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Abstract

In this paper, a new radial basis function (RBF) is proposed to solve Helmholtz
problems in the traditional collocation method. Since the matrix equation
arising from the RBF interpolation is ill-conditioned, a regularized singu-
lar value decomposition method is used to obtain a more accurate solution.
Numerical examples of both direct and inverse problems are presented to
demonstrate the effectiveness and applicability of the proposed RBF versus
the traditional multiquadric RBF.

Key words: radial basis function; regularization technique; Helmholtz
problem

1. Introduction

A large variety of RBFs or RBF-based methods have been proposed.
Commonly-used RBFs, such as multiquadric (MQ) [1, 2], inverse multi-
quadric [3], and thin plate spline [4, 5], have been widely studied. The
popular RBF-based numerical methods include the method of fundamen-
tal solutions (MFS) [6, 7], boundary collocation method [8, 9], regularized
meshless method [10, 11], radial basis function networks [12, 13], radial basis
collocation method [14, 15], boundary distributed source method [16], and
boundary knot method (BKM) [17, 18], etc. In the past several decades, the
above RBFs or RBF-based methods have been applied to solve heat transfer
problems [19, 20], 1D and 2D nonlinear Burgers’ equation [21, 22], shallow
water equation for tide and currents simulation [23], harmonic elastic and
viscoelastic problems [24], among others.
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The initial development of applying RBFs to solve partial differential
equation began from the pioneering work of Kansa [25, 26], named as Kansa’s
method. In this method, RBFs are directly used as the basis to approximate
the solutions by enforcing the governing equation and boundary conditions
on collocation points. The MQ was first developed by Hardy [27] as a multi-
dimensional scattered interpolation in approximating the gravitational field
of the earth. It was not recognized by most of the researchers until Franke
[28] published a paper in which the accuracy, efficiency, storage, and the ease
of implementation of 29 interpolation methods were evaluated and MQ was
ranked as the overall best. When applying some RBF-based methods, such
as the MFS and BKM, to non-homogeneous problems [29, 30], one needs to
resort to a two-step method. That is to say, one should first approximate the
particular solution by dual reciprocity method or other methodologies, and
then derive the general solution for the corresponding homogeneous prob-
lems. Compared with these numerical methods, the radial basis collocation
method [31, 32, 33, 34] is a single-step method for both homogeneous and
non-homogeneous problems. However, the accuracy of the method is highly
sensitive to the choice of RBF.

In this study, a new RBF to be used in the radial basis collocation method
is proposed for the both direct and inverse Helmholtz problems. It is based
on the general solution of Helmholtz equation. This type of RBF is con-
structed by a heuristic approach without rigorous mathematical analysis. To
illustrate its effectiveness and efficiency, several direct and inverse problems
are considered. In the direct problems, the coefficient matrix generated by
the new RBF is often ill-conditioned as those generated by other traditional
RBFs [35, 36]. In the inverse problems, we only consider the classical Cauchy
problems in which boundary conditions for both the solution and its normal
derivative are prescribed only on a portion of the boundary, whilst no in-
formation is available on the remaining part. So, we should reconstruct the
solution on the unaccessible boundary and in the domain. The Cauchy prob-
lem is much more difficult to solve both analytically and numerically than
the direct problem, since the solution does not satisfy the general conditions
of well-posedness. The solution is not a continuous function of the bound-
ary data and a small error in the accessible data may result in an enormous
error in the numerical solution, this kind of problem is ill-posed [37]. We
can not use direct approach, such as the Gauss elimination method, in order
to solve the system of linear equations which arises from the discretisation
of the problem. To handle ill-conditioned or ill-posed problems, many reg-
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ularization techniques have been adopted [37, 38, 39]. Here, we extend the
new RBF combined with the damped singular value decomposition (DSVD)
regularization technique to Cauchy problems. The generalized cross valida-
tion (GCV) [37] is one of strategies to estimate an appropriate regularization
parameter of the DSVD and is employed in our numerical experiments.

The rest of the paper is organized as follows. In Section 2, formulations
of the direct and inverse problems are briefly reviewed whereas the new RBF
would be introduced. The DSVD under parameter choice of GCV is described
in Section 3. In Section 4, four numerical examples are employed to study
the accuracy, efficiency, convergence and the numerical conditioning of or
related to the new RBF. Section 5 concludes this study with some remarks.

2. Problem description and the new radial basis function

2.1. Direct and inverse problems

We consider the following non-homogeneous Helmholtz equation

∇2u(x, y) + k2u(x, y) = f(x, y), in Ω, (1)

where ∇2 is the Laplacian, k the wave-number, Ω represents a simply con-
nected domain in R2, and f(x, y) is the source term.

For direct problems under investigation require solving equation (1) sub-
jected to the following boundary conditions

u(x, y) = g(x, y), on Γ1, (2)

∂u(x, y)

∂n
= h(x, y), on Γ2, (3)

where Γ1 ∩ Γ2 = φ and Γ1 ∪ Γ2 = ∂Ω, ∂u/∂n denotes the outward normal
derivative of u. Lastly, g(x, y) and h(x, y) are the measured Dirichlet and
Neumann data on boundaries Γ1 and Γ2, respectively.

For Cauchy problems, the boundary condition is not known on the whole
boundary ∂Ω

u(x, y) = g(x, y), on Γ1, (4)

where Γ1 is the accessible part of the boundary ∂Ω. The governing equation
(1) subjected to only the boundary condition (4) is mathematically under-
determined, and additional data must be supplied to fully determine it. The
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additional data available is given by a boundary condition different from that
given by equation (4),

∂u(x, y)

∂n
= h(x, y), on Γ1. (5)

Note that in this case, the accessible part of the boundary Γ1 is overspeci-
fied, since two different types of boundary conditions are prescribed on it. A
necessary condition for the above Cauchy problem (1),(4) and (5) to be iden-
tifiable is that the known boundary part Γ1 is larger than the under-specified
boundary part Γ2 = ∂Ω/Γ1. And in this study, we focus on determining
the underprescribed functions on the inaccessible boundary Γ2 and in the
solution domain.

2.2. The new radial basis function

At first, general solution of equation (1) is as follows:

ϕ(x,xj) = J0(kr), (6)

where J0 denotes the zero-th order Bessel function of the first kind, r =
r(x,xj) is the Euclidian distance between the general points x = (x, y) and
the origin of the RBF xj = (xj, yj), k the wave-number. In order to solve the
nonhomogeneous problem, we propose the following radial basis function:

ϕ(x,xj) = J0(k(r2 + C2)1/2), (7)

where C is an empirically chosen shape parameter. It can be seen that the
well-known MQ function (r2(x,xj)+C2)1/2) is an argument of this new RBF.
The approximation solution is expressed by linear combination of the new
RBF (7),

uN(x) =
N∑

j=1

αjϕ(x,xj) (8)

where αj is the unknown coefficient to be determined. In our computations,
the collocation points to enforce the governing equation or the boundary
conditions are identical to the RBF origins. We use {xj}NI

1 , {xj}NI+ND
NI+1 and

{xj}N
NI+ND+1 to denote the collocation points in Ω, on Γ1 and on Γ2, respec-
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tively. Hence, the following linear algebraic equations on αjs are resulted:

N∑
j=1

αj(∇2ϕ(xi,xj) + k2ϕ(xi,xj)) = f(xi), i = 1, 2, . . . , NI (9)

N∑
j=1

αjϕ(xi,xj) = g(xi), i = NI + 1, . . . , NI + ND(10)

N∑
j=1

αj
∂ϕ(xi,xj)

∂n
= h(xi), i = NI + ND + 1, . . . , N(11)

which can be written in the following matrix form:

[Aij][αj] = [bi] (12)

The coefficients matrix [Aij] is often ill-conditioned for both direct and
inverse problems. With an ill-conditioned matrix, the predictions would be
unstable especially when the input data contains noise [37]. In this context,
regularization methods have been used to remedy the instability and accuracy
loss in the solution of ill-conditioned matrix equations [37, 40, 41]. In this
paper, we shall employ the DSVD under parameter choice of GCV which is
introduced in the following section.

3. Regularization method and regularization parameter

Before presenting the regularization method and regularization parame-
ter, we introduce the singular value decomposition (SVD) of the coefficient
matrix in (12),

A = WΣV T (13)

where W = [w1, w2, · · · , wN ] ∈ RN×N , W T W = IN and V = [v1, v2, · · · , vN ] ∈
RN×N , V T V = IN and IN denotes the N -th order identity matrix. The sin-
gular values of A are the diagonal entries of Σ = diag(σ1, σ2, · · · , σN) which
has non-negative diagonal elements appearing in non-increasing order such
that

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0, (14)

The column vectors wi and vi are, respectively, left- and right-singular vectors
for the corresponding singular values. Using the SVD, it is easy to get the
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solution to (12)

α =
N∑

i=1

wT
i bvi

σi

. (15)

Remark: The conventional L2 condition number of A is defined as Cond(A) =
σ1/σN , in which σ1 and σN are the largest and smallest singular values of A.

3.1. Regularization Method

The Damped Singular Value Decomposition (DSVD) is based on the SVD
and the Tikhonov regularization technique (TR) [37]. The idea of TR is to
define the regularized solution to (12) by the following penalized least-squares
problem

min{‖ Aα − b ‖2
2 + ξ2 ‖ Iα ‖2

2} (16)

In the expression, ‖ . ‖2 denotes the Euclidean norm and ξ is the regulariza-
tion parameter which controls the relative weight of the penalty term.

Based on the SVD, the TR solution can be expressed as

α =
N∑

i=1

gi
wT

i bvi

σi

, (17)

where the Wiener weights gis are:

gi =
σ2

i

σ2
i + ξ2

. (18)

Here, instead of using the filter factors (18) in the TR, one introduces a
smoother cut-off by means of filter factor gi defined as

gi =
σi

σi + ξ
. (19)

This filter factor decays less slowly than the Tikhonov filter factor, and thus,
in a sense, introduces less filtering. The performance of regularization method
depends to a great extent on the suitable choice of the regularization param-
eter. In this paper, we use the generalized cross validation method to provide
appropriate regularization parameter.
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3.2. Regularization Parameter

The Generalized Cross Validation (GCV) estimates the optimal value of
the regularization parameter by minimizing

V (α) =
1
N
‖(I − B(α))b‖2

2

[ 1
N

trace(I − B(α))]2
, (20)

where the influence matrix B(k) is defined by the identity

Baα = B(α)b. (21)

The GCV has some computationally relevant properties. Moreover, it is
a predictive mean-square error criterion, in the sense that it estimates the
minimizer of the residual function

T (K) =
1

N
‖B(αK − α)‖2

2. (22)

Here, it is noted that, in the following numerical studies, we do not have
to use the regularization method for the direct problem. For Cauchy prob-
lems, we use the above-mentioned DSVD under the parameter choice of GCV
procedure to solve such ill-conditioned or ill-posed systems.

4. Numerical results and discussions

For both direct and inverse problems, several numerical examples are
studied from which the accuracy and stability of the proposed RBF are il-
lustrated. The relative average error (L2 relative error) to be shown in the
subsequent figures is defined as:

Relative average error =

√√√√√√√√

Nt∑
j=1

(u(xj, yj) − ũ(xj, yj))
2

Nt∑
j=1

(u(xj, yj))2

where (xj, yj) denotes the j-th test point, Nt is the total number of tested
points, u is the exact solution, ũ is the numerical prediction. In particu-
lar, the MATLAB regularization code developed by Hansen is used in our
computations [42].
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Interpolation points

Figure 1: Amoeba-shaped domain.

4.1. Direct Helmholtz problems in an amoeba-shaped domain

In this example, a Dirichlet Helmholtz direct problem with non-zero
source term is considered, and the corresponding exact solution and source
term are

u(x, y) = sin(kx)sinh(y)+cos(y) , f(x, y) = sin(kx)sinh(y)−cos(y)+k2cos(y)
(23)

In this case, we choose the wave-number k = 10. The amoeba-shaped
domain as shown in Figure 1 is bounded by the following parametric equation:

∂Ω = {(x, y) |x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π} , (24)

where
ρ = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ). (25)

Collocation points randomly-distributed inside the domain and on the
boundary are placed in a comparative study of the MQ and present new
RBF. The relative average errors of the MQ and new RBF versus the shape
parameter C are plotted in Figure 2. The MQ is less accurate and its con-
vergence curve is more sensitive to shape parameter C.

Generally speaking, the error of MQ deceases as shape parameter C in-
creases with a fixed number of collocation points and then starts to deteri-
orate after an optimal value of C. It is noted that the MQ has a smoother
error curve than the new RBF.

Figure 3 shows the condition numbers of the coefficient matrices of the
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Figure 2: Error analysis with different shape parameters C with N = 405 collocation
points and 205 inner interpolation points.
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Figure 3: Condition numbers versus the number of collocation points N with optimal C
and 205 inner interpolation points.
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Figure 4: Optimal C versus the number of collocation points N .
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Figure 5: Relative average errors versus the number of collocation points N with optimal
C.
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Figure 6: Typical distributions of collocation points (“+” in Ω, “×” and “.” on Γ1) and
test points “♦” in the annular with radii 1 and 3.

MQ and new RBF versus the number of collocation points with optimal shape
parameter C. They all result in severely ill-conditioned matrix. For both
RBFs, the condition numbers increase sharply with an increasing number of
collocation points. It is noted that the optimal shape parameter C varies
from 0.001 to 10 based on the known analytical solution. Optimal C against
the number of collocation points N is displayed in Figure 4, we can see that
the optimal C tends to be smaller for both RBFs due to increasing density
of collocation points.

Convergence is shown in Figure 5 in which the relative average errors are
plotted against the number of collocation points for the optimal C. Results
by both RBFs converge very fast regarding the number of collocation points.
The relative average error of MQ is around 10−1, while the errors of the new
RBF becomes steady at 10−5, with large number of collocation points N . It
is clearly seen that the new RBF has higher accuracy than the MQ.

4.2. Inverse Helmholtz problems for an annular domain

In this section, the inverse Helmholtz problem with the following exact
solution and source term is considered:

u(x, y) = sin(x) + sin(y) + x , f(x, y) = x (26)
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Figure 7: Relative average errors versus the shape parameters C in the case of annular
domain with N = 225 collocation points.

The domain Ω = {(x, y)|1 ≤ √
(x2 + y2) ≤ 3} with both the Dirichlet and

Neumann boundary conditions known simultaneously on the inner boundary
Γ1 = {(x, y)|(x2 + y2) = 1}. A typical distribution of the collocation and
sampling points are shown in Figure 6. we are looking for the boundary
condition in the outside boundary Γ2 = {(x, y)|√x2 + y2 = 3} and solution
in the domain. Here, we choose randomly distributed 360 knots in the domain
and 100 knots on the boundary Γ2 as the test knots in Figures 7-9.

The relative average errors versus the shape parameter C are shown in
Figure 7 with the invariant number of collocation points N = 225. Compared
with the new RBF, the MQ is less accurate and its accuracy depends strongly
on the choice of C. Moreover, the relative average error of MQ can exceed
10 with an inappropriate choice of the shape parameter C.

For the new RBF, the relative average error starts around 5 × 10−3 for
small C and becomes rather steady at 5×10−4 when C is less than 10. With
increased value of C, less accurate results are obtained for both RBFs. We
observe the similar behavior pattern between the accuracy and the shape
parameter C for a large collocation point number N .

The contours of the absolute errors produced by the MQ and the new
RBF with C = 2 and N = 225 are plotted in Figure 8. From the numerical
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Figure 8: Contour of the absolute errors: MQ (left) and the new RBF (right) for the
annular domain with C = 2, N = 225.
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Figure 9: Relative average errors versus the number of collocation points N in the case of
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Figure 10: Recovery of u(x,0) by MQ (left) and new RBF (right) at different noise levels.

predictions, the error of MQ varies between −3.22 × 10−2 and 3.22 × 10−2

whereas the error of the new RBF varies between −9.84×10−5 and 9.64×10−5.
And Figure 9 profiles that the new RBF is 102 times more accurate than MQ
for large N . It is noted that in Figure 9, we take the optimal shape parameter
C for each number of collocation points N for both RBFs.

Considering that there are always some errors for the observation data in
real applications. The boundary data on Γ1 are taken to be

g(x, y) = u(x, y)(1 + e · noise) , h(x, y) =
∂u(x, y)

∂n
(1 + e · noise) (27)

where noise = −1 + 2 ·Rand, e is the noise level and Rand is the MATLAB
function which generates uniformly distributed-random numbers between 0
and 1.

The recovered u(x, 0) and u(0, y) using the two RBFs at different noise
levels are plotted in Figure 10. The results show that when e <0.05, the
solutions of both RBFs agree very well with the exact one. When e goes up
to 0.05, solution deteriorations can be noted for both RBFs.

4.3. Inverse Helmholtz problems for a square domain

For the present inverse problem, the exact solution and the source term
are:

u(x, y) = sin(
√

3x)sinh(y)+ cos(
√

2y)+x−2y , f(x, y) = 2x−4y (28)
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Figure 12: Relative average errors of u (left) and ∂u/∂n (right) versus shape parameters
C for unit square with the number of collocation points N = 160.

Moreover, Ω = {(x, y) | 0 � x � 1, 0 � y � 1}, Γ2 = {(x, 0) | 0 � x � 1}
and Γ1 = ∂Ω\Γ2.

A typical distribution of the collocation and sampling points are portrayed
in Figure 11.

The relative average errors of the recovered u and ∂u/∂n on Γ2 with
different shape parameters C (N = 160) are shown in Figure 12. It can be
seen that the errors of MQ are considerably more sensitive to the choice of C
than the new RBF. The latter is more accurate than the former nearly over
the entire range of C.

The solution convergence is shown in Figure 13. It illustrates that the
relative average errors of the new RBF decreases more quickly than MQ when
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Figure 13: Relative average errors of u (left) and ∂u/∂n (right) versus the number of
collocation points N for unit square.
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Figure 14: Recovery of the u(x,0) by MQ (up) and the new RBF (down) at different noise
levels.
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Figure 15: Recovery of the ∂u(x,0) / ∂n by MQ (up) and the new RBF (down) at different
noise levels.
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N < 76. The errors of both RBFs are rather stable when N > 229. Similar
results are shown for ∂u/∂n in Figure 13 (right). The results in Figure 13
are obtained by C = 2.

In order to test the sensitivity of the solutions to the input data noise,
the same input data in Section 4.2 for g(x, y) and h(x, y) is used. The
recovered u and ∂u/∂n by both RBFs are shown in Figures 14 and 15 for
various noise levels and, again, C = 2 is employed. We can see that the
approximate solution u calculated by both RBFs agree very well with the
exact solution up to the noise level e = 0.05, and then, deteriorate with
a larger noise level e. It is worthy of noting that the new RBF produces
10 times more accurate approximate solution u than the MQ in the case
of non-noise boundary data. For ∂u/∂n, both RBFs, however, have almost
the same accuracy with non-noisy boundary data. And for moderate noise
(e ≤ 0.005), acceptable approximate ∂u/∂n can also be obtained by both
RBFs.

5. Concluding remarks

In this paper, a new radial basis function is proposed for both the direct
and inverse Helmholtz boundary value problems. Regularization technique is
employed to tackle the ill-conditioned direct problems and ill-posed inverse
problems. It can be seen from the three benchmark examples in Section
4 that reasonable solutions can be obtained by the proposed RBF in both
direct problems and inverse problems with and without noisy boundary data
for a wide range of shape parameter.

Despite of the excellent performance in scattered data approximation,
the traditional MQ fails to yield acceptable numerical solutions unless shape
parameter C is optimally chosen.
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