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Abstract. Amotion texture is an instantaneous motion map extracted from a dynamic texture. We observe that
such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and
continuous motion values. We thus develop a mixed-state Markov random field model to represent
motion textures. The core of our approach is to show that motion information is powerful enough to
classify and segment dynamic textures if it is properly modeled regarding its specific nature and the
local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of
a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic
video contents, and we tackle two related problems. First, we present a method for recognition and
classification of motion textures, by means of the Kullback–Leibler distance between mixed-state
statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-
based segmentation method applicable to motion textures with deforming boundaries. We also
investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial
segmentation and the recognition methods. Numerous experimental results are reported for those
three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach.
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1. Introduction. In the context of visual motion analysis, motion textures designate video
contents similar to those named temporal or dynamic textures [28, 50, 63], first introduced by
Nelson and Polana [50]. The term “textured motion” is also employed in [67], and “space-time
texture” is used in [27]. Different from actions or activities (walking, climbing, playing) and
events (open a door, answer the phone), temporal textures show some type of homogeneity,
both in space and time. Mostly, they refer to dynamic video contents displayed by natural
scene elements such as flowing rivers, wavy water, falling snow, rising bubbles, spurting foun-
tains, expanding smoke, blowing foliage or grass, and swaying flame. Illustrative samples are
displayed in Figure 1. They also encompass any dynamic visual information that, from the
observer’s point of view, can be classified as a texture with motion. For example, consider
a walking person. His/her activity can be analyzed as attached to an articulated motion;
however, a walking crowd in a far view may show a repetitive motion pattern more adequate
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0 0 0 0 0

Figure 1. Top row: Sample images from dynamic textures of different kinds (grass, crowd, steam, water, and
river). Middle row: Scalar motion map based on normal flow computation and obtained using two consecutive
frames of the sequence, which we call a motion texture. Here we mapped the motion measurements to the range
of gray [0, 255] where 128 corresponds to null motion. Bottom row: Motion histograms from a motion texture.
Motion values display two components: A discrete value at zero and a continuous distribution for the rest.

to be considered a temporal texture. Similar arguments can be raised for traffic views or views
of animal flocks.

By definition, a motion texture is an instantaneous motion map obtained from a dynamic
texture (Figure 1). This term, introduced in [5], makes reference not to a new type of dynamic
phenomena but more specifically to the type of information that is processed and modeled
in these classes of video sequences. When analyzing a complex scene, the three types of
dynamic visual information (actions, events, and temporal textures) may be present. However,
their dissimilar nature leads us to consider substantially different approaches in tasks such as
detection, segmentation, classification, and tracking.

From motion detection to optical flow estimation [1, 2, 7, 19, 49], efforts have been devoted
to extracting reliable and representative motion quantities from a sequence of images. In
recent years, there has been increasing interest in indexing, recognition, classification, and
retrieval of long sequences of video data for dynamic content analysis. In this context, motion
information has been effectively used as a key feature in dynamic content characterization or
action recognition in videos [16, 32, 33, 39, 40, 53, 54, 56].

The goal of this work is to build a unified framework for modeling, categorizing, recogniz-
ing, and segmenting textured motion patterns. Additionally, we aim at specifying a compact
and efficient modeling from visual motion information only. Indeed, relying on motion in-
formation makes the model independent of illumination conditions and irrelevant appearance
features. It enables capturing the intrinsic properties of these textures. To deal with reliableD
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2486 CRIVELLI, CERNUSCHI-FRIAS, BOUTHEMY, AND YAO

and easy-to-compute motion maps, we exploit (scalar) normal flows.

We experimentally observe that these motion maps exhibit values appertaining to two
different types : a discrete component at zero, accounting for absence of motion, and con-
tinuous motion values. These two types of values are tightly interwoven in the normal flow
maps forming a spatial configuration similar to intensity textures (Figure 1). Analogous spa-
tial properties such as texture orientation, isotropy, repetitive local patterns, and statistical
interaction are present and are characteristic of the dynamic content of the scene [5]. More-
over, discrete and continuous values are not independent, nor do they constitute two different
processes. It is a single (motion) observation process that depicts what we call mixed-state
values [5, 53].

Therefore, the designed model must acknowledge this particular nature and the related
local spatial interactions. It must capture the statistical spatial properties of the observed
apparent motion, effectively integrating discrete and continuous values and their mutual in-
teractions. Markov random fields (MRFs) are known as being a powerful statistical repre-
sentation of general textured patterns, either for modeling intensity or, as in our case, for
modeling the spatial distribution of mixed-state motion observations extracted from dynamic
textures. We have thus developed a mixed-state MRF (MS-MRF) model to represent motion
textures. To each site of the motion map is attached a random variable that can take either
the discrete null value or motion values distributed according to a continuous density from a
family of exponential distributions. This framework will then be exploited for classification
and segmentation of dynamic textures as well. The two equivalent representations of an MRF,
i.e., local conditional densities and Gibbs distributions, are defined for this mixed-state model.
Local conditional densities allow us to estimate the parameters of the field that characterize
the motion texture, while the Gibbs energy formulation enables us to tackle the segmentation
and the classification problems.

The remainder of this paper is organized as follows. In section 2, we highlight the new
contributions presented in this paper. In section 3, we review previous work on dynamic
texture characterization and applications to segmentation and classification. We also comment
on some discrete-continuous models related to the mixed-state framework. In section 4, the
proposed motion measurements are specified, leading to the definition of motion textures and
the formulation of their statistical properties. Sections 5, 6, and 7 are devoted to the design of
MS-MRFs and the construction of the motion texture model. In sections 8 and 9, the model is
used for the classification and the segmentation of motion textures, respectively. A noteworthy
feature is that this involves only 11 parameters and requires only two frames. Finally, in
section 10, we report experimental results on classification and segmentation. We also include
comparative evaluations and investigate several properties of our modeling approach. Section
11 contains our concluding remarks.

2. New contributions. In this section, we put forward the main contributions of the work
described in this paper, with respect to our past publications and the state of the art.

We defined a first mixed-state motion texture model in [5], where the theoretical concept of
a unified discrete-continuous framework (mixed-state auto-models) was introduced. However,
as a first attempt to model motion textures, it resulted in a simple and limited representation
which allowed us to conduct simulations and a preliminary analysis of the texture propertiesD
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expressed by the model. Here, we describe significant extensions of this basic model, ending
up in an effective MS-MRF representation of motion textures exploitable for segmentation
and classification. The main differences and additions are listed below:

• The mixed-state model is now able to capture more properties of the motion texture
such as a deeper spatial correlation between motion values. An extended neighborhood
is considered for specifying local conditional characteristics leading to a 11-parameter
model where nonzero mean Gaussian distributions are involved.

• The partition function calculation is explicitly tackled and solved.
• A simple but powerful similarity measure between mixed-state models is derived based

on the Kullback–Leibler (KL) divergence, allowing motion texture classification and
recognition.

Our preliminary work on motion texture segmentation was described in the conference papers
[22, 23]. In [22] we used a simulated annealing algorithm for minimizing the energy func-
tion and a less accurate estimation of the partition function. The main modifications and
extensions are the following:

• More experiments have been conducted on both synthetic and real examples to assess
the performance of the method using a graph-cut-based minimization.

• A comparison to a simple MRF motion model is reported in order to show the necessity
of the mixed-state approach.

• We have combined the spatial segmentation stage with the recognition of the mo-
tion texture classes to address the spatiotemporal segmentation of motion textures in
videos, which is the first attempt of this kind to our knowledge.

Our conference paper [25] was devoted to motion texture classification. Several important
additions have been made:

• We have further evaluated our method on the UCLA dataset [60] and its variations.
• We provide an analysis of the temporal stability of the two-frame model estimation.
• We exploit the two-frame approach for tackling the problem of motion texture change

detection.

Finally, we developed a quite different approach in [24], where we defined a purely causal
model, a temporal mixed-state Markov chain, for tracking motion textures along the video
sequence.

The most important features or properties of our method which distinguish it from the
state-of-the-art methods and the main contributions of this work can be stated as follows:

• We have defined a parsimonious compact model for temporal textures. It involves 11
parameters only, relies on normal flows, and accounts for local spatial interactions.
The inherent mixed-state nature of the motion information is explicitly formalized.
Normal flows are reliable enough in many situations and easy to compute compared
to optical flows. Normal flows are more intrinsic to the dynamic texture nature than
intensity values used in the linear dynamical system (LDS) based methods [12, 28, 56]
while still conveying partial information on the texture appearance, since they are
linked to the spatial intensity gradients.

• This is an instantaneous model in the sense that it grasps only the spatial structure of
the motion texture, knowing that the temporal information is brought by the computed
measurements. Then, our motion texture model requires only two frames to be prop-D
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erly estimated, which imparts several unique advantages. Without any changes in the
method, we can segment motion textures with either fixed boundaries, or deformable
boundaries, or moving spatial support. We can deal with temporally stationary and
nonstationary motion textures as well.

• The same modeling framework can be exploited for classification (or recognition) and
for segmentation of multiple dynamic textures.

• Space-time segmentation of temporal textures can be straightforwardly addressed by
combining the spatial segmentation and the classification methods.

3. Related work. Whereas two-dimensional (2D) spatial textures have been vastly ana-
lyzed in the computer vision literature [26, 31, 44], temporal or dynamic textures have re-
ceived increasing interest in recent years. A first distinction between different approaches lies
in the type of image features utilized from the image sequence. Doretto et al. [28] proposed
the use of autoregressive moving average (ARMA) models directly on image intensities for
dynamic texture synthesis. In [71] an improvement is proposed based on a control theory
approach. Other intensity-based dynamic texture models and their applications can be found
in [12, 13, 30, 58, 63]. Recently a wavelet-based representation has been proposed in [41] as a
descriptor for dynamic textures.

Alternatively, there has been increasing interest in the modeling of motion features ex-
tracted from dynamic textures in contrast to pixel-based intensity representations [5, 22, 32,
54]. Particularly, normal flow is an efficient and natural way of characterizing the local spa-
tiotemporal dynamics of a temporal texture [22, 25, 32, 33, 51]. A survey on dynamic texture
characterization can be found in [17]. The combination of appearance and motion modes, the
descriptor used for the latter being histograms of oriented optical flow (HOOFs), has been
recently explored in [15]. The generative model developed in [67] for textured motions en-
compasses three components: a photometric model based on Gabor, LoG, and Fourier bases,
a geometric one called “moton,” and a dynamic one involving Markov chains. It is mainly
dedicated to handling natural scenes formed by a number of particle and wave elements.

Much effort in dynamic texture analysis has been devoted to the recognition and classifica-
tion of these types of image sequences. Methods based on motion features give high recognition
and classification rates for dynamic textures depicting natural scenes [16, 22, 47, 51]. They
are based on computing motion statistics across the image sequence and using them as class
descriptors for the classification task. A different approach to dynamic texture recognition
was formerly proposed in [60], where a dissimilarity measure between LDSs estimated from
the image intensity sequences is utilized. It has been further investigated in [12] and more
recently in [56, 57], where the bag-of-words framework is applied to LDSs. An efficient clus-
tering method is defined in [9]. Local efficient texture features have been employed as well,
such as the spatiotemporal orientation analysis designed in [27], to represent and recognize
spacetime textures or the local binary patterns (LBPs) in [59, 66, 72]. Finally, the extension
of the concept of dynamic textures to more complex scenes requires considering more elabo-
rated approaches to specific applications such as crowd analysis [48, 66, 69], dynamic texture
synthesis [46], and facial expression recognition [72].

The segmentation of dynamic textures amounts to determining and locating regions in
the image that correspond to a dynamic texture class against the scene background, or toD
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separating different dynamic texture classes in cases of multiple dynamic textures. Mostly,
existing segmentation methods of dynamic textures are based on linear intensity models, as
proposed originally by Doretto et al. [28]. In [29], a level-set variational approach is formu-
lated for minimizing a cost functional with respect to (w.r.t.) geometric discrepancy measures
between models and w.r.t. the boundary of the different regions. Vidal and Ravichandran
[65] have proposed modeling each dynamic texture as an LDS plus a 2D translational motion
component. This solves the problem of moving regions (or nonstatic camera) under rigid mo-
tion. Segmentation is achieved by a generalized principal component analysis (PCA) method
for subspace separation. In [18], a mixture of linear models is used coupled with the general-
ized PCA technique, but the segmentation results are rather fragmented. Categorization and
segmentation are jointly addressed in [57]. Chan and Vasconcelos [12] and [13] have chosen
to simultaneously model several dynamic textures, which naturally leads to a segmentation
approach. In the former, a mixture generative model of multiple linear dynamic textures
(LDTs) is defined, while in the latter an explicit spatial model of layer distribution is intro-
duced, which improves the results on segmentation. A different approach is followed in [15],
where a split-and-merge strategy is adopted associated with a pixelwise classification based
on the Weber distance between HOOFs. Detection of flames is addressed in [64] using Markov
models.

One of the limitations of the linear dynamical intensity model is the need of processing
a whole group of successive frames of the sequence in order to estimate the dynamic texture
models. This in practice leads to a restrictive assumption of temporal homogeneity of the
video content over the considered time interval. It also means that the region occupied by a
certain dynamic texture cannot vary considerably in time and that a spatial segmentation is
computed within a given set of frames. This is convenient for a dynamic texture with static
boundaries over time, but this approach cannot appropriately handle a deformable support of
the dynamic texture (e.g., a fire flame, a water leakage, or an explosion). Eventually, small
spatiotemporal volumes could be used to track boundaries and their variations as shown
in [12], but as they point out, the temporal extent should be large enough to capture the
distinguishing characteristics of the dynamic texture. An extension to [13], called temporally
switching LDT (TS-LDT), is described in [14] to handle layer shapes changing over time.
The segmentation method described in [36] relies on a variational level-set framework. The
local spatial properties of the dynamic textures are specified with Ising descriptors and their
temporal evolution by an autoregressive exogenous (ARX) model. First, it is applied to
dynamic textures with fixed boundaries. Then, an extension based on an iterated process
is proposed to handle dynamic textures with moving boundaries and still requires several
successive frames. We will see how our mixed-state spatial model of motion textures (requiring
only two frames) is able to capture these complex dynamic variations in a simpler frame-by-
frame basis.

As for other uses of mixed-state type distributions in computer vision, it is worth men-
tioning previous works on fuzzy pixel classifications such as [61] and [62], where a class of
fuzzy Markov models is introduced, defining two hard classification states xi = 0 or xi = 1
that have a positive probability, while all the soft classification states, i.e., xi ∈ (0, 1), follow a
continuous distribution with an ad hoc density function. These models are restricted to classi-
fication problems with a fixed state space [0, 1]. Finally, in [8, 21] the concept of a mixed-stateD
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variable is extended to discrete states that take symbolic or abstract labels instead of a specific
numeric value as considered here. This enables us to solve simultaneous decision-estimation
problems, such as motion detection and background reconstruction [21], in a unified way.

4. Motion textures. Let Ii(t) be a scalar function that represents the image intensity at
image point i ∈ S for time t, where S denotes the image grid containing N points. A motion
texture is extracted by computing scalar motion measurements between two consecutive im-
ages, say, I(t − 1) and I(t), for some given instant. The definition can be extended to any
motion measure on the image sequence. This accounts for vectorial observations as well.

Briefly, our approach consists in the following: once the motion measurement is obtained,
a sequence of intensity images is substituted for a sequence of motion maps or fields. These
fields are in essence a function of the bidimensional location, and the problem is reduced to
modeling a spatial distribution of motion values.

4.1. Local motion measurements. Obtaining reliable and, at the same time, easily com-
putable motion information from image sequences is essential in our formulation, which is
intended for the analysis of large amounts of data while avoiding the problem of explosion of
the model dimension. Here, we follow the approach described in [22, 24]. We emphasize that
the objective is not motion estimation by itself, but dynamic content analysis.

The optical flow constraint [38] is a condition over intensity images from which velocity
fields can be effectively estimated. Locally, it gives valuable information about the spatiotem-
poral structure of the scene. However, the aperture problem allows us to measure only the
component of the velocity of an image point in the direction of the spatial intensity gradient,
i.e., normal flow, defined as

(4.1) V⊥
i (t) = −

∂Ii(t)
∂t

‖ ∇Ii(t) ‖
∇Ii(t)

‖ ∇Ii(t) ‖ ,

where ∇Ii(t) is the spatial intensity gradient at location i. We first compute a weighted
vectorial average of normal flow over a small local window W centered at pixel i:

Ṽ⊥
i (t) =

∑
j∈W

V⊥
j (t) ‖ ∇Ij(t) ‖2

max(
∑
j∈W

‖ ∇Ij(t) ‖2, η2) ,(4.2)

where η2 is a constant related to noise. This average results in a denoised local estimation of
normal flow. The projection of this quantity over the intensity gradient direction gives rise to
the following scalar motion observation:

vi(t) = Ṽ⊥
i (t) ·

∇Ii(t)

‖ ∇Ii(t) ‖ ,(4.3)

with vi(t) ∈ (−∞,+∞). As said before, (4.3) gives a good compromise between quality of
estimation and simplicity of calculation.D
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(a) (b) (c)

Figure 2. (a) Sample images from motion textures. (b) The scalar motion values are spatially distributed,
forming a textured pattern. Here we mapped the motion measurements to the range of gray [0, 255] where 128
corresponds to null motion. (c) The binary motion–no-motion map also is distributed following a textured
pattern. White represents a motion value different from zero.

4.2. Statistical properties of motion measurements. At this stage, we emphasize a fun-
damental property of the scalar motion field (4.3). Let us observe Figure 1 (last row). The
plotted histograms reflect the statistical distributions of motion values for different motion
textures (assuming at that stage independent and identically distributed random variables at
each image location). Note that the motion measurements depict two distinguishable elements:
a predominant discrete component at the null value vi = 0, and a continuous distribution for
the rest of the motion values. This is a typical characteristic of the motion measurements
extracted from motion textures.

This observation could naively lead us to model only the motion histograms to character-
ize a motion texture. However, the significant null value component appears repeatedly in the
motion maps, producing a textured binary (motion/no-motion) pattern as spatial layout (Fig-
ure 2c). Analogously, continuous motion values are spatially correlated (Figure 2b). As such,
discrete and continuous values are not independently distributed in space, indeed displaying
a mixed-state texture pattern. In other words, we have to model physical data that display
mixed-state values and local interactions. In this context, the discrete null motion value has
a specific place in the sample space and, consequently, has to be modeled accordingly.

We call these types of fields mixed-state random fields as the corresponding random vari-
ables take their values in a mixed discrete-continuous space [5].

5. Mixed-state random variables. The key observation made in the previous section
about the statistical properties of motion measurements requires an adequate representation
of the associated random variables. Consider the case of a random variable that is 0 with
probability ρ or is distributed following a continuous density with probability 1−ρ. We proceed
directly to define a probability measure for a mixed-state random variable, resorting to the
theory of measure and integration [5, 8]. We can then construct a mixed-state probabilityD
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density defined as

p(x) = ρ10(x) + ρ∗1∗0(x)p
c(x),(5.1)

with ρ ∈ [0, 1], ρ∗ = 1− ρ, and where we define the characteristic functions as

10(x) =

{
1 if x = 0,
0 if x �= 0,

1∗0(x) = 1− 10(x),(5.2)

and pc(x) is a continuous probability density function. The density p(x) in (5.1) is given w.r.t.
a reference measure m(dx) = m0(dx) + λ(dx), where m0(dx) is a counting measure for the
value 0 and λ(dx) is the usual Lebesgue measure, i.e., the length of the interval in the real
line. Interpret this equation as follows: the density function p(x) assigns a probability mass
ρ to the discrete value (here, zero) and acts as a continuous density function pc(x) for the
nonzero continuous values.

The reader with a background on measure theory and probability will note that this also
enables us to generalize the case of a specific real value considered as a discrete value (i.e.,
x = 0) to a generic discrete symbolic value or abstract label that may lie on an arbitrary
label set (as investigated in [21] for motion detection by background subtraction). A full
formulation of mixed-state random variables and distributions following a measure theoretic
approach can be found in [5, 8, 21, 37].

6. Mixed-state Markov models. As the Hammersley–Clifford theorem states, MRFs with
an everywhere positive density function are equivalent to Gibbs distributions. The joint pdf
of the random variables that compose the field has the form p(X) = exp[−Q(X)]/Z, where
Q(X) is an energy function and Z is called the partition function or normalizing factor of
the distribution. The power of these models was primarily demonstrated in [3] with the
introduction of the so-called auto-models and their numerous applications.

Let S be a lattice of N points or image locations such that X = {xi}i∈S . Define XA as
the subset of random variables restricted to A ⊂ S, i.e., XA = {xi}i∈A. Then the Markovian
property yields p(xi | XS\{i}) = p(xi | XNi), where Ni ∈ S is a set of sites called the
neighborhood of location i.

The Markovian property is as well expressed in the global form of the process. The energy
Q(X) can be expressed as a sum of potential functions, Q(X) =

∑
C⊂S VC(XC), where the

summation runs over those subsets C of S such that VC �= 0, called cliques [3].
For an MS-MRF model, we have the following local conditional mixed-state densities:

p(xi | XNi) = ρ(XNi)10(xi) + ρ∗(XNi)1
∗
0(xi)p

c(xi | XNi),(6.1)

where ρ(XNi) = P (xi = 0 | XNi) is now a function of the values taken by the neighbors. In
this context, the arising questions are as follows: can we arbitrarily choose conditional pdfs
in (6.1), and, which is the general form for the joint distribution of the field that responds to
such a formulation? For a certain family of conditional distributions, the answer is known,
and we give in what follows a useful result to be applied to MS-MRFs.

As stated in [3], when the conditional probability densities that define the local charac-
teristics of an MRF belong to a one-parameter exponential family, and assuming that theD
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corresponding global Gibbs energy depends only on cliques that contain no more than two
sites, i.e., auto-models, the expression for the parameter is known as an affine function of a
sufficient statistic of the neighbors. In the case of d-parameter auto-models, this result has
been extended through the following proposition [37].

Theorem 1. Assume a second-order MRF, where the local conditional characteristics be-
long to the d-parameter exponential family, i.e., log p (xi | XNi) = ΘT

i (XNi)Si(xi) +Ci(xi) +
Di(XNi), with Si(xi) ∈ R

d, Θi(XNi) ∈ R
d, and Ci(xi) and Di(XNi) ∈ R. Then, the condi-

tional densities are restricted to the form given by

(6.2) Θi(XNi) = αi +
∑
j∈Ni

βijSj(xj),

with βij ∈ R
d×d and αi = [α1 . . . αd]

T ∈ R
d; and the energy potential functions take the form

Vi(xi) = −αT
i · Si(xi)− Ci(xi),(6.3)

Vij(xi, xj) = −Si(xi)
TβijSj(xj).

For a complete proof see [37]. Consequently, Θi(XNi) is a function of the neighbors of
a particular location i, where the conditional dependence between sites cannot be arbitrary
under the mentioned hypotheses, having a particular shape as seen in (6.2). Note that the ma-
trices βij define the pairwise interaction between neighboring points. To ensure the symmetry

condition, Vij(xi, xj) = Vji(xj , xi), we have βij = βT
ji.

In the next section, we design a mixed-state auto-model for motion texture modeling
exploiting these results. Extensions of the new model, with respect to the basic one presented
in [5], enable us to capture more properties of the analyzed motion textures. First, we use an
extended neighborhood for local conditional characteristics. Second, we consider a nonzero
mean Gaussian distribution for the continuous part which allows us to express a stronger
spatial correlation between continuous motion values. Consequently, we can now handle real
dynamic content analysis issues such as segmentation and recognition of motion textures.

7. A motion texture model. As already said, our approach of modeling the instantaneous
motion maps associated to dynamic textures amounts to introducing a spatial field of mixed-
state values. In general terms, the proposed conditional models could be defined by a different
set of parameters for each location of the image (see (6.2)). This would give rise to a motion
texture model with a number of parameters proportional to the image size. However, such a
high-dimensional representation is not required as motion textures usually exhibit stationarity
properties. It is also unfeasible in practice and does not constitute a compact description
of motion textures. Moreover, an increasing number of frames would be necessary for the
estimation process. This is against a formulation oriented to efficient content segmentation
and classification.

Henceforth, we will assume that the extracted motion fields can be considered as a realiza-
tion of a homogeneous spatial model in the case of single motion textures. If several dynamic
textures are present, it then corresponds to a realization of piecewise homogeneous spatial
models. Indeed, the visual information attached to a dynamic texture is mostly displayed
from spatially homogeneous motion regions and, moreover, mostly associated to statisticallyD
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homogeneous textured intensity patterns. Nevertheless, note that no temporal stationarity
hypothesis is needed in our theoretical framework, in contrast to other approaches [12, 13, 28].
This will be further validated in the reported experiments. To summarize, our model is based
on three main assumptions:

1. The mixed-state Gibbs energy is composed of at most second-order potentials. Pair-
wise interaction is a good trade-off between simplicity and representativeness.

2. The continuous part of the conditional mixed-state densities is chosen to be a Gaus-
sian distribution. On one side, this is coherent with the observed motion histograms
(Figure 1). Moreover, it permits us to capture fundamental properties of the motion
textures not considered in previous mixed-state approaches [5] along with a high dis-
criminative power through a tractable and parsimonious representation. Nevertheless,
the proposed framework could involve other choices for the continuous distributions
as well.

3. We define Ni = {iE , iW , iN , iS , iNW , iSE , iNE , iSW } as the set of the eight-nearest
neighbors for location i, where, for example, iE is the East neighbor of i in the image
grid, iNW the North-West neighbor, etc. This permits the model to better capture
the orientation of the motion textures as both discrete and continuous scalar motion
values usually show an anisotropic behavior.

7.1. Gaussian mixed-state model. For the case of a Gaussian mixed-state conditional
density we write

p(xi | XNi) = ρi10(xi) + (1− ρi)1
∗
0(xi)

1√
2πσi

e
− (xi−mi)

2

2σ2
i ,(7.1)

where ρi ≡ ρ(XNi), mi ≡ m(XNi), and σi ≡ σ(XNi) for simplicity of notation. In what
follows we apply Theorem 1. Equation (7.1) can be written in an exponential form, yielding

(7.2) log p(xi | XNi) = ΘT
i (XNi)Si(xi) + Ci(xi) +Di(XNi),

with

ΘT
i (XNi) = [θ1,i , θ2,i , θ3,i] =

[
− mi

2σ2i
− log σi

√
2π + log

1− ρi
ρi

,
1

2σ2i
,
mi

2σ2i

]
,

ST
i (xi) =

[
1∗0(xi) , −x2i , xi

]
,

Ci(xi) = 0,

Di(XNi) = log ρi.(7.3)

The Gaussian mixed-state density results in a 3-parameter exponential family where the
parameterization of the conditional distribution in terms of Θi allows us to express the de-
pendence of a point on its neighbors through (6.2). Moreover, the parameters of the original
parameterization, ρi,mi, σi, are also functions of the neighborhood and can be obtained easily
from the first line of (7.3), resulting in

ρi =
(σi

√
2π)−1

(σi
√
2π)−1 + e

θ1,i+
m2

i
2σ2

i

, σ2i =
1

2θ2,i
, mi =

θ3,i
2θ2,i

.(7.4)
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7.2. Defining the set of parameters. From (6.3) and (6.4), we see how to obtain the
potential functions from the conditional density expansion, and consequently the expression
for the Gibbs energy,

(7.5) Q(X) = −
⎧⎨
⎩
∑
i

αT
i · Si(xi) + Ci(xi) +

∑
i,j

Si(xi)
TβijSj(xj)

⎫⎬
⎭ .

The full model is defined by the matrices βij and αi:

βij =

⎛
⎝ dij eij fij

e′ij gij qij
f ′ij q′ij hij

⎞
⎠ , αi =

[
ai bi ci

]T
.(7.6)

One may rely on some principled assumptions that lead to reducing the order of the
model. First, it is desirable that the conditional mean of the continuous values for a site
depend linearly on the neighbors in order to effectively obtain a Gaussian texture for the
continuous values. This is a fundamental extension w.r.t. the fixed null mean proposed in
[5]: it enables us to extract the main properties of the field for recognition and segmentation
purposes, while also keeping a reduced number of parameters to be estimated. To achieve
this, we first set q′ij = f ′ij = e′ij = gij = qij = 0. Moreover, from the symmetry of the
MRF potentials one necessarily has eij = fij = 0. Setting m(XNi) �= 0 not only affects the
continuous part but also enforces interaction between continuous and discrete states through
ρi in (7.4). The parameters are then

βij =

⎛
⎝ dij 0 0

0 0 0
0 0 hij

⎞
⎠ , α =

[
a b c

]T
.(7.7)

Note that the homogeneity of the field leads us to set αi = α for the first-order potentials.
With this choice and from (6.2) and (7.4), we obtain

mi =
c

2b
+

∑
j∈Ni

hi,j
2b
xj and σi =

1

2b
.(7.8)

We refer the reader to [8] for a thorough theoretic discussion about the shape of the
potentials for an MS-MRF.

A necessary condition in order to define a homogeneous and stationary spatial process is
that the parameters related to symmetric neighbors (E-W, N-S, NW-SE, NE-SW) must be the
same. This also implies the symmetry of the parameters for the second-order potentials. Thus,
for the eight-point neighborhood, we have four interacting directions: vertical (V), horizontal
(H), diagonal (D), and antidiagonal (AD). Then, βij = βji = βk with k ∈ {H,V,D,AD}.
Finally, a homogeneous Gaussian mixed-state model is defined by the 11 parameters

φ = {a, b, c, dH , hH , dV , hV , dD, hD, dAD, hAD}.D
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Another aspect related to spatial interaction is considered in the definition of the model.
The type of motion textures that we want to study exhibit local motion smoothness, mostly
associated to cooperative schemes. Then, this condition is explicitly imposed in the model,
resulting in a constraint on the parameters. Formally, in a mixed-state cooperative model,
the conditional mean of the continuous component for a site has to be an increasing function
of its neighbors. See [37] for further comments. Following (7.8), this implies that hij ≥ 0.
Finally, we can write the full expression of the global Gibbs energy:

Q(X) = −
∑
i

a1∗0(xi)− bx2i + cxi −
∑
〈i,j〉
j∈Ni

hijxixj + dij1
∗
0(xi)1

∗
0(xj).(7.9)

Note that we have obtained a compact and parsimonious representation of a motion texture
as expressed by both the conditional mixed-state densities (defined by (7.8) and (7.4)) and
the joint Gibbs distribution (7.9). Through only 11 parameters and a single model we are able
to characterize: the orientation of the field, the spatial correlation between continuous values
((7.8) and quadratic terms in (7.9)), the probability (spatial density) of no-motion values,
the spatial correlation between discrete values (discrete terms in (7.9)), and the correlation
between discrete and continuous values (see the form of ρi in (7.4)).

We finally need to check that the Gibbs density defined by the energy function in (7.9)
is integrable. A sufficient and necessary condition for the proposed homogeneous cooperative
MS-MRF is b >

∑
j
hij

2 . See [22] for a proof.

7.3. Parameter estimation. We adopt the pseudolikelihood maximization criterion
[3]. Therefore, we search the set of parameters φ̂ that maximizes the function L(φ) =∑

i∈S log p(xi | XNi ,φ). We use a gradient descent technique for the optimization as the
derivatives of L w.r.t φ are known in closed form. For this issue, having a complete represen-
tation of the model by means of the conditional densities in order to apply the pseudolikelihood
method is crucial. Indeed, estimating the parameters from the joint Gibbs distribution would
require the calculation of the partition function, which is intractable.

8. Recognition of motion textures. Recognition or classification of motion textures ne-
cessitates defining a similarity measure between models. In this context, the KL divergence is
a well-known distance (more precisely, a pseudodistance) between statistical models [20]. We
now explain how to obtain an expression for the case of mixed-state models that will allow us
to classify motion textures.

8.1. A similarity measure between mixed-state models. The KL divergence from a
density p1(X) to p2(X) [20] is given by

(8.1) KL(p1‖p2) =
∫
Ω
p1(X) log

p1(X)

p2(X)
dm(X).

As a distance, one considers the symmetrized KL divergence:

(8.2) dKL(p1, p2) =
1

2
[KL(p1(X)‖p2(X)) +KL(p2(X)‖p1(X))] .
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Now, if p1(X) and p2(X) are MRFs, then log p1(X)
p2(X) = ΔQ(X) + log Z2

Z1
, where ΔQ(X) =

Q2(X)−Q1(X), and

(8.3) dKL(p1(X), p2(X)) =
1

2
(Ep1 [ΔQ(X)]−Ep2 [ΔQ(X)]) ,

where Epk [·] designates the expectation w.r.t. density pk. We observe from this general ex-
pression that we do not need to know the partition functions of the Gibbs distributions,
which enormously simplifies the handling of this equation. Now, let p1(X) and p2(X) be two
Gaussian MS-MRFs. Then,

Epk [ΔQ(X)] =
∑
i

ΔαEpk [S(xi)] +
∑
〈i,j〉

Epk

[
S(xi)ΔβijS(xj)

]
,(8.4)

where Δα = α(2)−α(1) and Δβij = β
(2)
ij −β

(1)
ij . As we consider a spatial homogeneous model,

the expectations in (8.4) are equal for each site of the motion field. They are computed by
generating synthetic fields of small size (typically 128× 128) using a Gibbs sampler [34] from
which we can estimate the involved expectations and finally calculate the divergence.

9. Motion texture segmentation. The motion texture segmentation problem is equiva-
lent to assigning a label to each point in the image grid, indicating that it belongs to a certain
motion texture class. In our method, the representation of a motion texture with a relatively
small set of parameters permits a parsimonious characterization of the different parts of a
scene consisting of more than one dynamic texture. Moreover, the lack of a temporal ho-
mogeneity assumption allows us to overcome some of the limitations of the existing dynamic
texture segmentation methods. Here, we follow a Bayesian approach for determining in an
optimal way the distribution of the motion texture labels with the motion map as input data.

Thus, we search for a label realization l = {li}, where li ∈ {0, 1, . . . , c − 1} is the motion
texture class label value at site i that maximizes p(l | X) ∝ p(X | l)p(l), whereX represents the
motion map including up to c motion textures. This corresponds to a maximum a posteriori
(MAP) estimation of the label field l.

In the proposed method we do not assume conditional independence, given the label field,
within a motion texture but only between different motion texture classes. We introduce the
following notation. We call Qk the energy function corresponding to the texture class k with
parameters φk. We define X(k) = {xi : li = k} as the vector of motion random variables that
belong to texture k. X(k) is a subset of X. Zk(l) is the corresponding partition function and
depends on the distribution of the kth texture on the lattice corresponding to the label field
l.

If we suppose that the c different motion textures come from independent dynamic phe-
nomena, given the label field, we can write

(9.1) p(X | l) =
c−1∏
k=0

p(X(k)) =
c−1∏
k=0

e−Qk(X
(k))

Zk(l)
.
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This approach allows us to account for conditional dependence. The only approximation
is that we do not formally account for interactions between different motion textures along
the boundaries of each dynamic texture.

For the a priori information on the segmentation label field, p(l), we introduce another
eight nearest-neighbor MRF that behaves as a regularization term for the labeling process.
We have p(l) ∝ exp[QS(l)] with

(9.2) QS(l) =
∑
〈i,j〉

γψ(li, lj),

where ψ(li, lj) = 1 if li = lj and zero otherwise. With γ > 0, p(l) penalizes the differences
of labeling between adjacent neighbors, smoothing the segmentation output. The complete
formulation can be stated as the minimization of

(9.3) E(l) =

c−1∑
k=0

Qk(X
(k)) +

c−1∑
k=0

log(Zk(l)) −QS(l).

9.1. Initialization. We do not assume that the motion texture parameters for each class
are known. Then, it is necessary to correctly estimate the intervening mixed-state motion
texture models. As a simplification, we will assume that the number of classes is known.

As an initialization of the label field, we divide the motion map into nonoverlapping square
blocks Bm ∈ S of a fixed size, and for each block the set of 11 motion-texture model param-
eters is estimated. Then, we apply a clustering technique to obtain a first classification of
blocks. As a simplification, we calculate the symmetrized KL distance, KL(p1(x), p2(x)) =
1
2(KL(p1(x)‖p2(x)) +KL(p2(x)‖p1(x))), between the marginal distribution for single points
p(xi) (which is assumed to be the same for every site within a block). This simplified distri-
bution is taken as a mixed-state Gaussian density, i.e., p(x) = ρ10(x) + (1 − ρ)N (μ, σ), for
which the three parameters (ρ, μ, σ) are easily obtained for each block. The KL divergence
from p1(x) to p2(x) is given by

KL(p1(x)‖p2(x)) = ρ1 log

[
ρ1
ρ2

]
+ (1− ρ1)

[
log

[
σ2(1− ρ1)

σ1(1− ρ2)

]

+
1

2

[
σ21
σ22

+
(μ2 − μ1)

2

σ22
− 1

]]
.(9.4)

A partition-around-medoids (PAM) clustering algorithm is used [70]. Similar to the k-means
method, it allows operating over a dissimilarity matrix between samples, which we obtain for
the set of blocks from (9.4). At this stage, we discard blocks that are likely to be unreliable
representatives of a motion texture, including those which have mixtures of classes. To this
end, we compute the diameter D of each cluster as the maximum distance between any two
of its elements, and we keep only as valid blocks those that have a distance to the medoid
lower than a given fraction of D, typically 0.3. Note that during this process the number of
classes could be estimated on-line as well.

Once we have a first segmentation of the field by this clustering step, we obtain a set of
accurate motion-texture model parameters for each class by estimating the 11 parameters for
each final cluster using the valid blocks.D
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9.2. Handling the partition function. Equation (9.3) involves the calculation of the par-
tition function for each class. It is a fundamental matter not to neglect, as it normalizes the
global distribution, allowing one to correctly make a MAP decision between different classes.
It should be noted that avoiding the partition function assumes conditional independence.
Moreover, it depends on the label realization l; that is, its value changes according to how the
labels are assigned.

We propose the following approach for appropriately handling the partition functions. For
a general Gibbs distribution, the expression of the normalizing factor is Z =

∫
Ω e

−Q(X)dX,
where Ω is the sample space. Let ΔQ(XA) be a variation on the energy function, not neces-
sarily small, due to an arbitrary variation over the values of the subfield A ⊂ S and being a
function only of XA. Then we can write the resulting partition function, Z ′, as a function of
the former one, Z,

Z ′ =
∫
Ω
e−Q′(X)dX =

∫
Ω
e−Q(X)−ΔQ(XA)dX

=

∫
Ω
Zp(X)e−ΔQ(XA)dX = ZEXA

[
e−ΔQ(XA)

]
,(9.5)

where the expectation operator is applied w.r.t. the marginal probability distribution of XA.
A similar calculation was previously proposed in [73] for estimating the unknown partition
function from reference values using Monte Carlo integration.

Here, we use this result for the problem of segmentation. Available optimization methods
for labeling problems are mostly based on iteratively computing energy changes as a result
of adding or taking out points from a class. Defining ΔQ appropriately, we then have an
expression for the change on the normalizing factor. Removing a point xi from a class is
equivalent to discarding the cliques corresponding to that point. This change in Z can be
expressed by setting

ΔQ(XA) = ΔQ(xi,XNi) = −
⎛
⎝Vi(xi) + ∑

j∈Ni

Vi,j(xi, xj)

⎞
⎠− log 10(xi),(9.6)

where log 10(xi) is defined for convenience from elog 10(xi) = 10(xi). This term allows inte-
grating w.r.t. xi without changing the value of the integral. For the case of the Gaussian
MS-MRF, Vi,j(0, xj) = 0 and S(0) = 0, which implies that e−ΔQ(XA) = 10(xi). We thus write

Z ′ = ZEXA
[10(xi)] = ZP (xi = 0) ⇒ log

Z ′

Z
= logP (xi = 0).(9.7)

Equivalently, we can calculate the change on the value of the partition function due to
an extraction of an arbitrary subset T of points from the field, redefining (9.6) adequately.
Following the same reasoning, we arrive at log Z′

Z = log P (XT = 0). It is thus much easier
to compute a relative change of the partition w.r.t. a current configuration than the very
intricate (and still open) issue of evaluating the complete value of Z. This is exploited in
what follows to define a simple energy minimization strategy.D

ow
nl

oa
de

d 
03

/2
5/

14
 to

 1
47

.8
.2

04
.1

64
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2500 CRIVELLI, CERNUSCHI-FRIAS, BOUTHEMY, AND YAO

9.3. Energy minimization method. Different methods for minimizing the energy (9.3)
are available. Simulated annealing [34] is suitable for virtually any shape of energy function,
but it is slow and not that efficient. For energy functions related to conditional models, i.e.,
those arising from MRFs, iterative conditional modes (ICM) [4] is based on maximizing the
conditional local density for a point w.r.t. its label. While faster than simulated annealing, it
relies on the strong assumption that, given the label field, the observations are conditionally
independent. This is not the case of the segmentation method proposed here (see (9.1)), where
we exploit the whole motion texture model for each class.

In recent years, a new family of energy optimization methods for some classes of energy
functions [43] based on graph-cuts has been proposed and developed with a growing impact
in many applications [6, 43, 68]. In this framework, one seeks the labeling l that minimizes
energy functions of the type

E(l) =
∑
i∈S

Di(li) +
∑
<i,j>

Eij(li, lj),(9.8)

where Di(li) is the data term and Eij(li, lj) is usually called the smoothness or interaction
term. The method relies on constructing a directed graph where the vertices are the image
points plus two additional vertices corresponding to each binary label values. It is shown that
there is a one-to-one correspondence between a partition of this graph and a complete binary
labeling of the image. Then, assigning appropriate edge weights, obtaining a minimum cut is
equivalent to optimizing E(l). Thus, the formulation reduces to computing a min-cut/max-
flow problem.

Among the methods that exploit this equivalence, a very efficient method is proposed in
[6, 43], providing, at the same time, a general graph construction scheme. The method, called
the expansion move algorithm, is valid for multilabel situations and is based on iteratively
computing an expansion of the region occupied by a label class l ∈ {0, . . . , c−1} in the current
labeling in such a way that this change generates a decrease in the global cost function.
The expansion algorithm cycles through all the labels and finds the optimal expansion by
application of the graph-cut method.

We propose using this technique for efficiently addressing the problem of motion texture
segmentation. In our case we have to rewrite (9.3) in the form of (9.8). Let us consider the
case of two classes (c = 2). Then we have

E(l) = Q1(x1) +Q2(x2) + log (Z1(l)) + log (Z2(l))−QS(l),(9.9)

where for each class k ∈ {0, 1}, V (k)
i and V

(k)
ij are the corresponding potentials for each motion

texture model. For the partition function, observe (9.7). Note that the probability P (xi = 0)
is computed w.r.t. the marginal distribution for the site before taking out the point. At the
same time, we can assume that this marginal density remains approximately constant as we
successively take points from a class, as long as the parameters that describe the remaining
field do not vary too much. Of course, the extreme case of leaving only one site in the
class will violate this assumption. Finally, note that this approximation allows us to write
P (XT = 0) ≈ [P (xi = 0)]NT , where NT is the number of extracted points. As P (xi = 0) isD
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Figure 3. Samples of video frames from the UCLA-50 dynamic texture database [60].

considered constant, we can assume that each point contributes equally to the energy change
in each iterative step of the expansion move algorithm, and we then define

Di(li) = V
(li)
i (xi)− logP (xi = 0 | li),(9.10)

Eij(li, lj) = ψ(li, lj)
[
V

(li)
ij (xi, xj)− γ

]
.(9.11)

Note that the smoothness term may violate the regularity of the energy function in order
to be graph-representable [43]. However, we have experimentally observed that, in our case,
this occurs in less than 5% of the points, and the problem can be overcome with no impact on
the final result, by simple truncation of these terms. More recent algorithms for minimizing
nonsubmodular energy functions [42, 45] can be applied as well, but the benefit is marginal
for our case.

10. Experimental results.

10.1. A brief review of dynamic texture datasets. As it occurs in general with video
content analysis applications, constructing a dynamic texture database is not an easy task.
The semantics of a scene can hardly be completely reduced to a mathematical model, although
one usually resorts to the latter in order to obtain a compact and treatable representation.
With the first introduction of the concept of a dynamic texture in [28], this dynamic video
content was formally defined as a sequence of color/intensity images that respond to an LDS.
The dataset UCLA-50 presented in [60] contains spatially small and temporally long image
volumes of size 48 × 48 × 75 carefully cropped from the original sequences to ensure key
statistical and dynamical features (examples in Figure 3).

UCLA-50 is formed by 50 dynamic texture classes with four sequences each, giving a total
of 200 original sequences. Many of these classes are clearly semantically equivalent and thus
are derived in multiple subversions of this mother database into smaller and more meaningful
datasets. Grouping them into nine classes, one obtains UCLA-9 [41, 56]. In [55] one of the
classes is dropped, alleging that it has many samples w.r.t. the other classes. This leads to
UCLA-8.

One could argue that these dynamic texture datasets well fit the family of LDS-based
methods but could be less appropriate to assess the performance of an arbitrary recognition
method. Indeed, attention must be paid to the type of data samples, the organization of
the database, and the ground truth information. Specifically, in the context of our spatial
two-frame motion texture framework, 48× 48 sized frames are indeed small.

A more realistic dataset is the DynTex dynamic texture database [52]. It is larger (650
original sequences), the images are of higher quality and colored, and fundamentally, the imageD
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Table 1
Dynamic texture datasets used in the state-of-the-art methods for recognition and classification. UCLA-N :

Original UCLA-50 [60] reorganized to N classes. UCLA-pan: UCLA-50 with artificially introduced camera
panning. UCLA-SIR: Shift-invariant recognition [27]. DynTex-N : N class DynTex. DynTex++: Annotated
36 classes. MIT-10: Temporal texture database with 10 classes. YUVL: York University Vision Lab spacetime
texture database [27]. Traffic: 3 class traffic sequences (see [10]).

Method D
a
ta
se
t

U
C
L
A
-5
0

U
C
L
A
-9

U
C
L
A
-8

U
C
L
A
-7

U
C
L
A
-4

U
C
L
A
-p
a
n

U
C
L
A
-S
IR

D
y
n
T
ex

-2
6

D
y
n
T
ex

-3

D
y
n
T
ex

+
+

M
IT

-1
0

Y
U
V
L

T
ra
ffi
c

[9]
√ √

[11]
√ √

[27]
√ √ √ √

[63]
√

[33]
√ √

[41]
√ √ √ √ √

[57]
√ √ √

[10]
√ √

[56]
√ √

[55]
√ √ √ √

[60]
√

[35]
√

frame covers the whole spatiotemporal region of interest (recall that UCLA-50 is restricted to
48× 48× 75 patches). The spread of DynTex still remains limited today; nonetheless, in our
opinion, it appears to be a richer compendium of dynamic texture sequences.

Having this said, it is interesting to take a precise look at the different choices that the
state-of-the-art methods have taken while choosing an appropriate dataset for benchmarking
their dynamic texture recognition (DTR) performance. In Table 1 we display a certainly
incomplete but meaningful list of state-of-the-art references on DTR and the databases they
have considered. Clearly, none of these dynamic texture datasets can be considered as a single
well-established reference for testing methods.

There are surely two main dynamic texture databases that are considered in some form
by almost every recognition method: UCLA-N (N stands for the number of classes) and
DynTex. Only one method, that of [57], among those presented in Table 1, shows results
on both but reorganizing DynTex to only three classes (DynTex-3). We propose testing our
motion texture classification method on a 10-class DynTex subset and on several subsets of
UCLA-50. This is explained in detail in what follows.

10.2. Motion texture classification.

DynTex-10. We first took motion textures extracted from the DynTex dynamic texture
database [52] where the homogeneity assumption was mostly valid. Although a large part of
the images is occupied by the dynamic texture of interest, some of the samples display regions
where the homogeneity is broken (Figure 4). We divided them into 10 different classes: Steam,
Straw, Traffic, Water, Candles, Shower, Flags, Water-Rocks, Waves, and Fountain. A total
of 30 different sequences were considered, and for each one, five pairs of consecutive imagesD
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Steam Straw Traffic Water Candles

Shower Flags Water-Rocks Waves Fountain

Figure 4. Sample images from the DynText-10 motion texture classes used for the recognition experi-
ments. For some of the samples the dynamic texture of interest does not occupy the whole image, violating the
assumption of spatial homogeneity. However, our model is sufficiently robust to deliver a correct classification.

were selected at frames 1, 20, 40, 60, 80 for a total of 150 samples. Each motion texture class
parameter set was learned from a single pair of images picked from only one of the sequences
belonging to each type of motion textures. All sequences were composed of gray scale images
with a resolution of 720 × 576 pixels, given at a rate of 25 frames per second. The original
images were filtered and subsampled to a resolution of 180 × 144 pixels. On one side, this
reduces the processing time. But it also makes the motion measurements more reliable, as
the normal flow computation is valid under the hypothesis of small displacements.

We estimate the reference model parameters for each class with only one training sample.
We then estimate φ for each test sample and compute the KL distance (8.3) with each learned
class parameter vector.

Table 2 contains the confusion matrix for the 10 motion texture classes. A correct recog-
nition is considered when both the test sample and the closest reference parameter vector
belong to the same class. Of course, training samples are not considered for testing. An
overall classification rate of 90.7% was achieved. As for the confusion matrix, let us note
that it is likely that waves are classified as Water or Water-Rocks as they correspond to
similar dynamic contents. Straw may be confused with Shower (they have similar vertical
orientation), and Candles can be classified as Traffic, as both classes show a motion pattern
consisting of isolated blobs. The nonsymmetry of the confusion matrix is due to the nature of
the tested data set, where for some classes the tested sequences have a closer resemblance to
the training sample, while for others there are notorious intraclass variations that may lead
to a misclassification.

Reported experiments for dynamic texture recognition on DynTex data are found in [57]
for a three-class joint segmentation/classification task (Waves, Flags, Fountain) for which they
achieve 72.5% of correctness. The result of [35] on the 36-class DynTex++ version is 63.7%.
This shows how challenging this database is and that our method provides top-performing
results, though a direct quantitative comparison is not currently possible.

UCLA database. Different reorganizations of the original UCLA-50 dynamic texture
dataset permit us to further study the recognition performance of our approach. It should beD
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Table 2
Motion texture class confusion matrix obtained by our mixed-state motion texture model on the DynTex-10

dataset. Each row indicates how the samples for a class were classified. Overall rate: 90.7%.

S
te
am

S
tr
aw

T
ra
ffi
c

W
at
er

C
an

d
le
s

S
h
ow

er

F
la
g
s

W
at
er
-r
o
ck
s

W
av
es

F
o
u
n
ta
in

Steam 1.0 - - - - - - - - -

Straw - .93 - - - .07 - - - -

Traffic - - .87 - - - - .13 - -
Water - - - 1.0 - - - - - -

Candles - - .13 - .74 - - .13 - -

Shower .20 - - - - .80 - - - -
Flags - - - - - - 1.0 - - -

Water-rocks - - - - - - - .93 - .07

Waves - - - .07 - - - .13 .80 -
Fountain - - - - - - - - - 1.0

noted that a unique manual classification of the sequences into distinctive classes is somehow
subjective and might even be senseless under the hypothesis of a given method. Table 1 is a
clear illustration of the difficulty of establishing an objective and unique benchmark.

For the set of experiments that follow we have generated several subsets and recategoriza-
tions of UCLA-50, with variable numbers of classes and different organization criteria. On the
other hand, the original 48× 48 sized sequences would not be sufficiently large for our spatial
model. To cope with this situation, we first generate new 96×96 pixels sequences by spatially
concatenating four original shorter 48×48 subsequences of the same video class. This has the
goal of augmenting the number of points while estimating the parameters, assuming the effect
of borders is negligible. Temporal length is not an issue as we need only two frames to learn
and recognize. Moreover, several UCLA-50 sequences are shot with three zooming levels (far,
mid, near). Handling large motion scale invariability is outside the scope of this paper, and
thus, while reorganizing the database into classes, we did not include the three versions but
discarded the least numerous between far and near.

We start with a two-class classification problem between classes Fountain (12 samples) and
Water-Falls (16 samples) as proposed in [55], which by the way are close dynamic textures with
similar appearance and dynamics. For testing, we took three pairs of frames at instants 10, 30,
and 60, while learning was done at instant 0. Our result is 96.4% using only a pair of frames
for learning from only one of the sequences of each class (chosen randomly), while [55] reported
98% on average. Next, we learn several models for each class while still estimating each model
from one image pair of the training sequence. We take 50% of the sequences of each class as
training sequences. We test the rest, and we achieve 97.6% (only one misclassified sample).
Although the effectiveness of the best LDS approaches is similar to ours, the method proposed
here has a big advantage, which is that we need only two consecutive frames to estimate and
recognize the mixed-state models.

Next, we took the organization of UCLA-4 into Fountain (12), Sea (12), Water (12), and
Water-Falls (16). We obtain 87.2% on this set learning on 50% of the sequences (Table 3a).D
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Table 3
Motion texture class confusion matrices obtained by our mixed-state motion texture model on different

reorganizations of UCLA-50.

F
o
u
n
ta
in

S
ea

W
at
er

W
at
er

fa
lls

Fountain .89 - .03 .08

Sea - .92 .08 -
Water - - .86 .14

Water-Fall - - .15 .85

(a) Confusion ma-
trix for our method
on the UCLA-4
dataset used in
[55]. Overall rate:
87.2%.
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F
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g
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g
.

S
m
o
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C
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w
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er

Turb. water .93 - .05 .02 -

Fire flames .37 .50 .12 - -

Swaying veg. .06 - .94 - -
Smoke .75 - - .25 -

Calm water - - - .05 .95

(b) Confusion ma-
trix for our method
on the UCLA-
Motion dataset.
Overall rate: 89%.

F
la
m
es

F
o
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n
ta
in

S
m
o
ke

T
u
rb
.
W
at
er

W
at
er

w
av
es

W
at
er

fa
lls

S
w
ay
in
g
ve
g
.

Flames .70 - .06 .06 - .06 .12

Fountain - .88 - .12 - - -

Smoke .12 .38 .12 .38
Turb. Water - - - .65 - .35 -

Water waves - - - .04 .96 - -

Water falls - - - - - .89 .11
Swaying veg. - .005 .005 - .005 .07 .91

(c) Confusion ma-
trix for our method
on the UCLA-7
dataset introduced
in [27]. Overall
rate: 84%.

In [55] the best classification result is 89%, while they report baseline results with the model
used in [60] of 52.2%. The best published result on this set, to the best of our knowledge, is
obtained by [9] with an overall 95%.

A different categorization of dynamic textures can be formulated in terms of motion prop-
erties, and indeed this is particularly interesting for our motion texture model. We have
extracted five classes from UCLA-50 in terms of its dynamics which we call UCLA-Motion:
Turbulent water (44), Fire flames (8), Swaying vegetation (120), Smoke (4), Calm water (24).
Our method achieves 89% of classification rate (Table 3b). In [27] a similar dataset is used
but with 7 classes (Flames, Fountain, Smoke, Water turbulence, Water waves, Waterfall,
Windblown vegetation). They achieve 92.3% while for the two-frame MS-MRF motion tex-
ture model we have 84% (Table 3c). On the other side, their model requires processing a
large spatiotemporal volume from which features are extracted. Note that the results for the
Smoke class are not satisfactory. The same issue was previously reported in [55], putting in
evidence the complexity of this particular class.D
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Figure 5. Temporal stability of the estimated motion texture model. (a) Ocean-Steam sequence. The white
rectangles indicate manually delineated regions in which the parameters for each class were estimated. (b) KL
distance between the parameters for the Ocean class at each time instant and the reference model obtained from
the first pair of frames for Ocean (solid line) and Steam (dashed line). (c) KL distance between Steam and the
reference model for Steam (solid line) and Ocean (dashed line). (d) Trees sequence, where we have a Front tree
and a Back tree. (e) KL distance Front tree-Front tree reference (solid line) and Front tree-Back tree reference
(dashed line). (f) KL distance Back tree-Back tree reference (solid line) and Back tree-Front tree reference
(dashed line).

10.3. Two-frame model estimation and temporal stability. Our method is based on
the modeling of the spatial distribution of mixed-state motion values (normal flows) for a
given motion texture, and only two frames are required to estimate the model parameters.
The previous experiments on motion texture classification have shown that training a motion
texture class from a single pair of images is sufficient to achieve a high recognition rate. On
the other side, for the segmentation method one could use the estimated parameters for each
region at a given instant of time to also recognize the intervening motion texture classes.
Yet, a question arises about the stability of the estimated model parameters over time. In
other words, would the model estimated from a given pair of frames out of the video sequence
containing the dynamic texture (which can be of a much longer temporal extent) be different
if it were estimated from another image pair in the sequence? Also, in what follows, we
show that for temporally stationary motion textures, the model estimated from only two
consecutive frames is well representative of the rest of the sequence; that is, the mixed-state
model parameters are stable (consistent) over time.

We take two sequences also used later for the segmentation experiments, each one com-
posed of two different motion textures (Figure 5): Trees (two different kinds of trees moved
by the wind, and at different depth with respect to the camera) and Ocean-Steam1 (a circular
region comprising steam superimposed to a sequence of ocean waves). Then, we estimate the

1Copyright 2003, UCLA Vision Lab. Thanks to Daniel Cremers and Stefano Soatto for providing this
sequence.D
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set of parameters over manually delineated regions (Figures 5(a) and 5(d)) corresponding to
each of the motion texture classes. From the first pair of frames we obtain a set of so-called
reference parameters for each class. Finally, we compute the KL divergence between the ref-
erence models obtained at t = 1 and the models corresponding to the parameters estimated
within each region along the rest of the sequence (for each t > 1).

In Figure 5(b) we plot the KL distance between the parameters estimated for the Ocean
motion texture at each instant, and the reference models for Ocean (solid line) and Steam
(dashed line). We see that the parameters successively estimated over the sequence for Ocean
remain very close to the reference Ocean model extracted from the first pair of frames. At
the same time, the distance between Ocean and Steam is far higher along the whole sequence.
Figure 5c displays the reciprocal experiment. The parameters for Steam were estimated for
each instant, and we plot the KL distance with respect to the reference models. Again, the
parameters for the Steam class at each time instant t > 1 keep close to the reference Steam
model at t = 1 (solid line) while being quite different from the Ocean reference model (dashed
line).

Finally, the same behavior is confirmed for the Trees sequence, where we have two motion
textures: a Front tree and a Back tree. In Figure 5(e) we display the KL distance between
the Front tree model computed at each t > 1 within the manually delineated region and
the two respective reference models, and in Figure 5(f) we display the distance between the
successively estimated Back tree models and the two respective reference models.

These experiments demonstrate that the motion texture model parameters estimated at
each time instant are stable for a temporally stationary motion texture. Thus, we can state
that the model parameters estimated, for instance, from the first image pair of the dynamic
texture clip are well representative of the whole clip. Conversely, our method can easily
handle nonstationary temporal textures (e.g., varying temporal textures). The estimated
model parameters will evolve accordingly. In the latter case, several sets of parameters would
be necessary to correctly represent the dynamic texture. To summarize, we need only two
frames to estimate the MS-MRF model of a temporally stationary dynamic texture, whatever
its length is; we can easily deal with nonstationary temporal textures since we only need two
frames to estimate the motion texture model.

10.4. Dynamic texture change detection. A fundamental consequence arises from our
two-frame modeling framework, that is, from its ability to characterize a motion texture
for a precise time instant based on an image pair, and its property of temporal stability of
the estimated parameters, as discussed before. Such a model together with our similarity
measure (i.e., the KL distance) can be readily applied for motion texture change detection.
The following experiments are thus performed and depicted in Figure 6. Each pair of motion
texture classes for which a misclassification was found in Table 2 was used to construct a new
40-frame sequence by taking a 20-frame segment of each of the two classes and concatenating
them. Thus, we have built a set of seven challenging test videos. A motion texture model is
estimated from the first pair of images, and the KL distance is computed w.r.t. the motion
texture model estimated at every subsequent time instant. For all but one (Shower-Steam),
the significant increase in the KL distance at the instant of change of motion texture (frame
20) is indeed a key feature for this detection task.D
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Figure 6. Temporal motion texture change detection. For each pair of motion texture classes we construct
a new 40-frame sequence by concatenation of two 20-frame segments of said classes, for a total of seven test
videos. Curves show the evolution of the KL distance along the new sequence w.r.t. a mixed-state motion texture
model learned from the first pair of frames. The sudden increase in the KL distance exactly at the instant of
change of content shows the ability of the model to detect the change of motion texture, without the need of
recognizing the intervening classes.

10.5. Segmentation of dynamic textures. In this section we present results on segmen-
tation of motion texture videos. Figure 7 displays an artificially composed sequence consisting
of a motion texture of grass and two small regions of moving leaves (Grass-Leaves sequence).
The location and the shape of these two regions are fixed over time. Each image is of size
320 × 240 pixels. The motion texture is shown in Figure 7(b). In Figure 7(c) we give the
result of the initialization stage of the algorithm where blocks of size 20× 20 were used. From
this first segmentation, we estimated the motion texture class parameters. The corresponding
values are given in Figure 7(i). Some of the blocks were discarded during the clustering as
explained in subsection 9.1, and their points were assigned a random initial label. Then, a
fine segmentation is obtained by minimizing the MAP energy (9.9). For this and the fol-
lowing segmentation experiments, a value of γ ∈ [0.4, 0.8] was used for the smoothness term
and set manually. For processing subsequent frames, the previous segmentation is used as an
initialization as well as for re-estimating the parameters. Thus, the block-based initialization
is applied once at the very beginning of the sequence. The segmentation result is consistent
along the whole sequence and is close to the ground truth.

The second experiment (Figure 8) corresponds to the Ocean-Steam sequence. The images
are of size 150 × 150 pixels. For the initialization of the algorithm, blocks of 30 × 30 pixels
were used. The algorithm is well initialized by the block clustering strategy, as depicted in
Figure 8(c), where a block located at the border between both motion textures was discarded.
As for the estimated parameter values, note the value of hH for the Ocean texture class. Its
high value indicates the horizontal orientation of the motion map, which is much stronger
than for the Steam class. Also, Ocean is a more uniform motion texture, which is reflected in
the lower variance σ2 = 1/2b. These kinds of properties are well captured by the model and
permit to differentiate the motion texture classes.D
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(a) (b) (c) (d)

(e) frame 1 (f) frame 10 (g) frame 20 (h) frame 30

(i)
Class a b c dH hH dV hV dD hD dAD hAD

Leaves -5.06 1.98 -0.004 0.27 0.79 2.20 0.59 1.03 0.16 1.12 0.41
Grass 1.34 60.15 -0.03 1.92 32.6 1.39 11.2 0.17 0.00 -0.04 1.12

Figure 7. Grass-Leaves sequence (320×240 pixels). (a) First frame from the original sequence. (b) Motion
texture obtained by computing the proposed scalar normal flow between frames 1 and 2 (we mapped the motion
measurements to the range of gray [0, 255] where 128 corresponds to null motion). (c) Initial segmentation by
clustering blocks of size 20×20 using a simplified KL distance. Some blocks were automatically discarded (white
cross) from the initial parameter estimation. (d) Ground-truth. (e)–(h) Result of the proposed segmentation
method for different time instants. The delineated squares correspond to the Leaves class. (i) Motion-texture
model parameters estimated for the first pair of frames.

We have compared our segmentation result with two other methods: the method by
Doretto et al. [29] based on linear dynamic models of intensity and a level-set approach
for estimating the boundaries (Figure 9(a)) and the method by Chan and Vasconcelos [12]
exploiting the mixture-of-dynamic-textures model (Figure 9(b)). Our result is more accurate
in locating the Steam boundary than [29] and performs similarly to [12]. Moreover, for these
two methods the final segmentation is achieved by processing about 100 frames of the sequence,
while in our case we need only two frames to get the segmentation at each time instant.

In Figure 10 we show the results for a real sequence of two motion textures—the Trees
sequence (320 × 240 pixels). During the initialization stage, blocks of size 40× 40 were used.
Recall that in this sequence we have two trees moved by the wind, but of different kinds and
at different depths with respect to the camera. This is a complex scene since the trees have
not only similar intensity textures but close motion textures. Both motion textures exhibit
no predominant orientation, which is confirmed by observing that the horizontal and vertical
model coefficients have similar values. One of the main differences between the front and
the back tree is that the front tree involves large compact regions of null motion mixed with
areas of motion. Our explicit modeling of discrete and continuous values is then important to
distinguish the two dynamic textures. Note that the bottom-right area of the image (marked
with a white square in Figure 10(e)) appears to be included in the wrong texture class. ThisD
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(a) (b) (c) (d)

(e) frame 1 (f) frame 10 (g) frame 20 (h) frame 30

(i)
Class a b c dH hH dV hV dD hD dAD hAD

Ocean -0.10 10.53 0.02 1.03 10.43 0.43 0.00 0.11 0.00 0.06 0.00
Steam -0.15 2.38 0.03 0.21 1.07 0.13 0.46 0.23 0.35 0.11 0.47

Figure 8. Ocean-steam sequence (150×150 pixels). (a) First frame from the original sequence. (b) Motion
texture obtained by computing the proposed scalar normal flow between frames 1 and 2. (c) Initial segmentation
by clustering blocks of size 30×30 using a simplified KL distance. One block was automatically discarded (white
cross) from the initial parameter estimation. (d) Ground-truth. (e)–(h) Result of the proposed segmentation
method for different time instants. The red circular region corresponds to the Steam class. (i) Motion-texture
model parameters estimated for the first pair of frames.

is due to the fact that this area has a different motion pattern than the rest of the back tree,
with a lower density of moving points. Then, it is confused with the front tree. Overall, the
segmentation is well obtained and the border between both classes is correct, although even
for the human eye it is difficult to separate both regions. Also it proves robustness to a wrong
classification of initial blocks (Figure 10(c)).

10.6. MS-MRF versus classical MRF model. One may ask whether the synthetic se-
quences (such as the Ocean-Steam sequence) are indeed so complex to justify the need of
our motion modeling approach. To this end, we consider a standard Gaussian MRF motion
model instead of the MS-MRF motion model by eliminating the discrete component at the
null value. Then, we estimated the remaining model parameters. We apply the same seg-
mentation strategy. The configuration of the experiment is that of Figure 8. The result is
shown in Figure 11, where we notably observe a dramatic drop in the segmentation quality.
The spatial structure of the motion texture (Figure 7(b)) is indeed fairly complex despite
the illusory simplicity of the original image. Observe how the simple MRF model seems to
delineate the small homogeneous motion blobs distinguishable in the motion texture sequence
(Figure 8(b)), while it is largely perturbed by the ubiquitous null value present in the motion
observations.
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(a) (b) (c)

Figure 9. Results of other dynamic texture segmentation methods. (a) Result for the Ocean-Steam sequence
by Doretto et al. presented in [29]. (b) Result for the Ocean-Steam sequence by Chan and Vasconcelos presented
in [12]. For both methods, the segmentation is obtained by processing the whole sequence of more than 100
frames, and the estimated boundary contour is the same for each frame. (c) Result for the Ocean-Fire sequence
by Doretto et al. presented in [29]. The same remark applies here.

10.7. Segmentation of dynamic textures with changing boundaries. Motion (or dy-
namic) textures are related to phenomena that have very different dynamics compared to
rigid bodies. Thus, considering that the region occupied by a dynamic texture is rigid and
constant over time may not be a valid hypothesis for segmenting real sequences. In our ap-
proach, this is not the case, as we segment instantaneous motion maps instead of a whole
temporal clip. We then show how the proposed algorithm can be applied to the segmentation
of motion textures with deformable spatial supports over time.

In Figure 12, we first present a sequence consisting of a fountain that suddenly appears,
grows, and progressively diminishes over a static background. Note that, in our model, the
static background can be considered as a motion texture class for which the probability of
null motion values is very high. Thus, it can be segmented in the same manner as any motion
texture. The images are of size 320 × 240 pixels, and 40 × 40 blocks were used during the
initialization stage. For the first frame, the algorithm produces a few errors in the segmented
regions of water. The method needs a sufficient spatial extent of the motion texture, which
is not the case at the very beginning of the sequence, in order to identify its parameters and
obtain a correct segmentation. As the fountain appears in the sequence, the segmentation
result improves. The regions corresponding to the Fountain class may seem to be wrongly
merged together in large blobs instead of detecting the vertical water jets. However, within the
proposed model, the jets and the spaces (null motion regions) between them can be described
by a single set of parameters. The motion texture of Fountain is consequently characterized by
a pattern of vertical spikes and is correctly segmented by our method. We moreover capture
the temporal variations of the boundaries.

Finally, we display the results for a very challenging sequence with deformable motion
textures in Figure 13. In this case, a dynamic texture of a fire flame was combined with a
dynamic texture of water to form the Ocean-Fire sequence2. The boundaries of the flame are

2Copyright 2003, UCLA Vision Lab.D
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(a) (b) (c) (d)

(e) frame 1 (f) frame 5 (g) frame 10 (h) frame 15

(i)
Class a b c dH hH dV hV dD hD dAD hAD

Front Tree -2.29 15.9 -0.06 1.09 7.92 1.12 7.89 0.28 0.00 0.21 0.00
Back Tree -1.23 5.24 0.01 0.64 2.42 0.69 2.76 0.22 0.00 0.18 0.00

Figure 10. Trees sequence (320 × 240 pixels). (a) First frame from the original sequence. (b) Motion
texture obtained by computation of the scalar normal flow between frames 1 and 2. (c) Initial segmentation by
clustering blocks of size 40×40 using a simplified KL distance. Some blocks were automatically discarded (white
cross) from the initial parameter estimation. (d) Ground-truth. (e)–(h) Result of the proposed segmentation
method for different time instants. The biggest region corresponds to the Front tree. The white square in (e)
indicates a region where the algorithm confuses the classes. (i) Motion-texture model parameters estimated for
the first pair of frames.

frame 1 frame 10 frame 20 frame 30

Figure 11. Results of motion texture segmentation using a Gaussian MRF motion model (non–mixed-state)
for the Ocean-Steam sequence. The mixed-state nature of the motion observations is not well handled in this
case.

continuously and rapidly changing in time. The images are of size 360 × 280, and blocks of
40×40 pixels were used. First, we compare our result with that presented for the same sequence
in [29], as depicted in Figure 9(c). In [29], the linear dynamical models of intensity [28]
assume that each dynamic texture is not varying its shape over time so that the model can be
coherently estimated over a temporal window (120 frames in this case). The algorithm in [29]
performs an average segmentation over the time window, and the boundary contour between
flame and water is adjusted for the whole sequence, not capturing the boundary variations.D
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(a)

(b)

Figure 12. Fountain sequence (320×240 pixels). (a) Original frames from the video sequence corresponding
to a deformable dynamic texture. (b) Result of the proposed segmentation method which is applied for each time
instant between two consecutive frames.

Next, in Figure 13(b) we display the result presented by Chan and Vasconcelos in [12] using
mixtures of dynamic textures. They used spatiotemporal patches of five frames to track the
dynamic texture deformation. However, oversmoothing occurs on the estimated boundary
since it cannot be adjusted rapidly to changes that happen within the five-frame interval. In
contrast, the segmentation strategy proposed here, and, in particular, our modeling approach,
is able to perform a frame-by-frame segmentation with accurate results for each time instant.
In the original images, the regions of Fire show considerable variations in terms of size and
shape, and also they can occupy different nonconnected areas, as seen in Figure 13(e). Facing
this highly dynamic behavior, the segmentation is accurately obtained by our method, which
outperforms other state-of-the-art segmentation approaches.

10.8. Spatiotemporal segmentation of motion textures. We have shown that our mixed-
state motion texture model can be efficiently exploited to perform two complex tasks—motion
texture segmentation and recognition. The two-frame approach is especially attractive for
dealing with instantaneous changes (moving boundaries and content changes). Our unique
parametric representation can thus be exploited for a combined video sequence analysis task,
where (1) motion texture regions are determined in a frame-by-frame basis by a spatial seg-
mentation and (2) the motion texture model for each segment is tested at each time instant
to determine if a change of content has occurred. To illustrate, we have concatenated the
sequences Ocean-Steam and Ocean-Fire, one after the other, at frame 20. The segmentation
algorithm is applied at each instant to obtain a sequence of motion texture segmentation maps.
For the first segmentation map (at time 0) we learn the motion texture model parameters for
each region and save them as reference models (regions A and B in Figure 14). Then, for
each subsequent segmentation map we compute the KL distance between the motion texture
model for each segment (regions 0 and 1) w.r.t. A and B. In this manner, at each time we
obtain four values according to the four possible combinations of reference model and segment
model (D0A, D0B, D1A, D1B). It is worthwhile first to analyze each curve:

• D0A: The initially learned model A is the background ocean motion texture of Ocean-
Steam (region A). Until frame 20, regions A and 0 correspond to the same dynamicD
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(a)

(b)

(c)

(d)

(e)

Figure 13. Fire flame sequence (360×280 pixels). (a) Original frames from the video sequence corresponding
to a deformable dynamic texture of fire over ocean waves. (b) Results for the method by Chan and Vasconcelos
presented in [12] using spatiotemporal patches of five frames. (c) Results for the method by Chen et al. [15] using
local binary patterns. (d) Results of our segmentation method, which is applied to each time instant between
two consecutive frames. (e) Results by Ghoreyshi and Vidal [36] using Ising descriptors and ARX models (due
to unavailability we present results for different instants).
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Figure 14. Concatenation of the two-class sequences Ocean-Steam and Ocean-Fire. The curves show the
KL distance between mixed-state motion texture models, where DXY stands for the KL distance between the
model estimated in region X at the current frame and reference model learned from region Y at the initial
instant (see text).
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Figure 15. Concatenation of the two-class sequences Ocean-Steam and Ocean-Fire. The curves show the
instantaneous KL distance between the foreground regions segmented at two consecutive instants (D11), and the
background regions segmented at two consecutive instants (D00). A peak appears when the class Steam changes
to Fire in, say, the foreground (region 1), while the values remain low between the background regions with two
different instances of Ocean.

content. The distance values D0A are in this case very low. From frame 20, region
0 corresponds to the ocean motion texture of Ocean-Fire. Both ocean textures are
similar but with some variations, which leads to slightly higher D0A values, but still
indicates that both models are very close.

• D0B: This curve always corresponds to different classes. Region B is the steam motionD
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texture, and region 0 corresponds to Ocean along the whole sequence. Large distance
values observed before frame 20 evidence this situation, with lower but still significant
values afterwards. Note that the D0B curve is always over D0A.

• D1A: This curve is the complementary of D0B where the initially learned model cor-
responds to Ocean and region 1 is the foreground motion texture (Steam or Fire).
Clearly, the distance values are always large, as region A and region 1 always refer to
different contents.

• D1B: This curve is probably the most interesting from the point of view of the appli-
cation. It shows that the initially learned model in region B corresponds to the same
content as region 1 up to frame 20 (Steam). After this time instant, region 1 changes
from Steam to Fire, which is correctly reflected by a sudden increase in the D1B curve.

In practice, this process is done sequentially; that is, at the current frame we first segment
the motion textures, and then the four KL distances are computed before passing to the next
frame. Regarding the reference models, they can either be estimated at the initial frame or
they can be learned off-line with explicit reference to a particular content class.

This experiment shows the discriminating power of the mixed-state motion texture model
not only spatially (segmentation) but also temporally (change detection) and how both tasks
can be combined into a single and unified motion texture analysis framework. Undiscussed
aspects such as determining an optimal decision rule on the values of the KL distance depend
on the concrete application and are to be studied in the future.

Finally, in a practical scenario where the detection is performed on-line and one has to
account for successive changes of content, one would imagine the following setting. The
KL distance is computed between the model parameters estimated from consecutive motion
textures instead of considering a reference model at the beginning of the sequence. In this
case, a content change detection is identified by observing a KL distance peak as shown in
Figure 15 when the class Steam changes to Fire in, say, the foreground (region 0) and the
values remain low for the background Ocean.

11. Conclusion. We have proposed a new approach to dynamic texture modeling, based
on a spatial statistical parametric model of the apparent motion extracted from video se-
quences. The mixed-state motion texture model has shown to be a compact and powerful
representation for describing complex dynamic content with only a few parameters. One of
the main advantages of our proposal is that we can model, learn, and identify the motion
texture on a two-frame basis. As a consequence we can properly handle the segmentation of
motion textures with moving or deformable spatial support over time. Moreover, the temporal
consistency of estimated motion texture model parameters was demonstrated, along with an
accurate classification rate, proving a high discrimination power from a limited training step.
In contrast, several existing state-of-the-art methods need to take into account long sequences
of images in order to estimate hundreds or thousands of parameters.

We have obtained state-of-the-art results for the recognition and classification issues; while
our model is parsimonious, the learning stage is very light, and the recognition is on a two-
frame basis. Furthermore, we provide a survey of the datasets used by the different works on
dynamic texture recognition and classification. We have also introduced two new issues for
the dynamic texture domain: dynamic texture change detection and space-time segmentationD
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of temporal textures. We can straightforwardly and successfully handle them by using the
KL distance between two MS-MRF dynamic texture models and by combining our spatial
segmentation and classification methods.

We have shown that motion information is powerful in order to classify and segment
dynamic textures and that an MS-MRF is an adequate model regarding the specific nature
of motion observations and the local interactions involved. Due to the nature of the moving
scenes encountered for dynamic textures (close to an “ergodic” property), a spatial modeling
can be sufficient, and our MS-MRF model enables us to design an efficient, flexible, and
accurate two-frame approach for dynamic texture content analysis. Extensions to other types
of motion information such as optical flow could also be envisaged.
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