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Abstract

Common-pool resource (CPR) dilemmas distinguish themselves from general public good problems by encompassing both
social and physical features. This paper examines how a physical mechanism, namely asymmetric payoff; and a social
mechanism, reciprocity; simultaneously affect collective cooperation in theoretical water sharing interactions. We present an
iterative N-person game theoretic model to investigate the joint effects of these two mechanisms in a linear fully connected
river system under three information assumptions. From a simple evolutionary perspective, this paper quantitatively
addresses the conditions for Nash Equilibrium in which collective cooperation might be established. The results suggest
that direct reciprocity increases every actor’s motivation to contribute to the collective good of the river system. Meanwhile,
various upstream and downstream actors manifest individual disparities as a result of the direct reciprocity and asymmetric
payoff mechanisms. More specifically, the downstream actors are less willing to cooperate unless there is a high probability
that long-term interactions are ensured; however, a greater level of asymmetries is likely to increase upstream actors’
incentives to cooperate even though the interactions could quickly end. The upstream actors also display weak sensitivity to
an increase in the total number of actors, which generally results in a reduction in the other actors’ motivation for
cooperation. It is also shown that the indirect reciprocity mechanism relaxes the overall conditions for cooperative Nash
Equilibrium.
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Introduction

The emergence and evolution of collective cooperation in

common-pool resource (CPR) dilemmas have fascinated scholars

from various disciplines [1–8]. The fundamental puzzle lies in the

mechanisms that facilitate costly cooperative and altruistic

behavior of individuals who interact with other competitors in

rigorous environments. Previous literature on social theory and

public good problem has shown that some social mechanisms such

as direct reciprocity (repeated interactions) and indirect reciprocity

(reputation) can augment the level of collective cooperation [8–

15]. Yet as much as the underlying structure of CPR dilemmas

might be analogous to general public good problems, it is worth

noting that a CPR system is unique in the sense of involving both

physical and social attributes. These two mutually interconnected

dimensions constitute the context in which human beings interact

with nature as well as with each other. Therefore, to better

understand the dynamics of collective action in governing CPRs,

we argue that it is important to simultaneously examine the social

and physical characteristics of CPR systems.

One of the main features of CPR systems is individuals’

heterogeneities that are attributed to their physical geographies.

For instance, different upstream and downstream actors are

heterogeneous in terms of their influences to a river system. They

are also diverse in the sense of being victims or beneficiaries who

are dependent on other actors’ behavior. However, most general

theoretic studies of collective action in CPR dilemmas have been

established on an assumption that all actors share symmetric

access and position with regard to the commons [2,4,16–19]. It is

worth noting that individual asymmetries might be able to

substantially change the structures and results of previous theoretic

models. Therefore, it warrants further study on the elements that

constitute the asymmetries as well as the internal and external

asymmetric mechanisms under which certain regularities might

hold.

In this paper, we focus on surface water, which is a controversial

CPR that flows across physical boundaries. With a lack of

theoretical studies on the asymmetric gains and losses associated

with the geographical locations and actions of different upstream

and downstream actors, we aim to establish a formal model to

investigate how a physical mechanism (asymmetric payoff) and a

social mechanism (reciprocity) jointly affect collective cooperation

in water sharing interactions. Built upon Raub and Weesie’s [20]

model regarding reputation and efficiency in social interactions,

our study adds to previous literature in four main aspects. Firstly,

we apply a game theoretic model to analyze a specific linear

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e73793



configuration which resembles a river system in the real world.

Secondly, we incorporate multi-players into the game theoretic

model to demonstrate a more complex group interaction of

sharing limited water resources. Thirdly, asymmetric payoffs are

integrated with the model to reflect heterogeneous features that

are attached to different upstream and downstream actors. Finally,

the study simultaneously analyzes the effects of two mechanisms

which involve both physical and social attributes of a river system.

This paper first presents an iterative N-person Prisoner’s

Dilemma Game (PDG) which enables the direct reciprocity

mechanism under which peer punishment could be enforced in

future encounters between any two actors. Then with a simple

evolutionary approach, we introduce the indirect reciprocity

mechanism under which every actor in the game could respond

to other actors’ behavior based on the information one has

received through a linear system. Also, we incorporate the

asymmetric payoff mechanism into the model by modifying the

standard PDG payoff matrix. Moreover, we quantitatively address

conditions for cooperative Nash Equilibrium (NE) under three

different information scenarios. Lastly, we perform numerical

simulations in Matlab to illustrate the effects of each independent

variable under the equilibrium conditions and provide intuitive

explanations on the implications of the asymmetric payoff and

reciprocity mechanisms.

Methods

Consider a river system that consists of a finite number of n

actors (A1, A2…Ai…An) who are located along the river in a fixed

sequence as shown in Figure 1. The subscripts denote geograph-

ical locations of the actors. We refer to A1 as the head-end actor

and An as the tail-end actor. Being confined by the boundaries of

the catchment, interactions between all water users are assumed to

occur in an abstract linear system. Also, the water users along the

river are institutional actors who have to engage in activities of

utilizing water resources on a regular basis. Thus they are assumed

to be unable to refuse participation; however, there is a probability

that the interactions may end, i.e. the decision-makers of the

institutional actors might be replaced or purposely move out of the

river system. Follow the rational choice theory, the actors are

assumed to be selfish who aim at maximizing their payoffs.

We assume that all actors are playing the PDGs on a discrete

time scale (t = 1, 2, 3…) till an indefinite end. The event

continues with a probability 0,b,1. Within each event moment

t, every actor must make a binary choice between contributing to

preserve the river environment (C) and inconsiderately exploiting

the water resources (D). The choice of every actor is made

simultaneously. We assume every actor is fully informed on both

alternatives (C or D). We also refer to C as cooperation and D as

defection in some of the following analysis. Once the action is

made, any actor Ai cannot behave differently towards others within

a single event moment. It implies that actor Ai actually plays a

large game which is composed of n-1 pairwise PDGs (supergames)

against all other actors within every event moment. By allowing

the game to be indefinitely repeated, the direct reciprocity

mechanism is thus established in the way that any actor is able

to reciprocate with others who had cooperated or defected against

himself in potential future interactions.

Then we introduce the indirect reciprocity mechanism by

adding an information set to the model. The information set Ii is a

profile of other actors’ behavior that any actor Ai obtained. It is a

critical element of the indirect reciprocity mechanism; because, in

an interconnected social structure, every actor’s present behavior

might not only influence his present utility, it also generates a

reputation which influences other participants’ actions towards

him in their potential future interactions. Therefore, we assume

that every actor’s choice of action in each event moment is

dependent on the evolving information set that they have obtained

during the course of the game.

Next, we introduce the asymmetric payoff mechanism by

adding a parameter a to the standard PDG payoff matrix as

follows,

j

C D

i
C

D

2Rai
i,j ,2Raj

i,j 2Sai
i,j ,2Taj

i,j

2Tai
i,j ,2Sa

j
i,j 2Pai

i,j ,2Pa
j
i,j

TwRw0wPwS; 2RwTzS

where ai
i,j~

iQ

iQzjQ
, a

j
i,j~

jQ

iQzjQ
, ai

i,jza
j
i,j~1; Q is a positive real

number which indicates the degree of asymmetries; 1ƒivjƒn,

i,j[Zz. For later reference, we define d(x)~ai
i,i{xzai

i,izx i.e.

j = i2x or i+x, ai
i,j~0 if j.n or j,1. We also define c = (T2R)/

(T2P), where 0,c,1 and c is a constant under the given payoff

matrix. Basically, c is an indicator of actors’ short-term incentive

for defection.

This modification to the payoff matrix corresponds to the basic

physical feature of the river system. That is, any actor’s

cooperative behavior will produce a public good, i.e. ecological

service to the river system. The public good is shared by all actors,

among whom the relative downstream actors benefit more than

the upstream ones. Similarly, any actor’s defective behavior will

generate a loss to the public good, i.e. environmental degradation.

This negative outcome is also shared by all actors, among whom

the relative downstream actors lose more than the upstream ones.

One might have a mistaken belief that the downstream actors’

behavior cannot affect the upstream actors. As a matter of fact, a

river system is a complete ecological unit in which one actor’s

behavior affects all other actors one way or another. For instance,

the water quality at the river mouth influences fishes that migrate

back upstream to mate and reproduce. The sediment deposition

and wetlands at the very downstream of the river are also of great

ecological value to upstream areas. Therefore, we argue it is safe to

assume, as we presented in the payoff matrix, that the relative

downstream actors are more vulnerable to the defection made by

the upstream actors than the other way around.

It is worth noting that every pairwise interaction is essentially a

PDG although the shares that are obtained by every actor are

asymmetric. Here ai
i,j and aj

i,j denote the share of utilities that are

allocated to actor Ai and actor Aj respectively in their interaction.

The asymmetric parameter a is adjusted by relative geographical
Figure 1. Geographic distribution of water users.
doi:10.1371/journal.pone.0073793.g001
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distribution of any two actors Ai and Aj, as well as the exploitation

variable Q. Here we assume i,j and thus actor Aj is located

downstream actor Ai. The exploitation variable Q represents the

degree to which one actor is differentiated from another in terms

of utilities allocation. The larger Q is the greater asymmetric payoff

effect is produced on every actor in the game. In consistent with

the ecological characteristics, notice that the tail-end actor is the

one that most exposed to the behavior of others, whereas the

potential ramifications of other actors’ behavior gradually

decreases the further upstream the actors are located.

With the asymmetric payoff mechanism, the long-term expected

utilities of any actor is not only dependent on the strategies of their

own and the strategies of other actors, it is also dependent on their

geographical locations and the asymmetric parameter a. Accord-

ingly, we can address the utility function for any actor Ai at a

particular moment t as follows:

Uit~f (Vt,a
i
i,j)~

XVt

j
2Rai

i,jz
XN{Vt{i

j
2Sai

i,j if sit~C ð1Þ

Uit~g(Vt,a
i
i,j)~

XVt

j
2Tai

i,jz
XN{Vt{i

j
2Pai

i,j if sit~D ð2Þ

where Uit denotes the utility of Ai at moment t, sit denotes the

action of Ai at moment t. jMVt, Vt = the numbers which denote the

locations of actors who choose C apart from the focal actor Ai at

moment t. N = the numbers which denote the locations of all

actors in the game. N = (1, 2,…,n),Vt(N. Thus the total utility Ui

that any actor Ai could receive during the entire game is:

Ui~
X?

t~1
bt{1Uit ð3Þ

where Ui is the exponentially discounted utility sum of Ai from

t = 1 till the indefinite end of the game.

As the game is repeated, we will analyze the game from a simple

evolutionary perspective. A desired outcome, from the view of

social efficiency, is an equilibrium in which collective cooperation

is established. In the scenario of water sharing interactions, actors

cannot be ‘dead’ in a biological sense, instead, we assign

supergame strategies which allow every actor to update their

behavior based on the information they obtain during the course

of the game. It is well known that pure strategy C is strictly

dominated by D in the PDG. It is also known that unconditional

cooperative supergame strategy, which means an actor always

chooses C in a supergame regardless of other actors’ choices, is not

individually rational because it is strictly dominated by uncondi-

tional defective supergame strategy [21,22]. However, conditional

cooperation could be a rational strategy if the choice of C by all

actors in all their interactions is the best strategy to use against

each other. In other words, collective cooperation might be

established when all actors reach an NE in which C is chosen by

every actor throughout the game at each moment and no actor

can be strictly better off by switching one or more of their

supergame strategies given the remaining actors stick with their

supergame strategies [20]. There exist countless conditional

cooperative supergame strategies as the game is indefinitely

repeated. For analytical simplicity, we adopt a classical conditional

strategy called ‘‘trigger’’, which suggests an actor to enter the game

with C and then always play D once notified with any defection.

The ‘‘trigger’’ is a non-forgiving strategy. One might consider

using other conditional strategies that are less strict. Surely more

sophisticated defined supergame strategies will enrich the study.

However, they will meanwhile extensively increase the complexity

of the model. Most importantly, the purpose of this paper is to

focus on the effects of asymmetric payoff and reciprocity

mechanisms and our following analysis remains valid if other

strategies are used. Hence the application of alternative supergame

strategies can be discussed in future studies.

Results

The model is analyzed in three scenarios in which information

diffuses through the linear system at different rates. This section

aims at addressing conditions for NE in which collective

cooperation might be respectively achieved under the three

information scenarios. The asymmetric payoff and reciprocity

mechanisms are analyzed simultaneously.

Atomized interactions
We begin with the simplest scenario. Assuming that the

information any actor Ai can possibly receive is only from actors

who are located adjacent to him (Ai+1 and Ai21). This information

is assumed to be received right after an action is committed by Ai+1

and Ai21 at moment t. Under this specific assumption, interactions

are atomized in the sense that an actor only gets information from

nobody else but his contiguous actors.

Assumption 1. Each actor Ai receives information on the

history of their contiguous actors Ai+1 and Ai21, that is for all i and

t,

Ii(t)~Hi{1(t)|Hiz1(t)

where Ii(t) denotes actor Ai’s information set at moment t, Hi(t)

denotes the history of Ai’s actions at moment t, Hi(t) = Q if i#0 or

i.n or t#1.

Based on non-cooperative game theory, it is already known that

either ALL-C (always play C or any other strategy that never

initiates a D) or ALL-D (always play D) is a best-response strategy

should all other actors use ‘‘trigger’’ [20,23]. Therefore, to address

the necessary and sufficient conditions under which collective

cooperation is in NE, one needs to compare any actor Ai’s

expected utilities of using ALL-C with his expected utilities of

using ALL-D. The conditions for cooperative NE is equivalent to

the conditions under which the following inequality stands for any

i = 1,2,…,n.

E(Ui ALL{Dj )ƒE(Ui ALL{Cj ) ð4Þ

With the asymmetric payoff matrix, obviously each actor

receives different utilities in each event. Yet the expected utilities

for any actor Ai of using ALL-C against all other actors who stick

with ‘‘trigger’’ is only dependent on their spatial locations

regardless of their information situations; because, C will be

chosen by every actor throughout the game as no actor will ever

initiate a defection according to their supergame strategy (ALL-C

or trigger). According to Equation (1), any actor Ai’s expected

utilities of using ALL-C is,

E Ui ALL{Cj
� �

~
2R

1{b

Xi{1

j~1
ai

i,jz
Xn

j~iz1
ai

i,j

� �
ð5Þ
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It is, however, complex to calculate actor Ai’s expected utilities

of using ALL-D. The results vary significantly under different

information assumptions. Due to the asymmetric payoff mecha-

nism, the results are also greatly dependent on the actors’

geographical locations. We provide a brief summary on the

calculation and then derive the conditions for cooperative NE in

each information scenario.

Assumption 1 illustrates a situation in which actors are

poorly connected by information. For example, if actor Ai

initiates a defection in the game at moment 1, then only actors

Ai21 and Ai+1 will be aware of the defection and start to defect at

moment 2, the rest of the actors will still choose C. Likewise, only

actors Ai22 and Ai+2 will realize the defection of Ai21 and Ai+1, and

then start to defect at moment 3, and so forth. In general,

defection can only diffuse through contiguity in the atomized

system towards both upstream and downstream directions. As

actor Ai’s geographical location affects the evolution of the game,

the calculation is carried out in two scenarios in which Ai is located

either in relative upstream (i # |n/2|) or downstream (i . |n/2|)

the river.

(1) If actor Ai uses ALL-D and i # |n/2|, then actor An will be

the last one who realizes that another actor had defected

before. Thus actor An will start to defect at moment n-i+1,

from which all actors will always defect afterwards. We divide

the total expected utility of Ai into two parts as shown in

Equation (6). The first part calculates actor Ai’s utilities before

actor An turns to defection; the second part is actor Ai’s utilities

when there is no cooperative behavior exists in the game.

E Ui ALL{Dj
� �

~
X?

t~1
bt{1Uit~

Xn{i

t~1
bt{1Uitz

X?

t~n{iz1
bt{1Uit ð6Þ

For part one,

Xn{i

t~1
bt{1Uit~2T(

Xi{1

j~1
ai

i,jz
Xn

j~iz1
ai

i,j)z

b½2T(
Xi{2

j~1
ai

i,jz
Xn

j~iz2
ai

i,j)z2P(
Xi{1

j~i{1
ai

i,jz

Xiz1

j~iz1
ai

i,j)�zb2½2T(
Xi{3

j~1
ai

i,jz
Xn

j~iz3
ai

i,j)z

2P(
Xi{1

j~i{2
ai

i,jz
Xiz2

j~iz1
ai

i,j)�z � � � � � �z

bn{i{2½2T(
X2i{nz1

j~1
ai

i,jz
Xn

j~n{1
ai

i,j)z

2P(
Xi{1

j~2i{nz2
ai

i,jz
Xn{2

j~iz1
ai

i,j)�z

bn{i{1½2T(
X2i{n

j~1
ai

i,jz
Xn

j~n
ai

i,j)z

2P(
Xi{1

j~2i{nz1
ai

i,jz
Xn{1

j~iz1
ai

i,j)�

Multiply b on each side of the equation and with some basic

algebra we will have

(1{b)
Xn{i

t~1
bt{1Uit~2T(

Xi{1

j~1
ai

i,jz
Xn

j~iz1
ai

i,j)z

2(P{T)½b(ai
i,i{1zai

i,iz1)zb2(ai
i,i{1zai

i,iz1)z � � �z

bn{i{1(ai
i,2i{nz1zai

i,n{1)�{bn{i½2T(
X2i{n

j~1
ai

i,jz

Xn

j~n
ai

i,j)z2P(
Xi{1

j~2i{nz1
ai

i,jz
Xn{1

j~iz1
ai

i,j)�

ð7Þ

For part two,

X?

t~n{iz1
bt{1Uit~

bn{i2P(
Pi{1

j~2i{n ai
i,jz

Pn
j~iz1 ai

i,j)

1{b
ð8Þ

Combining Equation (7) & (8) and we can solve Equation (6).

Put them back to Inequality (4) with Equation (5) we will have,

cƒ
bd(1)zb2d(2)z � � �zbn{i{1d(n{i{1)zbn{id(n{i)Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j

ð9Þ

(1) If actor Ai uses ALL-D and i . |n/2|, then actor A1 will be

the last one who realizes another actor had defected before.

Thus actor A1 will start to defect at moment i, from which all

actors will always defect afterwards. Likewise, we divide the

total expected utilities of A1 into the following two parts.

E Ui ALL{Dj
� �

~
X?

t~1
bt{1Uit~

Xi{1

t~1
bt{1Uitz

X?

t~i
bt{1Uit ð10Þ

Without repeating a similar calculation as the one presented

above, we will have the following equilibrium condition.

cƒ
bd(1)zb2d(2)z � � �zbi{2d(i{2)zbi{1d(i{1)Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j

ð11Þ

Summarizing the results of actor Ai’s expected utilities when he

is either located upstream or downstream, there is a condition for

equilibrium outcome which suggests collective cooperation might

be reached under Assumption 1.

Condition 1. If every actor uses a trigger against each other

in an N-person PDG under Assumption 1, the system is in

cooperative Nash Equilibrium if and only if

cƒ
bd(1)zb2d(2)z � � � bmaxfn{i,i{1gd maxfn{i,i{1g½ �Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j
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Perfectly embedded interactions
In this section we relax the first assumption by introducing a

system which allows each actor to obtain information from all

other actors rather than his neighbors. Besides, we assume the

information is perfectly embedded in the system. It implies that

every actor receives full information about all other actors’

behaviors immediately after an action is made.

Assumption 2. Each actor Ai receives information on the

history of all actors in the game, that is for all i and t.

Ii(t)~H1(t)|H2(t)| � � �|Hn(t)

Under assumption 2, the expected utilities of actor Ai if he uses

ALL-D are simple to calculate. Because, any defective actor only

has one-shot opportunity to abuse other actors’ cooperation and

all actors would immediately realize the existence of a defective

actor once the defection is made. Then the entire game would turn

into full defection. Thus the expected utilities of actor Ai when he

chooses ALL-D against trigger are,

E Ui ALL{Dj
� �

~
X?

t~1
bt{1Uit~2T(

Xi{1

j~1
ai

i,jz
Xn

j~iz1
ai

i,j)

z
2Pb(

Pi{1
j~1 ai

i,jz
Pn

j~iz1 ai
i,j)

1{b

ð12Þ

Put Equations (12) & (5) back to Inequality (4), we have the

equilibrium conditions for collective cooperation under Assump-

tion 2.

Condition 2. If every actor uses a trigger strategy against

each other in an N-person PDG under Assumption 2, the system is

in cooperative Nash Equilibrium if and only if

cƒb

Imperfectly embedded interactions
Either atomized or perfectly embedded interactions represent a

relatively extreme situation of information exchange. In the

following section we introduce a more realistic assumption under

which information is partly or imperfectly informed to all actors.

In particular, for any actor Ai, it is still assumed that information

can be immediately received from his contiguous actors. Mean-

while, he can also obtain information about the behavior of any

other actor Aj (i ? j), but only after a certain time lag pij, which

increases with the distance between actors Ai and Aj.

Assumption 3. Each actor Ai immediately receives informa-

tion on the history of his contiguous actors Ai+1 and Ai21, and is

informed with a time delay pij.0 on the history of all other actors,

that is for all i and t.

Ii tð Þ~H1( max (t{p
0
i1,0))| � � �|Hi{1(t)|Hiz1(t)| � � �|Hn( max (t{p

0
in,0))

where p’
ij is the smallest integer that is strictly larger than pij.

Finding the conditions for cooperative NE under Assumption 3

is more complex due to the new parameter pij. This assumption

allows everyone to receive information from distant actors. The

parameter pij determines how soon the information can be

received. Clearly, the longer time it takes for information to

transfer, the fewer actors could have been notified that defections

have been made in earlier rounds. More generally, if a defection

was made by actor Ai, at moment 1, for any other actors Aj, i ?j

If p’
ij.|i2j|, then actor Aj will defect at moment |i2j|+1;

If p’
ij#|i2j|, then actor Aj will defect at moment p’

ij+1;

It is important to note is that Assumption 1 & 2 could be

interpreted as two extreme cases of Assumption 3. That is, when

pijR‘, the information among distant actors travels so slow that

the case is the same as atomized interaction; when pijR0, the

information travels so fast that everyone will immediately be aware

of the history of all other actors as in perfectly embedded

interactions.

Although the information might travel at different rates under

Assumption 3, to find the condition for cooperative NE, we only

need to focus on a scenario in which actor Ai gains the highest

expected utilities if he uses ALL-D against all other actors who use

trigger strategy. Obviously, no rational actor would defect if his

highest expected utilities are smaller than his expected utilities of

using ALL-C.

To allow actor Ai the highest expected utilities of using ALL-D

under Assumption 3, information should only travel slightly

faster than that in atomized interactions; because, it will give

actor Ai the highest short-term benefits before the whole game

turns into universal defection. More specifically, it implies that

if Ai initiates a defection at moment 1, then actors Ai21 and Ai+1,

being Ai’s neighbors, will be aware of the defection and

start to defect at moment 2; besides, actors Ai22 and Ai+2 will

also receive the information about actor Ai and start to defect

at moment 2. Because, the information is better embedded in

this scenario than it is in atomized interactions and actors

Ai22 and Ai+2 are geographically closer to Ai than other actors.

Yet we consider Ai22 and Ai+2 are the only two more actors

who can receive the defective information so that actor Ai is

ensured to gain the maximum benefits by using ALL-D under

Assumption 3.

The calculation of actor Ai’s expected utilities is consisted of four

different scenarios in terms of the geographical location of Ai as

well as the number of actors who are located in the upstream and

downstream directions of Ai. We present the deduction for one

scenario in which actor Ai is located in relative upstream (i # |n/

2|) and the total amount of downstream actors is an even number

(n2i = 2m, mMZ+). In this scenario, actor An will be the last one who

realizes another actor had defected in earlier rounds. Actor An will

start to defect at moment (n2i)/2+1, from which all actors will

defect afterwards. Similar to the calculation under Assumption 1,

we divide the total expected utilities of actor Ai into two parts as

follows.

E Ui ALL{Dj
� �

~
X?

t~1
bt{1Uit~

Xn{i
2

t~1
bt{1Uitz

X?

t~n{i
2

z1
bt{1Uit

ð13Þ
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For part one,

X(n{i)=2

t~1
bt{1Uit~2T(

Xi{1

j~1
ai

i,jz
Xn

j~iz1
ai

i,j)z

b½2T(
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ai

i,jz
Xn

j~iz3
ai

i,j)z2P(
Xi{1

j~i{2
ai

i,jz

Xiz2

j~iz1
ai

i,j)�zb2½2T(
Xi{5

j~1
ai

i,jz
Xn

j~iz5
ai

i,j)z

2P(
Xi{1

j~i{4
ai

i,jz
Xiz2

j~iz4
ai

i,j)�z � � � � � �z
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b(n{i)=2{1½2T(
X2i{nz1

j~1
ai

i,jz
Xn

j~n{1
ai

i,j)z

2P(
Xi{1
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Multiply b on each side of the equation and with some basic

algebra we will have

(1{b)
X(n{i)=2
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For part two,

X?

t~(n{i)=2z1
bt{1Uit~

b(n{i)=22P(
Pi{1

j~2i{n ai
i,jz

Pn
j~iz1 ai

i,j)

1{b
ð15Þ

Combining Equation (14) & (15) and we will solve Equation

(13). Put them back to Inequality (4) with Equation (5) we will

have,

cƒ
b½d(1)zd(2)�zb2½d(3)zd(4)�z � � �zb

n{i
2 ½d(n{i{1)zd(n{i)�Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j

ð16Þ

The other three scenarios are i # |n/2|, n2i = 2m21, mMZ+; i

. |n/2| , i = 2m21, mMZ+ ; and i . |n/2|, i = 2m, mMZ+. The

deductions about these three scenarios are fairly the same as the

one we presented above. There are only subtle differences in their

results. Without repeating the same procedure, we have the

equilibrium conditions for collective cooperation under Assump-

tion 3.

Condition 3. If every actor uses a trigger strategy against

each other in an N-person PDG under Assumption 3, the system is

in cooperative Nash Equilibrium if and only if

when max{n2i, i} = 2m, mMZ+,

cƒ
b½d(1)zd(2)�zb2 ½d(3)zd(4)�z � � �zbmaxfn{i

2
, i
2
g½d( maxfn{i{1,i{1g)zd( maxfn{i,ig)�Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j

when max{n2i, i} = 2m21, mMZ+,

cƒ
b½d(1)zd(2)�zb2 ½d(3)zd(4)�z � � �zbmaxfn{iz1

2
,i{1

2
g½d( maxfn{i,i{2g)zd( maxfn{iz1,i{1g)�Pi{1

j~1 ai
i,jz

Pn
j~iz1 ai

i,j

Discussion

The conditions for cooperative NE under the three assumptions

are very complex. It is thus difficult to get intuitive insights into the

implications of the equilibrium conditions. However, we are able

to find regularities from their mathematical expressions. In

particular, all of the three conditions are inequalities which

comprise of the ‘‘temptation to defect’’ c on the left and a function

on the right, which the latter is dependent on four variables n, b, Q
and i. For analytical simplicity, we respectively define the right side

function in condition 1, 2 and 3 as fa, fp and fim. Therefore the

conditions for cooperative NE could be translated into the

following mathematical expressions,

cƒVa~fa n,b,Q,ið Þ ð17Þ

cƒVp~fp bð Þ ð18Þ

cƒVim~fim n,b,Q,ið Þ ð19Þ

where Va, Vp and Vim denote the values of fa, fp and fim.

The three conditions basically imply that cooperative outcomes

might be supported under each information assumption, providing

that Va, Vp and Vim are sufficiently large to outweigh the incentive

for short-term defection c. Apparently, the larger Va, Vp and Vim is,

the more likely cooperation is achieved. We should note that the

condition for cooperative NE under perfect information is

straightforward in the sense of being only dependent on b
regardless of asymmetries in the system and the geographical

location of an actor. Whereas in the other two scenarios, it is

difficult to establish explicit understandings of the effects of n, b, Q
and i; because, all of them affect Va and Vim concurrently.

Therefore, we carry out numerical simulations in Matlab to

examine how Va and Vim respond to changes of n, b, Q and i on a

comparative basis. The simulations produce 142,560 data sets

under circumstances when n varies from 3 to 50 at a 1 interval, b
varies from 0.01 to 0.99 at a 0.01 interval, Q varies from 0.1 to 3 at

a 0.1 interval and i varies from 1 to n at a 1 interval.

To better examine the effects of each independent variable in fa
and fim, our analysis is designed to hold variables other than the

focal variable constant in selective scenarios. We start with the

total number of actor n. Then the variables b, Q and i are analyzed

under the condition that the total number of actors is fixed to 20.
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Figure 2 indicates how Va and Vim would change as the total

number of actors n increases. We considered three scenarios in

which the level of asymmetry Q is set to 0.4, 1 and 3.We select the

head-end, tail-end and midstream actors as examples to illustrate.

In each subplot, we also compare Va and Vim under two different

continuing probability 0.3 and 0.9. In general, the results

demonstrate a descending trend of Va and Vim in most scenarios.

The results correspond to Olson’s influential argument about ‘‘the

logic of collective action’’ which states that the larger a group is,

the less likely they are to create social incentives which lead its

members to provide collective goods [11]. Nonetheless, we also

discover that the head-end actor’s incentive to cooperate is hardly

affected by the group size when a high level of asymmetries exists

during the course of interactions. An intuitive explanation for this

phenomenon is that the head-end actor has most control over his

potential loss. Greater level of asymmetries reduces his depen-

dence on other actors’ behavior. Hence his risk of being defected

by others does not increase with the number of actors involved.

Figure 3 indicates how Va and Vim would change as an actor’s

geographical location i moves gradually from the source to the end

of the river. We select three scenarios in which the continuing

probability b is set to 0.3, 0.6 and 0.9. In each subplot, we also

compare how each actor reacts to variations of the levels of

asymmetric payoff under the circumstances when Q equals to 0.1,

0.5, 1, 2 and 3. Two remarks can be drawn from this figure. First,

Va and Vim increase with i at the beginning and then decrease after

Va and Vim reach their apexes. Although the position of the apexes

varies with Q and b, it implies that relative up-midstream actors

are more likely to cooperate than the others when the remaining

variables are held invariant. Second, the upstream curves in each

subplot become steeper as Q increases. It shows that greater

individual differences exist among upstream actors with higher

levels of asymmetries.

Figure 4 indicates how Va and Vim would change as the level of

asymmetries Q increases. Likewise, we select three scenarios in

which the continuing probability b is set to 0.3, 0.6 and 0.9. We

compare the motivation for cooperation of five different actors

(head-end, mid-upstream, mid, mid-downstream, tail-end). It is

shown from Figure 4 that Va and Vim for the head-end and mid-

upstream actors increase with Q, yet for downstream actors they

decrease slightly with Q and tend to stabilize though Q continues to

increase. It implies upstream actors are sensitive to the degree of

asymmetries and more likely to cooperate than downstream actors

when higher levels of asymmetries display. An intuitive explana-

tion for the joint effect of Q and i is the actors’ reactions to risks. As

the level of asymmetries increases, the upstream actors have less

reservation about the risk of being hurt by others and thus tend to

cooperate; whereas the situation is reversed for the downstream

Figure 2. The effect of total number of actors n on the conditions for cooperative NE. (a, b, c) Va for the head-end, mid-stream and tail-end
actors in atomized interactions when Q = 0.4, 1 and 3 respectively; (d, e, f) Vim for the head-end, mid-stream and tail-end actors in imperfectly
embedded interactions when Q = 0.4, 1 and 3 respectively. The curves provide each actor’s general response to the increase of the group size. Each
actor’s motivation for cooperation is represented by two curves b = 0.3 and 0.9 in every subplot.
doi:10.1371/journal.pone.0073793.g002
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actors who bear increasing risks thus their motivation for

cooperation tend to maintain at a low level.

Figure 5 indicates how Va and Vim would change as the

continuing probability b increases. We consider three scenarios in

which the level of asymmetries Q is set to 0.4, 1 and 3. In each

subplot, we compare the motivation for cooperation of five

different actors (head-end, mid-upstream, mid, mid-downstream,

tail-end). The value of b is generally referred as ‘‘the shadow of the

future’’ which indicates the possibility of future interactions

between all involved actors. Hence, the larger b is the more likely

the game can continue. We can draw two remarks from Figure 5.

On one hand, for a particular actor, Va and Vim increase with b
when is Q constant. It confirms that an actor is more likely to

cooperate when ‘‘the shadow of the future’’ is more significant. On

the other hand, the slope of the curves for downstream actors

becomes steeper than upstream actors when b is relatively large;

the situation is reversed when b is relatively small. It implies that

downstream actors’ motivation for cooperation increase faster

than upstream actors when there is a higher possibility that future

interactions will continue taking place. To the contrary, upstream

actors are more motivated to cooperate than downstream actors

even when there is a greater chance that the game could quickly

end. An intuitive explanation for the joint effects of b and i is

actors’ vision for their long-term interactions. For the downstream

actors, assurance of future interactions will reduce their risks by

giving them more control over other actors. They will therefore

more likely to provide cooperation. This effect is amplified by the

level of asymmetries. Whereas upstream actors are less exposed to

others hence direct reciprocate behavior would not reduce their

motivation for cooperation.

After analyzing the effect of each variable individually, in Figure

6 we present the overall conditions for cooperative NE under

Assumption 1, 2 & 3 in three dimensional graphs. Instead of

providing a condition for cooperation that is applicable to any

actor Ai in the game, we located the minimum fa and fim with

respect to i by screening our massive amount of simulation results.

This approach helps us find the single one actor who has the least

incentive for cooperation when other variables (n, b and Q) are

held invariant. The results confirmed that the tail-end actor is the

one that shows least willingness to choose C. In other words, the

conditions for cooperative NE should always stand if we apply i = n

in all the three assumptions above. In that case, fa and fim become

functions of n, b and Q. Consider the group size n = 20, we

generate the overall cooperative NE conditions as shown in Figure

6. The comparison of cooperative NE conditions reveals the effect

of indirect reciprocity mechanism. Specifically, the cooperative

Figure 3. The effect of actors’ geographical locations i on the conditions for cooperative NE when the group size is fixed to 20. (a, b,
c) Va for all of the 20 involved actors in atomized interactions when b = 0.9, 0.6 and 0.3 respectively; (d, e, f) Vim for all of the 20 involved actors in
imperfectly embedded interactions when b = 0.9, 0.6 and 0.3 respectively. The curves provide a comparison in terms of motivation for cooperation for
all actors who are located at different positions on the river. Each actor’s motivation for cooperation is also compared in every subplot when the
interactions take place under different levels of asymmetries Q = 0.1, 0.5, 1, 2 and 3.
doi:10.1371/journal.pone.0073793.g003
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NE condition in perfectly embedded interactions is only depen-

dent on b and thus is a flat surface in Figure 6(b) regardless of

other variables. The flat surface is always above the other two

curved surfaces in Figure 6 (a) & (c), among which the former

represents atomized interactions and the latter represents imper-

fectly embedded interactions. Figure 6(d) illustrates that the effect

of indirect reciprocity mechanism and demonstrates that the

conditions for collective cooperation become less restrict when

information is better embedded in the game.

Conclusions

In this paper we simultaneously investigate the effects of

asymmetric payoff and reciprocity mechanisms on collective

cooperation in water sharing interactions. We establish a

quantitative model of iterative N-person PDG and study the

game as it evolves with all actors’ actions which are conditional on

their available information during the course of the game. Under

different information scenarios, our analysis produces conditions

for NE in which collective cooperation is likely to be established.

The results suggest that the direct reciprocity, or put it poetically

‘‘the shadow of the future’’, can increase all actors’ motivation to

contribute to the collective good. Meanwhile, various upstream

and downstream actors manifest individual disparities as a result of

the direct reciprocity and asymmetric payoff mechanisms. More

specifically, the downstream actors are less willing to contribute

unless there is a high probability that long-term interactions are

guaranteed; however, a greater level of asymmetries is more likely

to increase upstream actors’ incentives to cooperate even though

the interactions could quickly end. The upstream actors also

display weak sensitivity to an increase in the total number of

actors, which generally results in a reduction in the other actors’

motivation for cooperation. It is also shown that the indirect

reciprocity mechanism relaxes the overall conditions for cooper-

ative NE.

In general, our model is a preliminary theoretical attempt to

connect the asymmetric payoff with reciprocity mechanisms. We

endeavor to examine their joint effects on the collective behavior

of heterogeneous selfish actors in a theoretical river system. We

generate theoretical predictions based on the N-person iterative

asymmetric PDG. In this paper, we do not intend to conclude with

a deterministic argument about a causal relationship between the

two mechanisms and collective cooperation in water governance.

Obviously, a lot more theoretical models and empirical case

studies remain to be conducted. However, we do expect to provide

a more comprehensive perspective on the theory of collective

cooperation, which emphasizes the integrity of CPR systems in the

sense of including both physical and social characteristics.

Figure 4. The effect of the level of asymmetries Q on the conditions for cooperative NE when the group size is fixed to 20. (a, b, c) Va

for five involved actors (head-end, mid-upstream, mid, mid-downstream, tail-end) in atomized interactions when b = 0.3, 0.6 and 0.9 respectively; (d,
e, f) Vim for five involved actors (head-end, mid-upstream, mid, mid-downstream, tail-end) in imperfectly embedded interactions when b = 0.3, 0.6 and
0.9 respectively. The curves provide each actor’s general response to the increase of the level of asymmetries.
doi:10.1371/journal.pone.0073793.g004
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Figure 5. The effect of continuing probability b on the conditions for cooperative NE when the group size is fixed to 20. (a, b, c) Va for
five involved actors (head-end, mid-upstream, mid, mid-downstream, tail-end) in atomized interactions when Q = 0.4, 1 and 3 respectively; (d, e, f) Vim

for five involved actors (head-end, mid-upstream, mid, mid-downstream, tail-end) in imperfectly embedded interactions when Q = 0.4, 1 and 3
respectively. The curves provide each actor’s general response to the increase of the continuing probability b.
doi:10.1371/journal.pone.0073793.g005

Figure 6. Overall conditions for cooperative NE when the group size is fixed to 20. (a) conditions for cooperative NE in atomized
interactions; (b) conditions for cooperative NE in perfectly embedded interactions; (c) conditions for cooperative NE in imperfectly embedded
interactions; (d) comparison of the conditions for cooperative NE under Assumption 1, 2 & 3.
doi:10.1371/journal.pone.0073793.g006
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