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Abstract 

This paper addresses the problem of designing urban road networks in a multi-objective decision making 

framework. Given a base network with only two-way links, and the candidate lane addition and link 

construction projects, the problem is to find the optimal combination of one-way and two-way links, the 

optimal selection of network capacity expansion projects, and the optimal lane allocations on two-way links 

to optimize the reserve capacity of the network, and two new travel time related performance measures. The 

problem is considered in two variations; in the first scenario, two-way links may have different numbers of 

lanes in each direction and in the second scenario, two-way links must have equal number of lanes in each 

direction. The proposed variations are formulated as mixed-integer programming problems with equilibrium 

constraints. A hybrid genetic algorithm, an evolutionary simulated annealing, and a hybrid artificial bee 

colony algorithm are proposed to solve these two new problems. A new measure is also proposed to evaluate 

the effectiveness of the three algorithms. Computational results for both problems are presented.  
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1. Introduction 

Continuous growth of travel demand in urban transportation networks is one the most challenging 

and important issues which decision makers often face with. Some engineering solutions to deal 

with this issue are: road expansion, road construction, changing the configuration of transportation 

networks, modification of one-way street orientations, revising toll, signal, and parking charge 

settings, and so on. These engineering solutions can be determined either in an ad hoc manner or by 

formulating and then solving the Network Design Problem.  

The Network Design Problem, or NDP in short, can be defined as the problem of determining 

the optimal engineering solutions to improve the transportation network (e.g., Chen and Yang, 2004; 

Szeto and Lo, 2005, 2006, 2008; Chen et al., 2006, 2007; Teodorović and Edara, 2007; Dahl and 

Minken, 2008; Pacheco et al., 2009; Lo and Szeto, 2009; Szeto et al., 2010; Szeto and Wu, 2011). 

For the detailed reviews of NDP, the readers can refer to Steenbrink (1974a), Magnanti and Wong 

(1984), Friesz (1985), Migdalas (1995), and Yang and Bell (1998a).  
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The NDP model has been shown to have a bi-level structure (Yang and Bell, 1998a). In this 

type of bi-level optimization problems, the network authority declares its strategy and the users 

respond to the strategy. Historically, bi-level optimization problems were investigated in the field of 

game theory. Game theory provides a framework to determine the optimal decisions of the players. 

The framework can be regarded as a set of coupled optimization problems. Wardrop (1952) was the 

first one to use the concept of game theory to traffic assignment problems. In fact, the variational 

inequality formulation of the user equilibrium traffic assignment was the result of the finding that 

the conditions of equilibrium for the Nash N-person non-cooperative game are the same as those of 

a zero sum two person game. This kind of game can be modeled by a variational inequality 

formulation (Fisk, 1984). Therefore, having a close correspondence with the concept of Stackelberg 

or leader-follower game, this problem is formulated as a bi-level program which can be reduced 

into a single-level program by expressing the lower level problem as constraints. Many authors 

have discussed different solution methods of NDP from the view point of Stackelberg and Nash 

equilibrium conditions (Fisk, 1984; Friesz and Harker, 1985; Chen and Ben-Akiva, 1998; Yang et 

al., 1994; Yang, 1995) and many others used these results in their network design problems. 

The NDP can be categorized in terms of strategic or long-term decisions (such as street 

expansions or constructions), tactical or medium-term issues (like street orientations), and 

operational or short-term issues (like signal setting) (Magnanti and Wong, 1984). Based on the 

decisions made on network topology and network parameters, the NDP can also be categorized in 

three types, namely the Continuous Network Design Problem (CNDP), the Discrete Network 

Design Problem (DNDP), and the Mixed Network Design Problem (MNDP).  

The input of the CNDP is the network topology, and the output is the optimal values of 

continuous decision variables or network parameters, such as signal setting, toll setting, and 

capacity expansion. Some studies related to the CNDP are: Steenbrink (1974a), Abdulaal and 

LeBlanc (1979), Dantzig et al. (1979), Meng et al. (2001), and Meng and Yang (2002), and Teklu 

et al. (2007). 

The DNDP, in contrast, is concerned with just discrete decision variables like street orientation 

or street construction. This type of problem has been investigated by Steenbrink (1974b), LeBlanc 

(1975), Poorzahedy and Turnquist (1982), Lee and Yang (1994), Drezner and Wesolowsky (1997; 

2003), Drezner and Salhi (2000; 2002), Gao et al. (2005), Poorzahedy and Abulghasemi (2005), 

Poorzahedy and Rouhani (2007), Meng and Khoo (2008), and Meng et al. (2008).  

The MNDP or mixed network design problem, as can be implied by its name, involves both 

discrete and continuous network design variables. It deals with both network topology and network 

parameters. Compared with the CNDP and the DNDP, the MNDP has received less attention (e.g., 

Cantarella and Vitetta, 2006; Cantarella et al., 2006; Gallo et al., 2010; Luathep et al., 2011). 
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Concerning the solution methods, it should be noticed that the combinatorial nature of the 

DNDP and MNDP makes them much harder to solve than the CNDP. The exact method such as 

branch and bound algorithms can only deal with small networks which are not realistic enough. 

Therefore, meta-heuristics and their hybrids have been commonly developed or applied to solve the 

DNDP and MNDP with large, realistic networks.  

There are a number of observations that can be drawn from the existing NDP literature, which 

are the base of motivation for investigating the problem introduced in this paper. These 

observations are concerned with the type and number of objective functions, decision variables and 

their combinations. 

First, among the above NDP studies, we observe that total travel time is a widely used objective 

function but reserve capacity is not. Reserve capacity is defined as the largest multiplier applied to a 

given, existing demand matrix without violating the street flow capacities, and has been previously 

investigated for network intersections by Webster and Cobbe (1966), Allsop (1972), and Wong 

(1996). The reserve capacity as an objective function of NDP was first suggested by Yang and Bell 

(1998a) but has only been adopted in a few CNDP papers such as Ziyou and Yifan (2002) and Yang 

and Wang (2002). The reserve capacity concept has not been considered in MNDP studies, and in 

only one DNDP study (Miandoabchi and Farahani, 2011). 

Indeed, minimizing the total travel time or cost is not equivalent to maximizing reserve capacity 

(Yang and Wang, 2002). Moreover, according to Yang and Bell (1998b), there are at least two 

advantages of adopting reserve capacity as an objective function. First, the occurrence of capacity 

paradox can be avoided when reserve capacity is considered in network design. Second, it allows us 

to predict how much additional demand can be accommodated by the road network after 

improvement, and hence other related policies for traffic restraint and growth can be established. 

Third, the upper-level objective function takes a simple linear form and hence the problem is much 

easier to solve than the NDP with other non-linear objective functions. Fourth, the optimal decision 

based on reserve capacity is not sensitive to the demand level. This is desirable when uncertainty 

exists in traffic demands. All these facts seem to indicate that reserve capacity should be considered 

in DNDPs and MNDPs. 

Second, we observe that most NDP papers deal with just one objective function for simplicity. 

Only few studies have considered multiple objectives for the NDP (e.g., Friesz et al., 1993; 

Cantarella and Vitetta, 2006; Cantarella et al., 2006; Russo and Vitetta, 2006; Wang and Yang, 

2002). But as known, both the network authority and the network users in urban transportation areas 

are concerned with a wide range of evaluation criteria and the problem is multi-objective in nature. 

The only multi-objective study with reserve capacity is done with Wang and Yang (2002), which 

consider reserve capacity and total travel time as the two objectives. 
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The third observation suggests that apart from using single strategic, tactical or operational 

decisions in discrete network design, their combination has been studied in a number of studies. For 

example, the following types of combinations of strategic and tactical decisions can be 

distinguished in the literature: (a) street expansion and new street construction (e.g. Poorzahedy and 

Turnquist, 1982; Poorzahedy and Abulghasemi, 2005; Poorzahedy and Rouhani, 2007; Yang and 

Bell, 1998a; Zhang and Gao, 2009), (b) street orientation and lane allocation (e.g. Cantarella and 

Vitetta, 2006), (c) new street construction and street orientation (e.g. Drezner and Wesolowsky, 

2003), and (d) street expansion with street orientation and lane allocation (e.g.  Miandoabchi and 

Farahani, 2011). 

In regard to reserve capacity optimization for DNDPs, Miandoabchi and Farahani (2011) is the 

only existing study in the literature that considers various decisions to improve reserve capacity. 

While the construction of new streets can increase the capacity of the network like other strategic 

and tactical decisions, this improvement strategy has not been used for improving the reserve 

capacity. Thus, this strategy can be considered together with other decisions simultaneously to 

further improve the reserve capacity. 

Following the above considerations, in this paper we study the discrete network design problem 

with multiple objective functions, having the reserve capacity maximization as one of the objective 

functions. Explicitly, the following decisions are investigated: 

(a) Adding lanes to the existing network streets,  

(b) Constructing new streets, 

(c) Determining the orientation of one-way streets, and 

(d) Lane allocations in two-way streets. 

Although the first two decisions are strategic and the last two are tactical in the NDP context, 

simultaneously considering all of them can lead to better results in terms of the network 

performance. Modifying two-way streets to one-way streets can result in improved network 

performance with fewer requirements for street construction and expansion projects. This can be 

very advantageous, since such projects require high levels of budget and also require the utilization 

of land that is expensive and valuable in urban areas. 

The proposed problem has three objective functions; reserve capacity and two new travel related 

objective functions. These objective functions are included, as the maximization of reserve capacity 

cannot always minimize travel time related measures (Yang and Wang, 2002), which are concerned 

by network users and network authority. 

We define two variations of the DNDP: one restricts two-way links in which there is the same 

number of lanes in each direction and the other one does not, i.e. the number of lanes in one 

direction can be different from that of the opposing direction. The problems are formulated as bi-
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level mathematical programs with equilibrium constraints (MPEC), in which each problem model is 

bi-level, Stackelberg model with two lower level problems. The inherent complexity of the 

proposed problem variations and their non-convex nature suggests the application of meta-heuristic 

solution procedures. Since the problems are new and there are many constraints, directly applying 

existing metaheuristic to solving them is not possible. In this regard, we developed three new multi-

objective hybrid evolutionary algorithms. All algorithms generate as set of Pareto-optimal solutions. 

To summarize, the following are the contributions of the paper in the literature: 

1. Using the combination of street construction with other strategic and tactical decisions to 

improve the reserve capacity, 

2. Adapting a unique combination of triple objective functions in the DNDP, 

3. Proposing two new travel-time related objective functions, and  

4. Developing three improved meta-heuristics for the two new problems. 

Table 1 compares the proposed problem in this paper with the problems examined in the 

existing NDP studies. In this table, only studies with strategic or tactical decision variables are 

included. 

Table 1. Comparison of the proposed problems with the other studies 
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Street Orientation     - - 
Lane Allocation     - - 
Street Expansion    -   
Street Construction  -  - - - 

Other - - 
Bus lane  

allocations 
Signal setting;  
parking space 

Signal 
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s Total Travel Time - - -  -  
Reserve Capacity   - -   

Other 
Two travel 
time related - 

Total user  
benefit; bus  

demand share 

Bus, pedestrian  
and people  

related functions 
- - 

 
The rest of the paper is organized as follows. In the next section, the proposed problem is 

defined precisely. In section 3, the notations and mathematical formulations of the two problem 

variations are presented. Section 4 describes the solution method, i.e. the meta-heuristic solution 

procedures, in details. Section 5 is dedicated to the computational results, as well as the comparison 

of the performance and sensitivity analysis of the proposed algorithms. Finally, in section 6, 

conclusions and suggestions of future research are made. 
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2. Problem Definition 

First of all, it is better to have a clear definition of the network elements used in this paper. Here, 

the term “link” is used for all streets and roads of all types in the network. When the link is two-

way, it consists of two “arcs”, and when it is one-way, it has one arc. All arcs are directed, meaning 

that all the vehicles, including buses and automobiles, on the same arc moves to the same direction. 

The capacity of each arc is defined by the number of lanes on that arc. For two-way links, lanes are 

found on both of the arcs. If the link is one-way, all lanes are allocated to the single existing arc. 

In this paper, the design of an urban road network is proposed. The objective is to determine the 

optimal combination of one-way and two-way links, link and lane additions, and lane allocations on 

two-way links simultaneously, under a multi-objective decision making framework. Link 

expansions are actually considered as adding lanes to the existing network links. Indeed, this 

problem is a DNDP as all the decisions involved can be represented by discrete values.  

The allocation of lanes to the two-way links can be performed in two ways, creating two 

variations of the problem: (1) Two-way links are not restricted to be symmetric and each direction 

can have different numbers of lanes; this problem variation is referred to as DNDP1. (2) Two-way 

links must be symmetric in terms of lane allocations in each direction; this problem variation is 

referred to as DNDP2. DNDP1 is a relaxed form of DNDP2 that only allows one-way or symmetric 

two-way links. DNDP1 is more likely to be observed in real urban networks, but DNDP2 can still 

be observed in reality too. Indeed, DNDP1 which allows the presence of non-symmetric two-way 

links in the network provides more flexibility in configuration and also improves performance 

measures.  

Signal settings are not taken into account, similar to the problems studied by Yang and Bell 

(1998a; 1998b) and Yang and Wang (2002). They will be considered in future studies. 

 

2.1. Assumptions 

The main assumptions for the studied problems are listed below: 

 The basic network exists in advance with all of the links as two-way. 

 Travel demand between each origin and destination (OD) pair is fixed and known.  

 Route selection behavior of network users is based on the user equilibrium principle.  

 

2.2. Inputs 

The following are the required inputs: 

 The travel demand matrix, i.e. the total travel demand between each OD pair. 

 The maximum available investment budget set by the network authority for the development 

projects. 
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 The parameters of the transportation network such as the free flow travel time and capacity of 

each arc, the number of lanes on each arc, etc., as well the arc performance functions and their 

associated parameters. 

 Possible link construction projects defined by the network authority. This makes the candidate 

link construction project set.  

 Maximum possible number of lanes to be added to each side of existing links, which is defined 

by the network authority. The available vacant land adjacent to each link influences on the 

maximum possible number of added lanes on them. Lane addition projects involve adding 

equal number of lanes on each side of the link. 

 

2.3. Outputs 

The two problems have the same following outputs: 

 The new links that should be constructed. 

 The number of lanes that should be added to each existing link. 

 The allowable direction of traffic movement on each link (i.e. the set of two-way links and the 

set of one-way links). 

 The number of lanes on each arc of streets. 

 At last, the maximum level of travel demand that can be tackled by the network after executing 

the network improvement decisions. 

 

Both DNDP1 and DNDP2 have three objective functions. The first objective function is defined 

by the reserve capacity of the network, which is measured by the greatest multiplier that can be 

applied to the current travel demand matrix, in a way that the increased traffic flow on any arc does 

not exceed the corresponding arc capacity. The multiplier is a common coefficient that is applied to 

the current travel demand of each OD pair in the network. The greatest multiplier *  is usually 

above 1.0 for a network with a normal or low level of congestion, and below 1.0 for a highly 

congested network with insufficient of network capacity. When 1*  , the network is said to have a 

reserve capacity amounting to )%1(100 *   of the existing OD matrix. However, when 1*  , the 

network has no reserve capacity. This objective function is concerned with the objective of the 

network authority, which is to maximize this multiplier and hence, reserve capacity. 

As mentioned earlier, the maximization of reserve capacity can avoid the occurrence of capacity 

paradox at any demand level, while at the same time it considers the future conditions of the 

network with increased demand levels. The maximization of the reserve capacity can only minimize 

the total travel time to a certain extent when the congestion level is high (Yang and Wang, 2002).  



8 

 

Pursuing this fact, we propose a second travel time related objective function: the average ratio 

of the minimum OD travel time to the corresponding minimum free flow travel time. The aim is to 

minimize the average congestion level on the travel routes between OD pairs, rather than the total 

or average travel time for the fixed number of network users. The average congestion level takes the 

distance or minimum travel time between origin and destination into account while the average 

travel time does not. Using total or average travel time as the performance measure will thus give a 

bias to improve not very congested routes between the OD pairs with high minimum travel time, 

but will give a lower preference to improve very congested routes between the OD pairs with low 

minimum travel time. Indeed, minimizing the average ratio can avoid this inequity problem.  

Another reason is to consider both the future and the present network conditions while designing 

the network. Maximizing the reserve capacity, which considers the future conditions of the network, 

may result in higher travel times and congestion levels at the current demand level.  

The third objective function is about the difference between forward and backward minimum 

travel times of all OD pairs and the goal is to minimize the maximum difference. This avoids a 

severe imbalance of the minimum travel times in the two opposite directions between the same OD 

pair for the users frequently traveling back and forth between the origin and destination. 

Transportation system users usually expect that the two minimum travel times between an origin 

and destination to be about the same.  

Obviously, the second and the third objective functions are related to the concern of the network 

users, whereas the first objective function is related to the concern of network authority. The 

authority is benefited from a less need of implementing network capacity expansion projects in the 

future, if they succeed in providing sufficient extra capacity to tackle future demand levels. The 

network authority will also be benefitted from receiving less opposition to the network design since 

the concern of network users is also considered. 

 

3. Mathematical models and notations 

The following notations are used in the model formulation. 

3.1 Sets 

N: set of network nodes. 

A: set of existing network arcs. 

A': set of candidate network arcs.  

L: set of existing network links.  

L': set of candidate network links.  

Sl: set of arcs for each existing network link l. 

Sl': set of arcs for each candidate network link l'. 

W: set of all OD pairs.  
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Rpq: set of routes between OD pair (p, q).  

 

3.2 Decision Variables 

μ: demand matrix multiplier. 

yl: number of lanes added to each side of existing link l. 

ul': binary variable, which equals 1 if link l' is built, and zero otherwise. 

zij: binary variable, which equals 1 if arc (i, j) is built or present, and zero otherwise. 

kij: number of lanes allocated to arc (i, j). 
*
ijx : user equilibrium traffic flow on arc (i, j) for the increased demand level. 

*
ijx : user equilibrium traffic flow on arc (i, j) for the current demand level. 

rX : user equilibrium flow on route rR for the increased demand level. 

rX : user equilibrium flow on route rR for the current demand level.  

 

3.3 Parameters 

dpq: travel demand between OD pair (p, q). 

D: [dpq]: matrix of travel demands. 

B: total budget for lane addition and link construction projects. 

max
ly : maximum number of lanes that can be added to each side of existing link l. 

Kl: current number of lanes on existing link l. 

Kl': number of lanes on new link l' if it is built.  

M: a large positive number. 

 

3.4 Functions 

gl(yl): investment cost function for the expansion of existing link l, when yl lanes are added to 

each side of the link. 

g'l'(ul'): investment cost function for the construction of new link l'. 

tij: travel time function of arc (i, j). 

cij(kij): capacity of arc (i, j) (which equals the product of the number of lanes kij on the arc and the 

capacity of a lane). 

qpT  : minimum travel time between nodes p' and q'. 

Z1: the first objective function - demand matrix multiplier. 

Z2: the second objective function - the average ratio of the OD travel time to the corresponding 

free flow travel time. 

Z3: the third objective function - maximum difference between forward and backward minimum 

travel times. 

pqv : minimum travel time between OD pair (p,q) for the current demand level. 

0
pqv : minimum free flow travel time between OD pair (p,q). 
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ijr : binary variable for the increased demand level, which equals 1 if route r uses arc (i, j), and 

zero otherwise. 

ijr : binary variable for the current demand level, which equals 1 if route r uses arc (i, j), and 

zero otherwise. 

 

 

Figure 1 indicates example of two links and their modeling with decision variables. At the right 

hand side, a one-way existing lane link with two lanes is indicated. At the left hand side, there is 

a two-way link with two existing (in white) and two added lanes (in gray), and the lane 

allocation is asymmetric (i.e. one and three lanes on each side). The corresponding values of the 

variables are indicated for each link. 

 

Figure 1. Examples of link modeling 
 

3.5 Model for DNDP1 

DNDP1 is a problem with two levels: the one upper level problem represents the decision making 

problem of the network authority, and two lower level problems represent the network users’ 

behavior in choosing travel routes, one for the current demand level and another for the scaled 

demand level. The upper level problem is a tri-objective mixed integer mathematical model. The 

lower level problems compute the corresponding equilibrium flows and travel times for each set of 

decision variable values in the upper level problem (i.e. a network design scenario). The lower level 

problems are by their nature non-linear minimization problems represented as variational 

inequalities in the upper level problem. Mathematically, DNDP1 is formulated as follows: 
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൒ 0					 ௜௝ݔ̅∀ ∈  ത (20)ߗ

തߗ ൌ

ە
ۖ
۔

ۖ
ۓ

௜௝ݔ̅
ተ

ተ
෍ തܺ௥
௥∈ோ೛೜

ൌ ݀௣௤			∀ሺ݌, ሻݍ ∈ ܹ;

௜௝ݔ̅ ൌ ෍ ෍ തܺ௥. ௜̅௝௥ߜ
௥∈ோ೛೜

		∀ሺ݅, ݆ሻ ∈ ܣ ∪ ;ᇱܣ
ሺ௣,௤ሻ∈ௐ

തܺ௥ ൒ 0 ۙ
ۖ
ۘ

ۖ
ۗ

  (21) 

The first objective maximizes the reserve capacity. The second one minimizes the average ratio 

of the minimum OD travel time to the corresponding minimum free flow travel time, and the last 

one minimizes the maximum difference between forward and backward minimum travel times. 

Constraint (4) imposes a budget limit to the total cost of lane additions and link constructions. 

Constraint (5) limits the number of lanes added to the existing network links. Constraints (6) and (7) 

determine the allocation of lanes on the existing links and the new links respectively. Constraint (8) 

is the principle constraint of reserve capacity maximization where the traffic flow on each arc 

cannot exceed the corresponding arc capacity. Constraints (9) and (10) assure that no capacity is 
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assigned to non-existing arcs. Constraint (11) guarantees that at least one arc is present for each 

existing link. In other words, blocking of streets is not allowed. Constraints (12) and (13) ensure 

that at least one arc is built for each new link. Constraint (14) enforces that the minimum travel time 

between each pair of nodes to be less than a very large value. This can ensure that there is at least 

one path between each OD pair of the network and that the network is strongly connected. Because 

when there is no path connecting an OD pair, the OD travel time must be very large. Constraints 

(15)-(17) define the domains of variables. Constraints (18)-(19) and constraints (20)-(21) present 

the variational inequality formulations of the user equilibrium traffic assignment as the two lower 

level problems. They determine the user equilibrium traffic flows for the increased and current 

travel demand level respectively. 

 

3.6 Model for DNDP 2 

The mathematical model for DNDP2 is obtained by adding the following constraints to the previous 

model: 

݇௜௝ ൑ ௝݇௜ ൅ .ܯ ൫1 െ ௝௜൯ݖ 				∀ሺ݅, ݆ሻ ∈ ܣ ∪ and (22) ,′ܣ

௝݇௜ ൑ ݇௜௝ ൅ .ܯ ൫1 െ ,∀ሺ݅					௜௝൯ݖ ݆ሻ ∈ ܣ ∪ (23) ′ܣ

The above constraints assure that whenever a link is two-way, the number of assigned lanes on 

each direction must be equal. 

The minimax objective function in the above models can be linearized by a simple 

transformation, and adding two constraints to the upper level problem: Objective (3) can be written 

as objective (24) and the constraints (25)-(26). 

Min (24) ܨ	

Max
ሺ௣,௤ሻ∈ௐ

ሺ̅ݒ௣௤ െ ௤௣ሻݒ̅ ൑ (25) ܨ

ܨ ൒ 0 (26)

 

4. Solution Procedures 

It is important to note that even a simple bi-level program has been proved to be NP-hard (Ben-

Ayed et al. 1988). Also, even if the both upper and lower levels of the problem are convex, the 

whole problem may not be convex. There are some exact methods to solve the problem for 

obtaining global optimum solutions. But the fact is that, they cannot be applicable for large and real 

size transportation networks. Meta-heuristics have been largely applied to obtain good solutions for 

realistic, large network design problems, especially in recent years. Hence, one of the current 

directions is to adopt meta-heuristic techniques for bi-level programs. Since the proposed problems 

are new, and there are many constraints needed to be handled, directly applied existing 

metaheuristic is not possible. Hence, we propose some well-organized solution algorithms related to 
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meta-heuristics in this paper. These methods can result in good solutions even for large networks as 

will be presented in the following sections.  

For the two variations of the problems, three hybrid multi-objective population-based 

metaheuristic algorithms are proposed, namely:  

 A multi-objective Hybrid Genetic Algorithm (mHGA),  

 A multi-objective Evolutionary Simulated Annealing (mESA),  

 A new multi-objective Hybrid Artificial Bee Colony algorithm (mHABC).  

After exploring the literature, we conclude that mESA and mHABC have never been used to 

solve urban transportation network design problems. The multi-objectivity of the two problems is 

captured by the Adaptive Weight Approach (AWA) that utilizes useful information from the 

population solutions to assign weights to each objective function and to obtain a single ranking for 

each solution (Gen and Cheng, 2000).  

In the following, the similarities and the details of the three algorithms are presented. In 

particular, in section 4.1 a comparison is organized between them and the details of methods are 

described in sections 4.2-4.4. 

 

4.1. Similarities and Comparisons of the Proposed Algorithms 

The three hybrid meta-heuristics have some concepts in common. These similarities are the solution 

encoding, fitness function calculation, checking out the feasibility of solutions, generating the initial 

population, and building the Pareto-optimal solutions set. 

 

Solution Encoding  

As can be noticed from the mathematical formulation, the upper level decision variables, including 

link construction, and lane addition and allocation, are discrete. The continuous variables are just 

related to the two lower level problems, which can be obtained by solving those problems, having 

the fixed values of discrete variables. 

Each chromosome represents the complete configuration of the candidate and existing links in 

the network. Chromosomes are represented by 2-row matrices, in which columns correspond to 

network links and rows correspond to their lane allocations. The total length of each chromosome is 

L+L', which is equal to the total number of existing and candidate links respectively. For each 

column (i.e. link), the lane allocation is indicated by the non-negative integers in the last two row. 

An example network with 7 nodes and 12 links and its corresponding chromosome are depicted in 

figures 2 and 3, respectively. There are two possible links to be constructed, i.e. 6-2 and 4-7. Solid 

lines indicate that links are present in the design scenario and the dotted and dashed line indicates 

that link 4-7 is not chosen to be constructed. The arrow heads point in the allowed direction of 
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movement in each link. 

 

 
 
 

 1 2 3 4 5 6 7 8 9 10 11 12

kij 0 1 0 1 1 1 1 1 0 0 1 0 

kji 2 1 2 1 1 1 1 1 0 2 1 2 
 

Figure 2. A typical network Figure 3. The chromosome representation 
 

Calculation of Fitness Values 

As pointed out earlier, the fitness values are defined by rankings obtained by the adaptive weight 

approach. The adaptive weight for each objective function is calculated by the following equation:  

௢ݓ ൌ
1

ܼ௢
max െ ܼ௢min

			where			݋ ൌ 1,2,3 (27) 

where max
oZ and min

oZ  are respectively the maximum and the minimum values of objective function 

o among the population solutions. Since the original form of the fitness function in the adaptive 

weight approach is proposed for all maximization objective functions, in this study the 

minimization objective functions of (2) and (3) are converted to maximization objective functions 

by multiplied negative one to their original objective functions. The fitness value of a solution is 

calculated as follows: 

ܼሺݏሻ ൌ ෍ݓ௢. ሺܼ௢ሺݏሻ െ ܼ௢minሻ

ଷ

௢ୀଵ

 (28) 

The adaptive weights are updated each time when the population is modified, and the fitness 

function values are recalculated for the population solutions. Higher fitness values mean better 

solutions. The values of the objective functions are computed by the solution procedures described 

below. 

The calculation of the reserve capacity in the first objective function is undertaken by solving a 

sub-problem, in which the values of discrete variables have come to be fixed previously. The 

corresponding sub-problem is defined as follows:  

Given yl
*, ul'

*, zij
* and kij

*, determine   and *
ijx  to: 

Max (29) ߤ 

Subject to 

௜௝ݔ
∗ ൑ ܿ௜௝൫݇௜௝

∗ ൯					∀ሺ݅, ݆ሻ ∈ ܣ ∪  (30)                  ′ܣ

ߤ ൒ 0 (31) 
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෍ ௜௝ݔ௜௝൫ݐ
∗ , ܿ௜௝൯. ሺݔ௜௝ െ ௜௝ݔ

∗ ሻ
ሺ௜,௝ሻ∈஺∪஺ᇲ

൒ 0					 ௜௝ݔ∀ ∈  (32) ߗ

ߗ ൌ

ە
ۖ
۔

ۖ
ۓ
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ሺ௣,௤ሻ∈ௐ
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ۖ
ۘ

ۖ
ۗ

 (33) 

At the first sight, it seems that the above sub-problem can be solved by sensitivity analysis based 

(SAB) algorithm which is commonly employed in solving network design problems with 

continuous variables (Tobin and Friesz, 1988). The drawback of SAB algorithm is that this method 

is not applicable for solving all types of problems because of the nonexistence of inversions of the 

matrices in some cases. Even the newer versions of the SAB algorithm has been developed, they are 

not successful in solving some types of bi-level problems with user equilibrium constraints. 

Therefore, we develop our heuristic to solve the above sub-problem by using the special structure of 

the above sub-problem.  

The idea of our heuristic is to find a rough interval for the optimal value of μ and, then to use a 

one-dimensional line search method to find the optimal value in that interval. For each value of μ, 

the user equilibrium assignment problem (32)-(33) is solved to determine the optimal xij values. The 

variational inequality (32)-(33) is in fact a convex nonlinear problem, which can be exactly solved 

by many methods including a convex-combination-based algorithm called the Frank-Wolfe (FW) 

method (see Sheffi (1985) for the details) that is often used in solving user equilibrium problems.  

Let LB and UB be the lower and upper bounds of the rough interval, respectively. The heuristic 

is then described below:  

Initialization 1: Set μ = 0, LB = 0, UB = ∞ 

Phase 1: Repeat until the value of UB is changed 

- μ = LB + 0.5 

- Solve the variational inequality (32)-(33) by the FW method to obtain user equilibrium values 

for xij 

- If constraint (30) is satisfied, set LB = μ; otherwise set UB = μ 

Initialization 2: Set μa = LB, μb = UB 

Phase 2: While μb – μa > ε, where ε is the tolerance for the convergence,  

- Set μ = (μa + μb) / 2 

- Solve the variational inequality (32)-(33) by the FW method to obtain user equilibrium values 

for xij 

- If constraint (30) is satisfied, set μa = μ; otherwise set μb = μ 

Output: Return the value of μ = (μa + μb) / 2 
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In the above, the increment value in phase 1 and also the length of the rough interval for μ are 

set to 0.5. This value is selected based on 1) some preliminary experiments showing that 0.5 is the 

most proper increment value, and 2) the fact that the reserve capacity of a real network is usually 

less than 10. Moreover, ε is set to 0.01, which is believed to be accurate enough given that the 

reserve capacity measure is seldom greater than 10. 

The second and the third objective values are calculated based on the minimum travel times 

obtained from solving the variational inequality (20)-(21) for the current demand level. The 

calculation procedure is as follows: 

 Solve the variational inequality (20)-(21) by the FW method to obtain user equilibrium values 

for . 

 Find the shortest paths for the actual travel times and for the free flow travel times, and thus the 

minimum travel time 
pqv and the minimum free flow travel time 0

pqv  for each OD pair. 

 Calculate the second objective value by finding the average of 0/ pqpq vv  of all OD pairs. 

 Calculate the third objective value by finding the maximum of  )( 0
ppq vv  of all OD pairs. 

 

Checking for Feasibility of Solutions 

Two types of feasibilities are checked for each solution; (a) budget feasibility of construction and 

lane addition projects, (b) strong connectivity of the network (There is at least one directed path 

connecting each node in the network to every other nodes). The budget infeasibility is checked 

using constraint (4) which is straightforward. The strong connectivity is checked using a two-stage 

procedure. 

 Stage 1: Checking whether all nodes have at least one incoming and one outgoing lane: If all the 

nodes have at least one incoming and one outgoing lane, then proceed to stage 2; otherwise 

discard the network and stop. This stage is based on the necessary condition for strong 

connectivity of the network. If there is no incoming (no outgoing) lane for a node, then no flow 

can reach (depart from) that node, and the network must violate the strong connectivity 

requirement.  

 Stage 2: Checking whether a shortest path exists between all OD pairs: determine whether there 

is a shortest path for each OD pair by using the algorithm of Dijkstra. If there is a shortest path 

for every OD pair, the network satisfies the strong connectivity condition. Otherwise, the 

network violates the condition. The reason is as follows. If there is a shortest path between an 

OD pair, there must be at least one directed path connecting this OD pair. If not, the origin is 

disconnected from the destination, and this OD pair violates the strong connectivity condition.  

This two-stage mechanism helps the algorithm to discover the disconnected networks at the 
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early stage and reduce the frequency of using Dijkstra’s algorithm for connectivity checking.  

The budget infeasibility is possible to be repaired using the procedures explained in the next 

sections, but repairing the connectivity infeasibility is an unpractical and complex task. Thus, each 

disconnected network is discarded instantly. 

 

Initial Population Generation 

The construction of the initial population is performed using a 3-phase heuristic procedure. To 

generate one initial solution, the procedure depicted in figure 4 is used. 

 

Figure 4. Initial solution generation procedure 
 

First, the possible expansion or construction projects are selected randomly, until the 

construction cost reaches the predefined budget. Next, set of lanes are allocated randomly to each 

arc. In order to reduce the possibility of generating an infeasible, disconnected network, at the 

beginning, lanes are allocated in such a way that each node has at least one outgoing and one 

incoming lane. This can guarantee the network generated satisfying the necessary condition for 

strong connectivity. Then, the remaining lanes are allocated randomly to the network links. This 

technique saves computational time because the procedure reduces the chance of generating 

disconnected networks.  

Then, stage 2 of strong connectivity procedure is carried out. If the generated network satisfies 

the strong connectivity requirement, then the initial solution is feasible. Otherwise, the solution is 

discarded. The 3-phase procedure is repeated until enough number of feasible solutions is 

generated.  

 

Pareto Optimal Solution Set Generation 

Like many multi-objective metaheuristics, a set of Pareto-optimal solutions is defined to maintain 

Select lane addition and link construction 

projects randomly, until the cost reaches 

the budget level 

Allocate minimum number of lanes 

required to each arc to have one outgoing 

and one incoming lane for each node 

Allocate the remaining lanes of each link 

randomly 

2nd phase 

1st phase 

3rd phase 
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the list of non-dominated solutions in algorithms. The initial Pareto-optimal set is built after 

generating the initial population solution. All initial population members, which are not dominated 

by any of the other population solutions, are added to the initial Pareto-optimal set.  

Whenever a new and feasible solution is generated by the algorithm, the solution is checked for 

Pareto-optimality. To do this, the following steps are carried out: 

 If the solution is not dominated by any of the Pareto-optimal set members, then it is inserted in 

the list of non-dominated solutions. 

 Any member of Pareto-optimal set that is dominated by the newly added member is removed 

from the list. 

 

Comparison of the Proposed Algorithms 

Table 2 compares the similarities and differences of the three proposed algorithms, and provides an 

overall view of these algorithms. 

 

Table 2. Comparison of the developed algorithms 

Algorithm # of iterations Solution generation method Evolution strategy 

mHGA G generations 
Selecting two parents, applying crossover, and 
applying SA on some offspring solutions 

Replacing a number of population solutions 
with some offspring solutions, using the 
evolution mechanism 

mESA G generations Selecting one parent and applying SA 
Replacing some population solutions with 
the generated solutions set, using the 
evolution mechanism 

mHABC 
C cycles with 
two inner 
loops 

Inner loop 1: Iteratively selecting each 
population solution once, and applying SA 
Inner loop 2: Iteratively selecting a population 
solution using the roulette wheel selection rule 
and applying SA 

Replacing each selected population solution 
with its corresponding generated solution 
(in both loops) 

 

4.2. Multi-objective Hybrid Genetic Algorithm 

The first hybrid meta-heuristic we developed in this study is the multi-objective genetic algorithm. 

This is a population-based meta-heuristic based on GA proposed by Holland (1975). GA is 

grounded on the ideas of genetic and natural selection. GA and its extensions have been widely 

used as a solution method for solving the NDPs and have been pointed out as a successful method 

to obtain good solutions (e.g., Drezner and Salhi, 2002; Drezner and Wesolowsky, 2003; Cantarella 

et al., 2006; Cantarella and Vitetta, 2006; Chen et al., 2006; Poorzahedy and Rouhani, 2007).  

The algorithm steps are presented below and the details are described later. 

Phase 1: Generate a population of P solutions; compute their fitness values, and build the Pareto-

optimal set from the initial population. 

Phase 2: Repeat the following procedure for G generations: 
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- Select a pair of parent solutions: 

o Select the first parent from the population by applying the roulette wheel rule. 

o Select the second parent randomly from the Pareto-optimal set. 

- Merge the selected parents to produce an offspring set using a crossover operator. 

- Check the connectivity of each offspring solution and discard the solution if the network is 

disconnected.  

- Check the budget feasibility of each offspring solution and repair the solution using the 

budget reduction method if necessary. 

- Calculate the fitness value for each offspring solution. 

- Update the Pareto-optimal set using the offspring set. 

- Update the current population using the evolution mechanism: 

o Eliminate the population solutions and insert the offspring solutions into the population. 

o Apply SA on a portion of the best selected offspring solutions and update the population. 

- Recalculate the adaptive weights and fitness values of population solutions. 

 

Crossover Operator 

The operator used here for crossover is adopted from Drezner and Wesolowsky (1997, 2003) with a 

modification. They used a process for merging parents in a way that their network structure was 

taken into account. For exploiting the structure, a connected set of links is chosen to form the 

offspring. This is performed by firstly defining a node named pivot node. Then, a count is assigned 

to each link of the network, including the set of new links. Links that are directly connected to the 

pivot node get count 1 and links that are connected to links with count 1 get count 2 and so on. If a 

link is connected to links with different counts, the minimum count value will be used to define the 

count of the link. Figure 5 depicts an example of assigning counts to links. In this figure, node 1 is 

selected as the pivot node. 

 

Figure 5. A typical link count assignment 
 

After assigning link counts, the median of all counts is computed. All new and existing links of 
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the first offspring with counts below the median get their design (i.e. lane numbers, and lane 

allocation,) from the first parent and the new and existing links with their counts above the median 

get their design from the second parent. Other links with counts equal to median can be chosen 

randomly from one of the parents. 

The modification imposed to the original method is that the whole set of links with the count 

equal to median must be chosen from just one parent. In the original version of the operator, the 

design of each of such links can be taken from either parents randomly and independent from other 

links. The modified method will reduce the possibility of creating disconnected networks, since this 

method ensures a group of links to be chosen from a single parent.  

Since each node can be selected as a pivot node and each offspring is uniquely defined for a 

given pivot node, the total number of offspring generated equals the number of network nodes N .  

Each offspring generated is duplicated and then for each copied offspring the one-way links 

with count higher than median are reversed. This can be easily done because of having the link 

counts of solution generated from each pivot node. In this way, another N offspring are produced, 

leading to a total of 2 N  offspring produced from this procedure. 

 

Offspring Feasibility  

Each produced offspring is examined for feasibility; if it is infeasible in terms of network 

connectivity, it is discarded. After that, the offspring is checked for total construction cost. If the 

offspring violates the budget constraint, a budget reduction sub-routine is applied to repair the 

solution. The sub-routine is as follows: 

  Check every possible swap of lane addition or link construction projects. 

 If there is at least one feasible swap in terms of both budget and the network connectivity, select 

a random swap and apply it. 

 If there is no feasible swap, then check whether some projects can be excluded from the 

solution. 

 If there is at least one project that can be excluded without violating the strong connectivity 

requirement, then repeat the following steps until the budget level is not violated or the network 

becomes disconnected: 

o Exclude the project with the maximum cost. 

o If the network becomes disconnected, then stop and report infeasibility.  

 

Embedded SA Algorithm 

A short procedure of Simulated Annealing (SA) algorithm is applied on a number of offspring 
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solutions. This approach offers two advantages; first, it provides a series of random perturbations to 

the offspring which can be a substitute of mutation operator. Second, it acts as a heuristic training 

method that provides better solutions. The SA algorithm is applied to a portion of offspring 

solutions rather than all of them. This is because of the high computational requirements for large or 

even medium sized networks. The SA algorithm used here performs only one iteration for each 

temperature. Each move in SA is performed as the following: 

 For each link, randomly decide to change it, or keep it as it is. 

 For each link to be changed, select a random lane allocation. 

In changing the lane allocation of a link, a feasibility interval is used. This interval indicates the 

possible lane allocation schemes which applying them do not lead to zero incoming or outgoing 

lanes for any network node. By using this interval, one can assure that at least the necessary 

condition for the strong connectivity of the network is satisfied. This can help decrease the 

probability of the occurrence of disconnectedness of the network. 

For the link l between nodes i and j, the feasibility interval is defined as the minimum and 

maximum number of lanes that can be chosen for arc (i, j) such that after applying the change in 

lane allocation, the number of outgoing and incoming lanes for nodes i and j are all greater than 

zero. The interval is defined as [LBij',UBij']. It must be noted that considering lanes on arc (i, j) 

suffices, since the number of lanes on arc (j, i) can be easily deduced from Kl. 

 

 

Figure 6. Variables and parameters for feasibility interval 
 

Figure 6 illustrates the variables and parameter used to define the feasibility interval. As depicted in 

figure 6, both arcs (i, j) and (j, i) need two notations; k'ij and k'ji for the current lane allocation (as 

parameters) and kij and kji for the new lane allocation (as variables). In order to consider the number 

of outgoing and incoming lanes for nodes i and j, it is required to compute the total number of 

incoming and outgoing lanes for all related arcs to i and j, except arcs (i, j) and (j, i). Thus, k'ip, k'pi, 

k'pj, k'jp are defined as the current lane numbers of the related outgoing or incoming arcs, which are 

treated as fixed (parameters). Now to calculate the interval, one needs to consider the following 

constraints: 

݇௜௝ ൅ ෍ ݇′௜௣ ൒ 1
௣∈ః೔,௣ஷ௝

 (34)
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௝݇௜ ൅ ෍ ݇′௝௣ ൒ 1
௣∈ః݆,௣ஷ௜

  (35)

௝݇௜ ൅ ෍ ݇′௣௜ ൒ 1
௣∈ః೔,௣ஷ௝

 (36)

݇௜௝ ൅ ෍ ݇′௣௝ ൒ 1
௣∈ఃೕ,௣ஷ௜

 (37)

݇௜௝ ൅ ௝݇௜ ൌ ݇′௜௝ ൅ ݇′௝௜ (38)

where Φi and Φj 
are the sets of nodes that are adjacent to nodes i and j. Constraints (34)-(35) imply 

that the total number of outgoing lanes from nodes i and j must be greater than one. Constraints 

(36)-(37) imply that the total number of incoming lanes to nodes i and j must be greater than one. 

Finally, constraint (38) is the lane allocation equation which requires that the total number of lanes 

between nodes i and j should not change. The summation terms in constraints (34)-(37) indicate the 

total number of incoming or outgoing lanes to each node, which are fixed (or treated as parameters). 

kij and kji are the only variables of the constraint set. 

From the above inequalities, one can extract the maximum and minimum possible values for kij, 

i.e. LBij' and UBij'. LBij' can be obtained using constraints (34)-(35), and UBij' can be obtained using 

constraints (37)-(39). Relations (39)-(40) indicate the formulas of the two bounds. 

௜௝ܤܮ
ᇱ ൌ max൞0,max ቐ1 െ ෍ ݇′௣௝

௣∈ఃೕ,௣ஷ௜

, 1 െ ෍ ݇′௜௣
௣∈ః೔,௣ஷ௝

ቑൢ (39)

݆݅ܤܷ
′ ൌ min൞݇′݆݅ ൅ ݇′݆݅,	min ቐ෍ ݌݆′݇ ൅ ݇′݆݅

݆ߔ∋݌

െ 1,෍ ݅݌′݇

݅ߔ∋݌

൅ ݇′݆݅ െ 1ቑൢ (40)

When kij is selected randomly from the interval determined by (39) and (40), kji can be obtained 

from the total number of lanes of the link. Note that the above interval is valid for DNDP1. For 

DNDP2, symmetry restrictions must be taken into account. This can be done by choosing the 

feasible number of lanes for one-way or symmetric two-way lane allocations from the values 

provided by the interval. 

After changing lane allocations for all selected links, the solution is checked for connectivity 

feasibility; all random lane allocation changes are discarded if the network is disconnected, and the 

procedure is applied again based on the current lane allocation. If no feasible solution is found after 

repeating the procedure up to 10 times, then the current temperature (i.e., iteration) is skipped. This 

is set so as to keep the computational effort rational. 

 

Evolution Mechanism 

The evolution process is undertaken by replacing some of the population solutions with the 
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generated offspring solutions with higher fitness values. Let q be the parameter of the algorithm and 

be a real number selected between 0 and 1 so that a trade-off is made between computational effort 

and solution quality. (A small value leads to a lower computation effort but a lower solution quality, 

and vice versa.) Then, the process can be described as follows: 

 Find the set of population solutions S' that are worse than at least one offspring solution. 

 If |S'| ≥ |S0|, where S0 is the set of offspring solutions, then select q|S0| best offspring 

solutions to undergo the short SA process. Each of the selected offspring solutions will give 

one solution. If a new solution obtained is better than the selected one, then update the 

corresponding solution in S0. Otherwise, keep the selected offspring as it is. Then, use the 

modified S0 solutions, to replace |S0| worst population solutions. 

 If |S'| < |S0|, then select q|S'| best offspring solutions to undergo the short SA process. Each of 

the selected offspring solutions will give one solution. If the new solution obtained is better 

than the selected one, then update the corresponding offspring solution. Otherwise, keep the 

offspring as it is. Then, use the best |S'| offspring solutions to replace the worst |S'| 

population solutions. 

 

4.3. Multi-objective Evolutionary Simulated Annealing 

Like genetic algorithm, simulated annealing is also one of the most prevalently used methods of 

solving network design problems (Ben-Ayed et al., 1988; Friesz et al., 1993; Lee and Yang, 1994; 

Drezner and Wesolowsky, 1997; 2003; Yang and Wang, 2002; Poorzahedy and Abulghasemi, 

2005; Poorzahedy and Rouhani, 2007). Multi-objective Evolutionary Simulated Annealing (mESA) 

proposed in this paper is a hybrid version of SA and GA in a multi-objective framework. 

Population-based ESA is similar to GA but uses SA as the crossover and mutation operators. In 

every GA iteration, a sole parent is selected and a short version of SA is applied to generate 

offspring. The two advantages of ESA have been discussed in Aydin and Fogarty (2004). The 

multi-start property of ESA provides a more uniform distribution of random moves along the whole 

procedure and helps to diversify the solutions. The other advantage is its evolutionary approach. 

Before the details of ESA are discussed, the entire procedure of the algorithm is described below. 

Phase 1: Generate a population of P solutions; compute their fitness values, and build the Pareto-

optimal solution set from the initial population. 

Phase 2: Repeat the following procedure for G generations: 

- Randomly select a parent solution either from the population using the roulette wheel rule or 

from the Pareto-optimal set. 

- Apply SA on the selected parent to obtain an offspring set: 

o Initialize Temperature. 
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o While Temperature is greater than a specified value, repeat: 

 Generate a random solution by applying perturbations in lane allocations, and by 

swapping a present lane addition or link construction project, with another one. 

 Check the connectivity of the solution and discard the solution if the network 

becomes disconnected. 

 Calculate the fitness value of the solution. 

 Add the solution to the offspring set and update the Pareto-optimal set. 

 If the random solution is better than the current solution, substitute the current 

solution by the random solution; Otherwise, accept the random solution by a probability 

of e -Δ/Temperature (Δ is the difference of the objective values). 

 Reduce Temperature. 

o Return all the generated solutions. 

- Replace the population solutions with the generated solutions using the evolution 

mechanism. 

- Recalculate the adaptive weights and fitness values for population solutions. 

mESA has the solution encoding, fitness value calculation, initial population generation, and the 

evolution mechanism procedures in common with mHGA. Like Aydin and Fogarty (2004), a short 

version of SA is substituted of the crossover and mutation in the proposed mESA. The embedded 

SA is similar to the SA in mHGA, except that an additional project swap procedure is applied when 

producing a random solution. In this procedure, at first every possible swap of lane addition or link 

construction projects is considered. A possible swap means that the budget constraint is not 

violated, and also the network doesn't become disconnected by applying the swap. After examining 

all possible swaps, one is selected randomly to be applied.  

If no possible swap is found, another approach is adopted; all selected projects are checked for 

cancellation and among the possible cancellation, one project is selected for cancellation. 

 

4.4. Multi-objective Hybrid Artificial Bee Colony Algorithm 

Artificial Bee Colony algorithm (ABC), first introduced by Karaboga (2005) is a swarm-based 

metaheuristic. It is inspired by the intelligent behaviors, including collective, interactive and self-

organized behaviors) of foraging bees for finding nectars. ABC and other bee algorithms have been 

developed to solve combinatorial optimization problems. These algorithms have some common 

features. First of all, bees explore and exploit the environment near their hive which is our search 

space. Second, they evaluate the nectar amounts at each location or solution visited, inform and 

attract other bees to select the qualified solutions, and search in their neighborhood. Third, these 

algorithms are conducted so that better sites are explored more.  
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One of the studies related to the bee algorithms was Teodorović and Dell'orco (2005) in which 

they examined the problem of transportation on ride-matching or ride-sharing. Other papers that 

proposed Artificial Bee Colony algorithms for solving their optimization problems are Yang (2005), 

Basturk and Karaboga (2006) and Karaboga and Basturk (2008). Chong et al. (2007) also proposed 

a Bee Colony solution method for job shop scheduling problems. The transportation problems 

which were solved by a bee colony algorithm so far were in the studies of Teodorović and Dell’orco 

(2005), Szeto et al. (2011), and Szeto and Jiang (2012). Nevertheless, these papers focus on one 

objective. Using ABC for solving multi-objective problems has been studied in other disciplines 

(see for example Pham and Ghanbarzadeh, 2007 and Low et al. 2011).  

The basic characteristics of the proposed hybrid ABC is similar to the method, firstly introduced 

by Basturk and Karaboga (2006). Instead of working with partially built solutions, complete 

solutions are adopted. The colony consist of three groups of bees: employed bees, onlookers and 

scouts. Employed bees exploit available food sources that correspond to solutions in the 

optimization problem. These bees also gather required information and share them with the 

onlookers. Each onlooker bee chooses from a food source near to one of the food sources searched 

by an employed bee and evaluate the amount of nectar (corresponding to determining the objective 

value of a solution). The employed bee becomes a scout when the food source is abandoned, and 

the scout starts to search a new food source. This occurs when the solution has not been improved 

after a predetermined duration called limit. 

In the ABC proposed in this paper, a small SA procedure is embedded like the works of Sadiq 

and Hamad (2010) and Alzaqebah and Abdullah, (2011). This SA procedure is used instead of the 

greedy solution procedure in Basturk and Karaboga (2006), because the former is found to be more 

effective. Also in the original ABC, a restriction of no more than 1 for scout at any time is imposed. 

This restriction is relaxed in our procedure. The SA used in this algorithm is similar the one 

developed for mESA. 

In the following, the phases of the proposed algorithm are presented: 

Phase 1: Generate a population of P solutions, compute their fitness values, and build the Pareto-

optimal solution set from the initial population. 

Phase 2: Repeat the following procedure for C cycles: 

- Produce new solutions for employed bees by applying SA on all members of the population. 

- For each onlooker, randomly select a solution based on the roulette wheel selection rule and 

apply SA on this solution. 

- Find the abandoned solutions and replace them with random solutions obtained from Pareto-

optimal set or with new solutions when the Pareto-optimal set is empty. 

- Recalculate the adaptive weights and fitness values of population solutions. 
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5. Computational Results 

5.1. Test problems and data 

The investigated problem in this study is new, causing the absence of a benchmark to test our 

proposed algorithms. Therefore, we modified a number of common test cases found in NDP or 

traffic assignment papers, and made to allow us to test the effectiveness of the proposed solution 

methods. The test networks are given in table 3, which are classified into small, medium and large 

networks according to their size.  

 

Table 3. Testing networks 
Network  

size 
Network adopted Notation 

Number of
nodes 

Number of 
links 

Number of
OD pairs 

Small The Harker and Friesz (1984) network HF 6 8 2 
The Nguyen and Dupuis (1984) network ND 13 19 4 
A reduced Sioux Falls network used in 
LeBlanc et al. (1975)  

SF1 14 19 176 

Medium The Nagurney (1984) network NA1 20 28 8 
The Nagurney (1984) network NA2 22 36 12 
The basic Sioux Falls network used in 
LeBlanc et al. (1975) 

SF2 24 37 528 

Large The Nagurney (1984) network NA3 40 66 6 
 

The network attributes needed for solving the problem are the link characteristics such as free 

flow travel time, capacity, and the number of lanes on each link for the existing or new links. In 

each of the original test networks, some of link characteristics are available but some are not. 

Therefore, we had to assign reasonable values to the missing parameters. The test case also needs 

the demand matrix, project settings, project cost, and budget available. Table 4 gives a summary for 

these test cases. In all test cases, it is assumed that expansion projects consist of adding one lane on 

each side of the link, and new constructible links have 4 lanes in total. 

 

 Table 4. Parameters selected for test cases 
Network  

size 
Notation 

Demand  
values 

Free flow 
travel times 

Number of  
link lanes 

Capacity of 
links 

Project setting, cost & 
budget level 

Small 

HF 

Original 
values 

4-6 minutes a 2-4 to provide 
more flexibility b 

7-15 c Newly defined projects, 
set costs and budget 
using SF2 values,  

Budget = $ 2,300,000  

ND 
Original 
values 

Original values Original values Original values 

Newly defined projects, 
set costs and budget 
using SF2 values,  

Budget = $ 3,500,000  

SF1 
Original 
values 

from SF2 

Original values 
from SF2 

Original values 
from SF2 

Original values 
from SF2 

Medium 
NA1 

Original 
values 

4-8 minutes 2-4 
300-1000 c 
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NA2 
Original 
values 

1000-2500 c 

SF2 

Original 
values 

Original values Original values Original values Existing projects plus 
selected new links, used 
existing and new costs, 
Budget = $4,000,000  

Large 

NA3 

Original 
values 

4-8 minutes  between 2-4 200-900 c Defined projects, set 
costs and budget using 

SF2 values,  
Budget = $ 4,000,000  

a. The original free flow times differed for each link direction and were not applicable. 
b. The original values were all 2 and this number of lanes could not lead to many asymmetric lane allocation scenarios for the 
network (with exception of new links with 4 lanes).  
c. Demand values and reserve capacity of the resulting network were considered. 

 
It is assumed that the original form of each network has its entire links as two-way streets. 

Construction costs have a linear relationship with the number of lanes added. The travel time on a 

link (tij) is a function of the flow on it, and can be described by Bureau of Public Roads (BPR) 

function, in which α is assumed 0.15 and β equal to 4. The functional form is indicated below where 

t0
ij is the free flow travel time on arc (i, j). 

௜௝൯ݔ௜௝൫ݐ ൌ ௜௝ݐ
଴ ൭1 ൅ ߙ ቆ

௜௝ݔ
ܿ௜௝
ቇ
ఉ

൱ (41)

 

5.2. Parameter setting 

Parameter setting is one of the important steps of solving in meta-heuristics. It affects the quality of 

solutions obtained together with the runtime of the algorithm. To set the parameters of the three 

algorithms, we first reviewed parameter ranges in similar studies, and then conducted experiments 

for each parameter value. The combination of parameters for each algorithm was set such that the 

overall computational effort of algorithms for each problem becomes as close as possible together. 

Moreover, the same parameter settings were used for both DNDP1 and DNDP2. Table 5 shows the 

parameters for the three metaheuristics. 

 
Table 5. Parameter settings for the algorithms 

Algorithm Main parameters SA parameters 

mHGA 

Population size: 60 
Number of generations: 300 
Portion of solutions to apply SA: 1/3 

Start temperature: 5 
Reduction rate for small examples: 0.9  
Reduction rate for other examples: 0.8 
Stop temperature: 1 

mESA 
Population size: 60 
Number of generations for small examples: 84×N 
Number of generations for other examples: 49×N 

Start temperature: 10 
Reduction rate: 0.95 
Stop temperature: 1 

mHABC 

Population size: 15 
Number of cycles for small examples: 4.5×N 
Number of cycles for other examples: 2.6×N 
Limit: 4 
Number of employer bees and onlookers = 15 

Start temperature: 10 
Reduction rate: 0.92 
Stop temperature: 1 
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The computational effort of each algorithm is a function of the number of generated solutions. 

The number of these solutions in turn, is dependent to the parameter setting of the algorithms. Thus, 

the approximate total computational effort can be expressed in terms of these parameters. For 

mHGA, the effort is roughly equal to )23/2( NitrNG  , in which N is the number of nodes 

and itr is the number of solutions generated by SA iterations. It is because crossover operation 

generates 2×N solutions; 1/3 of them were applied SA and itr SA iterations were applied on each of 

the selected solutions. The portion 1/3 is chosen to trade-off high computational effort and the 

solution quality. For mESA, the effort is about itrG . This is because itr numbers of solutions are 

generated by SA iterations for each of the G generations. For mHABC, the approximate 

computational effort can be formulated as itrPC 2 , since itr numbers of solutions are 

generated by SA twice for each of P population solutions in C cycles. These numbers of solutions 

generated were applied as a guideline for setting the parameters of the algorithms.  

By referring to the similar papers, we set the number of generations of mHGA and mESA and 

their population size. Carrying out some experiments also helped a lot in fixing the values of 

parameters. But the mHABC has a different algorithmic structure and its computational time is 

high. Also, there are few papers from which we can get help in this regard. Therefore, the size of 

population and the number of cycles differ from the other methods. Other values of parameters like 

the number of onlookers and scouts, the limit, population size, and the number of cycles has been 

set by carrying out enough experiments.  

Two criteria are taken into account for setting the values of parameters of SA. At first, in the 

cooling procedure, the worst solution should be accepted with a reasonable probability, and then, 

the whole algorithm should have a rational computational effort. The SA parameters for mHGA are 

different for small, medium, and large test examples. This is motivated by the fact that 

computational effort for mHGA is significantly dependent on the value of N as explained earlier, 

while the number of generated solutions in mESA and mHABC are independent from the problem 

size.  

 

5.3. Software and hardware 

All algorithms were coded by Matlab version 7 and the tests were carried out on a laptop with a 

Core2Duo T7500 2.2GHz CPU, and a 2G RAM. Each algorithm was run for 5 times.  

 

5.4. Performance Evaluation 

To evaluate the performance of the algorithms, two methods are applied. Both of them are based on 

the assessment of Pareto-optimal sets: 

 Comparison using the best values of each individual objective function: this can help to 
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assess to what extent the algorithms can explore the solution space.  

 Comparison using effectiveness measures of Pareto-optimal sets: This method compares the 

outputs of the algorithms using Pareto-optimal assessment measures. 

Both comparisons are carried out in two ways; one by solving the smallest test example HF and 

comparing the results with those of three algorithms, and the other by comparing the results of the 

three algorithms directly with each other. The example HF was solved using an exact method. 

Actually the runtime of this method is very high even for this small example (more than 12 hours). 

The specific characteristic of our bilevel NDP makes it difficult to apply the branch-and-bound 

method as an exact algorithm to solve them. The branch-and-bound method requires lower bound 

estimation throughout the solution procedure, while this estimation cannot be easily done for our 

bilevel NDPs, in which the lower level problem is a user-equilibrium assignment problem. It is 

because there is no-closed form equation to depict the relationship between the values of design 

variables on the user equilibrium flows. Although LeBlanc (1975) proposed a method to compute 

the lower bound of DNDPs with link addition projects, it cannot be used here to solve DNDP1 and 

DNDP2. It is because the lower bound calculation method proposed by LeBlanc is based on 

computing the system optimal flows which gives a lower bound for total travel time under user 

optimal flows, while the two problems in this paper use other objective functions rather than total 

travel time and this paper considers multiple objectives, not single objective.   

The exact algorithm developed here to solve example HF is a two-part enumeration method:  

First Part: This part finds the feasible combinations of expansion and construction projects in terms 

of the budget consideration. The output is the set of feasible strategic decisions. 

Second Part: This part applies an enumeration algorithm for each feasible combination of strategic 

decisions. The variables in this part are only the tactical decisions. The main steps are: 

 Repeat until all feasible combinations are examined: 

o Select a feasible combination of expansion and construction projects: 

 Examine all possible combinations of street orientation and lane allocation.  

 Discard the disconnected network solutions (i.e. infeasible ones). 

 Compute the objective function values for each feasible solution. 

o If the Pareto-optimal set is null, then build it using the obtained solutions. Otherwise, 

update the Pareto-optimal set using the obtained solutions. 

This enumeration method is a branch and bound algorithm without lower bound calculation, and 

with only the infeasibility as the bounding rule. By filtering the budget-infeasible combinations of 

construction and expansion projects, the original solution space is transformed into a smaller or 

reduced solution space which does not include infeasible combinations of projects, and then the 

enumeration method only requires searching in the reduced solution space. Even by reducing the 
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size of the solution space, the computational effort of HF remains rather high. No example other 

than HF could be solved, since the size of reduced solution space of even DNDP2 in the ND case 

equals 229,352,929,488, which is computationally prohibitive to be solved exactly. 

 

Comparison of Individual Objective Function Values 

In order to evaluate the capability of the algorithms in achieving optimum or near optimal values for 

each individual objective function, we compared the corresponding results of test example HF 

obtained by these algorithms. Based on the results from solving example HF by the exact method, 

the individual optimum values of the objective functions Z1, Z2 and Z3 are respectively equal to 

2.742, 1.0009, and 0.03879 for DNDP1 and to 2.742, 1.0009, and 0.00019 for DNDP2.  

A comparison of the algorithms can be made by assessing the best values obtained for each of 

the objective functions among all runs. Table 6 depicts the averages of best objective function 

values obtained among all 5 runs. Bold numbers indicate the best values among three algorithms. 

From this table, it can be seen for example HF that mHGA got all the best values of the three 

objective functions for DNDP2, and the best values of Z1 and Z2 for DNDP1. Also mESA and 

mHABC obtained the best values of Z3 for DNDP2. 

A comparison of values of the three objective functions in all 7 examples (i.e., 21 values of 

objective functions) for each algorithm reveals that mHGA obtained 18 best values; mHABC 

reached 2 best and 14 second best values, and mESA gave 1 best and 9 second best values for 

DNDP1. For DNDP2, mHGA achieved 19 best and 1 second best values, mHABC reached 2 best 

and 13 second best values, and mESA provided 2 best and 8 second best values for DNDP2. It is 

observed that mHGA outperforms other algorithms in all three large test examples in terms of each 

objective. Therefore, mHGA is the preferred solution procedure in terms of the values of the 

objective functions obtained. The best values are shown in bold in the table. 

Table 6. The best objective function values for both DNDP1 and DNDP2  

Example  
mHGA mESA mHABC 

Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3 

DNDP1 

HF 2.742 1.0009 0.00076 2.730 1.0010 0.00048 2.705 1.0011 0.00035 
ND 1.158 1.0314 0.56162 1.144 1.0372 0.55793 1.156 1.0345 0.55682 
SF1 0.634 1.1483 3.39290 0.591 1.1924 7.72480 0.606 1.1894 7.16390 
NA1 1.866 1.0021 57.86200 1.520 1.0046 55.34100 1.525 1.0057 55.52400 
NA2 2.309 1.0015 26.00100 2.038 1.0028 26.00200 1.789 1.0038 26.00200 
SF2 0.292 2.0202 29.05500 0.256 2.5030 57.86900 0.253 2.2860 54.26300 
NA3 3.155 1.0004 52.03200 2.372 1.0010 52.08200 2.609 1.0010 52.04300 

DNDP2 

HF 2.742 1.0009 0.03879 2.705 1.0013 0.03879 2.680 1.0013 0.03879 
ND 1.166 1.0346 0.56119 1.161 1.0386 0.56574 1.156 1.0360 0.56276 
SF1 0.581 1.1876 5.19340 0.544 1.2276 12.10900 0.545 1.1925 8.47130 
NA1 1.698 1.0025 58.18800 1.539 1.0050 54.40900 1.509 1.0051 55.09700 
NA2 1.848 1.0030 26.00400 1.764 1.0036 26.00500 1.775 1.0044 26.08400 
SF2 0.275 2.0459 35.01600 0.233 2.7252 75.46500 0.233 2.5212 63.32200 
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NA3 3.434 1.0003 52.08700 2.708 1.0006 52.08800 2.761 1.0006 52.04400 
 

Table 7 summarizes the best values of each objective function obtained from all algorithms and 

gives the percentage of deviation of the best values obtained by DNDP2 with respect to the 

corresponding values obtained by DNDP1. The comparison of the best values of the individual 

objective functions for each test example between DNDP1 and DNDP2 reveals that DNDP1 leads 

to better objective function values than DNDP2. As can be seen from the table, DNDP1 has higher 

or equal values of demand matrix multipliers (i.e., the objective function Z1) in 5 out of 7 examples, 

lower or equal values of the objective function Z2 in 6 out of 7 examples, and lower or equal values 

of the objective function Z3 in 6 out of 7 examples. This explains that more flexibility in lane 

allocations in DNDP1 provides higher reserve capacity and lower travel time. Therefore, allowing 

for two-way streets with unequal number of lanes at each direction at least for some of streets can 

improve road network performances. 

 Table 7. Comparison of the results between DNDP1 and DNDP2 

Example  
DNDP1 DNDP2 

Percentage of deviation of best 
values with respect to DNDP1 

Z1 Z2 Z3 Z1 Z2 Z3 ΔZ1(%) ΔZ2(%) ΔZ3(%)
HF 2.742 1.0009 0.00035 2.742 1.0009 0.03879 0.00 0.00 10988.37 
ND 1.158 1.0314 0.55682 1.166 1.0346 0.56119 0.67 0.31 0.78 
SF1 0.634 1.1483 3.39290 0.581 1.1876 5.19340 -8.38 3.42 53.07 
NA1 1.866 1.0021 55.34100 1.698 1.0025 54.40900 -8.96 0.04 -1.68 
NA2 2.309 1.0015 26.00100 1.848 1.0030 26.00400 -19.96 0.15 0.01 
SF2 0.292 2.0202 29.05500 0.275 2.0459 35.01600 -5.88 1.27 20.52 
NA3 3.155 1.0004 52.03200 3.434 1.0003 52.04400 8.87 -0.01 0.02 

 

Effectiveness Measures 

In this section we propose two measures that are used for investigating the quality of the Pareto-

optimal sets for each algorithm. M1 is the first measure that takes the size of the Pareto-optimal set 

into consideration. The second measure, named M2 which was proposed by Miandoabchi et al. 

(2012), identifies the overall performance of one algorithm, compared to other ones.  

M2 is based upon the concept of set coverage measure in Zitzler et al. (2000). They 

introduced a measure that compares the fraction of a Pareto-optimal set that dominates another 

Pareto-optimal set. In the following, the mathematical form of this measure is given: 

൫ܥ ௜ܺ, ௝ܺ൯ ൌ
ห൛ ௝ܽ ∈ ௝ܺ; ∃ܽ௜ ≽ ௝ܽൟห

ห ௝ܺห
 (42)

where the domination or equality of solution ai to aj is represented by ܽ௜ ≽ ௝ܽ . Equation (42) 

calculates the fraction of solutions in set Xj that is dominated by or equal to at least one solution in 

Xi. In other words, the fraction of the solutions in set Xj that is covered by set Xi is calculated. 

According to this definition, C(Xi, Xj) is not necessarily equal to 1- C(Xj, Xi). 

Based on this set coverage concept, we can define a measure to indicate the overall strength of 
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an algorithm with respect to other algorithms. This measure should have a larger value when the 

algorithm can obtain more non-dominated and less dominated solutions than other algorithms. In 

other words, the more the fraction of non-dominated solutions and the less the fraction of dominated 

solutions, the higher should be the value of the measure, and vice versa. Therefore, for developing 

M2, we sum up the C values that represent the fraction of solutions which dominate the solutions of 

other algorithms and then subtract all C values which represent the fraction of solutions that is 

dominated by the solutions of other algorithms. The proposed formula for M2 is given in (43). 

ଶሺܯ ௜ܺሻ ൌ෍ܥሺ ௜ܺ,
௝ஷ௜

௝ܺሻ െ෍ܥሺ ௝ܺ,
௝ஷ௜

௜ܺሻ (43)

In tables 8 and 9, the average values of the measures and the average runtimes for solving 

DNDP1 and DNDP2 are summarized. Regarding to the values of the measure M1, out of 14 values 

for both problem variations, mHGA has the first ranking with 7 best and 4 second best values, 

mESA has the second ranking with 5 best and 4 second best values, and mHABC has the third 

ranking with 4 best and 7 second best values. The best values in tables 8-9 are indicated in bold. 

Table 8. Summary of computational results for DNDP1 

Example  
mHGA mESA mHABC 

M1 M2 Runtime* M1 M2 Runtime* M1 M2 Runtime* 
HF 24 0.81 448 35 -0.37 558 35 -0.44 564 
ND 10 1.22 1,104 13 -1.03 1,618 11 -0.19 1,633 
SF1 40 1.93 9,111 12 -0.83 9,553 19 -1.10 9,533 
NA1 6 1.43 4,652 10 -1.02 4,811 8 -0.42 4,880 
NA2 10 1.88 5,159 14 -0.70 5,232 15 -1.17 5,362 
SF2 36 2.00 27,919 8 -1.64 29,232 8 -0.36 29,349 
NA3 17 1.79 19,575 15 -1.62 25,294 11 -0.16 25,321 

* Average runtime (in seconds) 

Table 9. Summary of computational results for DNDP2 

Example  
mHGA mESA mHABC 

M1 M2 Runtime* M1 M2 Runtime* M1 M2 Runtime* 
HF 19 1.20 415 30 -0.28 567 30 -0.92 573 
ND 12 1.29 1,149 13 -1.07 1,623 11 -0.22 1,642 
SF1 31 1.26 8,987 14 -1.00 9,575 21 -0.26 9,529 
NA1 6 1.00 4,668 5 -0.40 5,191 11 -0.60 5,165 
NA2 21 0.74 4,512 15 -0.16 5,382 14 -0.57 5,470 
SF2 29 1.98 26,020 10 -1.35 29,251 14 -0.63 29,479 
NA3 17 1.31 19,242 9 -0.94 26,171 13 -0.36 26,131 

* Average runtime (in seconds) 
 

In order to obtain rankings of algorithms with respect to M1 and M2, the following steps were 

taken for DNDP1 and DNDP2: 

1. Ranking the three algorithms for each measure, each test example and each problem 

variation. 

2. Counting the total number of 1st, 2nd and 3rd rankings of each algorithm for each measure 

among the test examples and problem variations. 

3. Computing the score of each algorithm in each measure by combining ranking its counts 

using the weighted sum method: (No. of 1st rankings)*1 + (No. of 2nd rankings)*0.5 + (No. 
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of 3rd rankings)*0.25. 

Table 10 summarizes the computations to obtain algorithm scores. 

Table 10. Algorithm scores for each measure  

Algorithm

Criteria 

mHGA mESA mHABC

M1 M2 M1 M2 M1 M2 

No. of 1st rankings 7 14 5 0 4 0 

No. of 2nd rankings 4 0 4 6 7 8 

No. of 3rd rankings 3 0 5 8 3 6 

Scores 9.8 14 8.25 5 8.3 5.5 

Based on the scores obtained, we can conclude that mHGA outperforms other algorithms in all 

three large examples, and thus it is the most preferable solution procedure, especially for large 

examples.  

The runtimes of the algorithms for each test example are at the same range, as the total 

computational efforts are controlled to be similar. The following shows the rank of the solution 

algorithms under each criterion. 

 M1: mHGA >  mHABC > mESA 

 M2: mHGA > mHABC > mESA 

 best objective function values: mHGA > mHABC > mESA 

Both the M1 and M2 and also the best values of individual objective functions suggest that 

mHGA performs the best. 

Figures 7 and 8 illustrate the average runtimes of all the algorithms for each test example for 

DNDP1 and DNDP2. As can be seen from these figures, the runtimes for test examples SF1 and 

SF2 are slightly higher than their neighbor test examples with similar network sizes. This can be 

explained by the existence of the higher numbers of OD pairs in SF1 and SF2, which require higher 

computation time to take into account the interactions of flows from different OD pairs. This 

indicates the significant effect of the number of OD pairs on the computation time required. 

 

  

Figure 7. Average runtimes for DNDP1 Figure 8. Average runtimes for DNDP2 

 



34 

 

Performance in Achieving the True Pareto-optimal Set 

In order to evaluate the degree of closeness of the obtained Pareto-optimal solution set by each 

algorithm to the optimum set, the exact solution of example HF was used. The non-dominated 

solutions among the union of Pareto-optimal sets among 5 runs for each algorithm were found, and 

the percentage of true Pareto-optimal solutions achieved by each algorithm was calculated. The 

results are given in Table 11. It can be observed that mHGA can obtain the largest percentage.  

Table 11. Percentages of true Pareto-optimal solutions found for HF 
 DNDP1 DNDP2 

Percentages 
mHGA 47.9 % 100 % 
mESA 22.9 % 47.6 % 
mHABC 25 % 38.1 % 

Size of true Pareto-optimal set 48 21 
Size of original solution space 86,400,000 839,808 
Size of reduced solution space 
evaluated by the exact method

3,294,507 70,399 

Runtime of the exact method 68,074 1,042 
 

The sizes of the original and reduced solution spaces for the two problems and the runtimes 

required are also shown in Table 11. The original solution space size for DNDP2 is calculated using 

the expression ∏ ൫3ሺ1 ൅ y୪
୫ୟ୶ሻ൯୪∈୐	 . 4|୐

'|. It counts 3 possibilities for an existing link's direction (2 

possibilities for a one-way street and 1 possibility for a two-way street) multiplied by 1 + yl
max 

possibilities for its expansion (Here, yl
max is either 0 or 1), and 4 possibilities for candidate link's 

direction (1 possibility for the link not being built and 3 possibilities for the link to be built). Since 

there are 5 non-expandable links, 3 expandable links with maximum 1 lane addition on each side, 

and 2 constructible links for HF, the expression will be (3 × (1 + 0))5 × (3 × (1 + 1))3 × 42 which 

gives 839,808.  

For DNDP1, the expression ∏ ∑ ሺK୪ ൅ 2y୪ ൅ 1ሻ୷ౢୀଵ
୷ౢୀ଴୪∈୐ .∏ ሺK୪' ൅ 2ሻ୪'∈୐'  is used. The first product 

term counts all lane allocation possibilities for existing links. Kl + 2yl is the sum of the number of 

existing lanes and the number of lanes to be added to the existing link. This leads to Kl + 2yl + 1 

possibilities of asymmetric lane allocations, after including 1 possibility for not expanding it. If a 

link is non-expandable (i.e. yl = 0), then lane allocation possibilities becomes Kl + 1. If a link is 

expandable, then possible lane allocations must be counted for both expansion (yl = 1) and no-

expansion (yl = 0) cases. Thus, all possibilities for expansion or no-expansion must be summed up. 

The second product term of the expression counts Kl' + 1 possibilities for asymmetric lane 

allocations of a constructed new link, plus 1 possibility for not constructing it.  

 For HF, there are 2 construction projects (with 4 lanes), 3 expansion projects (with 2 lane 

additions) for two 2-lane links and one 4-lane link. All other 5 links have 4 lanes. Thus, for 2 

constructible links, the expression will be (4 + 2)2; for two expandable links with existing 2 lanes, 

the expression will be [(2 + 2 × 0 + 1 ) + (2 + 2 × 1 + 1)]2; for one expandable link with existing 4 
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lanes, the expression will be [(4 + 2 × 0 + 1) + (4 + 2 × 1 + 1)], and for the remaining 5 non-

expandable links, the expression will be [(4 + 2 × 0 + 1)]5. Multiplying all the above values will 

give 86,400,000 as the size of the original space. 

For the reduced solution space in DNDP1 or DNDP2, after creating the feasible combinations of 

projects, the above expression was used to determine the possibilities for each combination. The 

possibilities of each combination were summed up to obtain the reduced solution space size. 

From the table, we can see that the reduced solution spaces for DNDP1 and DNDP2 are 

respectively about one-twentieth and one-tenth of their individual original solution space. Moreover, 

the computation time of the exact method for solving DNDP2 is only 2% of that for DNDP1 

because the reduced solution space in DNDP2 is also about 2% of that for DNDP1. 

 

Sensitivity Analysis of Parameter Settings 

To investigate the sensitivity of the computational results to the parameter settings of the 

algorithms, a series of experiments were conducted. Since the total computational effort of the 

algorithms must be kept fixed, experiments could not be performed by changing one parameter at a 

time (except for population size in mHGA and mESA). Thus, various parameter setting strategies 

were generated by changing the values of two parameters at one time, keeping the current values of 

total computational effort unchanged. The total number of temperature changes in each SA 

iteration, was considered as one of the parameters, which can be adjusted using the reduction rate. 

The start and stop temperatures were set fixed. In this way, all algorithms had the number of 

generations/cycles (G/C), population size (P), and the number of embedded SA iterations (itr) as 

their main parameters. The following experiments were conducted:  

 mHGA and mESA: experiment 1 for (G, itr), experiment 2 for P  

 mHABC: experiment 1 for (C, P), experiment 2 for (C, itr), and experiment 3 for (P, itr) 

All experiments were run for problem variation DNDP1 once for each test problem. For each 

experiment, 6 scenarios were generated, covering a range of lower and higher values relative to the 

current parameter values. The results of each scenario were compared against the previous results of 

five runs of the other two algorithms, and the average values were reported. Table 12compares the 

experiments of the three algorithms using measures M1 and M2 for each test problem. The best 

values are indicated in bold. 

To find out if the performance of the algorithms is sensitive to the parameter settings, first the 

ranking of each algorithm (i.e., 1st, 2nd, or 3rd) for each measure in each test example and for each 

scenario was obtained. Then the numbers of 1st, 2nd and 3rd rankings of each algorithm for each 

measure in each test problem among each complete set of experiments were counted. Each set of 

three ranking counts were combined using the weighted sum method described in the main 
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computational tests. The obtained results are shown in table 13. The best performances for each 

scenario are shown in bold. To analysis the overall sensitivity of each algorithm, the scores were 

summed up for all test problems. These values can be used to compare the rankings of the 

algorithms with the ones reported in the main computational tests.  

Table 13. Algorithm scores from sensitivity analysis tests 
Sensitivity 

Analysis Alg.
Example M1 M2

mHGA mESA mHABC mHGA mESA mHABC 

mHGA 

HF 6 12 12 11.25 6 3.75 
ND 10 9 4.25 11.25 3.25 6.5 
SF1 12 3.25 6.5 12 6 3 
NA1 7.25 9.5 4.25 6.25 4.25 10.5 
NA2 7.5 4.5 9 12 6 3 
SF2 11 7 7 11.5 3 6.5 
NA3 7.8 10 4 12 3 6 

Total 61.55 55.3 47 76.25 31.5 39.25 

mESA 

HF 3.5 9.5 8 12 3.75 5.25 
ND 4.5 9 9 12 3.5 5.5 
SF1 12 3 6 12 5.5 3.5 
NA1 4.25 10.5 8.5 12 3 6 
NA2 3.5 10.5 7 12 3.5 5.5 
SF2 12 4.25 4.75 12 4 5 
NA3 11 5 5 12 3.5 5.5 

Total 50.75 52 48.25 84 26.8 36.25 

mHABC 

HF 4.75 13 13.75 18 7 6.5 
ND 5.5 13 13 18 5.5 8 
SF1 18 5.75 7.75 16.5 6 9 
NA1 5.5 15 11 18 8.5 5 
NA2 5 12 14.5 18 7.5 6 
SF2 18 7.75 5.75 18 8.75 4.75 
NA3 15.5 7.75 8.25 18 5 8.5 

Total 72.25 74.3 74 124.5 48.3 47.75 
 

According to the total scores in table 13, the ranking of each algorithm for each measure will be 

as in table 14. The obtained rankings are compared to the original ones (M1: mHGA > mHABC > 

mESA; M2: mHGA > mHABC > mESA), and the result for each algorithm is explained in the last 

column. 

Table 14. Algorithm rankings according to sensitivity analysis test 

Measure 
Algorithm under 

Sensitivity Analysis 
Ranking Obtained after 

Sensitivity analysis 
Conclusion 

M1 

mHGA mHGA > mESA > mHABC 
Performance of mHGA is not sensitive to its 

parameter settings 

mESA mESA > mHGA > mHABC 
Performance of mESA is sensitive to its 

parameter settings 

mHABC mHABC > mESA > mHGA 
Performance of mHABC is sensitive to its 

parameter settings 

M2 
mHGA mHGA > mHABC > mESA Performances of mHGA and mESA are not, 

but the performance of mHABC is sensitive to 
its parameter settings 

mESA mHGA > mHABC > mESA 
mHABC mHGA > mESA > mHABC 

 

The above computational results lead us to the conclusion that the comparative performance of 

mHGA in both measures and mESA in measure M2 are not sensitive to the changes in the 

algorithms’ parameters. However, the performance of mHABC in both measures and mESA in 

measure M2 is sensitive to the algorithms’ parameters. Overall, it can be concluded that the 
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performance of mHGA is the least affected by changes in parameter settings and thus it is the most 

reliable and desirable algorithm to solve the problems. 
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Table 12. Summary of computational results for sensitivity analysis 

Problem 
mHGA mESA mHABC 

Experiment Scenario
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

G P itr M1 M2 M1 M2 M1 M2 G P itr M1 M2 M1 M2 M1 M2 C P itr M1 M2 M1 M2 M1 M2 

HF 

No. 1 
G and itr 

1 150 60 35 22 0.59 35 -0.27 35 -0.33

No. 1 
G and itr 

207 60 110 24 1.01 56 -0.89 35 -0.12

No. 1 
C and P 

12 34 28 24 0.83 35 -0.33 37 -0.50 
2 200 60 25 33 0.64 35 -0.25 35 -0.39 307 60 74 24 0.88 43 -0.59 35 -0.29 17 24 28 24 0.84 35 -0.70 27 -0.13 
3 250 60 20 26 0.52 35 -0.19 35 -0.34 407 60 56 24 0.82 23 -0.41 35 -0.40 22 19 28 24 1.06 35 -0.10 57 -0.96 
4 350 60 13 25 0.83 35 -0.36 35 -0.48 607 60 38 24 0.68 33 -0.21 35 -0.48 32 13 28 24 0.81 35 -0.54 25 -0.28 
5 400 60 11 25 0.78 35 -0.36 35 -0.42 707 60 32 24 0.77 26 -0.29 35 -0.48 37 11 28 24 0.76 35 -0.60 32 -0.16 
6 450 60 10 32 0.52 35 -0.24 35 -0.28 807 60 28 24 0.92 38 -0.59 35 -0.34 42 10 28 24 0.84 35 -0.25 45 -0.59 

No. 2 
P 

7 300 30 16 27 -0.19 35 0.08 35 0.11 

No. 2 
P 

507 30 45 24 0.83 36 -0.55 35 -0.28

No. 2 
C and itr 

12 15 63 24 0.75 35 -0.54 29 -0.21 
8 300 40 16 24 0.24 35 -0.09 35 -0.15 507 40 45 24 0.55 24 0.06 35 -0.61 17 15 45 24 0.83 35 -0.42 31 -0.41 
9 300 50 16 28 0.36 35 -0.12 35 -0.24 507 50 45 24 1.04 57 -0.90 35 -0.14 22 15 35 24 1.05 35 -0.07 43 -0.98 
10 300 70 16 26 0.81 35 -0.34 35 -0.47 507 70 45 24 0.80 37 -0.52 35 -0.28 32 15 24 24 0.49 35 -0.76 31 0.27 
11 300 80 16 26 0.54 35 -0.18 35 -0.36 507 80 45 24 1.01 60 -0.71 35 -0.30 37 15 21 24 0.82 35 -0.40 39 -0.42 
12 300 90 16 29 0.41 35 -0.14 35 -0.27 507 90 45 24 1.05 58 -0.80 35 -0.25 42 15 18 24 1.06 35 -0.43 62 -0.64 

_ 

13 

_ _ _ 
No. 3 

P and itr 

27 5 84 24 1.33 35 0.36 37 -1.68 
14 27 10 42 24 1.09 35 -0.18 59 -0.91 
15 27 20 21 24 0.68 35 -0.80 32 0.12 
16 27 25 17 24 0.88 35 -0.41 61 -0.47 
17 27 30 14 24 0.96 35 -0.14 58 -0.81 
18 27 35 12 24 0.65 35 -0.70 22 0.04 

ND 

No. 1 
G and itr 

1 150 60 35 13 1.23 13 -1.08 11 -0.15

No. 1 
G and itr 

798 60 62 10 1.35 16 -1.44 11 0.09 

No. 1 
C and P 

12 34 28 10 1.46 13 -0.51 19 -0.95 
2 200 60 25 7 1.30 13 -1.13 11 -0.16 898 60 55 10 0.91 10 -0.53 11 -0.38 17 24 28 10 1.16 13 -1.29 17 0.13 
3 250 60 20 15 1.43 13 -1.10 11 -0.32 998 60 50 10 1.30 10 -1.20 11 -0.10 22 19 28 10 1.50 13 -0.80 8 -0.71 
4 350 60 13 17 1.34 13 -1.05 11 -0.29 1198 60 41 10 1.31 12 -1.04 11 -0.27 32 13 28 10 1.40 13 -0.89 16 -0.51 
5 400 60 11 16 1.16 13 -0.89 11 -0.27 1298 60 38 10 1.24 16 -0.74 11 -0.50 37 11 28 10 1.47 13 -0.75 11 -0.72 
6 450 60 10 34 -1.15 13 0.03 11 1.13 1398 60 35 10 1.36 11 -1.33 11 -0.03 42 10 28 10 1.30 13 -1.20 16 -0.10 

No. 2 
P 

7 300 30 16 12 1.28 13 -1.04 11 -0.24

No. 2 
P 

1098 30 45 10 1.37 23 -1.55 11 0.18 

No. 2 
C and itr 

12 15 37 10 1.04 13 -1.38 18 0.34 
8 300 40 16 14 0.41 13 -0.76 11 0.34 1098 40 45 10 0.91 10 0.01 11 -0.92 17 15 34 10 0.79 13 -1.18 10 0.39 
9 300 50 16 10 1.38 13 -1.06 11 -0.32 1098 50 45 10 1.22 8 -0.99 11 -0.23 22 15 30 10 1.03 13 -1.23 20 0.21 
10 300 70 16 13 0.98 13 -0.87 11 -0.12 1098 70 45 10 1.29 16 -1.14 11 -0.15 32 15 26 10 1.13 13 -1.08 12 -0.05 
11 300 80 16 13 0.88 13 -0.85 11 -0.02 1098 80 45 10 1.00 8 -0.33 11 -0.67 37 15 24 10 1.60 13 -0.68 12 -0.92 
12 300 90 16 14 1.33 13 -1.05 11 -0.28 1098 90 45 10 1.16 13 -0.88 11 -0.28 42 15 22 10 1.37 13 -1.11 20 -0.26 

_ 

13 

_ _ _ 
No. 3 

P and itr 

27 5 84 10 1.24 13 -0.54 23 -0.70 
14 27 10 42 10 1.56 13 -0.20 20 -1.36 
15 27 20 21 10 1.08 13 -1.22 21 0.14 
16 27 25 17 10 0.76 13 -1.34 10 0.58 
17 27 30 14 10 1.47 13 -0.95 8 -0.52 
18 27 35 12 10 1.17 13 -1.29 12 0.12 

SF1 
No. 1 

G and itr 

1 150 60 35 19 1.85 12 -0.82 19 -1.04

No. 1 
G and itr 

582 60 91 40 1.88 9 -0.96 19 -0.92

No. 1 
C and P 

33 29 28 40 1.45 12 -1.56 10 0.11 
2 200 60 25 49 1.95 12 -0.85 19 -1.10 782 60 68 40 1.33 8 0.29 19 -1.62 43 22 28 40 1.66 12 -1.61 15 -0.05 
3 250 60 20 37 1.93 12 -0.85 19 -1.08 982 60 54 40 1.48 8 -0.08 19 -1.40 53 18 28 40 1.82 12 -0.93 16 -0.89 
4 350 60 13 31 1.98 12 -0.87 19 -1.11 1382 60 38 40 1.01 2 0.46 19 -1.48 73 13 28 40 1.89 12 -0.82 19 -1.07 
5 400 60 11 35 1.94 12 -0.85 19 -1.09 1582 60 34 40 1.79 15 -0.64 19 -1.15 83 11 28 40 1.71 12 -1.56 20 -0.15 
6 450 60 10 37 1.89 12 -0.83 19 -1.05 1782 60 30 40 1.91 10 -1.46 19 -0.45 93 10 28 40 1.94 12 -0.65 21 -1.28 



39 

 

Problem 
mHGA mESA mHABC 

Experiment Scenario
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

G P itr M1 M2 M1 M2 M1 M2 G P itr M1 M2 M1 M2 M1 M2 C P itr M1 M2 M1 M2 M1 M2 

No. 2 
P 

7 300 30 16 31 1.98 12 -0.87 19 -1.11

No. 2 
P 

1182 30 45 40 1.80 12 -0.48 19 -1.32

No. 2 
C and itr 

33 15 54 40 1.95 12 -0.37 22 -1.59 
8 300 40 16 32 1.83 12 -0.80 19 -1.04 1182 40 45 40 1.72 8 -0.80 19 -0.92 43 15 41 40 1.96 12 -0.48 11 -1.48 
9 300 50 16 30 1.94 12 -0.85 19 -1.09 1182 50 45 40 1.66 9 -0.46 19 -1.20 53 15 33 40 1.52 12 -1.60 17 0.08 
10 300 70 16 44 1.96 12 -0.87 19 -1.09 1182 70 45 40 1.90 15 -0.87 19 -1.04 73 15 24 40 1.10 12 -1.80 7 0.70 
11 300 80 16 32 1.83 12 -0.80 19 -1.04 1182 80 45 40 1.49 13 -0.01 19 -1.48 83 15 21 40 0.70 12 -1.92 15 1.23 
12 300 90 16 32 1.94 12 -0.85 19 -1.09 1182 90 45 40 1.86 7 -0.71 19 -1.15 93 15 19 40 1.57 12 -1.51 9 -0.06 

_ 

13 

_ _ _ 
No. 3 

P and itr 

63 5 84 40 1.70 12 -1.49 16 -0.22 
14 63 10 42 40 1.96 12 -0.62 10 -1.34 
15 63 20 21 40 1.91 12 -0.67 17 -1.24 
16 63 25 17 40 0.56 12 -1.90 16 1.34 
17 63 30 14 40 0.92 12 -1.88 16 0.97 
18 63 35 12 40 1.81 12 -1.00 16 -0.80 

NA1 

No. 1 
G and itr 

1 150 60 19 12 -1.25 10 0.28 8 0.97 

No. 1 
G and itr 

378 60 116 6 1.26 11 -1.39 8 0.13 

No. 1 
C and P 

37 21 28 6 1.33 10 -0.57 9 -0.77 
2 200 60 13 1 0.82 10 -0.76 8 -0.07 578 60 76 6 1.50 5 -1.57 8 0.07 42 19 28 6 1.55 10 -0.28 6 -1.27 
3 250 60 10 14 0.31 10 -0.63 8 0.32 778 60 57 6 1.43 9 -1.62 8 0.18 47 17 28 6 1.54 10 -0.38 11 -1.16 
4 350 60 6 2 0.72 10 -0.73 8 0.01 1178 60 37 6 1.60 10 -1.82 8 0.22 57 14 28 6 1.63 10 -0.25 10 -1.38 
5 400 60 5 5 0.79 10 -0.84 8 0.05 1378 60 32 6 1.41 13 -1.49 8 0.08 62 13 28 6 1.57 10 -0.05 11 -1.52 
6 450 60 4 17 -1.59 10 0.46 8 1.13 1578 60 28 6 1.62 12 -1.85 8 0.23 67 12 28 6 1.59 10 -0.39 7 -1.20 

No. 2 
P 

7 300 30 8 10 -0.74 10 -0.08 8 0.81 

No. 2 
P 

978 30 45 6 1.57 14 -1.73 8 0.16 

No. 2 
C and itr 

22 15 67 6 1.48 10 -0.30 7 -1.17 
8 300 40 8 12 0.21 10 -0.59 8 0.39 978 40 45 6 1.52 10 -1.72 8 0.20 32 15 46 6 1.64 10 -0.26 11 -1.38 
9 300 50 8 18 -0.87 10 0.10 8 0.77 978 50 45 6 1.30 7 -1.25 8 -0.05 42 15 35 6 1.23 10 -0.91 2 -0.32 
10 300 70 8 2 -0.16 10 -0.44 8 0.59 978 70 45 6 1.53 12 -1.65 8 0.12 62 15 24 6 1.52 10 -0.27 14 -1.25 
11 300 80 8 8 -0.54 10 -0.03 8 0.57 978 80 45 6 1.49 18 -1.63 8 0.14 72 15 20 6 1.55 10 -0.37 6 -1.18 
12 300 90 8 1 0.01 10 -0.36 8 0.35 978 90 45 6 1.50 5 -1.33 8 -0.17 82 15 18 6 1.63 10 0.03 20 -1.66 

_ 

13 

_ _ _ 
No. 3 

P and itr 

52 5 85 6 1.64 10 -0.14 11 -1.50 
14 52 10 42 6 1.44 10 -0.19 9 -1.25 
15 52 20 21 6 1.58 10 -0.46 7 -1.11 
16 52 25 17 6 1.52 10 -0.55 5 -0.96 
17 52 30 14 6 1.22 10 -0.85 2 -0.37 
18 52 35 12 6 1.40 10 -0.35 3 -1.05 

NA2 

No. 1 
G and itr 

1 150 60 19 2 0.71 14 -0.13 15 -0.58

No. 1 
G and itr 

475 60 102 10 1.78 7 -0.45 15 -1.32

No. 1 
C and P 

28 31 28 10 1.93 14 -1.03 13 -0.90 
2 200 60 14 16 1.80 14 -0.66 15 -1.14 675 60 72 10 1.93 20 -1.56 15 -0.37 38 23 28 10 1.95 14 -0.51 17 -1.44 
3 250 60 10 17 1.82 14 -0.68 15 -1.14 875 60 55 10 1.93 18 -1.43 15 -0.50 48 18 28 10 1.83 14 -0.59 21 -1.24 
4 350 60 6 3 1.72 14 -0.60 15 -1.12 1275 60 38 10 1.93 20 -1.05 15 -0.88 68 13 28 10 1.90 14 -0.80 16 -1.10 
5 400 60 5 6 1.71 14 -0.61 15 -1.10 1475 60 33 10 1.91 23 -1.41 15 -0.50 78 11 28 10 1.95 14 -0.95 15 -1.00 
6 450 60 4 18 1.82 14 -0.68 15 -1.14 1675 60 29 10 1.93 21 -1.53 15 -0.40 88 10 28 10 1.68 14 -1.32 17 -0.36 

No. 2 
P 

7 300 30 8 6 1.89 14 -0.74 15 -1.15

No. 2 
P 

1075 30 45 10 1.93 6 -1.07 15 -0.86

No. 2 
C and itr 

28 15 58 10 1.95 14 -0.38 20 -1.57 
8 300 40 8 27 1.81 14 -0.69 15 -1.12 1075 40 45 10 1.87 15 -1.09 15 -0.77 38 15 43 10 1.95 14 -0.55 18 -1.40 
9 300 50 8 12 1.76 14 -0.62 15 -1.14 1075 50 45 10 1.93 15 -0.98 15 -0.94 48 15 34 10 1.92 14 -0.65 15 -1.27 
10 300 70 8 30 1.94 14 -0.73 15 -1.21 1075 70 45 10 1.93 17 -1.33 15 -0.60 68 15 24 10 1.87 14 -0.59 20 -1.28 
11 300 80 8 16 1.87 14 -0.72 15 -1.15 1075 80 45 10 1.93 23 -1.41 15 -0.52 78 15 21 10 1.93 14 -1.52 27 -0.41 
12 300 90 8 10 1.92 14 -0.74 15 -1.18 1075 90 45 10 1.93 15 -0.86 15 -1.07 88 15 18 10 1.80 14 -1.39 10 -0.41 

_ 
13 

_ _ _ 
No. 3 

P and itr 
58 5 83 10 1.95 14 0.05 12 -2.00 

14 58 10 42 10 1.95 14 -0.74 9 -1.21 
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Problem 
mHGA mESA mHABC 

Experiment Scenario
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

Experiment
Parameters mHGA mESA mHABC 

G P itr M1 M2 M1 M2 M1 M2 G P itr M1 M2 M1 M2 M1 M2 C P itr M1 M2 M1 M2 M1 M2 
15 58 20 21 10 1.87 14 -0.50 16 -1.37 
16 58 25 17 10 1.95 14 -1.32 11 -0.63 
17 58 30 14 10 1.92 14 -0.93 21 -0.99 
18 58 35 12 10 1.86 14 -1.01 12 -0.85 

SF2 

No. 1 
G and itr 

1 150 60 19 25 0.98 8 -1.33 8 0.35 

No. 1 
G and itr 

573 60 92 36 2.00 5 -1.85 8 -0.15

No. 1 
C and P 

48 20 28 36 2.00 8 -0.06 10 -1.94 
2 200 60 13 22 0.28 8 -0.92 8 0.65 773 60 68 36 2.00 3 -1.30 8 -0.70 53 18 28 36 2.00 8 -0.17 4 -1.83 
3 250 60 10 7 1.58 8 -1.54 8 -0.04 973 60 54 36 1.90 25 -0.45 8 -1.45 58 16 28 36 2.00 8 -0.47 6 -1.53 
4 350 60 6 16 1.66 8 -1.63 8 -0.03 1373 60 38 36 1.34 14 0.55 8 -1.89 68 14 28 36 2.00 8 -0.58 4 -1.42 
5 400 60 5 14 1.70 8 -1.54 8 -0.16 1573 60 34 36 1.12 4 0.77 8 -1.89 73 13 28 36 2.00 8 -0.55 7 -1.45 
6 450 60 4 14 1.34 8 -1.46 8 0.11 1773 60 30 36 1.94 10 -0.55 8 -1.39 78 12 28 36 2.00 8 -0.30 7 -1.70 

No. 2 
P 

7 300 30 8 22 1.12 8 -1.23 8 0.10 

No. 2 
P 

1173 30 45 36 2.00 11 -1.96 8 -0.04

No. 2 
C and itr 

48 15 37 36 1.97 8 -0.48 7 -1.49 
8 300 40 8 9 1.57 8 -1.54 8 -0.03 1173 40 45 36 2.00 9 -1.96 8 -0.04 53 15 33 36 2.00 8 -0.26 9 -1.74 
9 300 50 8 25 1.03 8 -1.23 8 0.19 1173 50 45 36 2.00 5 -1.87 8 -0.13 58 15 30 36 2.00 8 -0.42 10 -1.58 
10 300 70 8 14 1.89 8 -1.64 8 -0.25 1173 70 45 36 2.00 5 -1.78 8 -0.22 68 15 26 36 2.00 8 -0.57 7 -1.43 
11 300 80 8 4 1.89 8 -1.64 8 -0.25 1173 80 45 36 2.00 8 -1.98 8 -0.03 73 15 24 36 2.00 8 -0.41 9 -1.59 
12 300 90 8 10 0.89 8 -1.14 8 0.26 1173 90 45 36 2.00 5 -1.75 8 -0.25 78 15 22 36 2.00 8 -1.47 1 -0.53 

_ 

13 

_ _ _ 
No. 3 

P and itr 

63 5 84 36 2.00 8 -0.31 15 -1.69 
14 63 10 42 36 2.00 8 -0.57 6 -1.43 
15 63 20 21 36 2.00 8 -0.56 4 -1.44 
16 63 25 17 36 2.00 8 -0.48 8 -1.52 
17 63 30 14 36 2.00 8 -0.47 8 -1.54 
18 63 35 12 36 2.00 8 -0.73 6 -1.27 

NA3 

No. 1 
G and itr 

1 150 60 19 17 1.78 15 -1.65 11 -0.13

No. 1 
G and itr 

455 60 193 17 1.80 10 -1.17 11 -0.63

No. 1 
C and P 

74 21 28 17 1.95 15 -1.03 19 -0.92 
2 200 60 13 12 1.85 15 -1.66 11 -0.19 955 60 92 17 1.72 5 -0.61 11 -1.11 84 19 28 17 1.75 15 -1.67 8 -0.09 
3 250 60 10 16 1.56 15 -1.63 11 0.07 1455 60 61 17 1.71 8 -1.07 11 -0.65 94 17 28 17 1.84 15 -1.61 9 -0.23 
4 350 60 6 13 1.86 15 -1.66 11 -0.20 2455 60 36 17 1.83 16 -1.73 11 -0.10 114 14 28 17 1.91 15 -1.49 10 -0.42 
5 400 60 5 17 1.97 15 -1.67 11 -0.29 2955 60 30 17 1.79 8 -1.26 11 -0.53 124 13 28 17 1.85 15 -1.61 12 -0.24 
6 450 60 4 12 1.35 15 -1.57 11 0.23 3455 60 25 17 1.79 18 -1.50 11 -0.29 134 12 28 17 1.84 15 -1.69 15 -0.15 

No. 2 
P 

7 300 30 8 10 1.66 15 -1.64 11 -0.02

No. 2 
P 

1955 30 45 17 1.82 15 -1.33 11 -0.50

No. 2 
C and itr 

74 15 40 17 1.94 15 -1.42 14 -0.51 
8 300 40 8 6 1.88 15 -1.66 11 -0.22 1955 40 45 17 1.81 8 -1.32 11 -0.49 84 15 35 17 1.95 15 -0.88 12 -1.07 
9 300 50 8 15 1.86 15 -1.66 11 -0.20 1955 50 45 17 1.57 7 -0.49 11 -1.08 94 15 31 17 1.86 15 -1.77 9 -0.09 
10 300 70 8 22 1.75 15 -1.64 11 -0.11 1955 70 45 17 1.79 9 -1.24 11 -0.56 114 15 26 17 1.87 15 -1.68 18 -0.19 
11 300 80 8 12 1.97 15 -1.67 11 -0.29 1955 80 45 17 1.78 7 -1.24 11 -0.54 124 15 24 17 1.68 15 -1.61 10 -0.07 
12 300 90 8 10 1.72 15 -1.64 11 -0.08 1955 90 45 17 1.79 18 -1.50 11 -0.29 134 15 22 17 1.95 15 -0.48 30 -1.47 

_ 

13 

_ _ _ 
No. 3 

P and itr 

104 5 85 17 1.90 15 -1.41 13 -0.50 
14 104 10 42 17 1.65 15 -1.58 9 -0.07 
15 104 20 21 17 1.47 15 -1.84 9 0.37 
16 104 25 17 17 1.88 15 -1.39 20 -0.49 
17 104 30 14 17 1.76 15 -1.51 19 -0.25 
18 104 35 12 17 1.71 15 -1.68 7 -0.04 
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6. Conclusions and Future Research Directions 

This paper investigated a multi-objective DNDP, considering reserve capacity and two newly 

proposed travel time related objective functions. In this discrete network design problem, four types 

of decisions are made, including adding lanes to the existing network links, constructing new links, 

determining the lane allocations on two-way links, and converting some two-way links to one-way 

links. Two variations of the problem are defined based on different restrictions in the number of 

lanes in each direction of two-way links. The two variations are modeled as mathematical problems 

with equilibrium constraints, which are bi-level in nature with two lower level problems, one 

concerning the traffic flows for the future demand and the other concerning the traffic flows for the 

current demand level. The non-convexity and complexity of the two proposed models led us 

develop and propose three hybrid multi-objective evolutionary algorithms to solve the problem for 

good rather than exact solutions. They are the hybrid genetic algorithm (GA), the hybrid 

evolutionary simulated annealing (ESA), and the hybrid of artificial bee colony (ABC) and 

simulated annealing (SA) algorithm, which are developed using the adaptive weight approach to 

capture the multi-objective characteristic of the two problems under study.  

A measure based on the set coverage concept was also developed to illustrate the quality of the 

Pareto-optimal solution set obtained by an algorithm compared to the others. Networks of small, 

medium and large sizes were used for evaluating the effectiveness of the proposed algorithms. The 

results show that the proposed multi-objective hybrid GA outperforms other algorithms, in terms of 

values of the objective functions and the quality of the Pareto-optimal solutions. The multi-

objective hybrid of ABC and SA is the second preferred solution procedure, and multi-objective 

ESA is in the third place.  

Finally, we propose some suggestions that were not considered in this paper but can be regarded 

in future research. For example, the intersection designs were not taken into account in this 

problem. Their inclusion as decision variables and also presuming the time spent on intersections 

besides the link travel times, like what was done by Lee and Yang (1994), makes the problem closer 

to the realistic conditions. The problems considering different combinations of these suggestions 

together with the decision variables discussed in this paper can form interesting and challenging 

research topics. 
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