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Abstract

Using a clock model of a multi-unit, oral, ascending-price auction, within the common-

value paradigm, we analyze the behavior of the transaction price as the numbers of bidders

and units gets large in a particular way. We find that even though the transaction price

is determined by a fraction of losing drop-out bids, that price converges in probability to

the true, butex anteunknown, value. Subsequently, we demonstrate that the asymptotic

distribution of the transaction price is Gaussian. Finally, we apply our methods to data from

an auction of taxi license plates held in Shenzhen, China.
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1 Motivation and Introduction

During the past half century, economists have made considerable progress in understanding the

theoretical structure of equilibrium strategic behavior under market mechanisms, such as auctions;

see Krishna [2010] for a comprehensive presentation and evaluation of progress.

One analytic device used to describe bidder motivation at single-object auctions is a continuous

random variable that represents a bidder-specific signal concerning the object’s true, butex ante

unknown, value. This true, butex anteunknown, value will only be revealedafter the auction has

ended, when the winner has been determined and the transaction price paid. Regardless of the

winner, however, the value of the object is the same to all.

The conceptual experiment involves each potential bidder’s receiving a draw from a signal

distribution. Conditional on his draw, a bidder is then assumed to act purposefully, using the

information in his signal along with Bayes’ rule to maximizeeither the expected profit or the

expected utility of profit from winning the auction. Anotherfrequently-made assumption is that

the signal draws of bidders are independent and that the bidders areex antesymmetric—their

draws coming from the same distribution of signals. This framework is often referred to as the

symmetric common-value paradigm(symmetric CVP).

Under these assumptions, a researcher can then focus on a representative agent’s decision rule

when characterizing equilibrium behavior. Wilson [1977] invented this framework to illustrate that,

in equilibrium, the winner’s curse could not obtain among rational bidders. He also demonstrated

that when the number of biddersngets large (tends to infinity) the winning bid at first-price,sealed-

bid auctions converges almost surely to the true value of theobject. In other words, the auction

format and pricing rule play an important role in aggregating the disparate, individual pieces of

information held by the bidders. Milgrom [1979] subsequently provided a precise characterization

of the structure the signal distribution must possess in order for this convergence property to hold;

Pesendorfer and Swinkels [1997] have referred to this asfull information aggregation.

When several, sayk, units of a good are simultaneously for sale, Weber [1983] has described

a number of different multi-unit auction formats as well as pricing rules under those formats. At
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least two important questions arise: specifically, who willthe winning bidders be and what price(s)

will those winners pay? For example, Milgrom [1981] developed a natural generalization of the

Wilson [1977] model. In Milgrom’s model, each bidder submits a sealed bid and the auctioneer

then aggregates these demands, allocating the units to those bidders with the highestk submitted

bids. The winners then pay a uniform price—specifically, thehighest rejected bid.

Pesendorfer and Swinkels [1997] have built on this researchby investigating a sequence of

auctions{Ar} in which bothnr andkr increase. They demonstrated that a necessary and sufficient

condition for full information aggregation is thatkr → ∞ and (nr − kr) → ∞, a condition they

referred to asdouble largeness. Under the double-largeness condition, non-negligible supply can

be a substitute for the strong signal structure required in Wilson [1977], Milgrom [1979, 1981],

and Kremer [2002].

While it is heartening to know that conditions exist under which transaction prices will con-

verge in probability to the true, butex anteunknown, values of objects for sale, the rates at which

these prices converge are also of interest. In particular, Hong and Shum [2004] asked the question

“How large mustn be to be large enough?” and then investigated the rates of information aggre-

gation in common-value environments. Knowing the conditions under which the transaction price

provides a potentially useful estimate of the object’s unknown value is important to understanding

the process some refer to asprice discoverybecause neither the number of bidders nor the number

of units for sale ever really gets to infinity in practice.

Of course, the pricing rule investigated in Wilson [1977] and Milgrom [1979, 1981] as well as

Pesendorfer and Swinkels [1997, 2000] is not the only one that could be used under a sealed-bid

auction format. For example, another pricing rule would involve allocating thek units to those bid-

ders who tendered the highestk bids, but then having each winner pay what he bid for the unit(s) he

won. In general, at multi-unit auctions, different auction formats and different pricing rules induce

different equilibrium behavior and can, thus, translate into different transaction prices as well as po-

tentially different expected revenues for sellers. Hence, as Jackson and Kremer [2004, 2006] have

emphasized, understanding the effects of auction formats and pricing rules has important practical
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relevance. Even small changes can have effects, as has been illustrated by Mezzetti and Tsetlin

[2008, 2009].

In a companion paper to Milgrom and Weber [1982], which was published nearly two decades

later, Milgrom and Weber [2000] proposed a pricing rule for multi-unit, oral, ascending-price auc-

tions. The model studied by Milgrom and Weber [2000] is the multi-unit variant of the clock

model introduced by Milgrom and Weber [1982] in order to investigate behavior at single-object,

oral, ascending-price (often referred to asEnglish) auctions. In the multi-unit model, bidders are

assumed to demand at most one unit of the good for sale; Milgrom [2004] has referred to this as

singleton demand. The current price for all units on sale rises continuously according to some

device, such as a clock. As the price rises, the drop-out prices of losing participants are recorded

when they exit the auction. The transaction price is the drop-out price of the last participant to exit

the auction. Each of the remainingk participants is then allocated one unit at the transaction price.

One attractive feature of oral, ascending-price auctionsvis-à-vissealed-bid ones is the scope

for information release at oral, ascending-price auctions. This is particularly important in informa-

tional environments with substantial common-value components. In common-value environments,

by observing the actions of his competitors, a bidder can augment the information contained in his

signal and, thus, may be able to reduce the uncertainty concerning the unknown value of the object

for sale. Other things being equal, this reduction in uncertainty can induce participants to bid more

aggressively than under sealed-bid formats, which means the revenues the seller can expect to gar-

ner can increase. The greater is the linkage between a bidder’s information and what he perceives

others will bid, the higher the bidding. Milgrom and Weber [1982] have referred to this as thelink-

age principle. In models of single-object auctions, Milgrom and Weber used the linkage principle

to rank the revenues a seller can expect to garner under the different auction formats and pricing

rules, for the same marginal distribution. In short, Milgrom and Weber [1982] demonstrated that,

on average, the English auction format yields more revenue than first-price auctions, such as the

oral, descending-price (Dutch) format or the first-price, sealed-bid format.

For multi-unit auctions within the CVP, as the numbers of bidders and units get large in the
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Pesendorfer–Swinkels sense, we compare the behavior of transaction prices under two different

combinations of auction format and pricing rule, those of Milgrom and Weber as well as Pesendor-

fer and Swinkels. We demonstrate that the asymptotic distributions of the transaction prices are

Gaussian, but that the asymptotic variance of the transaction price under the Milgrom–Weber auc-

tion is less than that under the Pesendorfer–Swinkels auction. If the transaction prices under dif-

ferent auction formats and pricing rules are viewed as statistical estimators of the true, butex ante

unknown, value of the units for sale, then the Milgrom–Weberauction provides a more efficient

estimator of the unknown value than the Pesendorfer–Swinkels auction because more information

is released with ascending bids than with sealed bids. Note,however, that when the number of bid-

ders is large, the differences in both the expected transaction prices and their asymptotic variances

are small because the transaction prices converge to the same value.

From the structure of the proof in Milgrom and Weber [1982], one can deduce that the same

linkage principle applies to the multi-unit auction we study in this paper. In theory, the link-

age principle implies that the additional information aggregated in the price of the ascending-bid

auction relative to the sealed-bid auction translates intohigher expected revenues for the seller

at the ascending-bid auction. Such differences in information decrease as the number of bidders

increases. Whether the revenue differences induced by the information structures across auction

formats and pricing rules are economically important remains an empirical issue. By estimating

the variation of the signal distribution from data, one can investigate empirically the difference in

the seller’s expected revenues across the multi-unit auction formats and pricing rules. To the best

of our knowledge, this research represents the first attemptto quantify the value of information in

multi-unit auctions.

For the data used below, we have found that the loss in expected revenues resulting from a

switch to the sealed-bid format from the oral, ascending-price format is small, relative to both

the transaction price and the estimated common value. Our results suggest that, on average, the

Pesendorfer–Swinkels auction generates nearly as much revenue for the seller as the Milgrom–

Weber auction does. In this particular application, the auctioneer could have done just as well by
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selling the objects using the Pesendorfer–Swinkels auction.

We should also mention that a continuum of equilibria can exist in models of English auctions.

For example, Bikhchandani et al. [2002] have characterizedthe symmetric, separating equilibria of

a single-object English auction model. Multiple equilibria may also arise in the Milgrom–Weber

model we have employed. Fortunately, the information aggregation result remains unchanged

because the transaction price is determined in the final round of bidding, where the bid functions

are the same across equilibria. While the bid functions in previous rounds can be different in

different equilibria, provided bidders know this and use this information to invert the signals, the

true signals can still be recovered, which is what matters for the information set in the final round of

the auction. As noted by Bikhchandani et al. [2002], the multiplicity of equilibria affects how bids

from the previous rounds of bidding are interpreted in an econometric procedure. Our empirical

analysis relies on the equilibrium of the Milgrom–Weber model. Although the transaction price

remains a consistent estimator of the true value, estimating the dispersion of the signal distribution

is difficult in the presence of multiple equilibria.

Our paper is in six additional sections as well as an appendix. In the next, we use the Milgrom–

Weber clock model to develop a theoretical framework withinwhich to investigate the stochastic

behavior of the transaction price at a multi-unit, oral, ascending-price auction within the common-

value paradigm, while in section 3 we demonstrate that, as the number of biddersn and the number

of unitsk get large in the Pesendorfer–Swinkels sense, the transaction price converges in probabil-

ity to the true, butex anteunknown, value. We characterize in section 4 the asymptoticdistribution

of the transaction price when both the number of bidders and the number of units get large, and

compare the asymptotic variances of transactions prices under both the Milgrom–Weber and the

Pesendorfer–Swinkels auctions. In section 5, we derive thelikelihood function of observed drop-

out prices, while in section 6, we apply our methods to data from an auction of taxi license plates

held in Shenzhen, China. In the final section, we summarize and conclude. Any details too cum-

bersome to be included in the text of the paper have been collected in the appendix at the end of

the paper.
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2 Theoretical Model

Consider an oral, ascending-price auction at whichk identical units of an object are for sale to

a total ofn bidders, each of whom wants at most one unit. Assume thatk is strictly less than

n. Focus on the Milgrom and Weber [2000] pricing rule described in the introduction. Assume

that, conditional on the true (but unknown) valuev0, each bidder draws an independently- and

identically-distributed signalX. Denote the cumulative distribution and probability density func-

tions ofX, conditional onv, by FX|V(x|v) and fX|V(x|v), respectively, and assumefX|V(x|v) satisfies

the monotone likelihood ratio condition in Milgrom [1981].Denote the prior distribution of the

unknown valueV by fV(v)

Consider the vector of signals (X1,X2, . . . ,Xn), a random sample ofn draws fromFX|V(x|v0).

Because this environment is symmetric, without loss of generality, we focus below on bidder 1.

Denote byYi the i th ordered signal of the opponents of bidder 1, so

Y1 ≥ Y2 ≥ · · · ≥ Yn−1.

Denote byZi the i th order statistic for all of theXis, so

Z1 ≥ Z2 ≥ · · · ≥ Zn.

The auction proceeds in roundsm = n, n − 1, . . . , k + 1. In roundm, m bidders continue to

participate in the auction. The auction ends in round (k + 1) when the (k + 1)st bidder exits the

auction. Without loss of generality, suppose that bidders are ordered in the reverse order of exit

from the auction.

LetΩm denote the information that has already been revealed in roundmby all the bidders who

have already left the auction. Hence,Ωm equals{zn, zn−1, . . . , zm+1}, whereΩn is the empty set∅.

According to Milgrom and Weber [2000], the symmetric equilibrium bidding rule in roundm can
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be written as

βm(x) = E [V|X1 = Yk = · · · = Ym−1 = x,Ωm] (1)

whereE denotes the expectation operator. Here,Yk, . . . ,Ym−1 denote thekth through (m− 1)st order

statistics among the bidders who remain competing with bidder 1. On the other hand, the order

statistics in the eventΩm denote the order statistics forall the bidders who have exited the auction.

For completeness, we describe below the reasoning behind a characterization of the equilibrium;

in their paper, Milgrom and Weber [2000] presumably omittedan argument like this because they

found it obvious.

At price p, bidder 1 is concerned with the event thatYk, . . . ,Ym−1 all drop-out simultaneously at

β−1
m (p). Here,β−1

m (p) is the inverse bid function. In this event, bidder 1 will be one of the winners

of the auction, together with his remaining (k − 1) competitors. Bidder 1 should remain active in

the auction at price levelp if and only if

E

[

V
∣

∣

∣X1 = x,Yk = · · · = Ym−1 = β
−1
m (p),Ωm

]

> p.

In equilibrium,p = βm(x) or x = β−1
m (p), so the price at which bidder 1 should exit must satisfy the

following:

p = E
[

V
∣

∣

∣X1 = x,Yk = · · · = Ym−1 = β
−1
m (p),Ωm

]

(2)

as long as the function in equation (1) is increasing inx. Hence, the functional form of the bid

function.

The winning price corresponds to the bid submitted by the bidder with the (k+1)st order statistic

of the signals during round (k+ 1). Thus,

p̂ = E [V|Zk = Zk+1 = zk+1,Ωk+1] . (3)
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3 Limiting Information in the Transaction Price

In this section and the next, we have two goals: first, to derive the convergence rate of the trans-

action price ˆp to the true, butex anteunknown, valuev0; and, second, to characterize the limiting

distribution of the transaction price ˆp. In both of these endeavors, we assume that bothk andn get

large, tends to infinity, in the Pesendorfer–Swinkels sense.

In this regard, we make the following assumption concerningk, the number of units for sale

relative ton, the number of bidders at the auction.

Assumption 1 τ̂ ≡ [(n− k)/n] → τ, whereτ is strictly between0 and1.

In words, the proportion of demand met has a stable limit as the number of bidders gets large.

Were this not the case, then as Pesendorfer and Swinkels [1997] have noted, the transaction price

will not have a stable limit.

With regard to our goals, we proceed in two steps. In the first,we define ˆv, the maximum-

likelihood estimator (MLE) ofv0, based on the unobserved (to the researcher, but known to the

participants) order statisticszk+1, . . . , zn, and then we investigate the rate at which ˆv converges tov0.

In the second, we investigate the rate at which ˆp converges to ˆv. In the next section, we demonstrate

formally that the rate of convergence of the price ˆp to the true common valuev0 will be driven

(dominated) by the convergence rate of ˆv to v0. In other words, ( ˆp− v0) is op(v̂− v0). Therefore, to

understand the rate of information aggregation, it suffices to focus on how ˆv approachesv0 as the

“sample size”n gets large.

Under our assumptions, the MLE ˆv is defined as

v̂ = argmax
v

log

[(

n
k

)

Ln(zk+1, . . . , zn|v)

]

where the joint likelihood function of all the signals revealed under the Milgrom–Weber auction is

proportional to

Ln(zk+1, . . . , zn|v) =
[

1− FX|V(zk+1|v)
]k fX|V(zk+1|v) fX|V(zk+2|v) · · · fX|V(zn|v). (4)
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Here, the term
[

1− FX|V(zk+1|v)
]k represents the fact that only limited information is known con-

cerning the signal values of thek winners, specifically, their signals are greater thanzk+1. Also,
(

n
k

)

represents the fact that there are many ways in which thek highest order statistics of signals could

exceedzk+1. Equation (4) is the joint likelihood of the lowest (n− k) order statistics—those from

zk+1 to zn.

3.1 Convergence of Transaction Price to the True, but Ex AnteUnknown,

Value

Given equation (4), the sample average of the logarithm of the likelihood (log-likelihood) function

will be a function of the lowest (n− k) order statistics. A general function of order statistics can be

difficult to analyze because of the potentially complex correlation structure among order statistics.

When investigating the convergence properties of functions of order statistics, one possibility is

to appeal to the theory ofL-statistics. Fortunately, this particular sample-averaged log-likelihood

function is more tractable than anL-statistic because it can be written as a function of the entire

sample as well as the sampleτth quantile. Specifically,

Q̂n (v) =
1
n

logLn(zk+1, . . . , zn|v) (5)

=
k
n

log
(

1− FX|V
[

F̂−1
n (τ̂) |v

])

+
1
n

n
∑

i=1

log fX|V (zi |v) 1
[

Xi ≤ F̂−1
n (τ̂)

]

whereF̂n (·) andF̂−1
n (τ) denote the empirical distribution function and the quantile function; that

is,

F̂n (x) =
1
n

n
∑

i=1

1 (zi ≤ x) and F̂−1
n (τ) = inf {x : F̂n (x) ≥ τ}.

With this definition, when ˆτ equals [(n − k)/n], providedzk+2 < zk+1, F̂−1
n (τ̂) equalszk+1 with

probability one. Without loss of generality, in the remainder of the paper, we assume this holds.

Now, under the assumptions made formal below, and because the limit of τ̂ is τ, by a uniform

law of large numbers, the sample percentileF̂−1
n (τ̂) converges in probability to the true population
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quantileF−1
X|V(τ|v0), so Q̂n (v) converges uniformly in the parameter space ofv to a deterministic

functionQ(v0, v) where we define

Q(u, v) ≡ (1− τ) log
(

1− FX|V
[

F−1
X|V(τ|u)|v

])

+

∫ F−1
X|V (τ|u)

−∞
fX|V(x|u) log fX|V(x|v) dx

which implies

Q(v0, v) ≡ (1− τ) log
(

1− FX|V
[

F−1
X|V(τ|v0)|v

])

+

∫ F−1
X|V (τ|v0)

−∞
fX|V(x|v0) log fX|V(x|v) dx.

As a short-hand notation, we defineQ(u, v) by Qu(v) andQ(v0, v) by Q0(v).

In order for information to aggregate fully,Q0(v), as a function ofv, must be uniquely max-

imized atv = v0. As in the case of full-sample likelihood function, this canbe verified using

Jensen’s inequality. Thus, for anyv not equal tov0, Q0(v) ≤ Q0(v0). One can demonstrate this by

taking the sum of the following two inequalities. First, by Jensen’s inequality,

∫ F−1
X|V (τ|v0)

−∞ fX|V(x|v0) log fX|V(x|v) dx−
∫ F−1

X|V (τ|v0)

−∞ fX|V(x|v0) log fX|V(x|v0) dx

≤ τ
[

log
∫ F−1

X|V (τ|v0)

−∞ fX|V(x|v) dx− logτ
]

.

Second, it is easy to demonstrate that

(1− τ) log
(

1− FX|V
[

F−1
X|V

(

τ|v0
)

|v
])

+ τ logFX|V
[

F−1
X|V

(

τ|v0
)

|v
]

≤ (1− τ) log(1− τ) + τ logτ

because the left-hand side, considered as a function ofFX|V
[

F−1
X|V(τ|v0)|v

]

, is maximized atτ.

Assumption 2 For v , v0, either F−1
X|V (τ|v) , F−1

X|V(τ|v0) or, with positive probability, X≤ F−1
X|V(τ|v0)

under v0, fX|V (x|v) , fX|V(x|v0).

This assumption mirrors a standard full-sample identification condition for likelihood analysis.

While the monotone likelihood-ratio condition used by Milgrom and Weber [1982] is required to

derive the equilibrium bidding strategy, conditional on the form of the equilibrium bidding strategy,
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it is not strictly necessary for full-information aggregation to hold.

The first inequality will be strict under the first condition in Assumption 2 and, likewise, for

the second inequality, under the second condition in Assumption 2. Thus, we have demonstrated

that Q0(v) is globally and uniquely maximized atv0, provided the valuev identifiesthe signal

distribution fX|V (x|v) in the sense of Assumption 2, which is stronger than the usualfull-sample

identification condition wheneverτ is less than one. The usual Jensen’s inequality argument for

full-sample likelihood function is just a special case of the above whenτ is one.

Now, examine the following first-order condition atv0:

∂Q0(v)
∂v

∣

∣

∣

∣

∣

∣

v=v0

= −














(1− τ)
1− FX|V[F−1

X|V(τ|v0)|v]

































∂FX|V
[

F−1
X|V(τ|v0)|v

]

∂v



















∣

∣

∣

∣

∣

∣

v=v0

+

∫ F−1
X|V (τ|v0)

−∞

∂ fX|V(x|v0)

∂v
dx

= −



















∂FX|V
[

F−1
X|V(τ|v0)|v

]

∂v



















∣

∣

∣

∣

∣

∣

v=v0

+

∫ F−1
X|V (τ|v0)

−∞

∂ fX|V(x|v0)

∂v
dx

= 0.

Therefore, subject to the regularity conditions, which areoutlined completely in the next section,

v̂ is a consistent estimator ofv0. To wit, (v̂− v0)
p
→ 0.

Given thatQ0(v) is a properly-defined sample-averaged log-likelihood function that depends

linearly on the observed sample up to a given sample quantileand that the central sample quantiles

are
√

n-consistent as well as distributed asymptotically normal,the information equality then holds

for v, and is related to the asymptotic variance of ˆv. Given the form ofQ0 (v), the expected Hessian

is ∂2

∂v2 Q0(v)

∣

∣

∣

∣

∣

∣

v=v0

where

∂2

∂v2
Q0(v) = − ∂

2

∂v2
FX|V

[

F−1
X|V(τ|v0)|v

]

− (6)

1
1− τ

(

∂

∂v
FX|V

[

F−1
X|V(τ|v0)|v

]

)2

+

∫ τ

0

∂2

∂v2
log fX|V

[

F−1
X|V(u|v0)|v

]

du.
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3.2 Information-Matrix Equality

In full-sample likelihood models, the asymptotic varianceof the MLE is usually calculated us-

ing an information-matrix equality. Here, we demonstrate that an analogous information-matrix

equality also holds for thepartial-sampleinformation model that we consider, which we then use

to characterize the amount of limiting information contained in the price as an estimate of the true

value.

One approach to calculating the information-matrix equality is to view the limiting first-order

condition atv0 as an identity, and then totally differentiate it with respect tov0. Specifically, because

∂

∂v
Q(v0, v)

∣

∣

∣

∣

∣

∣

v=v0

= 0,

for all possible values ofv0, the derivative of this relation with respect tov0 should also be zero.

∂

∂v0

[

∂

∂v
Q(v0, v)

∣

∣

∣

∣

∣

∣

v=v0

]

= 0.

This can be written as

∂2

∂v2
Q(v0, v)

∣

∣

∣

∣

∣

∣

v=v0

+
∂

∂v0

[

∂

∂v
Q(v0, v)

]
∣

∣

∣

∣

∣

∣

v=v0

= 0. (7)

In the next section, we demonstrate that the second term on the left-hand side of equation (7),

which is the negative of the Hessian given in equation (6), equals the asymptotic variance of the

score function. The following provides a direct calculation of the second term in equation (7),

which independently verifies equation (7) and facilitates the comparison with the variance of the

score function in the next section.

To compute this term, we need to calculate

∂

∂v
F−1

X|V (τ|v)
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as well as
∂

∂v
FX|V

[

F−1
X|V (τ|v) |v0

]

∣

∣

∣

∣

∣

∣

v=v0

=
∂

∂v
F−1

X|V (τ|v) fX|V
[

F−1
X|V(τ|v0)|v

]

.

Both can be found by totally differentiating the identity

∫ F−1
X|V (τ|v)

−∞
fX|V(x|v) dx = τ

with respect tov, which leads to

∂

∂v
F−1

X|V(τ|v) = −
∂
∂vFX|V

[

F−1
X|V(τ|v0)|v

]

fX|V
[

F−1
X|V(τ|v0)|v

] ,
∂

∂v
FX|V

[

F−1
X|V(τ|v)|v0

]

∣

∣

∣

∣

∣

∣

v=v0

= − ∂
∂v

FX|V
[

F−1
X|V

(

τ|v0
)

|v
]

∣

∣

∣

∣

∣

∣

v=v0

.

Using these relations,

∂

∂u

[

∂

∂v
Qu(v)

]

∣

∣

∣

∣

∣

∣

u=v=v0

= 1
1−τ

(

∂
∂vFX|V

[

F−1
X|V(τ|v0)|v

])2
+

∫ F−1
X|V (τ|v0)

−∞

[

∂
∂v log fX|V(x|v)

]2
fX|V(x|v0) dx∣

∣

∣

∣

∣

∣

v=v0

.

In the next section, we demonstrate formally that the log-likelihood function of the partially-

observed sample in our model has a similar statistical behavior to the usual full-sample log-

likelihood function, so
√

n(v̂−v0) will converge in distribution to a normal random variable whose

asymptotic variance is the inverse of either∂
∂u

[

∂
∂vQu(v)

]

∣

∣

∣

∣

∣

∣

u=v=v0

or equivalently ∂2

∂v2 Q0(v)

∣

∣

∣

∣

∣

∣

v=v0

. We

now need to demonstrate that
√

n(p̂− v̂) is op(1) because, then, these will also represent the asymp-

totic variance of
√

n(p̂− v0).

For this purpose, we employ Bayesian asymptotic analysis. First, note that

p̂ = βk+1 (zk+1) =
∫

v
fZ|V(Zk = Zk+1 = zk+1,Ωk+1|v) fV(v)

∫

fZ|V(Zk = Zk+1 = zk+1,Ωk+1|u) fV(u) du
dv

where the likelihood of the conditioning event in the bid function is proportional to

fZ|V(Zk = Zk+1 = zk+1,Ωk+1|v) =
[

1− FX|V(zk+1|v)
]k−1 fX|V(zk+1|v)2 fX|V(zk+2|v) · · · fX|V(zn|v). (8)
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Recall the definition in equation (4)

fZ|V(Zk = Zk+1 = zk+1,Ωk+1|v) = Ln(zk+1, . . . , zn|v)
fX|V(zk+1|v)

[1 − FX|V(zk+1|v)]

= exp[nQ̂n(v)]
fX|V(zk+1|v)

[1 − FX|V(zk+1|v)]
,

which we can write, using a change of variables,

√
n(p̂− v̂) =

∫

hpn (h) dh, (9)

where

pn (h) =
exp

(

n
[

Q̂n(v̂+ h/
√

n) − Q̂n(v̂)
])

fV(v̂+ h/
√

n) fX|V (zk+1|v̂+h/
√

n)
[1−FX|V (zk+1|v̂+h/

√
n)]

∫

exp
(

n
[

Q̂n(v̂+ u/
√

n) − Q̂n(v̂)
])

fV(v̂+ u/
√

n) fX|V (zk+1|v̂+u/
√

n)
[1−FX|V (zk+1|v̂+u/

√
n)]

du
.

In the next section, we demonstrate that the above renormalized posterior distribution is asymp-

totically normal. Intuitively,
√

n(p̂− v̂)
p
→ 0 because the mean of the above renormalized posterior

distribution is asymptotically zero. Clearly, the single-unit model of the English auction investi-

gated by Milgrom and Weber [1982] is a special case of this result, whenτ is one. This corresponds

to the conventional full-sample maximum-likelihood analysis and Bayesian posterior distribution.

At a typical English auction, whereτ is one, the only difference from full-sample maximum-

likelihood analysis is that the maximum order statistic is unobserved. However, a single order

statistic is asymptotically negligible. Likewise, the conditioning event in the bid function in equa-

tion (8) differs from the corresponding partial-sample likelihood in equation (4) only by a single

order statistic and the difference is asymptotically negligible.
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3.3 Simple Example

Consider the following example, which can be solved in closed-form. Suppose that the conditional

distribution ofX is exponential, having meanv, so

fX|V (x|v) =
1
v

exp(−x/v) for x ≥ 0, v > 0.

The posterior distribution needed to compute the bid function in equation (1) is proportional to

(

1
v

)n−m

exp

















−1
v

m+1
∑

j=n

zj

















(

1
v

)m−k+1

exp(−z/v)m−k+1 exp(−z/v)k−1 fV(v) =

(

1
v

)n−k+1

exp

















−1
v

















m+1
∑

j=n

zj +mz

































fV(v).

SupposefV (v) is a diffuse prior. In this case, the above posterior distribution isthen an inverse

gamma distribution having parameters (n− k+ 1) and
(

∑m+1
j=n zj +mz

)

, which has mean

E [V|X1 = Yk = · · · = Ym−1 = z,Ωm] =

∑m+1
j=n zj +mz

n− k
,

which is also the bid function at roundm. Therefore, the transaction price is given by the bid

function withm equal (k+ 1) andz equalzk+1:

p̂ =

∑k+2
j=n zj + (k + 1)zk+1

n− k
.

To see why ˆp converges to the truev0, note that in this example,Zk+1
p
→ F−1

X|V (τ) which equals

−v0 log(1− τ). Also, by invoking a law of large numbers,

∑k+2
j=n zj

n

p
→ v0

[

log(1− τ)
1− τ + τ

]

.
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Therefore,

p̂
p
→ v01

τ

[(

log(1− τ) (1− τ) + τ
)]

− v0 log(1− τ) 1− τ
τ
= v0.

The maximum-likelihood estimator ˆv, which is the mode of the posterior distribution, is

v̂ =

∑k+2
j=n zj + (k+ 1)zk+1

n− k+ 2
.

Hence,

v̂ =
n− k

n− k+ 2
p̂.

It can then be verified that
√

n (p̂− v̂)
p
→ 0.

4 Asymptotic Distribution of Transaction Price

In this section, we provide formal conditions to justify theclaims made in the previous section. Our

analysis is broken into two parts: in the first, we derive the asymptotic distribution of
√

n(v̂− v0),

while in the second we demonstrate that
√

n(p̂ − v̂) is op(1). As Newey and McFadden [1994] as

well as Chernozhukov and Hong [2003] have noted, both parts depend on the stochastic equicon-

tinuity properties of the sample-averaged log-likelihoodfunctionQ̂n(v).

To begin, we state assumptions sufficient to the task. Instead of striving for the weakest possible

set of assumptions, we are content with sufficient conditions that illustrate the main results. Note,

too, that in theoretical models of auctions the monotone likelihood-ratio condition is typically

imposed, which restricts how weak the conditions for equicontinuity can be.

Assumption 3 The true common value v0 is contained in the interior of the support of the prior

distribution which is continuously distributed at the point of v0.
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Assumption 4 The support of fX|V(x|v) is independent of v and bounded, whilelog fX|V(x|v) is

uniformly bounded, having bounded continuous third derivatives in both arguments on its support.

These two assumptions are regularity conditions required to demonstrate uniform convergence

and stochastic equicontinuity.

Theorem 1 Under Assumptions 1 to 4, if fV(v) is continuous at v0 with a finite mean, then

√
n(v̂− v0)

d→ N














0,Σ (τ) =
∂

∂u

[

∂

∂v
Qu(v)

]
∣

∣

∣

∣

∣

∣

−1

u=v=v0















,

and
√

n(p̂− v̂)
p
→ 0,

so
√

n(p̂− v0)
d→ N [0,Σ(τ)] .

Remark 1: In the Pesendorfer–Swinkels model, under the same assumption (k/n) → (1 − τ),

only the signal of a single last-losing bidder is revealed, instead of the signals of all the losing

bidders. Therefore, intuitively, the transaction price inthe Pesendorfer–Swinkels model should

aggregate less information than that in the Milgrom–Weber model. In fact, this turns out to be true.

While the transaction prices in both the Milgrom–Weber and the Pesendorfer–Swinkels models

converge tov0 at rate
√

n, the asymptotic variance of the Pesendorfer–Swinkels price is greater

than the Milgrom–Weber price. We demonstrate this result formally using the influence function

representation of the asymptotic variance. First, we note from the proof of the theorem thatΣ (τ)

equals Var
[

ψ1 (X, τ)
]−1, where theinfluence functionψ1 (X, τ) is given by

ψ1 (X, τ) ≡ ∂
∂v

log fX|V(X|v0) 1
[

X ≤ F−1
X|V(τ|v0)

]

−

E

(

∂

∂v
log fX|V(X|v0) 1

[

X ≤ F−1
X|V(τ|v0)

]

)

+

1
1− τ

(

∂

∂v
FX|V

[

F−1
X|V (τ|v) |v

]

)

(

1
[

X ≤ F−1
X|V (τ|v) |v

]

− τ
)

.
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Next, we characterize the sample-averaged log-likelihoodfunction as well as the score and influ-

ence functions in the Pesendorfer–Swinkels model, and demonstrate that they imply a variance

larger thanΣ (τ).

The sample-averaged log-likelihood of the Pesendorfer–Swinkels model, which depends only

on a single order statisticzk+1 = F̂−1
n (τ̂), is given by

Q̃n (v) =
k
n

log
[

1− FX|V (zk+1|v)
]

+

(

1− k
n

)

logFX|V (zk+1|v)

= (1− τ̂) log
(

1− FX|V
[

F̂−1
n (τ̂) |v

])

+ τ̂ logFX|V
[

F̂−1
n (τ̂) |v

]

.

Its corresponding score function is

∂

∂v
Q̃n (v) = −

(

1−τ̂
1−FX|V[ F̂−1

n (τ̂)|v] −
τ̂

FX|V[ F̂−1
n (τ̂)|v]

)

∂
∂vFX|V

[

F̂−1
n (τ̂) |v

]

.

If we evaluate the first-order approximation of the score function with respect toF̂−1
n (τ̂) as it ap-

proachesF−1
X|V(τ|v0) at v0, and make use of the well-established asymptotic approximation of the

sample quantile

√
n
[

F̂−1
n (τ) − F−1

X|V(τ|v0)
]

= − 1
√

n

n
∑

i=1

1
[

Xi ≤ F−1
X|V(τ|v0)

]

− τ

fX|V
[

F−1
X|V(τ|v0)

] + op(1), (10)

then we find the following influence function representationfor the Pesendorfer–Swinkels score

function:

√
n
∂

∂v
Q̃n(v

0) =
1
√

n

n
∑

i=1

ψ2(Xi , τ) + op(1)

where

ψ2(X, τ) ≡
1

τ (1− τ)
∂

∂v
FX|V

[

F−1
X|V(τ|v)|v

] (

1
[

X ≤ F−1
X|V(τ|v0)

]

− τ
)

.
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Letting p̃ denote the transaction price in the Pesendorfer–Swinkels auction model, we have

√
n(p̃− v0)

d→ N
(

0,Var
[

ψ2(X, τ)
]−1

)

. (11)

In order to demonstrate that Var
[

ψ2(X, τ)
] ≤ Var

[

ψ1(X, τ)
]

, we compute

ψ1(X, τ) − ψ2(X, τ) =
∂

∂v
log fX|V(X|v0) 1

[

X ≤ F−1
X|V(τ|v0)

]

−

E

(

∂

∂v
log fX|V(X|v0) 1

[

X ≤ F−1
X|V(τ|v0)

]

)

−

1
τ

(

∂

∂v
FX|V

[

F−1
X|V(τ|v0)

]

)

(

1
[

X ≤ F−1
X|V(τ|v0)

]

− τ
)

.

We can then verify easily that

Cov
[

ψ1(X, τ) − ψ2(X, τ), ψ2(X, τ)
]

= 0.

Hence,

Var
[

ψ2(X, τ)
] ≤ Var

[

ψ1(X, τ)
]

.

Furthermore, this inequality can be strengthened to a strict one, Var
[

ψ2(X, τ)
]

< Var
[

ψ1(X, τ)
]

provided Var
[

ψ1(X, τ) − ψ2(X, τ)
]

is strictly positive. This in turn holds when

Var

(

∂

∂v
log fX|V(X|v0) 1

[

X ≤ F−1
X|V(τ|v0)

]

)

> 0,

or when ∂
∂v log fX|V(X|v0) is not a constant in the range ofX ≤ F−1

X|V(τ|v0). Intuitively, when this

holds, the variation of the likelihood in this range provides more information in the Milgrom–

Weber auction that is not revealed in the Pesendorfer–Swinkels auction.

Remark 2: Above, we have indexed the asymptotic variance byτ, the proportion of losing bidders.

Intuitively, the larger the fraction of losing bidders, themore information revealed at the auction.
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Therefore, we expectΣ(τ) to be a monotonically decreasing function ofτ, in a matrix sense. In

other words, for any 0< τ1 ≤ τ2 < 1,

Σ(τ1) ≥ Σ(τ2).

In fact, this is true. That is, whenτ1 is less thanτ2, Var
[

ψ1(X, τ1)
] ≤ Var

[

ψ1(X, τ2)
]

, which follows

from

Cov
[

ψ1(X, τ1) − ψ1(X, τ2), ψ1(X, τ1)
]

= 0. (12)

Verifying equation (12) is tedious, but straightforward: it depends on the following two key rela-

tions. First,

E

(

∂

∂v
log fX|V(X|v0) 1

[

X ≤ F−1
X|V(τ|v0)

]

)

=
∂

∂v
FX|V

[

F−1
X|V(τ|v0)|v

]

and, second, that, forτ1 > τ2,

1
[

X ≤ F−1
X|V(τ1|v)|v0

]

1
[

X ≤ F−1
X|V(τ2|v)|v0

]

= 1
[

X ≤ F−1
X|V(τ2|v)|v0

]

.

Generically, Var
[

ψ1(X, τ1)
]

is strictly less than Var
[

ψ1(X, τ2)
]

. This is true whenever

Var
[

ψ1(X, τ1) − ψ1(X, τ2)
]

> 0,

or whenever
[

ψ1(X, τ1) − ψ1(X, τ2)
]

does not equal a constant with probability one. A generic

sufficient condition is that

F−1
X|V(τ1|v0) < X < F−1

X|V(τ2|v0)

with strictly positive probability less than one, or that variation exists in∂
∂v log fX|V(X|v0) on the set

F−1
X|V(τ1|v0) < X < F−1

X|V(τ2|v0).
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Hence, under the assumptions made above, especially the common support Assumption 4, for

τ ∈ (0, 1), the larger isτ, the more information is aggregated in the Milgrom–Weber model, in the

sense of having a smaller variance despite that the rate of convergence stays the same. It can also

be demonstrated that this conclusion continues to hold without the support Assumption 4. When

the upper support is increasing inv, while the condition still holds, the rate of convergence can

improve beyond
√

n whenτ equals one. On the other hand, if the lower support is also increasing

in v, then it is possible that the convergence rate is faster than
√

n even whenτ is zero.

This desirable monotonicity property of information aggregation in the Milgrom–Weber model

is in contrast to the Pesendorfer–Swinkels model. The amount of information aggregated asymp-

totically in the transaction price of the Pesendorfer–Swinkels model is not monotonic inτ. For

example, whenfX|V(x|v0) is uniform inX, the worstτ for information aggregation is one-half in the

Pesendorfer–Swinkels model because this involves the worst balance between the winner’s curse

and the loser’s curse. In general, the optimalτ in the Pesendorfer–Swinkels model depends on

the shape of this conditional density. Intuitively, in the Pesendorfer–Swinkels model, a differentτ

selects a different information set, while in the Milgrom–Weber model, a largerτ always selects a

larger information set.

5 Deriving Likelihood Function of Observed Drop-Out Prices

In section 2, we derived the bid function of a representativebidder as well as characterized the

transaction price; see equations (1) and (3). In sections 3 and 4, we then demonstrated that the

transaction price converged in probability to the true, butex anteunknown, valuev0 and derived

the asymptotic distribution of that price. In this section,in order to provide a framework within

which to conduct our empirical analysis in section 6, we derive the likelihood function of the bid

data observed by an econometrician. We highlight the fact that the sampling variability of the

econometrician’s estimate of the true, but unknown, valuev0 will depend on nuisance parameters

unknown to the econometrician.
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We first introduce some additional notation. Denote thej th drop-out price by ˆp j where j =

1, 2, . . . , n − k. For example, in our empirical application, we haven equal forty bidders andk

equal twenty units, so there are twenty drop-out prices, thelast being the transaction price, which

we denoted above by ˆp, but now denote as ˆpn−k. Thus, our observables are ( ˆp1, p̂2, . . . , p̂n−k−1, p̂n−k).

Now, from equation (2), we can recover the signal consistentwith the first bidder’s drop-out price—

viz.,

z̃n = β
−1
n (p̂1).

Likewise, for each ofj = 2, 3, . . . , n−k, we can recursively recover ˜zj, the signals of the (n−k−1)

losing bidders, so

z̃n− j+1 = β
−1
n− j+1(p̂ j;Ωn− j+1).

For thek bidders who win the auction, all we know is thatZj exceedsβ−1
n−(n−k−1)(p̂n−k;Ωk+1).

In the general case, the bid functionβm (x) in equation (1) takes the following form:

βm(x;Ωm) =
∫

v
fV(v)g (X1 = Yk = . . . = Ym−1 = x,Ωm|v)

∫

fV(u)g (X1 = Yk = . . . = Ym−1 = x,Ωm|u) du
dv

where

g (X1 = Yk = . . . = Ym−1 = x,Ωm|v) =
[

1− FX|V (x|v)
]k−1 fX|V (x|v)m−k+1

m+1
∏

j=n

fX|V
(

zj |v
)

.

If we assume thatfV(v) is diffuse and that, conditional onv, X is distributed normally, having mean

v and varianceσ2, then we can write

g (X1 = Yk = . . . = Ym−1 = x,Ωm|v) =
[

1− Φ
(x− v
σ

)]k−1 1
σm−k+1

φ

( x− v
σ

)m−k+1

1
σn−m

m+1
∏

j=n

φ

(zj − v

σ

)

.
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To summarize, under the assumptions of normality as well as adiffuse prior,

βm(x;Ωm) =
∫

v

[

1−Φ
(

x−v
σ

)]k−1
.φ

(

x−v
σ

)m−k+1 ∏m+1
j=n φ

(

zj−v
σ

)

∫ [

1−Φ
(

x−u
σ

)]k−1
φ
(

x−u
σ

)m−k+1 ∏m+1
j=n φ

(

zj−u
σ

)

du
dv.

Consider (˜zn, z̃n−1, . . . , z̃k+1), the vector of (n− k) signals consistent with the observed drop-out

prices as well as the transaction price. The joint likelihood function of all the signals consistent

with the drop-out prices revealed under the Milgrom–Weber auction is

L̃n(z̃k+1, . . . , z̃n|v, θ) =
[

1− FX|V(z̃k+1|v, θ)
]k fX|V(z̃k+1|v, θ)

∣

∣

∣

∣

∣

∣

∂β−1
n−k(p̂n−k)

∂p̂n−k

∣

∣

∣

∣

∣

∣

fX|V(z̃k+2|v, θ)
∣

∣

∣

∣

∣

∣

∂β−1
n−k−1(p̂n−k−1)

∂p̂n−k−1

∣

∣

∣

∣

∣

∣

· · · fX|V(z̃n|v, θ)
∣

∣

∣

∣

∣

∣

∂β−1
1 (p̂1)

∂p̂1

∣

∣

∣

∣

∣

∣

.

(13)

Here,θ denotes a vector of unknown parameters and captures the factthe probability density and

cumulative distribution functions of signals can depend onparameters known to the bidders, but

unknown to the econometrician.

The econometrician’s MLE ˜v is defined as

ṽ = argmax
v

log

[(

n
k

)

L̃n(z̃k+1, . . . , z̃n|v, θ̃)
]

whereθ̃ denotes the MLE ofθ0. Knowing the true nuisance parameters inθ0 is unimportant when

demonstrating that the transaction price converges in probability to the true valuev0 because the

parameters contained inθ0 are of second-order importance. The nuisance parameters are, however,

critical when calculating an estimate of the sampling variation in ṽ, the econometrician’s estimate

of the true valuev0.

In this section, we have employed a parametric distribution(the normal) to model the condi-

tional distribution of signals. In general, without imposing shape restrictions, it is difficult to iden-

tify the distribution of signals,FX|V(·|v0) nonparametrically. First, even if the signalszn, zn−1, . . . , zk+1

were directly observed andn were large, the observed signals would only identify the lower por-
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tion of the signal distributionFX|V(x|v0) for x ≤ F−1
X|V(τ|v0). Second, the signals are not directly

observed and must be inferred indirectly from the observed price sequence. The observed distribu-

tion of the price sequence implicitly depends on the signal distributionFX|V(·|v0) nonlinearly, and

cannot be analytically inverted to recover the signal distribution. Third, the bid function, which

relates the signal to the observed price in equation (8), depends only on the lower portion of the

signal distribution up toF−1
X|V(τ|v0). This implies that the observed price distribution does not con-

tain more information than the lower portion of the signal distribution up toF−1
X|V(τ|v0). Parametric

functional forms incorporate shape restrictions, such as the symmetry assumption implied by the

normal distribution, that can be used to extrapolate information concerning the lower percentiles

of the signal distribution to its upper percentiles.

In our empirical analysis, we used data from a single auctionat which the number of bidders

was large, forty. The theoretical model requires that, conditional on the true value of the object, the

signals of bidders be independently and identically distributed. The transaction price from a single

auction having a large number of bidders identifies the true common value for this auction. To

identify how that value relates to observed auction characteristics would require data from several

auctions; such data were unavailable to us. If data from several auctions with large numbers of

bidders are available, then observed auction characteristics could be incorporated into the analysis

by relating the prices from each auctions to the observed characteristics, either parametrically or

nonparametrically. Given the true value, the distributionof the signal can also be modeled to

depend on the observed auction characteristics to improve estimation efficiency. The relationship

between the valuation and the observed auction characteristics can then be consistently estimated

when both the number of auctions and the number of bidders getlarge. The convergence rate

and the inference distribution for the effect of the observed auction characteristics, however, will

depend on the relative size of the number of auctions and the number of bidders.
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6 Empirical Application

We have applied the methods described above to data from an auction of taxi license plates held in

Shenzhen, China in October 2007. At this auction, the municipal transportation bureau sold 2, 000

additionalred taxi license plates. Red taxis are special in Shenzhen because they can operate both

inside and outside the Special Economic Zone (SEZ), unlikeyellow taxis which can operate only

inside the SEZ, andgreen taxis which can only operate outside the SEZ.

By 2007, the city of Shenzhen had not issued any new license plates for red taxis since 1993.

Rapid growth in Shenzhen’s population meant that patrons were experiencing a shortage of taxis,

leading to an increase in the number of illegally-operated taxis. In 2007, the per capita number

of taxis in Shenzhen was low when compared to other parts of China: only 10, 305 taxis were

licensed in a city of 7.5 million permanent residents, about 13.74 taxis for every 10, 000 residents.

The Ministry of Construction in China recommended that cities should have 21 taxis for every

10, 000 residents.

Before the auction, the authorities reviewed the qualifications of all those who had applied to

participate at the auction. Potential bidders could be individual taxi companies or groups formed

by different companies. While fifty-one ‘firms’ apparently requested to participate, only forty

potential bidders were certified to participate at the auction. Thus,n was 40.

In written documentation, potential bidders were remindedto be aware of the risks involved.

For example, consider a translation of the text from one document:

Following this auction, more taxi license plates will be issued through auction or other

ways over the next four years. The number of taxis in Shenzhenwill reach about

20, 000 by 2011. The issuance of a great number of license plates might have much

impact on the taxi industry.

Despite these warnings, representatives of taxi companiesin the city showed great interest in the

auction, perhaps because operating a taxi has been one of thehighest profit margins in the trans-

portation industry. Also, historically, taxis have provided a stable return against investment.
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Before the auction, 53 out of 73 taxi companies in Shenzhen owned between 50 to 200 taxis

each. In short, the majority of the city’s taxi companies were small- and medium-sized ones. Some

incumbent taxi drivers expressed concern that entry would erode profits. One was quoted in the

local newspaper (our translation) as saying that

Actually we are not earning much nowadays. If more taxis wereon the road, we would

have a hard time making ends meet.

In contrast, local residents supported the issuance of additional license plates. One was quoted

(again our translation from the local newspaper) as saying

The sooner new taxis hit the road the better. It’s too hard to hail a taxi during peak

hours and holidays.

This anecdotal evidence, along with casual observation, suggests to us that the value of a red-

taxi license plate in Shenzhen has a large common-value component. Before the auction, however,

this common value was unknown to potential bidders. Using whatever means at their disposal,

potential bidders formed estimates of the unknown common value which they then used during

bidding at the auction.

The auction in Shenzhen proceeded according to the rules described in Milgrom and Weber

[2000]. In written rules announced before the auction, the authorities informed potential bidders

that the 2, 000 license plates on sale would be distributed evenly amongthe final twenty highest

bidders; each winner would be required to buy 100 license plates.

The auctioneer, Tian Tao, was a registered member of China’sauction industry association.

The reserve price was set at 150, 000 yuan per license plate, but the price rose to 500, 000 yuan

in fourth minute of bidding. During the auction, Tian reminded bidders repeatedly to be aware

of the risks involved. In fact, Tao took a break for ten minutes to allow the bidders “to cool their

enthusiasm.” We have translated one of his comments as “thisis one of the most intensive auctions

I’ve experienced in my career as an auctioneer.” At the closeof the auction, the price of a red-taxi

license plate was 542, 500 yuan, around US$80,000.
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In table 1, we present the prices called out during the auction along with the number of bidders

who exited the auction at those prices, while in figure 1 we depict the empirical survivor function

of prices. The units in this and other tables are in 10, 000 yuan.

Zhang Hongzhi, a manager of Shenzhen Xilie Taxi Company, wasreported in the newspaper

to have said that he “felt very excited after we won a bid.” Before his attending the auction, his

company had decided on 550, 000 yuan as the highest they would pay for a red-taxi license plate.

To implement equation (4), we assumed that, conditional onv0, X is distributed normally,

having varianceσ2, so

FX|V(x|v0) =
∫ x
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
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.

We also assumed thatfV(v) is a diffuse prior. In table 2, we present the maximum-likelihood

estimates ofv0 andσ as well as their standard errors; the logarithm of the likelihood function for

this empirical specification is−55.98. Again, the units of the parameters estimates are in 10, 000

yuan.

Our theoretical analysis suggests that, despite the same rate of convergence, the asymptotic

variance of the transaction price is smaller in the Milgrom–Weber auction than in the Pesendorfer–

Swinkels auction. At the estimated parameters, for normally distributed signals, the probability

of a signal’s being less than zero is very small. Consequenlty, back-of-the-envelope estimates of

the asymptotic variances can be calculated using the estimated variance of the normal distribution.

For a standard normalZ, the asymptotic variance of the Milgrom–Weber transactionprice given in

Theorem 1 and equation (7) is

(

1
1− τ

1
σ2
φ
[

Φ−1 (τ)
]2
+

1
σ2
E

[

Z2 1 (Z ≥ 0)
]

)−1

,
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which, whenτ is one half, is2πσ2

π+2 . On the other hand, the asymptotic variance for the Pesendorfer–

Swinkels transaction price in equation (11) is given by

Var

(

1
τ (1− τ)

1
σ
φ
[

Φ−1 (τ)
] (

1
[

Z ≤ Φ−1 (τ)
)

− τ
]

)−1

= τ (1− τ)σ2φ
(

Φ−1 (τ)
)−2

.

Whenτ is one half, this equals2πσ
2

4 , which is twenty-nine percent larger than the Milgrom–Weber

variance. The extent to which this difference in the asymptotic variance translates into a differ-

ence in the expected seller revenues, however, depends on the variance of the prior value density

function.

In order to understand the implications of these parameter estimates better, we used them to

simulate the differences between transaction prices at a Milgrom–Weber auction and at a Pesendorfer–

Swinkels auction. Some of these results are reported in table 3. Each entry in the table records

the difference in the expected revenues between the Milgrom–Weber auction and the Pesendorfer–

Swinkels auction, again measured in units of 10, 000 yuan. In calculating table 3, we need three

parameters: the prior mean and variance of the common value distribution as well as the variance

of the signal distribution conditional on the common value.We used the estimate ofv0 to specify

the prior mean, the estimate ofσ to specify the variance of the signal distribution, and we varied

the prior variance of the value distribution as a proportionof the signal variance.

As predicted by the linkage principle of Milgrom and Weber [1982], the Milgrom–Weber auc-

tion always generates an higher expected revenue than the Pesendorfer–Swinkels auction. How-

ever, as table 3 illustrates, the difference in the expected revenues is relatively small when compared

to both the selling price and the estimated common value. Table 3 also reveals that the difference

in expected revenues at the estimated parameters is decreasing in the number of objects for a given

number of bidders: as the number of losing bidders decreases, relatively less information is being

revealed at an Milgrom–Weber auction relative to an Pesendorfer–Swinkels auction. As the prior

variance of the value distribution increases relative to the variance of the signal distribution (indi-

cating a larger variation of the common value component), the revenue difference also increases.
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7 Summary and Conclusions

Using a clock model of a multi-unit, oral, ascending-price auction, within the common-value

paradigm, we have analyzed the behavior of the transaction price as the numbers of bidders and

units gets large. We have demonstrated that even though the transaction price is determined by

a (potentially small) fraction of losing drop-out bids, that price converges in probability to the

true, butex anteunknown, value. Subsequently, we have also demonstrated that the asymptotic

distribution of the transaction price is Gaussian, and thatthe asymptotic variance of the transac-

tion price under the Milgrom–Weber pricing rule is less thanthat under the pricing rule used by

Pesendorfer and Swinkels for a sealed-bid auction format. Thus, if the transaction prices under

different auction formats and pricing rules are viewed as statistical estimators of the true, butex

anteunknown, value of the units for sale, then the Milgrom–Weberauction is a more efficient

estimator of the unknown value than the Pesendorfer–Swinkels auction because more information

is released under the Milgrom–Weber auction than under the Pesendorfer–Swinkels auction. Note,

however, that when the number of bidders is large, the differences both in the expected transac-

tion prices and in their asymptotic variances are small because both transaction prices converge

to the same value. Finally, we applied our methods to data from an auction of taxi license plates

held in Shenzhen, China. We have found that the loss in the expected revenue by switching to the

sealed-bid auction from the ascending-bid auction is small, relative to both the transaction price

and the estimated common value. Our research suggests that the Pesendorfer–Swinkels auction

can generate nearly as much revenues for the seller as the Milgrom–Weber auction does, at least in

our particular application.
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Appendix

To reduce clutter in the text of the paper, in this appendix, we collect the proofs of the results

claimed in the text.

Proof of Main Theorem

The proof involves verifying two high-level conditions in Newey and McFadden [1994] as well

as Chernozhukov and Hong [2003]. The first condition delivers consistency, while the second

delivers asymptotic normality of ˆv and the relation that
√

n(p̂ − v̂) is op(1). We first state these

conditions within the context of our notation.

Condition 1 For anyδ > 0, there exists anǫ > 0, such that

lim inf
n→∞

P∗















sup
|v−v0|≥δ

[

Q̂n(v) − Q̂n(v
0)
]

≤ −ǫ














= 1.

Condition 2 There exists∆n(v0) and J0 such that for v in an open neighbourhood of v0,
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i. n
[

Q̂n(v) − Q̂n(v0)
]

= (v− v0)∆n(v0) − 1
2(v− v0)2

[

nJ0
]

+ Rn(v),

ii. For any sequenceδn→ 0,

sup
|v−v0|≤δn

|Rn(v)|
1+ n|v− v0|2

= op(1).

iii. ∆n(v0)/
√

n
d→ N

(

0,Ω0
)

, where both J0 andΩ0 are positive definite.

Under Conditions 1 and 2, it is shown in Theorem 1 in Chernozhukov and Hong [2003] that

for h andpn(h) defined in equation (9),

∫

|h|α
∣

∣

∣

∣

pn(h) − φ
(

h; 0, J0−1
Ω0J0−1)

∣

∣

∣

∣

p
→ 0,

for any α > 0, whereφ
(

h; 0, J0−1
Ω0J0−1

)

denotes a normal density with mean 0 and variance

J0−1
Ω0J0−1

. In other words, the convergence ofpn(h) to a normal limiting density is in any poly-

nomial moments and is stronger than convergence in the totalvariation norm. Using equation (9),

this implies that
√

n(p̂− v̂) =
∫

hpn(h) dh
p
→ 0. In the following we focus on verifying Conditions

1 and 2.

Condition 1 is, in turn, implied by uniform convergence ofQ̂n(v) to Q0(v) and becauseQ0(v)

is uniquely maximized atv0. The unique maximum ofQ0(v) at v0 is a direct consequence of

the identification Assumption 2. To show that supv∈V |Q̂n(v) − Q0(v)| is op(1), first note that the

individual terms in the summand of the second term consist ofthe product of logfX|V(Xi |v) and

1 (Xi ≤ ξ), whereξ represents a generic argument that will be evaluated atξ̂ = F̂−1
n (τ̂). Given

Assumption 4, the first is a type II function and the second is atype I function defined in Andrews

[1994]. Both satisfy Pollard’s entropy condition, and are stable under multiplication. Hence,

sup
v,ξ

∣

∣

∣

∣

∣

1
n

n
∑

i=1

log fX|V(Xi |v) 1(Xi ≤ ξ) − E
[

log fX|V(Xi |v) 1(Xi ≤ ξ)
]

∣

∣

∣

∣

∣

= op(1).
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Next,E
[

log fX|V(Xi |v) 1(Xi ≤ ξ)
]

is a Lipschitz function inξ and the Lipschitz constant is uniform

in v. Hence, given that̂F−1
n (τ̂)

p
→ F−1

X|V(τ|v0), we also have

sup
v

∣

∣

∣

∣

∣

E

(

log fX|V(Xi |v) 1
[

Xi ≤ F̂−1
n (τ̂)

])

− E
(

log fX|V(Xi |v) 1
[

Xi ≤ F−1
X|V(τ|v0)

])

∣

∣

∣

∣

∣

= op(1).

Therefore, the second term of̂Qn(v) converges uniformly inv to the second term ofQ0(v). The

first term ofQ̂n(v) is also a Lipschitz function of̂F−1
n (τ̂) with the Lipschitz constant being uniform

in v. Therefore, by the same argument, the first term ofQ̂n(v) also converges uniformly inv to the

first term ofQ0(v). Hence, Condition 1 holds.

The second condition is more involved than the first. We defineξ̂ to beF̂−1
n (τ̂) whereξ̂0 denotes

F−1
X|V(τ̂|v0) andξ0 denotesF−1

X|V(τ|v0). We rewriteQ̂n(v) asQ̂n(v, ξ̂) to emphasize its direct depen-

dence onξ̂. Note that, whileQ̂n(v, ξ̂) is differentiable inv, it is not in ξ̂, so arguments relying on

stochastic continuity arguments are required. The∆n(v0) andJ0 elements in Condition 2 are given

by

∆n(v
0) = n

∂

∂v
Q̂n(v

0, ξ̂0) + n
∂2

∂v∂ξ
Q0(v0, ξ0)(ξ̂ − ξ̂0)

and

J0 = − ∂
2

∂v2
Q0(v0, ξ0),

respectively. We decomposeRn(v) into R1
n(v) + R2

n(v) with

R1
n(v) = n

[

∂

∂v
Q̂n(v

0, ξ̂) − ∂

∂v
Q̂n(v

0, ξ̂0) − ∂2

∂v∂ξ
Q0(v0, ξ0)(ξ̂ − ξ̂0)

]

(v− v0)

and

R2
n(v) =

1
2

n(v− v0)2

[

∂2

∂v2
Q̂n(v

∗, ξ̂) − J0

]
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wherev∗ is a mean value betweenv0 andv. Because∂
2

∂v2 Q̂n

(

v∗, ξ̂
)

− J0 p
→ 0, it follows that

sup
|v−v0|≤δn

|R2
n(v)|

1+ n|v− v0|2 ≤
|R2

n(v)|
n|v− v0|2 = op(1).

Consider, next,R1
n(v), and define ˆm(v, ξ) = ∂

∂vQ̂n(v, ξ). As in equation (5), define

Qn(v, ξ) ≡ (1− τ̂) log
[

1− FX|V(ξ|v)
]

+ E
[

log fX|V(zi |v) 1(Xi ≤ ξ)
]

andm(v, ξ) = ∂
∂vQn(v, ξ). Because the summand terms in ˆm(v, ξ) andm(v, ξ), ∂

∂v log fX|V(zi |v) 1(Xi ≤

ξ), are the product of type I and type II functions defined in Andrews [1994], Theorems 2 and 3

in Andrews [1994] show that these terms satisfy Pollard’s entropy conditions and, therefore, the

stochastic equicontinuity conditions in equations (2.2) and (2.3) in Andrews [1994] hold with the

parameter now double indexed byv andξ. It follows from this stochastic equicontinuity property

that

√
n
[

m̂(v0, ξ̂) − m̂(v0, ξ̂0) −m(v0, ξ̂) +m(v0, ξ̂0)
]

= op(1).

Note, too, by a second-order mean-value expansion ofm(v0, ξ) in ξ, that

√
n
[

m(v0, ξ̂) −m(v0, ξ̂0) − ∂2

∂v∂ξQ
0(v0, ξ0)(ξ̂ − ξ̂0)

]

=
[

∂
∂vm(v0, ξ0

∗) − ∂
∂vm(v0, ξ0)

] √
n(ξ̂ − ξ̂0) = op (1) ×

√
n(ξ̂ − ξ̂0) = op(1).

for a mean value (ξ0
∗ − ξ0)

p
→ 0, since

√
n(ξ̂ − ξ̂0) = Op(1). Therefore, we can write

√
n

[

m̂(v0, ξ̂) − m̂(v0, ξ̂0) − ∂2

∂v∂ξ
Q0(v0, ξ0)(ξ̂ − ξ̂0)

]

= op(1).
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Consequently,R1
n(v) =

√
n(v− v0) = op (1). Using the relation thatx/

(

1+ x2
)

≤ 1/2, we conclude

that

sup
|v−v0|≤δn

|R1
n(v)|

1+ n|v− v0|2 ≤ op(1) and sup
|v−v0|≤δn

√
n|v− v0|

1+ n|v− v0|2 = op(1).

Having verified Conditions 2.i and 2.ii, it remains to verifyCondition 2.iii. The Hessian termJ0

is obviously positive definite because the limiting likelihood function is multiple-times smoothly

differentiable, and becausev0 uniquely maximizesQ0(v, ξ0). We note, next, that∆n(v0)/n takes the

form

− 1−τ
1−FX|V[ F̂−1

n (τ)|v]
∂
∂vFX|V

[

F̂−1
n (τ)|v

]

+ 1−τ
1−FX|V

[

F−1
X|V (τ)|v

]

∂
∂vFX|V

[

F−1
X|V(τ)|v

]

+

(

Ê − E
) [

∂
∂v log fX|V(Xi |v0) 1

[

Xi ≤ F−1
n (τ)

]]

+ Ê
(

∂
∂v log fX|V(Xi |v0) 1

[

Xi ≤ F̂−1
n (τ)

])

−

E

(

∂
∂v log fX|V(Xi |v0) 1

[

Xi ≤ F−1
X|V(τ|v0)

])

+ op

(

1√
n

)

whereÊ denotes the empirical mean. Because we have represented theinfluence function of (̂ξ−ξ0)

as equation (10), we can compute that

∆n(v
0) =

n
∑

i=1

ψ(Xi) + op

(√
n
)

where

ψ(Xi) = ∂
∂v log fX|V(Xi |v0) 1

[

Xi ≤ F−1
X|V(τ|v)

]

− E
(

∂
∂v log fX|V(Xi |v0) 1

[

Xi ≤ F−1
X|V(τ|v)

])

−

1
1−τ

(

∂
∂vFX|V

[

F−1
X|V(τ)|v

])

fX|V
[

F−1
X|V(τ)|v

] [

F̂−1
n (τ) − F−1

X|V(τ|v0)
]

= ∂
∂v log fX|V(Xi |v) 1

[

Xi ≤ F−1
X|V(τ|v0)

]

− E
(

∂
∂v log fX|V(Xi |v) 1

[

Xi ≤ F−1
X|V(τ|v0)

])

+

1
1−τ

(

∂
∂vFX|V

[

F−1
X|V(τ|v0)|v

]

1
[

Xi ≤ F−1
X|V(τ|v0)

]

− τ
)

.
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Direct calculation of the asymptotic variance in the last line, while accounting for the covariance

between the two terms, yields

Var
[

ψ(Xi)
]

= E

[

∂

∂v
log fX|V(Xi |v)

]2

1
[

Xi ≤ F−1
X|V(τ|v)

]

+
1

1− τ

(

∂

∂v
FX|V

[

F−1
X|V(τ|v)|v

]

)2

.

By inspection, we see that its inverse coincides with the asymptotic variance given inΣ(τ),

which has been verified to equalJ0 in the information matrix equality calculation and, hence,is

also positive definite. Its inverse yields the asymptotic variance of
√

n(p̂− v0) and
√

n(v̂− v0).
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Table 1: Announced Price, Number of Exits, and Total Exits

Price 20.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00
Exits 0 2 0 0 0 0 0 0
Total Exits 0 2 2 2 2 2 2 2
Price 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00
Exits 0 0 0 0 0 0 0 1
Total Exits 2 2 2 2 2 2 2 3
Price 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00
Exits 0 0 0 0 1 0 2 1
Total Exits 3 3 3 3 4 4 6 7
Price 45.00 46.00 47.00 48.00 49.00 50.00 50.50 51.00
Exits 0 3 1 0 1 1 2 2
Total Exits 7 10 11 11 12 13 15 17
Price 51.20 51.40 51.50 51.60 51.70 51.80 51.90 52.00
Exits 0 0 0 0 0 0 0 0
Total Exits 17 17 17 17 17 17 17 17
Price 52.10 52.20 52.30 52.40 52.50 52.55 52.60 52.65
Exits 0 0 0 0 1 0 1 0
Total Exits 17 17 17 17 18 18 19 19
Price 52.70 52.75 52.80 52.85 52.90 52.95 53.00 53.05
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.10 53.15 53.20 53.25 53.30 53.35 53.40 53.45
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.50 53.55 53.60 53.65 53.70 53.75 53.80 53.85
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.90 53.95 54.00 54.05 54.10 54.15 54.20 54.25
Exits 0 0 0 0 0 0 0 1
Total Exits 19 19 19 19 19 19 19 20
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Table 2: Maximum-Likelihood Estimates of Normal Specification

Parameter Estimate Std.Error
v0 56.31 0.97
σ 19.35 3.95
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Table 3: Simulated Differences in Expected Revenue

Variance Ratio∗=0.25 Variance Ratio=1.0
Number of Objects Number of Objects

Number of Bidders 10 20 30 10 20 30
20 0.120 0.221
30 0.127 0.056 0.238 0.103
40 0.108 0.070 0.042 0.208 0.136 0.079

Variance Ratio=4 Variance Ratio=9
Number of Objects Number of Objects

Number of Bidders 10 20 30 10 20 30
20 0.311 0.289
30 0.381 0.154 0.412 0.154
40 0.359 0.233 0.126 0.426 0.274 0.136
∗ Variance Ratio= Prior Variance/ Signal Variance.
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Figure 1: Estimated Survivor Function of Drop-Out Prices
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