′i(b∗i )− 2
σ2

i ri
Ξ′i(b

∗
i )


−
∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy

= 1,

where the last equality follows from

σ2
i

2
W(δi+qi)′′

i (x)+µiW
(δi+qi)′

i (x)− (δi+qi)W
(δi+qi)
i (x) = 0, for x ≥ 0. (4.16)

Thus, it is easy to see that

Ai(b∗i ) =
1

h′i(b
∗
i )

1+∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy

 .
Consequently, from (4.11) we have

M′′b∗(b
∗
i , i) = Ai(b∗i )h′′i (b∗i )−

∫ b∗i

0
W(δi+qi)′′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy− 2
σ2

i

∑
j,i

qi ju(b∗i , j)

=
h′′i (b∗i )
h′i(b

∗
i )

1+∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy


−
∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju′(y, j)dy.

Noting that h′i(b
∗
i ) ≥ 0,

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)dy ≥ 0, and
∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju′(y, j)dy ≥ 0,

it is sufficient to show that h′′i (b∗i ) ≤ 0. From (4.14) and (4.15), we have that

h′′i (b∗i ) = h′i(b
∗
i )


si
δi+qi
θi
+ 2
σ2

i
µi+

∆′i (b
∗
i )

∆i(b∗i )

1+
σ2

i
2 ·

si
θi
· ∆
′
i (b
∗
i )

∆i(b∗i )

− 2
σ2

i

µi
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= h′i(b
∗
i )

si
δi+qi
θi
∆i(b∗i )− σ

2
i

2 ·
s2

i
θi
∆′i(b

∗
i )

∆i(b∗i )+
σ2

i
2 ·

si
θi
∆′i(b

∗
i )

.

Noting that ∆i(b∗i ) ≤ 0, ∆′i(b
∗
i ) ≤ 0, and

∆i(b∗i )+
σ2

i

2
· si

θi
∆′i(b

∗
i )

= si
δi+qi

θi

∫ b∗i

0
W(δi+qi)

i (b∗i − y)
∑
j,i

qi ju(y, j)dy−
∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)

+
σ2

i

2
s2

i
δi+qi

θ2i

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)−
σ2

i

2
· si

θi

∫ b∗i

0
W(δi+qi)′′

i (b∗i − y)
∑
j,i

qi ju(y, j)

−
 2
σ2

i ri
+

si

θi

Ξi(b∗i )+
ai

θi
(µisi− θi)

= −ai

θi
·
σ2

i

2
s2

i

∫ b∗i

0
W(δi+qi)′

i (b∗i − y)
∑
j,i

qi ju(y, j)+1


< 0,

where the second equality follows from (4.16) and µisi−θi =−σ2
i s2

i /2. Therefore, we have h′′i (b∗i )≤ 0
which completes the proof. �

Proposition 4.7. The function Mb∗(x, i) is increasing and concave on [0,∞).

Proof. Define ξ(x, i) = M′′b∗(x, i). Note that ξ(x, i) ∈C1([0,∞)), ξ(x, i) ∈C2([0,∞)\{b∗i }) and satisfies


σ2

i
2 ξ
′′(x, i)+µiξ

′(x, i)− (δi+qi)ξ(x, i)+
∑

j,i qi ju′′(x, j) = 0, 0 ≤ x ≤ b∗i ,
σ2

i
2 ξ
′′(x, i)+µiξ

′(x, i)− (δi+qi+γi)ξ(x, i)+
∑

j,i qi ju′′(x, j) = 0, x ≥ b∗i .

Recall that Y′(t) = x+ Xi(t). If Y′(0) = x ∈ (0,b∗i ), define τ0,b∗i := inf
{
t ≥ 0 : Y′(t) < (0,b∗i )

}
. From

(4.8), we know that M′′b∗(0, i) ≤ 0. Thus, from Proposition 4.6, we have ξ(Y′(τ0,b∗i ), i) ≤ 0. Applying
Itô formula to e−(δi+qi)tξ(Y′(t), i) yields that

ξ(x, i) = Ex

e−(δi+qi)τ0,b∗i ξ(Y′(τ0,b∗i ), i)+
∫ τ0,b∗i

0

∑
j,i

qi ju′′(Y′(s), j)

 ≤ 0.

If Y′(0)= x ∈ (b∗i ,∞), define τb∗i := inf
{
t ≥ 0 : Y′(t) < (b∗i ,∞)

}
. Since µi > 0,we know that Y′(∞)=∞.

From Corollary 4.5 (ii) and Proposition 4.6, we have ξ(Y′(τb∗i ), i)≤ 0. Similarly, applying Itô formula
to e−(δi+qi+γi)tξ(Y′(t), i) yields that ξ(x, i) ≤ 0. Hence, we proved the concavity of Mb∗(x, i).

It follows from Corollary 4.5 (ii) that M′b∗(∞, i) > 0. Therefore, the concavity of Mb∗(x, i) implies
that M′b∗(x, i) > 0 for all x ≥ 0, i.e., Mb∗(x, i) is increasing on [0,∞). �
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4.3 Verification of Mb∗(x, i)

In this subsection, we are going to verify the modulated barrier strategy πb∗ is optimal for the auxil-
iary problem (4.1).

From Proposition 4.3, it is easy to see Mb∗(0, i) = 0. It follows from Propositions 4.4 and 4.7 that
Mb∗(x, i) ∈C2([0,∞)) and it is nonnegative.

From Proposition 4.6 and the concavity of Mb∗(x, i) (see Proposition 4.7), it is easy to see that
M′b∗(x, i) ≥ 1 for x ∈ [0,b∗i ) and M′b∗(x, i) ≤ 1 for x ∈ [b∗i ,∞). Thus the maximum

max
0≤y≤x

{Mb∗(x− y, i)+ y}

is attained at y = 0 if x ∈ [0,b∗i ) and at y = x−b∗i if x ∈ [b∗i ,∞). Now, it follows from Proposition 4.4
that Mb∗(x, i) satisfies the HJB equation (4.2).

We have shown that Mb∗(x, i) satisfies the conditions of Theorem 4.2. Therefore, Mb∗(x, i) is the
value function of the auxiliary optimal problem (4.1), and the modulated barrier strategy πb∗ is the
optimal strategy.

Now, we can show the answer to the question raised at the beginning of this section, i.e., what
Un+1 is when Un is given. From Corollary 4.5, Proposition 4.7, we know that if u(x) ∈ D, then
Mb∗(x) ∈ D, where

Mb∗(x) = (Mb∗(x,1),Mb∗(x,2), · · · ,Mb∗(x,K))

and b∗ = (b∗1,b
∗
2, · · · ,b

∗
K). Obviously, 0 ∈D. Thus, from the definition of Un(x, i), it is easy to see that

Un(x) ∈ D, for n = 0,1,2, · · · . Furthermore, when Un(x) is given, Un+1(x, i) is given by (4.11) and
(4.12) with u replaced by Un.

5 Back to the Original Problem

5.1 The General Cases

Now, we consider the original problem (2.2). Since Un(x) ∈ D, for n = 0,1,2, · · · , we know V(x) ∈ D
as it is the point-wise limit of Un(x). From the results given in the preceding section, we know that
a modulated barrier strategy πb at some barrier level b = (b1,b2, · · · ,bK) will be a maximizer of the
right-hand-side in (3.4). Recalling Remark 3.7, such a modulated barrier strategy is also the optimal
strategy of the original problem (2.2).

There are two ways to get the value function the optimal barrier levels. The first method is
iteration which is described as:
Step 1: Set U0(x) ≡ 0;
Step 2: Find bn+1 by equation (4.13), and find Un+1(x) by (4.11) and (4.12);
Step 3: Stop when supx≥0,i∈J |Un+1(x, i)−Un(x, i)| < ε; otherwise, return to Step 2, where ε > 0 is the
desirable level of accuracy.
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The second method is to solve system of differential equations. From (4.8) and (4.9), the value
function V(x) and the optimal barrier levels b = (b1,b2, · · · ,bK) satisfy

σ2
i

2 V′′(x, i)+µiV′(x, i)− (δi+qi)V(x, i)+
∑

j,i qi jV(x, j) = 0, 0 ≤ x < bi,
σ2

i
2 V′′(x, i)+µiV′(x, i)− θiV(x, i)+γi [V(bi, i)+ x−bi]+

∑
j,i qi jV(x, j) = 0, x ≥ bi,

(5.1)

for all i ∈ J. The system (5.1) can be solved with the conditions

V(0, i) = 0,

V(bi−, j) = V(bi+, j),

V′(bi−, j) = V′(bi+, j),

V′(bi−, i) = 1,

V′′(∞, i) = 0,

(5.2)

for all i, j ∈ J.

5.2 The Special Case with Two Regimes

In the special case with two regimes, the first method, i.e. iteration is less efficient than solving the
system of differential equations. So we consider the second method in this subsection.

Without loss of generality, let 0 ≤ b1 ≤ b2. For solving the system (5.1), we have to consider the
following cases: x ∈ [0,b1), x ∈ [b1,b2) and x ∈ [b2,∞). Also, we need the following lemma. The
proof is similar to Lemma 3.1 in ? (see also ?).

Lemma 5.1. Let c1 and c2 be two strictly positive constants. The following system of equations on

(r, s) 0 =
σ2

1
2 r2+µ1r− (c1+q1)+q1s,

0 =
σ2

2
2 r2+µ2r− (c2+q2)+q2/s,

(5.3)

has four real roots (ri, si),i=1,2,3,4, and r1 < r2 < 0 < r3 < r4.

In the following, when we mention the roots of the system (5.3), ri, i = 1,2,3,4, are sorted as
r1 < r2 < 0 < r3 < r4.

If x ∈ [0,b1), the system (5.1) yields0 =
σ2

1
2 V′′(x,1)+µ1V′(x,1)− (δ1+q1)V(x,1)+q1V(x,2),

0 =
σ2

2
2 V′′(x,2)+µ2V′(x,2)− (δ2+q2)V(x,2)+q2V(x,1).

(5.4)
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The solution of the above system of differential equation is given byV(x,1) = A1er1x+A2er2x+A3er3x+A4er4x,

V(x,2) = A1s1er1x+A2s2er2x+A3s3er3x+A4s4er4x,

where (ri, si), i= 1,2,3,4, are the four roots of the system (5.3) with ci = δi, i= 1,2, and Ai, i= 1,2,3,4
are constants to be determined.

If x ∈ [b1,b2), the system (5.1) yields
0 =

σ2
1

2 V′′(x,1)+µ1V′(x,1)− (
δ1+γ1+q1

)
V(x,1)+q1V(x,2)

+γ1 [x−b1+V(b1,1)] ,

0 =
σ2

2
2 V′′(x,2)+µ2V′(x,2)− (δ2+q2)V(x,2)+q2V(x,1).

(5.5)

The solution of the above system is given byV(x,1) = B1er̂1(x−b1)+B2er̂2(x−b1)+B3er̂3(x−b1)+B4er̂4(x−b1)+ k1x+ l1,

V(x,2) = B1 ŝ1er̂1(x−b1)+B2 ŝ2er̂2(x−b1)+B3 ŝ3er̂3(x−b1)+B4 ŝ4er̂4(x−b1)+ k2x+ l2,

where (r̂i, ŝi), i = 1,2,3,4, are the four roots of the system (5.3) with c1 = δ1 + γ1,c2 = δ2, Bi, i =

1,2,3,4 are constants to be determined, and

k1 =
(q2+δ2)γ1

(γ1+q1+δ1)(q2+δ2)−q1q2
, k2 =

q2γ1

(γ1+q1+δ1)(q2+δ2)−q1q2
,

l1 =
k1

γ1

[
k1µ1+

γ1+q1+δ1
q2

µ2k2+γ1 (V(b1,1)−b1)
]
− µ2

q2
k2,

l2 =
k2

γ1

[
k1µ1+

γ1+q1+δ1
q2

µ2k2+γ1 (V(b1,1)−b1)
]
.

If x ∈ [b2,∞), the system (5.1) yields

0 =
σ2

1
2 V′′(x,1)+µ1V′(x,1)− (

δ1+γ1+q1
)
V(x,1)+q1V(x,2)

+γ1 [x−b1+V(b1,1)] ,

0 =
σ2

2
2 V′′(x,2)+µ2V′(x,2)− (

δ2+γ2+q2
)
V(x,2)+q2V(x,1)

+γ2 [x−b2+V(b2,2)] .

(5.6)

The solution of the above system is given byV(x,1) =C1er̃1(x−b2)+C2er̃2(x−b2)+C3er̃3(x−b2)+C4er̃4(x−b2)+ k̃1x+ l̃1,

V(x,2) =C1 s̃1er̃1(x−b2)+C2 s̃2er̃2(x−b2)+C3 s̃3er̃3(x−b2)+C4 s̃4er̃4(x−b2)+ k̃2x+ l̃2,

where (r̃i, s̃i), i = 1,2,3,4, are the four roots of the system (5.3) with ci = γi + δi, i = 1,2, and Ci,
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i = 1,2,3,4, are constants to be determined, and

k̃1 =
q1γ2+γ1(γ2+q2+δ2)

(γ1+q1+δ1)(γ2+q2+δ2)−q1q2
, k̃2 =

q2γ1+γ2(γ1+q1+δ1)
(γ1+q1+δ1)(γ2+q2+δ2)−q1q2

,

l̃1 =
q1µ2k̃2+ (γ2+q2+δ2)µ1k̃1+q1γ2 (V(b2,2)−b2)+γ1(γ2+q2+δ2) (V(b1,1)−b1)

(γ1+q1+δ1)(γ2+q2+δ2)−q1q2
,

l̃2 =
q2µ1k̃1+ (γ1+q1+δ1)µ2k̃2+q2γ1 (V(b1,1)−b1)+γ2(γ1+q1+δ1) (V(b2,2)−b2)

(γ1+q1+δ1)(γ2+q2+δ2)−q1q2
.

The constants Ai,Bi,Ci, i = 1,2,3,4, and the barrier levels b1 and b2 can be obtained from the
condition (5.2).

Example 5.2. We choose all the parameters except γi as in ? which are listed in Table 5.1.

i µi σi qi δi

1 0.06 0.24 2 0.04
2 0.08 0.30 3 0.05

Table 5.1: The parameter-set

By the using of the function FindRoot of Mathematica, we calculate the optimal barrier levels
for different γi, i = 1,2. The result is given in Table 5.2‡. The value (1.050,1.070) for γ1 = γ2 =∞
is taken from ?. We can see that both of the optimal barrier levels monotonically increase when
γi, i = 1,2 increase, and they convergence to the case with γ1 = γ2 =∞ . This is consistent with the
arguments of ? (see Page 50).

γ1

10 50 100 200 500 ∞

γ2

10 (0.9959, 1.0059) - - - - -

50 (1.0062, 1.0338) (1.0264, 1.0405) (1.0323, 1.0417) (1.0367, 1.0422) (1.0408, 1.0426) -

100 (1.0081, 1.0418) (1.0274, 1.0480) (1.0333, 1.0490) (1.0376, 1.0496) (1.0417,1.0499) -

200 (1.0090, 1.0477) (1.0279, 1.0535) (1.0337, 1.0545) (1.0381, 1.0551) (1.0421, 1.0554) -

500 (1.0096, 1.0532) (1.0282, 1.0586) (1.0340, 1.0600) (1.0383, 1.0602) (1.0424, 1.0605) -

∞ - - - - - (1.050, 1.070)

Table 5.2: The optimal (b1,b2) for different γi, i = 1,2

Appendix

In this appendix, we show that the equation (4.13) admits a root in (0,∞). Since h′(x) > 0, (4.13) is
equivalent to

∆′i(b)
[
si
δi+qi

θi
· hi(b)
h′i(b)

−1
]
= ∆i(b)

[
si
δi+qi

θi
−

h′′i (b)
h′i(b)

]
. (A.1)

‡When γ2 = 10 and γ1 = 50, · · · ,500, the results show that b1 > b2. So we do not list them here.
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Let

f (b) = ∆′i(b)
[
si
δi+qi

θi
· hi(b)
h′i(b)

−1
]
−∆i(b)

[
si
δi+qi

θi
−

h′′i (b)
h′i(b)

]
.

Obviously, f (b) is continuous. From Sections 7 and 8 of ?, we know that

h′′i (b0)
h′i(b0)

= si
δi+qi

θi
,

where

b0 =
1

αi−βi
ln
β2

i

α2
i

+
1

αi−βi
ln

ri−αi

ri−βi
> 0.

Noting that the left-hand-side of (A.1) is positive, h′′i (b)/h′i(b) is increasing and ∆i(b) < 0, we have
f (0) > 0. To estimate f (∞), we can write

f (b) = F1(b)−F2(b)−F3(b)−F4(b)

where

F1(b) =
2
(
si
δi+qi
θi
−αi

)
σ2

i (αi−βi)
eαib

[(
si
δi+qi

θi
· hi(b)
h′i(b)

−1
)
− 1
αi

(
si
δi+qi

θi
−

h′′i (b)
h′i(b)

)]∫ b

0
e−αiy

∑
j,i

qi ju′(y, j)dy;

F2(b) =
2
(
si
δi+qi
θi
−βi

)
σ2

i (αi−βi)
eβib

[(
si
δi+qi

θi
· hi(b)
h′i(b)

−1
)
− 1
βi

(
si
δi+qi

θi
−

h′′i (b)
h′i(b)

)]∫ b

0
e−βiy

∑
j,i

qi ju′(y, j)dy;

F3(b) =
2
σ2

i

[(
si
δi+qi

θi
· hi(b)
h′i(b)

−1
)
− 1

ri

(
si
δi+qi

θi
−

h′′i (b)
h′i(b)

)]∫ ∞

b
eri(b−y)

∑
j,i

qi ju′(y, j)dy;

F4(b) =
(
si
µiai

θi
−ai

)(
si
δi+qi

θi
−

h′′i (b)
h′i(b)

)
.

Note that hi(b)/h′i(b)→ 1/αi, h′′i (b)/h′i(b)→ αi as b→∞. Since

∫ b

0
e−αiy

∑
j,i

qi ju′(y, j)dy ≤ 1
αi

∑
j,i

qi ju′(0, j),

by the de’l Hopital’s rule,

eαib
[(

si
δi+qi

θi
· hi(b)
h′i(b)

−1
)
− 1
αi

(
si
δi+qi

θi
−

h′′i (b)
h′i(b)

)]
→ 0,

we have F1(b)→ 0, as b→∞. Recalling u ∈ D, we have

eβib
∫ b

0
e−βiy

∑
j,i

qi ju′(y, j)dy ≤ eβib

∑
j,i

qi ju(b, j)−
∑
j,i

qi ju(0, j)

→ 0, as b→∞.
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Thus, F2(b)→ 0, as b→∞. Recalling∫ ∞

b
eri(b−y)

∑
j,i

qi ju′(y, j)dy→ 0, as b→∞,

we have F3(b)→ 0, as b→∞. Since h′′i (b)/h′i(b) is increasing, and siµi−θi = −σ2
i s2

i /2 < 0, we have

F4(b)→
(
si
µiai

θi
−ai

)(
si
δi+qi

θi
−αi

)
> 0, as b→∞.

Thus we have
f (b)→−

(
si
µiai

θi
−ai

)(
si
δi+qi

θi
−αi

)
< 0, as b→∞.

Then the continuity of f (b) yields that equation (4.13) has root in (0,∞).
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