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Abstract: 

This paper presents finite element formulae for calculating accurately the internal forces, 

namely bending moment and shear force, of Bernoulli-Euler beams under moving vehicles. 

The formulae for evaluating these internal forces are derived based on the dynamic 

equilibrium conditions and the solution procedure is also given. The correctness of the 

proposed formulae is verified by comparing with available closed-form solutions. The internal 

forces of simply supported and continuous beams subjected to moving vehicles are obtained 

by several methods. The numerical results show that the proposed formulae are efficient and 

accurate in predicting the internal forces.  
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1. Introduction 

The dynamic analysis of flexible structures under moving loads has been of interest to 

engineers for many years. The dynamic response of the moving load problem may be 

determined by modal analysis using a series expansion of the trial solution in terms of the 

eigenfunctions of the undamped and unloaded continuous system [1-3]. This conventional 

series expansion method (CSEM) quickly converges to the solution for deflection. However, 

to obtain the generalized internal forces, such as bending moment and shear force, 

convergence is very slow as it involves the higher-order derivatives.  

To overcome the drawback of CSEM, some researchers used various series expansions to 

evaluate the internal forces in three classes of problems, i.e. the moving force problem, the 

moving mass problem, and the moving oscillator or vehicle problem. Frýba [3] introduced 

two methods to calculate the internal forces in beams, including the integro-differential 

equation method using the influence functions of internal forces, and the combined method 

using CSEM in conjunction with integro-differential equations. Pesterev and Bergman [4] 

proposed an improved series expansion for calculating the internal forces in beams for cases 

of moving forces and oscillators. In this method, the beam response is evaluated as the sum of 

the conventional modal series expansion and a correction function, which takes into account 

approximately the contribution associated with the truncated higher-order eigenfunctions. A 

further improvement has also been proposed later by Pesterev et al. [5]. Biondi et al. [6] 

presented two improved expansion methods for calculating the internal forces in beams for 

the moving mass problem. In the first method, the response is evaluated by considering the 

particular solution of the differential equation governing the moving mass problem associated 

with the truncated terms of the eigenfunction expansion. The second one can be considered as 

an extension of CSEM, in which the eigensolutions of the undamped system are evaluated 

taking into account the inertial effects of moving masses. Biondi and Muscolino [7] proposed 

another series expansion method with improved convergence and accuracy for calculating the 

internal forces in beams taking into account the gravitational, inertial and damping effects due 
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to the moving oscillators. Bilello et al. [8] presented a correction procedure to improve the 

evaluation of the dynamic response of linear, proportionally damped, continuous one-

dimensional systems traversed by moving loads including a moving force and a moving mass. 

The method is based on the separation of the low-frequency response evaluated by CSEM and 

the high-frequency response that is obtained as a series expansion of the particular solution. 

The above-mentioned researchers have adopted various series expansions to evaluate the 

internal forces along continuous structures under moving forces, moving masses and moving 

oscillators, and can capture the discontinuity in the internal forces due to these moving loads. 

However it is difficult to obtain the eigenfunctions required by CSEM. 

The finite element method (FEM) has been used to solve various forms of moving load 

problems, providing results of displacement, acceleration and bending moment at critical 

sections of a beam, but little work has addressed the internal force distributions. In modelling 

internal forces distribution in moving load problems, the accuracy of FEM is often considered 

inferior to CSEM [7]. Subsequently finite element formulae [9, 10] have been presented to 

calculate the internal forces in beams supported on discrete or continuous foundations under 

moving forces. 

This paper presents finite element formulae for calculating the internal forces, namely 

bending moment and shear force, at any arbitrary sections (including the element nodes) of a 

Bernoulli-Euler beam under moving vehicles. The proposed formulae can efficiently capture 

discontinuities in the variation of shear force along simply supported and continuous beams 

under moving forces or vehicles. 

 

2. Modelling of a train-bridge interaction system 

2.1. Models of vehicle and bridge 

Fig. 1 shows a train comprising a series of identical vehicles running on a multi-span 

continuous bridge. The train comprises vN  identical vehicles numbered as 1, 2, , vN -th 

from right to left and proceeds at speed v  and acceleration a  at time t  in the longitudinal 
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direction. Each vehicle in the train is modelled as a mass-spring-damper system consisting of 

a car body, two bogie frames, four wheelsets and two-stage suspensions. All the wheelsets are 

assumed to contact rigidly and continuously with the rails as they roll over. Each vehicle has 

6 independent degrees of freedom (DOFs), including the vertical displacement and rotation at 

the centre of gravity of each of the car body, and rear and front bogie frames. It is assumed 

that downward vertical displacements and clockwise rotations of vehicle are taken as positive 

and that they are measured with reference to their respective static equilibrium positions 

before coming onto the bridge. 

In short bridges, the presence of the track structure may increase the overall damping; it 

may as well reduce the response to some extent due to the distribution of axle loads in the 

longitudinal direction [11]. Nevertheless, aside from these facts, the effect of the track on the 

dynamic response of a bridge structure under a moving train is not of great importance [12], 

and consequently the bridge deck and the track have been modelled as a Bernoulli-Euler beam 

structure. Downward deflection of beam is taken as positive and it is measured with reference 

to the vertical static equilibrium positions of the bridge under its permanent loading but in the 

absence of vehicles. The top surface irregularity of beam is denoted by )(xr  in terms of the 

length abscissa x, with downward deviation considered positive. The physical parameters for 

modelling the vehicle and bridge interaction system are taken from Wu and Yang [13], and 

Yang and Wu [14] as shown in Fig. 2 and summarized in Table 1. 

2.2. Equation of motion for a train-bridge interaction system 

Similar to the train-track-bridge interaction system modelled by Lou [15], one can obtain 

the equation of motion for a train-bridge interaction system in terms of the acceleration 

vectors X , the velocity vectors X , the displacement vectors X, the force vectors F, the mass 

matrices M, the stiffness matrices K and the damping matrices C as 
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where the subscripts “v” and “b” denote the vehicle and bridge, respectively, as elaborated 

below. 

2.2.1 Displacement vectors 

The displacement vector of vehicles vX  of order 1)(6 v N  can be written as 

T
vv2v1v ][

vNXXXX                                                                        (2) 

where the superscript “T” denotes transpose of matrix, and jvX  ( j =1, 2, , vN ) of order 

61  denotes the displacement vector of the j-th vehicle given as 

][ t2t2t1t1ccv jjjjjjj yyy X                                                       (3) 

The displacement vector of the bridge bX  of order 1b N  can be written as 

T
bb2b1b ][

bNqqq X                                                                           (4) 

where bN  denotes the total number of DOFs of the bridge. 

2.2.2 Matrices of the vehicles 

The mass matrix of vehicles vM  of order )(6)(6 vv NN   can be written as 

][diag
vvv2v1v NMMMM                                                                (5) 

where jvM  of order 66  denotes the mass matrix of the j-th vehicle given as 

]diag[ ttttccv JmJmJmj M                                                        (6) 

The stiffness matrix of vehicles vK  of order )(6)(6 vv NN   can be written as 

][diag
vvv2v1v NKKKK                                                                  (7) 

where jvK  of order 66  denotes the stiffness matrix of the j-th vehicle given as 
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The damping matrix of vehicles vC  of order )(6)(6 vv NN   can be obtained by simply 

replacing “ks” and “kp” in the corresponding stiffness matrix vK  by “cs” and “cp”, 

respectively. 

 

2.2.3 Matrices of the bridge 

The cubic Hermitian functions are used as shape functions of the beam element. The 

mass matrix bM  of order bb NN   of the bridge can be written as 

b2b1b MMM                                                                                               (9) 
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where b1M  represents the overall mass matrix of the bridge itself obtained by assembling all 

its element mass matrices 
l

m
0

T
b dNN  of order 44 , in which bm  denotes the mass per 

unit length of beam,   denotes the local coordinate measured from the left node of element 

that has a total length of l , and ][ 4321 NNNNN ; b2M  represents the overall mass 

matrix induced by all wheel masses; the solid circles (●) in the beam as shown in Fig. 2 

denote the nodes of the elements; each of j1 , j2 , j3  and j4  for wheelsets from right to 

left of the j-th vehicle respectively denotes the distance between the wheelset and the left 

node of the beam element under the wheelset; and hjN  of order b1 N  are the shape function 

matrices for the beam element which is evaluated at the position of the h-th wheelset of the j-

th vehicle.  

The stiffness matrix bK  of bridge of order bb NN   can be expressed as 
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b2b1b KKK                                                                                              (10) 
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where b1K  represents the overall stiffness matrix of the bridge itself obtained by assembling 

all its element stiffness matrices  
l

IE
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T
bb dNN  of order 44 , in which bE  denotes 

Young’s modulus of beam, bI  denotes moment of inertia of beam, and the prime denotes 

differentiation with respect to the local coordinate  ; and b2K  represents the overall stiffness 

matrix induced by all vehicles. 

Similarly, the damping matrix of bridge bC  of order bb NN   can be written as 

b2b1b CCC                                                                                                 (11) 
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where b1C  represents the overall damping matrix of the bridge itself, which is constructed 

based on Rayleigh damping using the constants   and   obtained from the damping ratio 

  and the first two natural circular frequencies of the bridge 1  and 2  [13, 16]; and b2C  

represents the overall damping matrix induced by all vehicles. 

2.2.4 Matrices to account for vehicle-bridge interaction 

The stiffness matrices vbK  of order bv )6( NN   and bvK  of order )6( vb NN  , 

and damping matrices vbC  of order bv )6( NN   and bvC  of order )6( vb NN   induced 

by the interaction between the vehicles and the bridge can be written, respectively, as 
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where 
ij bvK  and 

ji vbK  represent the stiffness matrices induced by the interaction between 

the i-th wheelset of the j-th vehicle and the bridge, and 
ij bvC  and 

ji vbC  are the 

corresponding damping matrices (Fig. 2); 
1bv j

K , 
2bv j

K , 
1bv j

C  and 
2bv j

C  consist of zero 

row vectors except for those corresponding to the two DOFs of front bogie frame of the j-th 

vehicle, while 
jvb1

K , 
jvb2

K , 
jvb1

C  and 
jvb2

C  consist of similar column vectors. 

Accordingly, 
3bv j

K , 
4bv j

K , 
3bv j

C ,
4bv j

C ,
jvb3

K , 
jvb4

K , 
jvb3

C  and 
jvb 4

C  are formed by 

row or column vectors where the only nonzero elements correspond to the two DOFs of the 

rear bogie. 

2.2.5 Load vectors of vehicles and bridge 

The load vector vF  of the vehicles of order 1)(6 v N  can be written as 

T
vv2v1v ][

vNFFFF                                                                          (16) 

where the load vector of the j-th vehicle jvF  of order 16  is 
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The load vector of bridge bF  of order 1b N  can be written as 
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where hjbF  represents the load vectors induced by the h-th wheelset of the j-th vehicle acting 

on the bridge. 

After introducing the boundary conditions, Eq. (1) can be solved by time integration 

such as the Newmark-   method or Wilson-  method [17] to obtain simultaneously the 

dynamic responses of train and bridge. Eq. (1) has been written on the assumption that vN  

vehicles are acting on the bridge. If certain vehicles are not on the bridge, the corresponding 

rows and columns in the matrix equation should be deleted. 

 

3. Formulae for calculating the internal forces at the beam nodes  

At time t , the generalized displacement, velocity and acceleration at each beam node can 

be obtained by time integration from Eq. (1). The forces transmitted to the beam by the 

moving wheelsets at the contacts can be obtained from 
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where e
hjq  denotes the generalized displacement vector of the beam element under the h-th 

wheelset of the j-th vehicle. 

From the dynamic equilibrium of each beam element [18], the nodal element force vector 

ef  may be obtained from the inertial force vector e
bqm  , the damping force vector e

bqc  , the 

elastic force vector e
bqk , and the equivalent nodal force vector Ef  as 

E
e

b
e

b
e

b
e fqkqcqmf                                                                          (20) 

where bm , bc  and bk  are the element mass, damping and stiffness matrices, respectively; 

the element damping matrix is similarly taken as bbb kmc    based on Rayleigh 

damping; eq , eq  and eq  denote the acceleration, velocity and displacement vectors 

respectively at the element nodes; and the equivalent nodal force vector Ef  results from all 

forces acting on the beam element. The nodal element force ef  can be expressed as 

Te
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e
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e
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e
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e ][ MQMQf  as shown in Fig. 3. 

In the conventional FEM, the nodal element forces and moments can be calculated based 

on the higher derivatives of displacement at the nodes as 
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Eq. (21) only accounts for the third term on the right hand side of Eq. (20) and neglects the 

inertial force, the damping force and the equivalent nodal forces. This is why FEM has been 
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considered inaccurate [7] in the evaluation of internal forces along a beam under moving 

loads. 

 

4. Formulae for calculating the internal forces at arbitrary sections of beam 

If one is interested in the internal forces along a beam, it is unrealistic to use Eq. (20) 

direct, as very short beam elements must be adopted with dramatic increase in problem size. It 

is desirable to develop a method for calculating the internal forces at arbitrary positions of the 

beam. Fig. 4 shows point A at an arbitrary section of the beam between two adjacent nodes, 

such that there are h  number of forces acting between the left node of the element and point 

A at time t . From dynamic equilibrium of the free body shown in Fig. 4, the shear force AQ  

and bending moment AM  at point A can be obtained as 
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where s  denotes the distance between the left node of the element and the s-th force sP , A  

denotes the distance between the left node of the element and point A, and e
lQ  and e

lM  can 

be obtained from Eq. (20). As material damping is internal [19] and it has been modelled 

separately, no damping force appears in Eqs. (22-a) and (22-b). 

If bm  is constant, Eqs. (22-a) and (22-b) can be written, respectively, as 
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where E,1f  and E,2f  are the equivalent nodal force and moment at left node of beam element, 

respectively. 

Eqs. (22) and (23) can give the internal forces at any arbitrary section in a beam element 

including both nodes, while Eq. (20) can only give the internal forces at the nodes. 

The conventional finite element formulae for calculating the shear force and bending 

moment at point A can be expressed as 
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Eq. (21) is a special case of Eqs. (26-a) and (26-b), which are consistent with the lower half of 

Eq. (21) for lA .  
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Compared with the proposed formulae in Eqs. (22-a) and (22-b), Eq. (26-a) only considers 

part of the second term e
lQ  on the right hand side of Eq. (22-a), and Eq. (26-b) only considers 

part of the first term A
e
l Q  and the third term e

lM  on the right hand side of Eq. (22-b). 

Therefore compared with Eqs. (20), (22-a) and (22-b), Eq. (26-a) neglects the first and third 

terms on the right hand side of Eq. (22-a), Eq. (26-b) neglects the second and fourth terms on 

the right hand side of Eq. (22-b), and both Eq. (26-a) and Eq. (26-b) neglect the first, second 

and fourth terms on the right hand side of Eq. (20).  

 

5. Solution procedure 

The solution procedures for efficiently evaluating the internal force distribution along a 

beam under moving vehicles are as follows. 

(a) Obtain the displacement, velocity and acceleration of each DOF of vehicles and beam at 

time t  by time integration from Eq. (1). 

(b) Calculate the forces 
hjPw

 transmitted to the beam by the moving wheelsets at the contacts 

using Eq. (19).  They will become the force sP  in Eqs. (22) and (23).     

(c) For any arbitrary position x  along the beam and at time t , first calculate the force e
lQ  

and moment e
lM  at the left node of the beam element that contains position x  by Eq. 

(20). Then calculate the shear force ),( txQ  and bending moment ),( txM  by Eqs. (22) 

and (23) for 0x , x , x2 , …, L , where x  is a suitable length increment and L  is 

the length of beam. 

 

6. Numerical examples 

Three numerical examples are presented to illustrate the application of the proposed 

formulae in the evaluation of internal forces of beams under moving loads.   

Unless otherwise stated, the following assumptions are made:  

(a) The beam surface is smooth;  
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(b) The damping of beam is neglected; 

(c) The loads are moving at constant velocity; 

(d) The problems are solved by the Wilson-  method with  =1.4, and the length covered 

by moving force or vehicle in each time step t  is 0.01 m; and  

(e) The interval between adjacent sections for the evaluation of internal force distributions 

along the beam is also taken to be x = 0.01 m.    

 
6.1. Example 1. A simply supported beam under a moving constant force 

Consider a simply supported beam with a single span L  of 20 m, a moment of inertia bI  

of 3.81 m4, Young’s modulus bE  of 29430 MPa and a unit mass bm  of 34,088 kg/m, of 

which the fundamental frequency is 1 44.75 rad/s. A concentrated force with magnitude P 

215.6 kN runs over the beam from left to right. When the force is at the left end of the beam 

(i.e. t = 0), the beam is at rest. The velocity parameter   is defined as Lv 1/   for 

presentation of results. 

Figs. 5-7 plot the dynamic magnification factors M1D , M2D  and M3D  for bending 

moment obtained by the proposed formula, i.e. Eq. (22-b) or (23-b), and the conventional 

finite element formula, i.e. Eq. (26-b), with 4 and 8 beam elements of equal lengths against 

the velocity parameter  , respectively, which are defined as  

st1M1 / MMD  ,         st2M2 / MMD  ,         st3M3 / MMD                                      (27) 

where 1M  denotes the maximum dynamic bending moment of all beam sections for velocity 

parameter  , 2M  denotes the maximum dynamic bending moment of the beam section 

beneath the moving force for velocity parameter  , 3M  denotes the maximum dynamic 

bending moment of the mid-span beam section for velocity parameter  , and stM  is the 

static bending moment of the mid-span beam section for a force P acting there (i.e. 

4/st PLM  ).  
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The closed-form solutions for M1D , M2D  and M3D  using the first 7 eigenfunctions in 

the series expression are also plotted in Figs. 5-7, respectively. The closed-form solutions are 

based on the formula given by Warburton [20], namely 
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where the term    is included only if vtx  .  

Figs. 5-7 show excellent agreement between the present and closed-form solutions. The 

maximum absolute values of deviations of M1D , M2D  and M3D  of the present solutions with 

8 and 4 elements from the closed-form solutions are 0.81% and 1.88%, respectively, which 

shows that the accuracy is insensitive to mesh fineness. However, the maximum absolute 

values of deviations of M1D , M2D  and M3D  of the conventional finite element solutions with 

8 and 4 elements from the closed-form solutions are 7.69% and 16.89%, respectively, which 

shows not only the lower accuracy but also that the accuracy drops when the number of 

elements decreases.   

Fig. 8 compares the dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed method with 8 elements versus velocity parameter  . Firstly, the maximum values 

of both M1D  and M2D  are 1.55, occurring at 525.0 , while the maximum value of M3D  

is 1.447, occurring at 36.0 . As M3D  never exceeds M1D  for the same velocity 

parameter, the use of M3D  (i.e. based on mid-span) for design is inadequate. Secondly, for the 

velocity parameter range 66.0  (i.e. v  676.9 km/h) that covers the common velocities, 

M1D  and M2D  are the same, which means that the maximum ),( txM  occurs at the section 

beneath the moving force, i.e. vtx  . If one needs the dynamic magnification factor for 

bending moment within the velocity parameter range 66.0 , one may calculate M2D  

instead of M1D , which will be much faster. 
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In the following verification of shear force, except for the velocity of the constant 

moving force that is taken as 50 m/s, the other parameters are the same as those in the above 

verification of bending moment. The distributions of shear force along the beam obtained by 

the proposed formula, i.e. Eq. (22-a) or (23-a), and the conventional finite element formula, 

i.e. Eq. (26-a), with 4 elements of equal lengths, and the closed-form solution with i =1-200 

are plotted in Fig. 9 for the instant when the traversed length of the force is 12 m, i.e. t = 0.24 

s.  The shear force from the closed-form solution of Timoshenko et al. [21] with i =1-200 is 
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Fig. 9 shows excellent agreement of the shear force distribution between the closed-form 

solution and the present solution even though only 4 elements have been used. However, the 

conventional finite element method errs seriously especially with the use of coarse meshes, 

which further confirms the discussions at the end of Section 4. The high frequency 

oscillations around discontinuity indicate the presence of Gibbs phenomenon in the closed-

form solution. This example also illustrates that the proposed formulae are accurate and free 

from Gibbs oscillations. 

 
6.2. Example 2.  A simply supported beam under a moving four-wheelset vehicle 

Consider a four-wheelset vehicle with two-stage suspension system travelling over a 

simply supported beam of length 30 m. The parameters of the vehicle and the beam are those 

in Table 1 unless otherwise stated. The beam is at rest at time t = 0 s when the front wheelset 

of the front bogie runs onto the left end of the beam. 

For the solution by CSEM, the bending moment ),( txM  and shear force ),( txQ  of the 

simply supported beam under a moving vehicle are given, respectively, as 



 18

 








n

i
i LxiLiAIE

x

txy
IEtxM

1

2
bb2

2

bb )/sin()/(
),(

),(                             (30) 

 








n

i
i LxiLiAIE

x

txy
IEtxQ

1

3
bb3

3

bb )/cos()/(
),(

),(                               (31) 

where ),( txy  denotes the vertical displacement of beam at position x  and time t  as given by 

Biggs [22] as 


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n

i
i LxiAtxy
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)/sin(),(                                                                              (32) 

in which iA  denoting the amplitude of the i-th eigenfunction can be determined by the modal 

coordinate method of Lou et al. [23] as a function of time. 

The case with vehicle velocity of 50 m/s is analysed by the proposed formulae, i.e. Eqs. 

(22) and (23), and the conventional finite element formulae, i.e. Eqs. (26-a) and (26-b), with 4 

elements of equal lengths, as well as the CSEM, i.e. Eqs. (30) and (31), with n=200 for shear 

force and n=50 for bending moment. From the distributions of shear force and bending 

moment along the beam shown in Figs. 10 and 11 respectively for the instant when the 

traversed length of the vehicle is 24 m, i.e. t = 0.48 s, excellent agreement is observed 

between the present solution and that by CSEM even though only 4 elements are used, while 

the conventional finite element solution performs fairly as explained before. In addition, to 

study the convergence of the CSEM, the distributions of shear force and bending moment are, 

respectively,  plotted in Figs. 12 and 13 for n=10, 50, and 200.  Obviously the convergence 

for the shear force is slower than that for the bending moment. 

Fig. 10 shows that, while the proposed formula can capture accurately discontinuities in 

shear force under the wheelsets at x = 4 m, 6.5 m, 21.5 m and 24 m without any Gibbs 

oscillations, the conventional finite element formula cannot even capture four discontinuities 

because of the coarse mesh used. Fig. 12 shows that CSEM with n=10 cannot capture 

discontinuities in shear force, but convergence improves when the number of eigenfunctions 

used increases. Although discontinuities in shear force can be captured by CSEM with n=200, 

Gibbs phenomenon also occurs.  
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The vehicle velocity is varied from 10 m/s to 200 m/s at 2.5 m/s intervals for further 

analysis. Figs. 14-16 plot, respectively, the dynamic magnification factors M1D , M2D  and 

M3D  against the velocity, for bending moments obtained by three different procedures: the 

proposed formula, i.e. Eqs. (22-b) or (23-b), the conventional finite element formula, i.e. Eq. 

(26-b), with 4 and 8 beam elements of equal lengths, and the CSEM, i.e. Eq. (30) with n=50. 

To apply the definitions of M1D , M2D  and M3D  in Eq. (27) here, 2M  is taken as the 

maximum dynamic bending moment of the sections beneath the four wheelsets, while stM  is 

taken as the maximum static bending moment of the mid-span section caused by the moving 

4-axle vehicle. Figs. 14-16 show excellent agreement between the present solutions just using 

4 elements and the solutions by CSEM with n=50. However significant differences are 

observed between the conventional finite element solutions even using 8 elements and the 

solutions by CSEM with n=50. The accuracy and convergence of the present solution and the 

CSEM are further studied by evaluating the dynamic magnification factor M1D  for vehicle 

velocity of 80 m/s and beam damping ratios of 0, 0.025 and 0.05. Table 2 shows the results of 

the present solution using meshes of different fineness, while Table 3 shows those by CSEM 

using different numbers of modes. Convergence is studied by comparison with their 

respective most accurate results. They show that damping has little effect on the rate of 

convergence. 

Fig. 17 compares the dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity. As M3D  never exceeds M1D  for the same 

velocity, the use of dynamic magnification factor M3D  (i.e. based on mid-span) for design is 

inadequate. Secondly, for the same velocity, M1D  and M2D  are the same, which means that 

the maximum value of ),( txM  occurs at the sections beneath the four wheelsets. Therefore, 

if the dynamic magnification factor for bending moment is of interest, one may calculate M2D  



 20

instead of M1D , which will be much faster.  For example, to compute M1D , M2D  and M3D  in 

this case needs 45383 s, while it only takes 326.5 s to compute M2D  and M3D . 

Some of the parameters are then varied to evaluate their effects on the dynamic 

magnification factors M1D , M2D  and M3D . As opposed to the case shown in Table 1 with a 

small mass ratio of the vehicle to the beam of about 5%, a hypothetical case of a large mass 

ratio of about 0.795 is studied with bm = 2303 kg/m and Ib = 2.9 m4 with the results shown in 

Fig. 18. Figs. 19 and 20 show respectively the results of two other cases of span lengths of 20 

m and 40 m, while the other parameters are from Table 1. Figs. 18 to 20 all show that the 

previous conclusions related to the dynamic magnification factors are still valid. 

 Because of the presence of top surface irregularities, Coriolis and centripetal inertial 

forces are induced [24]. The Coriolis and centripetal effects are associated with the 

appropriate terms which contain v  or 2v  in matrices b2K , b2C  and 
ij bvK , vectors jvF  and 

hjbF ,  )(w ty hj  and )(w ty hj . The following cases are used to evaluate their effects on the 

dynamic magnification factors M1D  and M3D : 

(a)  Case 1: Without beam irregularities; Coriolis / centripetal effects neglected 

(b)  Case 2: Without beam irregularities; Coriolis / centripetal effects included 

(c)  Case 3: With beam irregularities; Coriolis / centripetal effects neglected 

(d)  Case 4: With beam irregularities; Coriolis / centripetal effects included 

For those cases with beam irregularities, an isolated irregularity given in terms of the 

length abscissa x as 2/)/2cos1(~)( alxaxr   with a maximum depth a~ =1.5 mm and 

length al = 4 m is symmetrically located at mid-span. Figs. 21 and 22 show, respectively, the 

dynamic magnification factors M1D  and M3D  versus velocity. For the cases without 

irregularities, the Coriolis and centripetal effects are negligible as the slope and curvature of 

deflection of the stiff beam are small and hence there is little effect on the forces 
hjPw

 in Eq. 

(19). However, for the cases with irregularities, M1D  and M3D  are underestimated when the 
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Coriolis and centripetal effects are neglected, as the irregularities, and the Coriolis and 

centripetal forces have significant effects on the forces 
hjPw

 in Eq. (19). 

 

6.3. Example 3. A three-span continuous beam under a moving train 

Consider a three-span continuous beam (3×30 m) under a moving train comprising three 

identical four-wheelset vehicles at centre-to-centre spacing of 25 m with the parameters given 

in Table 1. The case with train velocity of 50 m/s is analysed by the proposed formulae and 

the conventional finite element formulae with 12 elements of equal lengths. It is assumed that 

the beam is at rest at time t = 0 s when the first wheelset of the first vehicle runs onto the left 

end of the beam. Figs. 23 and 24 show the internal force distributions along the beam at time t 

= 1.5 s when the first wheelset of the first vehicle is at the middle of the right end span. The 

present method can accurately capture the kinks in bending moment and the discontinuities in 

shear force, which are associated with the positions of wheelsets. The results from the 

conventional finite element formulae are governed by the finite element mesh and thus 

erroneous. The present method is superior in correctly evaluating the shear forces around 

interior supports. 

Then the train velocity is varied from 10 m/s to 200 m/s at 2.5 m/s intervals for evaluation 

of the dynamic magnification factors using 24 elements of equal lengths. For calculation of 

M1D , M2D  and M3D  here using Eq. (27), 2M  is taken as the maximum dynamic bending 

moment of the beam sections beneath all wheelsets for the velocity, while stM  is taken as the 

maximum static bending moment of the central mid-span beam section. The dynamic 

magnification factors shown in Fig. 25 confirm the conclusions drawn in Example 2. Again 

for the same velocity, M3D  never exceeds M1D , and M1D  and M2D  are the same. 

 

7. Conclusions 

Based on the conditions of dynamic equilibrium, this paper presents new finite-element 

formulae for calculating the internal forces at any arbitrary section of Bernoulli-Euler beams 
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under moving vehicles. Apart from verifying the correctness of the proposed formulae, the 

following conclusions can be drawn. 

(a) The proposed formulae are much more accurate than the conventional finite element 

formulae in the evaluation of internal forces of beam, and the accuracy of the proposed 

formulae is better than that of CSEM in the evaluation of the internal forces of beam, 

especially for shear force. 

(b) The use of dynamic magnification factor M3D  for bending moment at mid-span beam 

section for the design is inadequate, as it often underestimates the bending moment due to 

moving loads.  

(c) From the numerical examples of simply supported and continuous beams under a moving 

force or vehicle, there is a tendency for the dynamic magnification factor M2D  for 

bending moment at the beam section beneath moving force and the dynamic 

magnification factor M1D  for bending moment at all beam sections to be the same in the 

lower range of velocity. Therefore one may use M2D  instead of M1D  in the lower range 

of velocity commonly encountered. 
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Figure captions 

Fig. 1. A train running on a multi-span continuous railway bridge 

Fig. 2. A typical vehicle running on the i-th span continuous beam 

Fig. 3. Generalized nodal forces e
lQ , e

lM , e
rQ  and e

rM  of a typical beam element 

Fig. 4. Free-body diagram for calculating the shear force AQ  and bending moment AM  at 

point A where e
bI )( qN mf    

Fig. 5. Example 1: Comparison of dynamic magnification factor M1D  versus velocity 

parameter   

Fig. 6. Example 1: Comparison of dynamic magnification factor M2D  versus velocity 

parameter   

Fig. 7. Example 1: Comparison of dynamic magnification factor M3D  versus velocity 

parameter   

Fig. 8. Example 1: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity parameter   

Fig. 9. Example 1: Comparison of shear force distribution along the beam at t = 0.24 s  

Fig. 10. Example 2: Comparison of shear force distribution along the beam at t = 0.48 s  

Fig. 11. Example 2: Comparison of bending moment distributions along the beam at t = 0.48 s  

Fig. 12. Example 2: Convergence of shear force distribution along the beam at t = 0.48 s by 

CSEM 

Fig. 13. Example 2: Convergence of bending moment distribution along the beam at t = 0.48 s 

by CSEM 

Fig. 14. Example 2: Comparison of dynamic magnification factor M1D  versus velocity 

Fig. 15. Example 2: Comparison of dynamic magnification factor M2D  versus velocity  

Fig. 16. Example 2: Comparison of dynamic magnification factor M3D  versus velocity  
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Fig. 17. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity 

Fig. 18. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (hypothetical case of large mass ratio with 

bm = 2,303 kg/m and Ib = 2.9 m4) 

Fig. 19. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (span length = 20 m) 

Fig. 20. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (span length = 40 m) 

Fig. 21.  Example 2: Effects of irregularities, Coriolis force and centripetal force on dynamic 

magnification factor M1D  

Fig. 22.  Example 2: Effects of irregularities, Coriolis force and centripetal force on dynamic 

magnification factor M3D  

Fig. 23.  Example 3: Comparison of bending moment distribution along the beam at t = 1.5 s 

Fig. 24. Example 3: Comparison of shear force distribution along the beam at t = 1.5 s 

Fig. 25. Example 3: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 24 elements versus velocity 
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Figures 
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Fig. 1. A train running on a multi-span continuous railway bridge 
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Fig. 2. A typical vehicle running on the i-th span continuous beam 
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Fig. 3. Generalized nodal forces e
lQ , e

lM , e
rQ  and e

rM  of a typical beam element 
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Fig. 4. Free-body diagram for calculating the shear force AQ  and bending moment AM  at 

point A where e
bI )( qN mf    

 
 

 
 

Fig. 5. Example 1: Comparison of dynamic magnification factor M1D  versus velocity 

parameter   
 
 

 
 

Fig. 6. Example 1: Comparison of dynamic magnification factor M2D  versus velocity 

parameter   
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Fig. 7. Example 1: Comparison of dynamic magnification factor M3D  versus velocity 

parameter   
 

 
 

 
 

Fig. 8. Example 1: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity parameter   
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Fig. 9. Example 1: Comparison of shear force distribution along the beam at t = 0.24 s  
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Fig. 10. Example 2: Comparison of shear force distribution along the beam at t = 0.48 s  
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Fig. 11. Example 2: Comparison of bending moment distribution along the beam at t = 0.48 s 
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Fig. 12. Example 2: Convergence of shear force distribution along the beam at t = 0.48 s by 
CSEM 
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Fig. 13. Example 2: Convergence of bending moment distribution along the beam at t = 0.48 s 

by CSEM 
 
 
 
 

 
Fig. 14. Example 2: Comparison of dynamic magnification factor M1D  versus velocity 
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Fig. 15. Example 2: Comparison of dynamic magnification factor M2D  versus velocity 

 
 
 
 
 

 
Fig. 16. Example 2: Comparison of dynamic magnification factor M3D  versus velocity 
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Fig. 17. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity 
 
 

 

 
Fig. 18. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (hypothetical case of large mass ratio with 

bm = 2,303 kg/m and Ib = 2.9 m4) 
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Fig. 19. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (span length = 20 m) 
 
 
 
 

 
 

Fig. 20. Example 2: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 8 elements versus velocity (span length = 40 m) 
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Fig. 21.  Example 2: Effects of irregularities, Coriolis force and centripetal force on dynamic 

magnification factor M1D   
 

 
Fig. 22.  Example 2: Effects of irregularities, Coriolis force and centripetal force on dynamic 

magnification factor M3D   
 
 

 



 37

Fig. 23.  Example 3: Comparison of bending moment distribution along the beam at t = 1.5 s 
 
 
 

 
Fig. 24. Example 3: Comparison of shear force distribution along the beam at t = 1.5 s 

 
 
 

 
Fig. 25. Example 3: Dynamic magnification factors M1D , M2D  and M3D  obtained by the 

proposed formula with 24 elements versus velocity 
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Tables 

Table 1. Properties of vehicle and beam for Examples 2 and 3 
Notation Item Value 
Vehicle   
mc Mass of car body 4.175104 kg 
Jc Mass moment of inertia of car body 2.08106 kgm2 
ks Spring stiffness of the second suspension system 5.3105 N/m 
cs Damping coefficient of the second suspension system 9.02104 Ns/m 
Lc Half of longitudinal distance between the centre of gravity of front 

bogie and of rear bogie 
8.75 m 

mt Mass of a bogie frame 3.04103 kg 
Jt Mass moment of inertia of a bogie frame 3.93103 kgm2 
Lt Half of bogie axle base 1.25 m 
kp Spring stiffness of the primary suspension system 1.18106 N/m 
cp Damping coefficient of the primary suspension system 3.92104 Ns/m 
mw Mass of a wheelset 1.78103 kg 
ls Longitudinal distance between the centre of gravity of bogie and 

nearest side of vehicle body 
3.75 m 

   
Beam   
L Span length 30 m 
Eb Young’s modulus 2.9431010 Pa 
Ib Moment of inertia 8.65 m4 
 Damping ratio 0 

bm  
Mass per unit length 3.6104 kg/m 

 
 

Table 2. Example 2: Convergence of dynamic magnification factor M1D  for different 
damping ratios  obtained by the proposed formula (vehicle velocity = 80 m/s) 

Number of elements 
Dynamic magnification factor  

 = 0  = 0.025  = 0.05 
4 1.541250 (100.44%) 1.464369 (100.04%) 1.405055 (100.05%) 
8 1.535184 (100.05%) 1.463653 (99.99%) 1.404264 (99.99%) 

16 1.534082 (99.98%) 1.463796 (100.00%) 1.404351 (100.00%) 
32 1.534393 (99.98%) 1.463788 (100.00%) 1.404346 (100.00%) 
64 1.534443 (100.00%) 1.463787 (100.00%) 1.404347 (100.00%) 

 

 
Table 3. Example 2: Convergence of dynamic magnification factor M1D  for different 
damping ratios  obtained by CSEM (vehicle velocity = 80 m/s) 

Number of modes 
Dynamic magnification factor  

 = 0  = 0.025  = 0.05 
10 1.520650 (99.19%) 1.448848 (99.09%) 1.389911 (99.12%) 
18 1.522137 (99.29%) 1.450685 (99.22%) 1.391505 (99.23%) 
34 1.529613 (99.77%) 1.458613 (99.76%) 1.399159 (99.77%) 
66 1.531491 (99.90%) 1.460497 (99.89%) 1.400879 (99.90%) 

130 1.533074 (100.00%) 1.462142 (100.00%) 1.402320 (100.00%) 
 
 


