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Abstract

Using a clock model of a multi-unit, oral, ascending-priagtgon, within the common-
value paradigm, we analyze the behavior of the transactice ps the numbers of bidders
and units gets large in a particular way. We find that evendghaihe transaction price
is determined by a fraction of losing drop-out bids, that@rconverges in probability to
the true, butex anteunknown, value. Subsequently, we demonstrate that the @syin
distribution of the transaction price is Gaussian. Finallg apply our methods to data from

an auction of taxi license plates held in Shenzhen, China.
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1 Motivation and Introduction

During the past half century, economists have made corabteprogress in understanding the
theoretical structure of equilibrium strategic behavioder market mechanisms, such as auctions;
see Krishna [2010] for a comprehensive presentation arldai@n of progress.

One analytic device used to describe bidder motivatiomaisiobject auctions is a continuous
random variable that represents a bidder-specific signaderaing the object’s true, bex ante
unknown, value. This true, bet anteunknown, value will only be revealeafter the auction has
ended, when the winner has been determined and the transgcice paid. Regardless of the
winner, however, the value of the object is the same to alll.

The conceptual experiment involves each potential biddexteiving a draw from a signal
distribution. Conditional on his draw, a bidder is then ased to act purposefully, using the
information in his signal along with Bayes’ rule to maximiegher the expected profit or the
expected utility of profit from winning the auction. Anothieequently-made assumption is that
the signal draws of bidders are independent and that theetsdateex antesymmetric—their
draws coming from the same distribution of signals. Thisneavork is often referred to as the
symmetric common-value paradigeymmetric CVP).

Under these assumptions, a researcher can then focus oresaefative agent’s decision rule
when characterizing equilibrium behavior. Wilson [197%jented this framework to illustrate that,
in equilibrium, the winner’s curse could not obtain amontgoraal bidders. He also demonstrated
that when the number of biddangjets large (tends to infinity) the winning bid at first-prisealed-
bid auctions converges almost surely to the true value obbject. In other words, the auction
format and pricing rule play an important role in aggregatine disparate, individual pieces of
information held by the bidders. Milgrom [1979] subseqiyeptovided a precise characterization
of the structure the signal distribution must possess ieroiat this convergence property to hold;
Pesendorfer and Swinkels [1997] have referred to thfslamformation aggregation

When several, sak, units of a good are simultaneously for sale, Weber [1988]described

a number of dferent multi-unit auction formats as well as pricing rulesl@einthose formats. At
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least two important questions arise: specifically, who thid winning bidders be and what price(s)
will those winners pay? For example, Milgrom [1981] develd@ natural generalization of the
Wilson [1977] model. In Milgrom’s model, each bidder subsrit sealed bid and the auctioneer
then aggregates these demands, allocating the units te bidders with the highegtsubmitted
bids. The winners then pay a uniform price—specifically,hifghest rejected bid.

Pesendorfer and Swinkels [1997] have built on this resebycmvestigating a sequence of
auctions{A} in which bothn, andk; increase. They demonstrated that a necessary dhdient
condition for full information aggregation is thit — o and f, — k;) — oo, a condition they
referred to aslouble largenessUnder the double-largeness condition, non-negligibfgpsucan
be a substitute for the strong signal structure required.ilsaf [1977],. Milgrom [19709, 1981],
and Kremer[2002].

While it is heartening to know that conditions exist underichhtransaction prices will con-
verge in probability to the true, beix anteunknown, values of objects for sale, the rates at which
these prices converge are also of interest. In particulang-and Shum [2004] asked the question
“How large musitn be to be large enough?” and then investigated the ratesafmattion aggre-
gation in common-value environments. Knowing the condgiander which the transaction price
provides a potentially useful estimate of the object’s wwkn value is important to understanding
the process some refer toaigce discoverypecause neither the number of bidders nor the number
of units for sale ever really gets to infinity in practice.

Of course, the pricing rule investigated in Wilson [1977¢ avilgrom [1979, 1981] as well as
Pesendorfer and Swinkels [1997, 2000] is not the only onedtald be used under a sealed-bid
auction format. For example, another pricing rule wouldaime allocating théx units to those bid-
ders who tendered the highéditids, but then having each winner pay what he bid for the sintg
won. In general, at multi-unit auctions fiirent auction formats andfterent pricing rules induce
different equilibrium behavior and can, thus, translate iftedint transaction prices as well as po-
tentially different expected revenues for sellers. Hence, as JacksonranK[2004,, 2006] have

emphasized, understanding thteets of auction formats and pricing rules has importanttpralc



relevance. Even small changes can hatVects, as has been illustrated by Mezzetti and Tsetlin
[2008,2009].

In a companion paper to Milgrom and Weber [1982], which waslighed nearly two decades
later, Milgrom and Weber [2000] proposed a pricing rule fartiunit, oral, ascending-price auc-
tions. The model studied by Milgrom and Weber [2000] is thetrunit variant of the clock
model introduced by Milgrom and Weber [1982] in order to stgate behavior at single-object,
oral, ascending-price (often referred toEasglish auctions. In the multi-unit model, bidders are
assumed to demand at most one unit of the good for sale; Mild2©04] has referred to this as
singleton demand The current price for all units on sale rises continuousigoading to some
device, such as a clock. As the price rises, the drop-ouépiat losing participants are recorded
when they exit the auction. The transaction price is the-@nafprice of the last participant to exit
the auction. Each of the remainikgparticipants is then allocated one unit at the transactime p

One attractive feature of oral, ascending-price auctiossa-vissealed-bid ones is the scope
for information release at oral, ascending-price auctidiss is particularly important in informa-
tional environments with substantial common-value congmbs. In common-value environments,
by observing the actions of his competitors, a bidder camreung the information contained in his
signal and, thus, may be able to reduce the uncertainty coingethe unknown value of the object
for sale. Other things being equal, this reduction in uraéety can induce participants to bid more
aggressively than under sealed-bid formats, which meantlenues the seller can expect to gar-
ner can increase. The greater is the linkage between a Hdid@rmation and what he perceives
others will bid, the higher the bidding. Milgrom and Webe®@82] have referred to this as thek-
age principle In models of single-object auctions, Milgrom and Weberdutbe linkage principle
to rank the revenues a seller can expect to garner under fileeedit auction formats and pricing
rules, for the same marginal distribution. In short, Milgrand Weber [1982] demonstrated that,
on average, the English auction format yields more revehae first-price auctions, such as the
oral, descending-price (Dutch) format or the first-pricsgled-bid format.

For multi-unit auctions within the CVP, as the numbers ofdeid and units get large in the



Pesendorfer—Swinkels sense, we compare the behaviornslatton prices under two ftierent
combinations of auction format and pricing rule, those oligvtim and Weber as well as Pesendor-
fer and Swinkels. We demonstrate that the asymptotic digions of the transaction prices are
Gaussian, but that the asymptotic variance of the trarsaptice under the Milgrom—Weber auc-
tion is less than that under the Pesendorfer—Swinkelsaucli the transaction prices under dif-
ferent auction formats and pricing rules are viewed asssieail estimators of the true, bex ante
unknown, value of the units for sale, then the Milgrom—Wedngction provides a mordiient
estimator of the unknown value than the Pesendorfer—Stakestion because more information
is released with ascending bids than with sealed bids. Koteever, that when the number of bid-
ders is large, the éfierences in both the expected transaction prices and thlyanpstic variances
are small because the transaction prices converge to thesdoe.

From the structure of the proof in_ Milgrom and Weber [1982jea@an deduce that the same
linkage principle applies to the multi-unit auction we stud this paper. In theory, the link-
age principle implies that the additional information aggated in the price of the ascending-bid
auction relative to the sealed-bid auction translates lmgher expected revenues for the seller
at the ascending-bid auction. Suclfféiences in information decrease as the number of bidders
increases. Whether the revenuéetiences induced by the information structures acrossaaucti
formats and pricing rules are economically important rerean empirical issue. By estimating
the variation of the signal distribution from data, one carestigate empirically the flerence in
the seller’s expected revenues across the multi-unit@udétirmats and pricing rules. To the best
of our knowledge, this research represents the first atteagpiantify the value of information in
multi-unit auctions.

For the data used below, we have found that the loss in exppeetenues resulting from a
switch to the sealed-bid format from the oral, ascendingepformat is small, relative to both
the transaction price and the estimated common value. Quitsesuggest that, on average, the
Pesendorfer—Swinkels auction generates nearly as muehuevior the seller as the Milgrom—

Weber auction does. In this particular application, thetianeer could have done just as well by



selling the objects using the Pesendorfer—Swinkels auctio

We should also mention that a continuum of equilibria castarimodels of English auctions.
For example, Bikhchandani et/al. [2002] have charactetizedymmetric, separating equilibria of
a single-object English auction model. Multiple equildbrmay also arise in the Milgrom—Weber
model we have employed. Fortunately, the information aggjien result remains unchanged
because the transaction price is determined in the finaldrofibidding, where the bid functions
are the same across equilibria. While the bid functions evipus rounds can be fierent in
different equilibria, provided bidders know this and use thigrmation to invert the signals, the
true signals can still be recovered, which is what mattergi@information set in the final round of
the auction. As noted hy Bikhchandani et al. [2002], the mplitity of equilibria affects how bids
from the previous rounds of bidding are interpreted in ameatetric procedure. Our empirical
analysis relies on the equilibrium of the Milgrom—Weber rebdAlthough the transaction price
remains a consistent estimator of the true value, estig#tdispersion of the signal distribution
is difficult in the presence of multiple equilibria.

Our paper is in six additional sections as well as an appeiaike next, we use the Milgrom—
Weber clock model to develop a theoretical framework withihrich to investigate the stochastic
behavior of the transaction price at a multi-unit, oral ,e&ting-price auction within the common-
value paradigm, while in section 3 we demonstrate that,@atimber of bidders and the number
of unitsk get large in the Pesendorfer—Swinkels sense, the traosaarice converges in probabil-
ity to the true, buex anteunknown, value. We characterize in section 4 the asympdattabution
of the transaction price when both the number of bidders hachtimber of units get large, and
compare the asymptotic variances of transactions pricdsrumoth the Milgrom—Weber and the
Pesendorfer—Swinkels auctions. In section 5, we derivéikbiEhood function of observed drop-
out prices, while in section 6, we apply our methods to daimfan auction of taxi license plates
held in Shenzhen, China. In the final section, we summaridecanclude. Any details too cum-
bersome to be included in the text of the paper have beerctailen the appendix at the end of

the paper.



2 Theoretical Model

Consider an oral, ascending-price auction at whatentical units of an object are for sale to
a total ofn bidders, each of whom wants at most one unit. Assumekhgtstrictly less than
n. Focus on the Milgrom and Weber [2000] pricing rule desdibethe introduction. Assume
that, conditional on the true (but unknown) valde each bidder draws an independently- and
identically-distributed signaX. Denote the cumulative distribution and probability densiinc-
tions of X, conditional onv, by Fxy(Xlv) and fxy(Xv), respectively, and assunigy(xv) satisfies
the monotone likelihood ratio condition iin Milgrorn [1981Renote the prior distribution of the
unknown valueV by fy (V)

Consider the vector of signal¥{, X, ..., X,), a random sample aof draws fromFy, (x\°).
Because this environment is symmetric, without loss of gaitg, we focus below on bidder 1.

Denote byy; thei™ ordered signal of the opponents of bidder 1, so

Yi>Yo> o> Yoo

Denote byz; thei™ order statistic for all of the&;s, so

2y >2,> - > 2L,

The auction proceeds in rounds= n,n—1,...,k+ 1. In roundm, m bidders continue to
participate in the auction. The auction ends in roukd (1) when the K + 1) bidder exits the
auction. Without loss of generality, suppose that biddeesoadered in the reverse order of exit
from the auction.

Let Q. denote the information that has already been revealed mdnmiby all the bidders who
have already left the auction. Hende,, equals{z,, z, 1, ..., Zn.1}, WhereQ, is the empty sed.

According ta_ Milgrom and Weber [2000], the symmetric eduiluim bidding rule in rounan can



be written as

Bn(¥) =E[VIXy = Y= = Yn1=XQnl (1)

whereE denotes the expectation operator. H¥g, . ., Yn,_1 denote thé&" through (m— 1)% order
statistics among the bidders who remain competing withdyidd On the other hand, the order
statistics in the everf®,,, denote the order statistics fall the bidders who have exited the auction.
For completeness, we describe below the reasoning behihdraaterization of the equilibrium;
in their paper, Milgrom and Weber [2000] presumably omiteadargument like this because they
found it obvious.

At price p, bidder 1 is concerned with the event tNgt. . ., Y,,_1 all drop-out simultaneously at
Brl(p). Here,3.1(p) is the inverse bid function. In this event, bidder 1 will beecof the winners
of the auction, together with his remaining< 1) competitors. Bidder 1 should remain active in

the auction at price leved if and only if
E[V[X =X Yi = = Y1 = B (D), Qu| > p.

In equilibrium, p = Bn(X) or x = B;1(p), so the price at which bidder 1 should exit must satisfy the
following:

P=E[V[X1=XYi=" = Yo =B, (P) Q| )

as long as the function in equatidd (1) is increasing.irHence, the functional form of the bid
function.
The winning price corresponds to the bid submitted by thedigvith the k+1)* order statistic

of the signals during roun&k & 1). Thus,

ﬁ =E [Vlzk = L1 = Zists Qk+1] . (3)



3 Limiting Information in the Transaction Price

In this section and the next, we have two goals: first, to @etlie convergence rate of the trans-
action pricepto the true, buex anteunknown, value®; and, second, to characterize the limiting
distribution of the transaction prige n both of these endeavors, we assume that katidn get
large, tends to infinity, in the Pesendorfer—Swinkels sense

In this regard, we make the following assumption concertinipe number of units for sale

relative ton, the number of bidders at the auction.
Assumption 1 7 =[(n—Kk)/n] — 7, wherer is strictly betweer® and 1.

In words, the proportion of demand met has a stable limit asnihmber of bidders gets large.
Were this not the case, thenlas Pesendorfer and Swinkelg][h8%e noted, the transaction price
will not have a stable limit.

With regard to our goals, we proceed in two steps. In the fivstdefinev; the maximum-
likelihood estimator (MLE) of°, based on the unobserved (to the researcher, but known to the
participants) order statisti@g,1, . . ., Z,, and then we investigate the rate at whictohverges te®.

In the second, we investigate the rate at wipdoriverges t@."In the next section, we demonstrate
formally that the rate of convergence of the prizéothe true common valu#® will be driven
(dominated) by the convergence ratevad\°. In other words, = \°) is 0,(V — \°). Therefore, to
understand the rate of information aggregation, ffises to focus on how approaches® as the
“sample size’h gets large.

Under our assumptions, the MLES defined as

. n
V = argmax log [(k)Ln(Zm, c s ZnlV)
\

where the joint likelihood function of all the signals releshunder the Milgrom—Weber auction is

proportional to

Ln(Zes1, -5 ZlV) = [1 - FXlV(Zk+1|V)]k Fxv(Zer1lV) T (Zee2lV) - - - Fxv(Zalv). 4)
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Here, the termj1 - FX|V(zk+1|v)]k represents the fact that only limited information is knovam<
cerning the signal values of tlkewinners, specifically, their signals are greater than Also, (E)
represents the fact that there are many ways in whick thighest order statistics of signals could

exceedz.,;. Equation|[(4) is the joint likelihood of the lowest £ k) order statistics—those from

Zy1 10 Z,.

3.1 Convergence of Transaction Price to the True, but Ex AnteUnknown,

Value

Given equation’ {4), the sample average of the logarithmedfikielihood (log-likelihood) function
will be a function of the lowest(— k) order statistics. A general function of order statistias be
difficult to analyze because of the potentially complex coriategtructure among order statistics.
When investigating the convergence properties of funstiohorder statistics, one possibility is
to appeal to the theory df-statistics. Fortunately, this particular sample-avedalpg-likelihood
function is more tractable than dnstatistic because it can be written as a function of theenti

sample as well as the sampfe quantile. Specifically,

Qn (V) % log Ln(Zcs1, - - - » ZolV) (5)

_ Elog(l - Fxv [Ft (@) V]) + r—11 .le log fxv (zIv) 1] X < Ft ()]

whereF, (-) and Ifgl () denote the empirical distribution function and the quarfinction; that
is,
. 1< R .
ZICEE D1@<x and Fil(z)=inf{x: Fy(x) 2 7).
i=1
With this definition, whenr“equals [0 — K)/n], providedz,, < Zq.1, Ifgl (7) equalsz,, with
probability one. Without loss of generality, in the remanaf the paper, we assume this holds.

Now, under the assumptions made formal below, and becaesknth of 7 is 7, by a uniform

law of large numbers, the sample percenfijg (7) converges in probability to the true population
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quantiIeF;llv(Tlvo), so O, (v) converges uniformly in the parameter spacer &b a deterministic

function Q(\°, v) where we define

Fav (#lu)
Q(u.v) = (1-7)log(1 - Fxy |Fxy(rlu)iv]) + f Fv (XIU) log fx (Xv) dx

which implies

Fxb ()

Q(.V) = (1-1)log(1 - Fxy [Fxy (rVO)Iv]) + f T hv (V) log fu(X) dx.

—00

As a short-hand notation, we defi@€u, v) by Q'(v) andQ(\°, v) by Q°(v).

In order for information to aggregate full’(v), as a function of,, must be uniquely max-
imized atv = 0. As in the case of full-sample likelihood function, this ca@ verified using
Jensen’s inequality. Thus, for amynot equal to®, Q°(v) < Q°(W’). One can demonstrate this by

taking the sum of the following two inequalities. First, Bnden’s inequality,

(WP 2L (7P
f_z('v( ") fxv (XV°) log fxv(xv) dx — f_z('v( " fxv (XIV°) log fxv (Xv°) dx

<T

log [Vt (xv) dx - Iogr] .
Second, it is easy to demonstrate that
(1-1)log(1 - Fxy [Fxiy (V") V]) + log Fxw |, (eMV) Iv] < (1= 7) log (1 - 7) + rlog

because the left-hand side, considered as a functiG&|@{F>}|§,(rlv°)|v], is maximized at.

Assumption 2 Forv # \, either Ky, (7lv) # F,(rIV°) or, with positive probability, X< Fy, (71v°)

under \?, leV (X|V) * fx|V(X|VO).

This assumption mirrors a standard full-sample identifacatondition for likelihood analysis.
While the monotone likelihood-ratio condition used by Mdgm and Weber [1982] is required to

derive the equilibrium bidding strategy, conditional oa tbrm of the equilibrium bidding strategy,
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it is not strictly necessary for full-information aggreget to hold.

The first inequality will be strict under the first conditiom Assumptioi 2 and, likewise, for
the second inequality, under the second condition in Assiomi@. Thus, we have demonstrated
that Q°(v) is globally and uniquely maximized af, provided the value identifiesthe signal
distribution fyy (X|v) in the sense of Assumptién 2, which is stronger than the Usillsdample
identification condition whenevaer is less than one. The usual Jensen’s inequality argument for
full-sample likelihood function is just a special case & #bove when is one.

Now, examine the following first-order condition\&t

A\ (-7 0P [P eMIV]] f S ot ()
v 1 - Fxv[Fyy (rV)V] ov . EY,
v=0 "
- {f"va [Fxlv(TIV")V]} . fFiﬁvwv% Ohxv(X¥)
(9V oo av

=0

Therefore, subject to the regularity conditions, which@udined completely in the next section,
Vis a consistent estimator of. To wit, (V — ) 5o

Given thatQ°(v) is a properly-defined sample-averaged log-likelihooctfiom that depends
linearly on the observed sample up to a given sample quamtdehat the central sample quantiles
are v/n-consistent as well as distributed asymptotically norried information equality then holds
for v, and is related to the asymptotic variance.oGiven the form ofQ° (v), the expected Hessian

. 2
is 25Q°%v)|  where

v=\0
P & a
wQ (V) = _W FX|V [FXlV(T|VO)|V] - (6)
1 g 2 T 62
E (8_\/FX|V [F;(&/(TlVONV]) + f(; ﬁ |Og fx|V [F>_(|J§/(U|VO)|V] du.

12



3.2 Information-Matrix Equality

In full-sample likelihood models, the asymptotic variarafehe MLE is usually calculated us-
ing an information-matrix equality. Here, we demonstréi&t ian analogous information-matrix
equality also holds for thpartial-sampleinformation model that we consider, which we then use
to characterize the amount of limiting information contadnn the price as an estimate of the true
value.

One approach to calculating the information-matrix edqyadi to view the limiting first-order

condition at® as an identity, and then totallyfirentiate it with respect . Specifically, because

=0,
v=\0

0
a_VQ(VO’ V)

for all possible values of°, the derivative of this relation with respect#bshould also be zero.

0 |d
70 [a_vQ(VO’V) » =0.
This can be written as
0? 0o
ﬁQ(vO,V) » t 50 [6—VQ(VO, V) » =0. (7)

In the next section, we demonstrate that the second termentethhand side of equationl(7),
which is the negative of the Hessian given in equation (6)atxjthe asymptotic variance of the
score function. The following provides a direct calculatiof the second term in equatidnl (7),
which independently verifies equatidd (7) and facilitatess comparison with the variance of the
score function in the next section.

To compute this term, we need to calculate

0 __
v I:)(|:I{/ (rIv)

13



as well as

EFXN [F;qlv (7v) |VO]

0
v = =-Faiv (tV) fxw [Fxiy GV

ov

v=\0

Both can be found by totally fferentiating the identity

Fav (@lv)
f fx|V(X|V) dx=1

(o8]

with respect tov, which leads to

o __ aﬁv':xw[':;qlv(ﬂVO)lV] 9 _
—Fx = - . —Fxv |Fy (riv)V°
O Ty | Pt

=~ [Pk (1)

v=\0 v=0

Using these relations,

8a e
% [E/QU(V) 1T1‘r (% FX|V [F)_(ﬁ\'/(T|VO)|V])2 + J;IZ:N( ) [(;—2/ |Og fX|V(X|V)]2 leV(X|VO) dX

u=v=\0 v=0

In the next section, we demonstrate formally that the l&glihood function of the partially-
observed sample in our model has a similar statistical hehaw the usual full-sample log-
likelihood function, soy/n(V—\°) will converge in distribution to a normal random variableage
asymptotic variance is the inverse of eithd%r[a‘—’vQ“(v)] or equivalentlya‘%QO(v) . We

u=v=\0 v=\0
now need to demonstrate thgh(p— V) is o,(1) because, then, these will also represent the asymp-

totic variance ofyn(p — \°).

For this purpose, we employ Bayesian asymptotic analysist, Rote that

p fonv (% = 2 = s Qi |V) fy (v
B = Bt (Zer) = f (= Zen = 201, Qe W)
f fZ|V(Zk = Zk+l = Z+1, Qk+1|U) fV(U) du

where the likelihood of the conditioning event in the biddtian is proportional to

fov(Ze = Zir = Zirr, QuaalV) = [1— FXIV(Zk+1|V)]k_1 fxv (Zas V) P (ZesalV) - - - Fxu(@lV). (8)

14



Recall the definition in equatiofl(4)

fyv (Zer1IV)

[1 - Fxv(ze1v)]
fyv (Zer1lV)

[1 - Fxv(zav)]’

fov(Ze = Ziir = Zgr, QuaalV) = Ln(Zests - - -5 ZalV)

expnQn(V)]

which we can write, using a change of variables,

V(P - 9) = f hpy (h) ch, ©)

where

exp(n [ Qu(@+ h/ Vi) = Qu(®)]) ful(@ + h/ V) aeimom
J exp(n[Qu@+u/ V) = Qn(®)]) fu @+ u/ V) o2l B du

Pn (h) =

In the next section, we demonstrate that the above renaetghiosterior distribution is asymp-
totically normal. Intuitively,v/n(p — ¥) % 0 because the mean of the above renormalized posterior
distribution is asymptotically zero. Clearly, the singieit model of the English auction investi-
gated by Milgrom and Weber [1982] is a special case of thisiteghenr is one. This corresponds
to the conventional full-sample maximum-likelihood arsaéyand Bayesian posterior distribution.
At a typical English auction, where is one, the only dference from full-sample maximum-
likelihood analysis is that the maximum order statistic i®liserved. However, a single order
statistic is asymptotically negligible. Likewise, the ditioning event in the bid function in equa-
tion (8) differs from the corresponding partial-sample likelihood ina@pn (4) only by a single

order statistic and the fllerence is asymptotically negligible.
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3.3 Simple Example

Consider the following example, which can be solved in defsem. Suppose that the conditional

distribution ofX is exponential, having mea) so
1
fxv (XIV) = " exp(=x/v) for x>0,v>0.

The posterior distribution needed to compute the bid famciih equation[(1) is proportional to

1 n-m 1 m+1 1 m-k+1
(\—/) exp(—\—/ Z zj] (\—/) exp(-z/v)™ " exp(-z/v)<? fy(v) =

j=n

Supposefy (V) is a difuse prior. In this case, the above posterior distributiothén an inverse
gamma distribution having parametens{k + 1) and( ’J-“jnl Zj + mz), which has mean
™z +mz
E[V|x1 = Yk — ces = Ym—l = Z,Qm] = T’

which is also the bid function at rourrd. Therefore, the transaction price is given by the bid

function withmequal k + 1) andz equalz,;:

k+2
j=n

2 + (K+ D
n-k '

p=

To see whyp“converges to the trué’, note that in this exampl&,, 5 Fv () which equals

—\?log (1 - 7). Also, by invoking a law of large numbers,

k2 4. -
=n —p>v°[—|og(1 7 +T].

n 1-71

16



Therefore,

b5 P2 [(log(1-7) (1) +7)] - Vlog(1—7) T =V

T

The maximume-likelihood estimatet Which is the mode of the posterior distribution, is

o 27+ (K+ 1)Zea

n-k+2
Hence,
g n-k .
“h_k:2”
It can then be verified that
V(-9 50

4 Asymptotic Distribution of Transaction Price

In this section, we provide formal conditions to justify ttl@ims made in the previous section. Our
analysis is broken into two parts: in the first, we derive tignaptotic distribution ofyn(v — \9),
while in the second we demonstrate that(p — V) is 0,(1). AsINewey and McFadden [1994] as
well as Chernozhukov and Hang [2003] have noted, both pagemid on the stochastic equicon-
tinuity properties of the sample-averaged log-likelihdaadction O, (V).

To begin, we state assumptiongistient to the task. Instead of striving for the weakest pdssib
set of assumptions, we are content witlffisient conditions that illustrate the main results. Note,
too, that in theoretical models of auctions the monotonelitiood-ratio condition is typically

imposed, which restricts how weak the conditions for equiicity can be.

Assumption 3 The true common valué ¥s contained in the interior of the support of the prior

distribution which is continuously distributed at the pioirfi\°.
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Assumption 4 The support of ¥y (Xv) is independent of v and bounded, whibg fx(X|V) is

uniformly bounded, having bounded continuous third deiwes in both arguments on its support.

These two assumptions are regularity conditions requoemonstrate uniform convergence

and stochastic equicontinuity.

Theorem 1 Under Assumptiorid 1 fd 4, if/(v) is continuous at ¥with a finite mean, then

d 919 )
ViG-S N[O’Z(T) “silwel] )
and
Vii(p-9) 5 0.
SO

V(P = V%) 5 N[0, 3(7)] .

Remark 1. In the Pesendorfer-Swinkels model, under the same assamfin) — (1 — 7),
only the signal of a single last-losing bidder is revealedtead of the signals of all the losing
bidders. Therefore, intuitively, the transaction pricethie Pesendorfer—Swinkels model should
aggregate less information than that in the Milgrom—Webedeh In fact, this turns out to be true.
While the transaction prices in both the Milgrom—\Weber dmel Pesendorfer—Swinkels models
converge to” at rate y/n, the asymptotic variance of the Pesendorfer—Swinkels psigreater
than the Milgrom—Weber price. We demonstrate this resuih&ily using the influence function
representation of the asymptotic variance. First, we rmate the proof of the theorem that(r)

equals Vafyy (X, 7)]*, where thanfluence function; (X, 7) is given by
0
Y1 (X.7) =2 log fv(XIV°) 1 [X < Feb (V)| -
0 _
E (E/ log fx(XIV) 1[X < Fx|1\,(f|v°)]) +

rlr (%wa [F>_<|1v (7v) |V]) (1 [X < Fxv (V) |v] - T) '
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Next, we characterize the sample-averaged log-likelifoadtion as well as the score and influ-
ence functions in the Pesendorfer—-Swinkels model, and dstrate that they imply a variance
larger thark (7).

The sample-averaged log-likelihood of the Pesendorfeiri@is model, which depends only

on a single order statisti,; = If,;l (7), is given by

(jn V) :iﬁ( log[1 - Fxy (zaV)] + (1 - iﬁ() log Fxyv (z:1lV)

= (l - %) IOg (1 — FXIV [FAE]' (%) |V]) + %Iog FXIV [FAr;l (%) |V] .

Its corresponding score function is

9 5 1-% z i =-1 (2
E,Qn V) = _(1—FX‘V[F51(%)|v] B FX\V[FHI(?)IV])R/FXN[F” (7) |V]'

If we evaluate the first-order approximation of the scorecfiom with respect tdfgl(%) as it ap-
proaches=; (r1\°) at\°, and make use of the well-established asymptotic apprdiomaf the
sample quantile

1 & LX s FQEV)| -7

2-10) — E2X (VO] = ———
Vi [Foi() - Fiy (o) le oYy +0p(1). (10)

then we find the following influence function representationthe Pesendorfer—Swinkels score
function:
l n

9 ~
\/ﬁa_VQn(VO) = G 2. Y2(Xi, 7) + 0p(1)

where

t(1-7) %FX'V [Fav(@v] (1]X < Fsy (eM)| - 7).

l//Z(X’ T) =
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Letting p denote the transaction price in the Pesendorfer—Swinkelsoam model, we have
~ d _
V(B - V%) > N (0. Var[yo(X. 7)] ). (11)
In order to demonstrate that Mar.(X, 7)] < Var[¢1(X, 7)], we compute

DX 7) = 2%, 7) =109 By OV) 1[X < Fi (V)| -

B (a% log fx(XV°) 1[X < F>_<|lv(T|VO)]) -

%(aﬁv = [F;qlv(rlvo)]) (1] < Fgy (V)] - 7).

We can then verify easily that

COV [wl(x’ T) - ¢2(X’ T)’ ¢2(X’ T)] = O
Hence,
Var[y(X, 7)] < Var[y1(X, 7)] .

Furthermore, this inequality can be strengthened to atgirie, Vafy,(X, )] < Var[y1(X, 7)]

provided Vafy1(X, 1) — ¥2(X, 7)] is strictly positive. This in turn holds when
0
Var| - log fxy(X)V') 1]X < F;qlv(rlvo)]) >0,

or when £ log fyy(X|\°) is not a constant in the range ¥f < Fyi, (V). Intuitively, when this
holds, the variation of the likelihood in this range prosdaore information in the Milgrom—
Weber auction that is not revealed in the Pesendorfer—Sarauction.

Remark 2: Above, we have indexed the asymptotic variance,lifie proportion of losing bidders.

Intuitively, the larger the fraction of losing bidders, thore information revealed at the auction.
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Therefore, we exped(r) to be a monotonically decreasing functionmfin a matrix sense. In

other words, forany & 7; < 15 < 1,
Z(Tl) > 2(‘[’2).

In fact, this is true. That is, when is less tham, Var[y1(X, 71)] < Var[y1(X, 72)], which follows

from

Cov[y1(X, 11) = ¥1(X 72), ¥1(X, 71)] = 0. (12)

Verifying equation[(1R) is tedious, but straightforwartddépends on the following two key rela-

tions. First,

E(aﬁv log fxy(XM) 1|X < F;qlv(rlvo)]) = aﬁv Fxv |[Fxv(TV)v|

and, second, that, far, > 7,
1[X < Fiy(mmV] 1[X < Fb (raMIV] = 1[X < Fid (rav)V)
Generically, Vafy1(X, 71)] is strictly less than Vw1 (X, 7,)]. This is true whenever

Var[y1(X, 1) — 1(X,72)] > 0,

or whenevery(X, 71) — ¥1(X, 72)] does not equal a constant with probability one. A generic
suficient condition is that

Fiv (i) < X < Fiiy (21°)

with strictly positive probability less than one, or thatiaéion exists in(;lv log fxy (XIW0) on the set

Fiv(tV®) < X < Fiiy (r21VP).
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Hence, under the assumptions made above, especially the@osupport Assumptidd 4, for
7 € (0,1), the larger iz, the more information is aggregated in the Milgrom—Webedeioin the
sense of having a smaller variance despite that the ratenvEagence stays the same. It can also
be demonstrated that this conclusion continues to holdoattthe support Assumptidn 4. When
the upper support is increasing \mwhile the condition still holds, the rate of convergenca ca
improve beyondy/n whent equals one. On the other hand, if the lower support is alseasing
inv, then itis possible that the convergence rate is faster §rmaven wherr is zero.

This desirable monotonicity property of information aggagon in the Milgrom—Weber model
is in contrast to the Pesendorfer—Swinkels model. The atmfunformation aggregated asymp-
totically in the transaction price of the Pesendorfer—&eis model is not monotonic in. For
example, wherfx|v(x|v°) is uniform inX, the worstr for information aggregation is one-half in the
Pesendorfer—Swinkels model because this involves thetwalance between the winner’s curse
and the loser’s curse. In general, the optimah the Pesendorfer—Swinkels model depends on
the shape of this conditional density. Intuitively, in thesendorfer—Swinkels model, dl@irentr
selects a dferent information set, while in the Milgrom—Weber modelaegerr always selects a

larger information set.

5 Deriving Likelihood Function of Observed Drop-Out Prices

In section 2, we derived the bid function of a representdbideler as well as characterized the
transaction price; see equatiof$ (1) and (3). In sectionsxd34awe then demonstrated that the
transaction price converged in probability to the true, douainteunknown, value® and derived
the asymptotic distribution of that price. In this sectiomprder to provide a framework within
which to conduct our empirical analysis in section 6, wewethe likelihood function of the bid
data observed by an econometrician. We highlight the feat ttie sampling variability of the
econometrician’s estimate of the true, but unknown, vafueill depend on nuisance parameters

unknown to the econometrician.
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We first introduce some additional notation. Denote jfiedrop-out price byp; where j =
1,2,...,n— k. For example, in our empirical application, we havequal forty bidders an#
equal twenty units, so there are twenty drop-out priceslastebeing the transaction price, which
we denoted above by, but now denote ag, k. Thus, our observables ang, (., . . ., Prn-k-1, Pn_k)-
Now, from equatior([2), we can recover the signal consistithtthe first bidder’s drop-out price—

viz.,

7, = B (D)

Likewise, for each of = 2, 3,...,n—k, we can recursively recovey, the signals of then(— k- 1)

losing bidders, so

Znjy1 = Bﬁ—lju(f’i; Qn-js1)-

For thek bidders who win the auction, all we know is trZartexceed;z’)’;}(n_k_l)(f)n_k; Qii1).

In the general case, the bid functiBfn(x) in equation[(lL) takes the following form:

,Bm(X; Qm) _ fv fV(V)g (Xl =Yk=...=Yn1=X Qm|V)
[ RUg(Xe = Ye=...= Ym1 =X Qnu) du
where
m+1
gXi=Yk=...= Yn1=XQnV) = [1 - Fxv (X|V)]k_1 fyv (XV ket 1_[ fyxv (Zj |V).

j=n

If we assume that, (v) is diffuse and that, conditional an X is distributed normally, having mean

v and variancer2, then we can write

1 (X _ V)m—k+1

X — V\]*1
90 = Y= .. = Yo =x 00 = [1- 0 ()T

o
m+1

O'r:‘L‘m 1_[¢(Zjo__v)_

j=n

23



To summarize, under the assumptions of normality as welldiSuse prior,

o [y it e ()™ e ()
ulxi ) = [ o (o o i g () @

o

Consider €, Z,_1, . . ., Z.1), the vector of § — k) signals consistent with the observed drop-out
prices as well as the transaction price. The joint likelidhdonction of all the signals consistent

with the drop-out prices revealed under the Milgrom—Wehetian is

Lo(Zsts - - -5 2, 0) = [1 = Fxy(ZalV, ) fyv (Zer1IV, 0) |M
(13)
n ) 1
fxv (Zer2lV, 0)'Lf_lkl) - Fyv(Zalv 0)‘ ! ( 1) .

Here,d denotes a vector of unknown parameters and captures thinéaptobability density and
cumulative distribution functions of signals can depencarameters known to the bidders, but
unknown to the econometrician.

The econometrician’s MLE i5 defined as
~ n\~ . - ~
o agmas g [0 00
A\

whered denotes the MLE 06°. Knowing the true nuisance parameter#Sins unimportant when
demonstrating that the transaction price converges inghitity to the true value® because the
parameters contained # are of second-order importance. The nuisance parameteisavever,
critical when calculating an estimate of the sampling \tasiain V, the econometrician’s estimate
of the true valua®.

In this section, we have employed a parametric distribufiba normal) to model the condi-
tional distribution of signals. In general, without impgishape restrictions, it isfiicult to iden-
tify the distribution of signalst-x\(:[v°) nonparametrically. First, even if the signalsz, 1, ..., Zu1

were directly observed andwere large, the observed signals would only identify thediopor-
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tion of the signal distributiorFxy (x\°) for x < F3{,(7\°). Second, the signals are not directly
observed and must be inferred indirectly from the observie# gequence. The observed distribu-
tion of the price sequence implicitly depends on the sigistiution Fxy,(-[v°) nonlinearly, and
cannot be analytically inverted to recover the signal distion. Third, the bid function, which
relates the signal to the observed price in equafion (8)emigp only on the lower portion of the
signal distribution up td=; (z|\°). This implies that the observed price distribution doetscom-
tain more information than the lower portion of the signaitdbution up toF;q{,(Tlvo). Parametric
functional forms incorporate shape restrictions, suchhasymmetry assumption implied by the
normal distribution, that can be used to extrapolate indrom concerning the lower percentiles
of the signal distribution to its upper percentiles.

In our empirical analysis, we used data from a single auatomhich the number of bidders
was large, forty. The theoretical model requires that, @¢ahl on the true value of the object, the
signals of bidders be independently and identically disted. The transaction price from a single
auction having a large number of bidders identifies the tararnon value for this auction. To
identify how that value relates to observed auction charestics would require data from several
auctions; such data were unavailable to us. If data fromrak®aections with large numbers of
bidders are available, then observed auction charadtsrigiuld be incorporated into the analysis
by relating the prices from each auctions to the observethchexistics, either parametrically or
nonparametrically. Given the true value, the distributadrthe signal can also be modeled to
depend on the observed auction characteristics to impstuaation gficiency. The relationship
between the valuation and the observed auction chardatertsn then be consistently estimated
when both the number of auctions and the number of biddersaggt. The convergence rate

and the inference distribution for th&ect of the observed auction characteristics, however, will

depend on the relative size of the number of auctions anduirdar of bidders.
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6 Empirical Application

We have applied the methods described above to data fromcéinmmof taxi license plates held in
Shenzhen, China in October 2007. At this auction, the mpai¢ransportation bureau sold@D0
additionalred taxilicense plates. Red taxis are special in Shenzhen becaseah operate both
inside and outside the Special Economic Zone (SEZ), uyilew taxs which can operate only
inside the SEZ, angreen taxs which can only operate outside the SEZ.

By 2007, the city of Shenzhen had not issued any new licerse9for red taxis since 1993.
Rapid growth in Shenzhen’s population meant that patrone experiencing a shortage of taxis,
leading to an increase in the number of illegally-operagedgst In 2007, the per capita number
of taxis in Shenzhen was low when compared to other parts ofaClonly 1Q 305 taxis were
licensed in a city of 5 million permanent residents, about 78 taxis for every 10000 residents.
The Ministry of Construction in China recommended thatesitshould have 21 taxis for every
10,000 residents.

Before the auction, the authorities reviewed the qualificet of all those who had applied to
participate at the auction. Potential bidders could beviddal taxi companies or groups formed
by different companies. While fifty-one ‘firms’ apparently reqeeésto participate, only forty
potential bidders were certified to participate at the amctlThusn was 40.

In written documentation, potential bidders were reminttetde aware of the risks involved.

For example, consider a translation of the text from one ohamni:

Following this auction, more taxi license plates will beuied through auction or other
ways over the next four years. The number of taxis in Shenzi#rmeach about
20,000 by 2011. The issuance of a great number of license platg# imave much

impact on the taxi industry.

Despite these warnings, representatives of taxi compamid® city showed great interest in the
auction, perhaps because operating a taxi has been one lufjtiest profit margins in the trans-

portation industry. Also, historically, taxis have prog@tla stable return against investment.
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Before the auction, 53 out of 73 taxi companies in Shenzhemedvbetween 50 to 200 taxis
each. In short, the majority of the city’s taxi companiesev@mall- and medium-sized ones. Some
incumbent taxi drivers expressed concern that entry worddeeprofits. One was quoted in the

local newspaper (our translation) as saying that

Actually we are not earning much nowadays. If more taxis woerthe road, we would

have a hard time making ends meet.

In contrast, local residents supported the issuance otiaddi license plates. One was quoted

(again our translation from the local newspaper) as saying

The sooner new taxis hit the road the better. It's too hardaibantaxi during peak

hours and holidays.

This anecdotal evidence, along with casual observatigggests to us that the value of a red-
taxi license plate in Shenzhen has a large common-value@oemp. Before the auction, however,
this common value was unknown to potential bidders. Usingteter means at their disposal,
potential bidders formed estimates of the unknown commdmevahich they then used during
bidding at the auction.

The auction in Shenzhen proceeded according to the rulesiloed inl Milgrom and Weber
[2000]. In written rules announced before the auction, ththarities informed potential bidders
that the 2000 license plates on sale would be distributed evenly antioadinal twenty highest
bidders; each winner would be required to buy 100 licenseegpla

The auctioneer, Tian Tao, was a registered member of Chéneson industry association.
The reserve price was set at 1800 yuan per license plate, but the price rose to, 800 yuan
in fourth minute of bidding. During the auction, Tian rem@ttibidders repeatedly to be aware
of the risks involved. In fact, Tao took a break for ten mirsutie allow the bidders “to cool their
enthusiasm.” We have translated one of his comments asstbrge of the most intensive auctions
I've experienced in my career as an auctioneer.” At the otd$be auction, the price of a red-taxi

license plate was 54800 yuan, around US$80,000.
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In tablel1, we present the prices called out during the anetiong with the number of bidders
who exited the auction at those prices, while in figure 1 wadadpe empirical survivor function
of prices. The units in this and other tables are inQ0D yuan.

Zhang Hongzhi, a manager of Shenzhen Xilie Taxi Company,rejgrted in the newspaper
to have said that he “felt very excited after we won a bid.” @efhis attending the auction, his
company had decided on 530 yuan as the highest they would pay for a red-taxi liceteste p

To implement equatiori{4), we assumed that, conditional®rX is distributed normally,

having variancer?, so

X —\P 2
Fx|V(X|V0) = [ O-\]/-Z eXp|:_ (U )

with

fx|V(X|VO) =

o2 o o

[ (x—vﬂ 1 [<x—v°>]
We also assumed thd{(v) is a difuse prior. In tablél2, we present the maximum-likelihood
estimates of® ando as well as their standard errors; the logarithm of the Iia@did function for
this empirical specification is55.98. Again, the units of the parameters estimates are ,iaQ®
yuan.

Our theoretical analysis suggests that, despite the samefaonvergence, the asymptotic
variance of the transaction price is smaller in the Milgrékeber auction than in the Pesendorfer—
Swinkels auction. At the estimated parameters, for nogndiitributed signals, the probability
of a signal’s being less than zero is very small. Consequdbpdick-of-the-envelope estimates of
the asymptotic variances can be calculated using the dstilwariance of the normal distribution.
For a standard normd, the asymptotic variance of the Milgrom—Weber transaqgbioce given in

Theorenil and equationl (7) is

-1
(1 i T%cﬁ |0 (r)]2 + %E |21z > 0)]) ,
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which, whenr is one half, isZ;’T";. On the other hand, the asymptotic variance for the Pestardor

Swinkels transaction price in equatidni11) is given by

-1
25[02 ()] (1]z < 02 () - r]) =7(1-1) % (07 (7))

-2

Var(T(l -7) 0

Whent is one half, this equal%jﬁ, which is twenty-nine percent larger than the Milgrom—\Webe
variance. The extent to which thisfiirence in the asymptotic variance translates intofferdi
ence in the expected seller revenues, however, dependg eariance of the prior value density
function.

In order to understand the implications of these parametgmates better, we used them to
simulate the dferences between transaction prices at a Milgrom—Webeoawtd at a Pesendorfer—
Swinkels auction. Some of these results are reported ieff&bEach entry in the table records
the diference in the expected revenues between the Milgrom—Wabgoa and the Pesendorfer—
Swinkels auction, again measured in units of @ yuan. In calculating tablé 3, we need three
parameters: the prior mean and variance of the common vadtrébdtion as well as the variance
of the signal distribution conditional on the common val\e used the estimate of to specify
the prior mean, the estimate ofto specify the variance of the signal distribution, and weedh
the prior variance of the value distribution as a proportbthe signal variance.

As predicted by the linkage principle lof Milgrom and Wehe®82], the Milgrom—Weber auc-
tion always generates an higher expected revenue than semdafer—Swinkels auction. How-
ever, as tablel3 illustrates, thdfdrence in the expected revenues is relatively small whempaocsad
to both the selling price and the estimated common valueleT&hlso reveals that theftiérence
in expected revenues at the estimated parameters is degr@athe number of objects for a given
number of bidders: as the number of losing bidders decreedatively less information is being
revealed at an Milgrom—Weber auction relative to an Peséad&winkels auction. As the prior
variance of the value distribution increases relative ewhriance of the signal distribution (indi-

cating a larger variation of the common value componeng)réivenue dference also increases.
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7 Summary and Conclusions

Using a clock model of a multi-unit, oral, ascending-priaetégon, within the common-value
paradigm, we have analyzed the behavior of the transactioa ps the numbers of bidders and
units gets large. We have demonstrated that even thoughathsattion price is determined by
a (potentially small) fraction of losing drop-out bids, thaice converges in probability to the
true, butex anteunknown, value. Subsequently, we have also demonstrastdhd asymptotic
distribution of the transaction price is Gaussian, and thatasymptotic variance of the transac-
tion price under the Milgrom—Weber pricing rule is less thlaat under the pricing rule used by
Pesendorfer and Swinkels for a sealed-bid auction formhtusfif the transaction prices under
different auction formats and pricing rules are viewed as statisstimators of the true, bei
ante unknown, value of the units for sale, then the Milgrom—Wedaction is a more fécient
estimator of the unknown value than the Pesendorfer—Svagkestion because more information
is released under the Milgrom—Weber auction than undereselorfer—Swinkels auction. Note,
however, that when the number of bidders is large, tikeidinces both in the expected transac-
tion prices and in their asymptotic variances are small bgedoth transaction prices converge
to the same value. Finally, we applied our methods to data &io auction of taxi license plates
held in Shenzhen, China. We have found that the loss in theotag revenue by switching to the
sealed-bid auction from the ascending-bid auction is smelthitive to both the transaction price
and the estimated common value. Our research suggesthéhBesendorfer—-Swinkels auction
can generate nearly as much revenues for the seller as theoki-Weber auction does, at least in

our particular application.
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Appendix

To reduce clutter in the text of the paper, in this appendig,owllect the proofs of the results

claimed in the text.

Proof of Main Theorem

The proof involves verifying two high-level conditions lineWey and McFadden [1994] as well
as|Chernozhukov and Hang [2003]. The first condition detivewnsistency, while the second
delivers asymptotic normality of &nd the relation that/n(p — V) is 0,(1). We first state these

conditions within the context of our notation.

Condition 1 For anyés > 0, there exists ai > 0, such that

lim inf P*{ sup [Qn(v) — Qn(vo)] < —e} =1.

n—eo V—\0|>5
Condition 2 There exista\,(\°) and P such that for v in an open neighbourhood 8f v
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i. n|Qn(v) = Qu(W)| = (v = V)AL (W) = 3(v = V)2 [n°] + Ry(v),

ii. Forany sequenceé, — O,

IRn(W)

— = 0,(1).
v-lzs, 1+ NIV — Vo2 o)

i, An(\P)/ Vi 5 A (0,2°), where both 3and Q2 are positive definite.

Under Conditions 1 and 2, it is shown in Theorem 1 in Chernkaiiand Hong![2003] that
for h and p,(h) defined in equation {9),

[ ne

for anya > 0, whereg (h;0,3°°Q°J°") denotes a normal density with mean 0 and variance

pn(h) — ¢ (0, 3°°2%°")| 5 0

b

JO' Q0% In other words, the convergence mf(h) to a normal limiting density is in any poly-
nomial moments and is stronger than convergence in thevatation norm. Using equatiohl(9),
this implies thatyn(p - V) = fhm(h) dh > 0. Inthe following we focus on verifying Conditions
1 and 2.

Condition 1 is, in turn, implied by uniform convergence@f(v) to Q°(v) and becaus&°(v)
is uniquely maximized at°. The unique maximum o€°(v) at \° is a direct consequence of
the identification Assumption 2. To show that WQH(V) — Q°(v)| is 0p(1), first note that the
individual terms in the summand of the second term consish@fproduct of logfxy (Xilv) and
1(X < &), where¢ represents a generic argument that will be evaluated atlfgl(%). Given
Assumption 4, the first is a type Il function and the secondtiga | function defined in Andrews

[1994]. Both satisfy Pollard’s entropy condition, and ab$e under multiplication. Hence,

sup % D log fxy(Xv) 10X < &) — E[log fi (%) 10X < &)] | = 05(2).
v, i=1
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Next, E [log fxv(XilV) 106 < €)] is a Lipschitz function ir¢ and the Lipschitz constant is uniform

in v. Hence, given thaf(?) 5 F;(llv(rlvo), we also have

E (log fxv(XIV) 1| X < Frt(3)]) - E (log fxv(Xilv) 1] X < F;,lv(ﬂvo)])’ = 0p(1).

Therefore, the second term @%(V) converges uniformly irv to the second term d®°(v). The
first term ofQ,(v) is also a Lipschitz function dfrjl(%) with the Lipschitz constant being uniform
in v. Therefore, by the same argument, the first terr@,c(i/) also converges uniformly mto the
first term ofQ°(v). Hence, Condition 1 holds.

The second condition is more involved than the first. We defimebeF ;%(7) where£® denotes

1 (#1\0) and£0 denotes 22, (r]v°). We rewriteQn(v) as Qn(v, £) to emphasize its direct depen-

X|V XV

dence orf. Note that, whileQ,(v, é) is differentiable inv, it is not in&, so arguments relying on

stochastic continuity arguments are required. Ah@°) andJ° elements in Condition 2 are given

by
n(v‘))—n—Qn(VO §°)+n Q"(v0 EO)E - &)

and

0 82 OVO 0
J :_WQ( ’éj)’

respectively. We decompo&g(v) into RY(v) + R2(v) with

R = n| 260,80 - L2608.8) - L ore. @~ )| -

oVO&

and

RE(Y) = 2(v - v°)2[ O ) - J]
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wherev* is a mean value betweefi andv. Becausejvizén (v*é) LA 0, it follows that

RO _ IR

vdzs, 1+ NV =WO2 7 nlv — 02

= 0p(1).
Consider, nextR:(v), and definen(v, &) = a‘—’vén(v, £). As in equation[(b), define
Qn(v, &) = (1-7)log[1 - Fxy(éV)] + E[log fxv(zIv) 106 < )]

andm(v, &) = é%Qn(v, £). Because the summand termsnifv, ¢) andm(v, &), ;—’V log fxv(zIv) 106 <
£), are the product of type | and type Il functions defined in favass [1994], Theorems 2 and 3
in Andrews [1994] show that these terms satisfy Pollardisagy conditions and, therefore, the
stochastic equicontinuity conditions in equations (2r&) €2.3) in Andrews [1994] hold with the
parameter now double indexed yandé. It follows from this stochastic equicontinuity property

that
VR [P, €) — MV, £) — m(v°, &) + m(v°, £°) | = o,(1).

Note, too, by a second-order mean-value expansion(¢f, £) in &, that

Vi [, €) — m(W, &%) - 2 QAW°, £9)(€ - &%)
= [2m(\,£%) - Zm(W°,£%) | Vi - £°) = 0, (1) x VI - £°) = 0p(1).

for a mean valuegl — £%) 5 0, since yn(& — &) = 0,(1). Therefore, we can write

2
VA 02, - 08,89 - 21 P, €96 - 89| = 0,1
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ConsequentlyRi(v) = V(v - °) = 0, (1). Using the relation that/ (1+ x?) < 1/2, we conclude

that

IRl <oy(1) and  sup Vil = V)

< = 0p(1).
|V—\/0|<5 1 + n|V VO|2 |V—\/0|§§n 1 + n|V - VO|2 p( )

Having verified Conditions 2.i and 2.ii, it remains to ver®pndition 2.iii. The Hessian term
is obviously positive definite because the limiting lik@dd function is multiple-times smoothly
differentiable, and becaug®uniquely maximize€°(v, £%). We note, next, thak,(v°)/n takes the

form

1-1

T FXN1| FTnl(T)|v| aFxv [F (T)|V] ma\fxw[ >_<|1V(T)|V] +
(E-E)[Z10g fxn () 1[% < Fal(@)]] + E (£ log v (V) 1[Xi < F7i()]) -

E (£ log fxy(XGV) 1% < F, (rv)]) + 0p (&)

whereE denotes the empirical mean. Because we have represeniatiubace function of§—£0)

as equatior(10), we can compute that
An(V) = D" w(%) + 0p (V1)
i=1

where

Y(X) = 2 log fuy(XIV) 1[Xi < Fyd (V)] - E (2 log iy (XIV) 1[ X < Fyk (rV)]) -
1T1T ((;_3, I:X|V [ x|V(T)|V]) leV [ x|V(T)|V] [ Ar:l (T) - x|V(T|VO)]
= Zlog fuy(XiV) 1[X < Fyh (tV0)] - B2 log fx(Xilv) 1| Xi < Fih, (V) ) +

= ((WFXN [FX|V(T|VO)|V] [x. < FXlV(Tlvo)] - T).
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Direct calculation of the asymptotic variance in the lase]iwhile accounting for the covariance

between the two terms, yields

) ? . 1 (0 . ?
Var[y(X)] = E[a_v log (X |v)] 1% < Fy(rv)] + 7= (8—VFXN [F;N(rlv)w]) :

By inspection, we see that its inverse coincides with themgdgtic variance given iz (r),
which has been verified to equafl in the information matrix equality calculation and, henise,

also positive definite. Its inverse yields the asymptotigarece of vn(p — v°) and v/n(¥ — ).
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Table 1: Announced Price, Number of Exits, and Total Exits

Price 20.00| 22.00| 23.00| 24.00| 25.00| 26.00| 27.00| 28.00
Exits 0 2 0 0 0 0 0 0
Total Exits 0 2 2 2 2 2 2 2
Price 29.00| 30.00| 31.00| 32.00| 33.00| 34.00| 35.00]| 36.00
Exits 0 0 0 0 0 0 0 1
Total Exits 2 2 2 2 2 2 2 3
Price 37.00| 38.00| 39.00| 40.00| 41.00| 42.00| 43.00]| 44.00
Exits 0 0 0 0 1 0 2 1
Total Exits 3 3 3 3 4 4 6 7
Price 45.00| 46.00| 47.00| 48.00| 49.00| 50.00| 50.50| 51.00
Exits 0 3 1 0 1 1 2 2
Total Exits 7 10 11 11 12 13 15 17
Price 51.20| 51.40| 51.50| 51.60| 51.70| 51.80| 51.90| 52.00
Exits 0 0 0 0 0 0 0 0
Total Exits 17 17 17 17 17 17 17 17
Price 52.10| 52.20| 52.30| 52.40| 52.50| 52.55| 52.60| 52.65
Exits 0 0 0 0 1 0 1 0
Total Exits 17 17 17 17 18 18 19 19
Price 52.70| 52.75| 52.80| 52.85| 52.90| 52.95| 53.00| 53.05
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.10| 53.15| 53.20| 53.25| 53.30| 53.35| 53.40| 53.45
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.50| 53.55| 53.60| 53.65| 53.70| 53.75| 53.80| 53.85
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.90| 53.95| 54.00| 54.05| 54.10| 54.15| 54.20| 54.25
Exits 0 0 0 0 0 0 0 1
Total Exits 19 19 19 19 19 19 19 20
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Table 2: Maximum-Likelihood Estimates of Normal Specifioat

Parameter Estimate| Std.Error
Ve 56.31 0.97
o 19.35 3.95
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Table 3: Simulated Dierences in Expected Revenue

Variance Rativ=0.25| Variance Ratiel.0
Number of Objects | Number of Objects

Number of Bidderg 10 20 30 10 20 30
20 0.120 0.221
30 0.127| 0.056 0.238]| 0.103
40 0.108| 0.070| 0.042| 0.208]| 0.136]| 0.079
Variance Ratie4 Variance Ratie9
Number of Objects | Number of Objects
Number of Bidderg 10 20 30 10 20 30
20 0.311 0.289
30 0.381| 0.154 0.412] 0.154
40 0.359| 0.233| 0.126| 0.426| 0.274| 0.136

* Variance Ratie Prior Variancg Signal Variance.
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Estimated Survivor Function
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Figure 1: Estimated Survivor Function of Drop-Out Prices
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