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1 ON THE BOUNDARY VALUE PROBLEM FOR

BLOOD FLOW IN A SMALL VESSEL WITH

FLUID-STRUCTURE INTERACTION

B. Wiwatanapataphee*a, M. Kaewbumrunga, Y.H. Wub
aDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, THAILAND

bDepartment of Mathematics and Statistics, Curtin University of Technology, Perth 6845, WA, AUSTRALIA

Abstract: Coronary artery disease or coronary heart disease is the leading cause of human death in the
developed industrialized nations. It involves the progressive narrowing of the arteries that supply blood
to heart muscle. When arteries become severely narrowed, the heart muscle cannot get sufficient blood or
oxygen it needs. This can lead to a heart attack. In order to understand the pathogenesis of coronary
artery diseases, various in-vivo and vitro experiments have been conducted using animal models. Due to
the difficulty in determining the critical flow conditions for both in-vivo and vitro experiments, the exact
mechanism involved is not well understood. On the other hand, mathematical modeling and numerical
simulation can lead to better understanding of the phenomena involved in vascular diseases. In this paper,
we propose a mathematical model of blood flow in a small vessel with fluid structure interaction. The
unsteady state flow of blood cell and plasma through the coronary artery and the deformation of the
arterial wall in a cardiac cycle are investigated in this study. Numerical simulations based on the finite
volume method are carried out for the flow field, pressure field, internal wall shear stress and the wall
deformation in a cardiac cycle.

Key words: Coronary heart disease; Fluid-Solid flow; Fluid-Structure Interaction; Non-Newtonian Fluid;
Finite Volume Method.
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2 POSITIVE SOLUTIONS FOR 2P-ORDER AND

2Q-ORDER SYSTEMS OF SINGULAR SEMIPOSITONE

BOUNDARY VALUE PROBLEMS

Lishan Liu*a, Chengjuan Yina and Zhaocai Haoa
a School of Mathematical Sciences

Qufu Normal University, Qufu 273165, Shandong, China

Abstract: In this paper, we study the existence of positive solutions for 2p-order and 2q-order systems
of singular semipositone boundary value problems with Sturm-Liouville boundary conditions

(−1)pu(2p)(t) = f(t, u,−u′′, · · · , (−1)(p−1)u(2p−2), v,−v′′, · · · , (−1)(q−1)v(2q−2)),

(−1)qv(2q)(t) = g(t, u,−u′′, · · · , (−1)(p−1)u(2p−2), v,−v′′, · · · , (−1)(q−1)v(2q−2)),

aiu
(2i)(0)− biu(2i+1)(0) = 0, 0 ≤ i ≤ p− 1, 0 < t < 1,

ciu
(2i)(1) + diu

(2i+1)(1) = 0, 0 ≤ i ≤ p− 1,

αjv
(2j)(0)− βjv(2j+1)(0) = 0, 0 ≤ j ≤ q − 1,

γjv
(2j)(1) + δjv

(2j+1)(1) = 0, 0 ≤ j ≤ q − 1,

where f, g : (0, 1)× (R+)p× (R+)q → R are continuous; f, g may be singular at t = 0 and/or t = 1 and may
take negative values, in which R+ = [0,+∞), p, q ∈ N+, aη ≥ 0, bη ≥ 0, cη ≥ 0, aη ≥ 0, ρη = aηcη + aηdη +
bηcη > 0, 0 ≤ η ≤ p− 1; and αθ ≥ 0, βθ ≥ 0, γθ ≥ 0, δθ ≥ 0, ρ̃θ = αθγθ + αθδθ + βθγθ > 0, 0 ≤ θ ≤ q − 1. By
using the fixed point index theorem, some new existence results are established, and an example is given to
demonstrate the application of our main results.

Key words: Higher-order semiposition systems; Different orders; Positive solutions; Cone; Fixed point
index.
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3 ANALYTICAL SOLUTION OF TIME PERIODIC

ELECTROOSMOTIC FLOW WITH SLIP BOUNDARY

Qian Sun*a, Yong Hong Wua, Lishan Liub
aDepartment of Mathematics and Statistics

Curtin University, Perth, Western Australia
bSchool of Mathematical Sciences

Qufu Normal University, Qufu, China

Abstract: Recent research confirms that slip of a fluid on solid surface occurs at small scale.Slip causes
the change of interior material deformation and velocity profile and stress field. Electroosmosis is one
of the major electrokinetic phenomena in which ionized liquid flows with respect to a changed surface
in the presence of an external electric field.Time periodic electroosmotic flow is driven by an alternating
electric field which is an important electrokinetic effect that can be utilized for particle manipulation and
separation, for example,flow pumping and mixing enhancement.Althongh exact and numerical solutions
to various flow problems of electroosmotic flows under the no-slip condition have been obtained. Exact
solutions for problems under slip boundary conditions have seldom been addressed. In this paper,we will
derive an exact solution of the time periodic electroosmotic flow in two-dimensional straight channels under
slip boundary conditions.

Key words: Slip boundary condition; Newtonian fluid; Navier-stokes equations; Fluid flow; Time periodic
electroosmotic flows.
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4 OPTIMAL INVESTMENT UNDER OPERATIONAL

FLEXIBILITY AND RISK AVERSION

Yanli Zhou*a, Yong Hong Wua, Xiangyu Geb
aDepartment of Mathematics and Statistics

Curtin University, Perth, Australia
bDepartment of Statistics and Mathematics

Zhongnan University of Economics and Law, Wuhan, PRC

Abstract: Fluctuating global economic conditions require proper responsive strategies to ensure the
effectiveness of investment decisions. When market uncertainty increases and decision makers are risk averse,
the discretion to modify or suspend investment becomes much more important. This paper addresses the
problem of investment under uncertainty assuming that the decision maker is risk averse. We construct an
optimal investment model driven by a jump diffusion stochastic differential equation. Our analysis shows
that risk aversion reduces the likelihood of investment but this can be mitigated by incorporating operational
flexibility of embedded suspension and resumption options. We also illustrate the impact of risk aversion
on the optimal decision threshold and the optimal suspension and resumption thresholds under complete
operational flexibility.

Key words: Real options; Jump diffusion stochastic differential equation; Optimal investment under
uncertainty; Operational flexibility; Risk aversion

7





Proceedings of the 5th International Conference on Optimization and Control with Applications
(OCA2012), Beijing, China, December 4-8, 2012

5 ANALYSIS AND CONTROL OF MICROFLOWS

UNDER VARIOUS GEOMETRY CONDITIONS

Y. H. Wu*a, S. Suharsonoa, and B. Wiwatanapatapheeb
a Department of Mathematics, Curtin University of Technology

Perth WA 6845, Australia
bDepartment of Mathematics, Faculty of Science

Mahidol University, Bangkok 10400, Thaland

Abstract: Study and control of fluids through micro-channels are important to the application of a
wide range of biological and engineering micro-devices and systems, such as biochemical lab-on-the-chip
systems, micro-electromechanical systems, fuel cell devices, drug delivery systems, biological sensing and
energy conversion devices. In this talk, we first present the underlying boundary value problem for transient
microflows under dynamic condition. Then some analytical and numerical results will be given for various
geometry conditions. Finally, an investigation is given to demonstrate the flow behaviour and its control
through the system parameters.

Key words: Boundary value problem; Microflows; Analytical solutions; Flow behaviour; Control.
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6 ESTIMATION OF PARAMETERS IN THE

INTEREST RATE MODELS

Tianhai Tian*a and Xiangyu Geb
a School of Mathematical Sciences, Monash University

Melbourne VIC 3800, Australia.
bSchool of Statistics and Mathematics

Zhongnan University of Economics and Law, Wuhan 430073, China

Abstract: Stochastic differential equation (SDE) is a very important mathematical tool to describe
complex systems in which noise plays an important role. SDEs have been widely used to study various
nonlinear systems in biology, engineering, finance and economics, as well as physical sciences. Since a SDE
can generate unlimited number of trajectories, it is a difficult problem to estimate model parameters based
on experimental observations which may represent only one trajectory of the stochastic model. Although
substantial research efforts have been made to develop effective methods, it is still a challenge to estimate
parameters in SDE models from observations with large variations. In this work, we use the Bayesian
inference and Markov Chain Monte Carlo method to estimate unknown parameters in the interest rate
models.
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7 A SWARM OPTIMIZATION ALGORITHM WITH

INDIVIDUAL SEARCH STRATEGY

Jianjun Liu* and Quanzhou Wang
China University of Petroleum - Beijing (CUPB) 102249

Abstract: For most swarm optimization algorithms such as Genetic Algorithms, Particle Swarm Opti-
mization focused on the search ability of the group, and not pay more attention to the individual search. In
this paper, we proposed a swarm optimization with individual search strategy which combines the swarm
search with individual search. This optimization algorithm holds the ability of global and local searching
ability. Theoretically proved that the algorithm is convergent, and the numerical results show that this
algorithm has better global convergence, but also has faster convergence speed and higher accuracy than
other intelligent algorithms.
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8 DUALITY THEOREMS FOR CONTINUOUS-TIME

GENERALIZED LINEAR PROGRAMMING PROBLEMS

Ching-Feng Wen*a, Yan-Kuen Wub and Yung-Yih Lurc
aCenter for Fundamental Science

Kaohsiung Medical University, Kaohsiung, 807, Taiwan
bDepartment of Business Administration

Vanung University, Taoyuan, 320, Taiwan
cDepartment of Industrial Management

Vanung University, Taoyuan, 320, Taiwan

Abstract: Duality theorems for continuous-time generalized linear programming problems are established.
The method of proof is constructive, indicating that optimal solutions of approximating linear programs
converge to the optimal solution of the continuous-time generalized linear programming problem. Hence it
also provides a possible solution technique for the continuous-time generalized linear programming problems.

Key words: Continuous-time linear programming problems; Continuous-time generalized linear program-
ming problems; Duality theorem.

1 INTRODUCTION

This paper will concern a class of max-min optimal control problem with linear state constraints. Such
a problem is called the continuous-time generalized linear programming problem (in short, the problem
(CGLP)) and defined as follows. Let L∞([0, T ],Rp) and C([0, T ],Rp) be the space of all measurable and
essentially bounded functions and the space of all continuous functions from a time space [0, T ] into the
p-dimensional Euclidean space Rp, respectively. The problem (CGLP) is formulated as follows:

(CGLP) maximize min
k=1,··· ,r

∫ T

0

fk(t)
>

x(t)dt

subject to Bx(t) ≤ g(t) +

∫ t

0

Kx(s)ds for all t ∈ [0, T ] (1.1)

x ∈ L∞([0, T ],Rq+),

where B and K are p × q matrices; fk ∈ C([0, T ],Rq), g ∈ C([0, T ],Rp+), Rp+ = {(x1, · · · , xp)> : xi ≥
0 for i = 1, · · · , p} and the superscript “>” denotes the transpose operation of matrices. We see that the
problem (CGFP) is feasible with the trivial feasible solution x(t) = 0 for all t ∈ [0, T ]. Throughout this
paper, we also assume that B = [Bij ]p×q and K = [Kij ]p×q are p× q constant matrices with

Kij ≥ 0 for all i = 1, · · · , p and j = 1, · · · , q;

Bij ≥ 0 and
∑p
i=1Bij > 0 for all i = 1, · · · , p and j = 1, · · · , q.

The problem (CGLP) is a natural generalization of the continuous-time linear programming problem
(in short, the problem (CLP)), which was originated from the “bottleneck problem” proposed by Bellman
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(1957). The theory of the problem (CLP) has received considerable attention for a long time. The
published work concerned with the problem (CLP) can be loosely divided into two areas, those concerned
either with the duality theory for such problems or with methods for their solutions. For the study of
duality theory, the literature stems from a paper of Tyndall (1965). Tyndall (1965) considered a class of
the problem (CLP) with constant matrices B and K and gave conditions under which the problem (CLP)
and its dual (DCLP) have the same objective value. This result was later extended by Levinson (1966),
Kumar (1966) and Tyndall (1967), and applied to problems with nonlinear objective functions by Hanson
(1967), Hanson (1968), Hanson and Mond (1968) and Wen and Wu (2012). These extensions involved
weakening the regularity conditions imposed on the problem data. By virtue of the abstract mathematical
programming approach, Grinold (1969) and Grinold (1970) extended the duality theorem through easing
the algebraic conditions needed for duality. For the other versions of duality theorem, one can consult
the literature review in Anderson and Nash (1994). In this paper, following the methodology of Tyndall
(1965), we shall derive a dual problem of the problem (CGLP) and discuss the relations between the
problem (CGLP) and its dual problem.

2 MAIN RESULTS

In this study, we shall define the dual problem of primal problem (CGLP) as follows:

(DCGLP) minimize

∫ T

0

(g(t))>y(t)dt

subject to B>y(t)−
∫ T

t

K>y(s)ds ≥ F (t)β for t ∈ [0, T ] (2.1)

1>r β = 1 (2.2)

y(t) ∈ L∞([0, T ],Rp+) and β ∈ Rr+,

where 1r = (1, · · · , 1)> ∈ Rr and F (t) = (f1(t), · · · , fr(t)) is a q × r matrix. For the remainder of this
paper, given any optimization problem (P), we denote by V (P) the optimal objective value of problem
(P) ; that is, V (P) will be obtained by taking the supremum or infimum. The main results of this paper
are shown below.

Theorem 2.1 (Weak Duality between (CGLP) and (DCGLP)) Considering the primal-dual pair
problems (CGLP) and (DCGLP), for any feasible solutions x(t) and (y(t),β) of problems (CGLP) and
(DCGLP), respectively, we have

min
k=1,··· ,r

∫ T

0

fk(t)
>

x(t)dt ≤
∫ T

0

(g(t))>y(t)dt;

that is, V (DCGLP) ≥ V (CGLP).

Theorem 2.2 (Strong Duality between (CGLP) and (DCGLP)) There exist optimal solutions

x(∗)(t) and (y(∗)(t),β(∗)) to problems (CGLP) and (DCGLP), respectively, such that

min
k=1,··· ,r

∫ T

0

fk(t)
>

x(∗)(t)dt =

∫ T

0

(g(t))>y(∗,λ)(t)dt; (2.3)

that is, V (DCGLP) = V (CGLP).

By considering a sequence of successively finer discretization, Theorem 2.2 can be achieved through
a sequence of finite dimensional approximations. The provided proof is constructive and shows, in a
sense, that the optimal solution to the problem (CGLP) can be approximated. Hence it also provides
a possible solution technique for the problem (CGLP). Furthermore, the derived solution technique has
several advantages: the discrete solutions can be utilized to construct feasible approximate solutions to
the problem (CGLP); we can know how accurate the searched solution is, and there exists easily checked
termination criterion. These advantages make it possible to establish a practical algorithm for solving
the problem (CGLP). The related results are now in progress.
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Abstract: In this article, a hybrid of the parametric method and discretization approach is proposed to
solve a class of continuous-time quadratic fractional programming problems (CQFP). Using different step
sizes of discretization problems pertaining to (CQFP), we construct a sequence of continuous, convex and
strictly decreasing upper and lower bound functions. The zeros of upper and lower bound functions then
determine a sequence of intervals shrinking to the optimal value of (CQFP) as the size of discretization
getting larger. By utilizing the intervals we can find corresponding approximate solutions to (CQFP).
We also establish upper bounds of lengths of these intervals, and thereby we can predetermine the size of
discretization such that the accuracy of the corresponding approximate solution can be controlled within the
predefined error tolerance. Therefore, this approach leads to a polynomial-time approximation algorithm
that solves the problem (CQFP) to any required accuracy.

Key words: Continuous-time linear programming problems; Continuous-time quadratic Fractional pro-
gramming problems; Infinite-dimensional nonlinear programming problems; Interval-type algorithm; Dual-
ity Theory.

1 INTRODUCTION

Given p, q ∈ N. Let L∞([0, T ],Rp) be the space of all measurable and essentially bounded functions from
a time space [0, T ] into the p-dimensional Euclidean space Rp and let C([0, T ],Rp) be the space of all
continuous functions from [0, T ] into the Rp. In this article, we shall pay our attention to the continuous-
time quadratic fractional programming problem (in short, the problem (CQFP)) that is formulated as
follows:

(CQFP) maximize

µ+

∫ T

0

{
1/2 x(t)>D(t) x(t) + f(t)>x(t)

}
dt

ξ +

∫ T

0

{
1/2 x(t)>E(t) x(t) + h(t)>x(t)

}
dt

subject to Bx(t) ≤ g(t) +

∫ t

0

Kx(s)ds for all t ∈ [0, T ]

x(t) ∈ L∞([0, T ],Rq+),
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where

x(t) is the decision variable, T > 0 is a given time horizon, and the superscript “>” denotes the
transpose operation of matrices.

B and K are p× q matrices, g ∈ C([0, T ],Rp+) and Rp+ = {(x1, · · · , xp)> : xi ≥ 0 for i = 1, · · · , p}.

D(t) = [ dij(t) ]q×q is a symmetric negative semi-definite matrix with dij(t) ∈ C([0, T ],R), f ∈
C([0, T ],Rq) and µ ∈ R+; E(t) = [ eij(t) ]q×q is a symmetric positive semi-definite matrix with

eij(t) ∈ C([0, T ],R), h ∈ C([0, T ],Rq+) and ξ > 0.

We also assume that B = [Bij ]p×q and K = [Kij ]p×q are p× q constant matrices satisfying

Kij ≥ 0 for all i = 1, · · · , p and j = 1, · · · , q;

Bij ≥ 0 and
∑p
i=1Bij > 0 for all i = 1, · · · , p and j = 1, · · · , q.

The problem (CQFP) is a generalization of the so-called continuous-time linear programming problem (in
short, the problem (CLP)). The theory of the problem (CLP), which was originated from the “bottleneck
problem” proposed by Bellman (1957), has received considerable attention for a long time, for the related
results, one can consult the literature review in Anderson and Nash (1994).

The optimization problem in which the objective function appears as a ratio of two real-valued function
is known as a fractional programming problem. Due to its significance appearing in the information theory,
stochastic programming and decomposition algorithms for large linear systems, the various theoretical
and computational issues have received particular attention in the last decades. For more details on this
topic, one may refer to Stancu-Minasian (1997). In the literature, a number of optimality principles and
duality models for linear and nonlinear fractional programming problems have been extended to some
continuous-time fractional programming problems. For a survey of developed results, one can consult
Zalmai (1986, 1987, 1990, 1997). Moreover, Stancu-Minasian and Tigan (2000) studied the stochastic
continuous-time linear fractional programming problem. Under some positivity conditions, by using
the minimum-risk approach, the stochastic continuous-time linear fractional programming problem can
be shown to be equivalent to the deterministic continuous-time linear fractional programming problem.
However, in these works, the computational issues were not addressed. Recently, Wen and Wu (2011),
Wen et al. (2012) and Wen (2012) have developed computational procedures by combining the parametric
method and discrete approximation method to solve subclasses of the present problem (CQFP). In this
paper, by extending the methodology of Wen (2012), we shall develop a polynomial-time approximation
algorithm that solves the problem (CQFP) to any required accuracy.

2 PARAMETRIC CONTINUOUS-TIME QUADRATIC PROGRAMMING PROBLEMS

For convenience, given any optimization problem (P), we denote by V (P) the optimal objective value of
(P); that is, V (P) will be obtained by taking the supremum or infimum. Now, we propose an auxiliary
problem associated with (CQFP) which will be proposed and formulated as the parametric continuous-
time quadratic programming problem. Let us write

Θ(λ)(t) = [ θ
(λ)
ij (t) ]q×q = D(t)− λE(t) (2.1)

and

a(λ)(t) = f(t)− λh(t). (2.2)

Given λ ≥ 0, we consider the following continuous-time quadratic programming problem (in short, the
problem (CQPλ)):

(CQPλ) maximize µ− λξ +

∫ T

0

{
1/2 x(t)>Θ(λ)(t) x(t) + a(λ)(t)>x(t)

}
dt

subject to Bx(t) ≤ g(t) +

∫ t

0

Kx(s)ds for all t ∈ [0, T ]

x(t) ∈ L∞([0, T ],Rq+).
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According to Wen et al. (2012), the dual problem (DCQPλ) can be defined as follows:

(DCQPλ) minimize µ− λξ +

∫ T

0

{
−1/2 u(t)>Θ(λ)(t)u(t) + g(t)>w(t)

}
dt

subject to B>w(t)−
∫ T

t

K>w(s)ds ≥ Θ(λ)(t)u(t) + a(λ)(t) for t ∈ [0, T ],

w(·) ∈ L∞([0, T ],Rp+) and u(·) ∈ L∞([0, T ],Rq).

Since Θ(λ)(t) is symmetric negative semi-definite for all λ ≥ 0, the weak and strong duality properties
can be established as follows.

Theorem 2.1 (Weak Duality between (CQPλ) and (DCQPλ) Given λ ≥ 0. Considering the
primal-dual pair problems (CQPλ) and (DCQPλ), for any feasible solutions x(0)(t) and (u(0)(t),w(0)(t))
of problems (CQPλ) and (DCQPλ), respectively, we have

µ− λξ +

∫ T

0

{1/2 x(0)(t)>Θ(λ)(t)x(0)(t) + a(λ)(t)>x(0)(t)}dt

≤ µ− λξ +

∫ T

0

{−1/2 u(0)(t)>Θ(λ)(t)u(0)(t) + g(t)>w(0)(t)}dt;

that is, V (CQPλ) ≤ V (DCQPλ).

Theorem 2.2 (Strong Duality between (CQPλ) and (DCQPλ)) Given λ ≥ 0. There exist op-
timal solutions x̄(λ)(t) and (ū(λ)(t), w̄(λ)(t)) of the primal-dual pair problems (CQPλ) and (DCQPλ),
respectively, such that x̄(λ)(t) = ū(λ)(t) and

µ− λξ +

∫ T

0

{
1/2 x̄(λ)(t)

>
Θ(λ)(t) x̄(λ)(t) + a(λ)(t)

>
x̄(λ)(t)

}
dt

= µ− λξ +

∫ T

0

{
−1/2 ū(λ)(t)

>
Θ(λ)(t) ū(λ)(t) + g(t)

>
w̄(λ)(t)

}
dt;

that is, V (CQPλ) = V (DCQPλ).

3 MAIN RESULTS

Using the solvability of the problem (CQPλ), the relations between (CQFP) and its associated auxiliary
problem (CQPλ) can be realized. To see this, we define a function F : R+ → R by F(λ) = V (CQPλ) for
all λ ≥ 0. Then we obtain the following results.

Proposition 3.1 The following statements hold true.

(i) The real-valued function F(λ) is convex, hence is continuous.

(ii) If λ1 < λ2, then F(λ1) > F(λ2); that is, the real-valued function F(·) is strictly decreasing.

Proposition 3.2 The following statements hold true.

(i) Given any λ ≥ 0, then F(λ) > 0 if and only if λ < V (CQFP). Equivalently, F(λ) ≤ 0 if and only
if λ ≥ V (CQFP).

(ii) Suppose that x̄(t) is an optimal solution of (CQFP) with V (CQFP) = λ∗. Then x̄(t) is an optimal
solution of (CQPλ∗) with V (CQPλ∗) = 0; that is F(λ∗) = 0.

(iii) If there exists a λ∗ ≥ 0 such that F(λ∗) = 0, then the optimal solution x̄(λ∗)(t) of the problem
(CQPλ∗) is also an optimal solution of (CQFP) and V (CQFP) = λ∗.

Let 1 = (1, 1, · · · , 1)> ∈ Rp and

ρ̂ = max
j=1,··· ,q

{∑p
i=1Kij∑p
i=1Bij

,
maxt∈[0,T ] fj(t)∑p

i=1Bij

}
≥ 0.
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We define w?(t) = ρ̂ eρ̂(T−t)1 for all t ∈ [0, T ] and

η? =
1

ξ

{
µ+

∫ T

0

g(t)>w?(t)dt

}
≥ 0. (3.1)

The following result shows the solvability of the problem (CQFP).

Theorem 3.1 The following statements hold true.

(i) There exists a unique λ∗ in the closed interval [µ/ξ, η?] such that F(λ∗) = 0. Hence, we have
µ
ξ ≤ V (CQFP) ≤ η?.

(ii) If x̄(λ∗)(t) is an optimal solution of the problem (CQPλ∗), then it is also an optimal solution of the
problem (CQFP).

From the above results, it follows that solving the problem (CQFP) is equivalent to determine the
unique root of the nonlinear equation F(λ) = 0. However, it is notoriously difficult to find the exact
solution of every (CQPλ). Given a λ in the closed interval [µ/ξ, η?], we shall develop a discrete approxi-
mation procedure to find the approximate value of F(λ) and to estimate its error bound. Hence, a hybrid
of the parametric method and discretization approach will be proposed to solve the problem (CQFP)
with approximation. More precisely, using different step sizes of discretization problems of (CQPλ) and
(DCQPλ), we shall construct a sequence of continuous, convex and strictly decreasing upper and lower
bound functions. The zeros of upper and lower bound functions then determine a sequence of intervals
shrinking to the optimal value of (CQFP) as the size of discretization getting larger. Besides, by virtue
of the intervals we can find corresponding approximate solutions to (CQFP). We also establish upper
bounds for the lengths of these intervals, and thereby we can predetermine the size of discretization such
that the accuracy of the corresponding approximate solution can be controlled within the predefined error
tolerance. Therefore, this approach leads to a polynomial-time approximation algorithm that solves the
problem (CQFP) to any required accuracy.
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Abstract: the analysis of the contrast problem in NMR medical imaging is essentially reduced to the
analysis of the so-called singular trajectories of the system modeling the problem, a coupling of two spin 1/2
control systems. They are solutions of a Hamiltonian system and in this article we study such dynamics,
restricting to the zero level set of the Hamiltonian. They define a vector field on B2 ×B2 where B2 is the
Bloch ball of each spin particle. The behaviors of the solutions are discussed in relation with the relaxation
parameters of each spin and the trajectories are used to provide a final contrast using bang and singular
magnetic control sequences.

Key words: Geometric Optimal Control; Medical Imaging; Exceptional Singular Trajectories.

1 INTRODUCTION

Experimental projects in quantum control using finite-dimensional systems as the control of spin systems
in nuclear magnetic resonance (see e.g. (Assemat E. (2010); Gershenzon N. I. (2007); Khaneja N. (2003))
and references therein) are motivating new theoretical studies in the case where the system interacts with
its environment. The primary objective of this article is the application of techniques from geometric
optimal control theory to the control of the spin dynamics by magnetic fields in nuclear magnetic resonance
(NMR). Through interaction with a magnetic field, NMR involves the manipulation of nuclear spins.
It has many potential applications extending from the determination of molecular structures (NMR
spectroscopy) and quantum computing, where NMR remains one of the most promising road in the
construction of a scalable quantum computer, to medical imagery (MRI).

In this article we focus on the contrast problem in medical imaging using NMR. The system is modeled
by a coupling of two spins particles governed by the Bloch equation with distinct relaxation parameters.
In this problem the primary goal is to bring the magnetization vector of the first spin to the origin of
the Bloch ball (so as to appear dark when imaged) while maximizing the modulus of the magnetization
vector of the second spin (to appear light when imaged). The resulting difference in moduli gives the
image its contrast. This is the basic question that has to be solved in order to improve the quality and
the resolution of medical imaging. Solving the contrast imaging problem can potentially have a profound
impact on how medical imaging is done in hospitals. Indeed, by designing magnetic fields to maximize
the distance between the two spin we increase the image resolution and therefore improve its quality
which improves patient care.

Previous work has treated the time-optimal control of a single spin 1/2 particle (Bonnard B. (2009)).
In this setting, a spin particle is modeled by a magnetization vector whose dynamics are given by the
Bloch equation. Using a normalization (Lapert M. (2010)), the coordinates are (x, y, z) and the control
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is u = (ux, uy) with |u| ≤ 2π. A substance’s parameters are γ and Γ, determined by its relaxation times.
In this formulation, the system is written

ẋ = −Γx+ uyz, ẏ = −Γy − uxz, ż = γ(1− z) + (uxy − uyx). (1.1)

The uncontrolled system has a globally attractive equilibrium point N = (0, 0, 1). For parameters such
that 2Γ ≥ γ ≥ 0, the dynamics are invariant for the unit ball.

This foundation is built upon with the contrast problem, where two such non-interacting spins are
controlled by the same magnetic control field. For this, we take a pair of such systems with respective
coefficients Λ1 = (γ1,Γ1) and Λ2 = (γ2,Γ2), controlled by the same magnetic field. Each is governed by
(1.1), which we denote individually by dqi

dt = Fi(qi,Λi, u). Together, this gives the system dq
dt = F (q, u),

where q = (q1, q2) and qi = (xi, yi, zi), i = 1, 2.
With this system, the Mayer-type optimal control problem is stated as follows. From the initial point

((0, 0, 1), (0, 0, 1)), find a control u defined on [0, T ] with q1(T ) = 0 that maximizes |q2(T )| (which is the
contrast since q1 = 0) or, identically, minimizes c(q(T )) = −|q2(T )|2. A subcase of this problem that is
treated in this work is the single-input case where uy = 0, restricting the state to x1 = x2 = 0.

To summarize, we have a system of the form q̇ = F (q, u), q(0) = q0, q ∈ R4 with the terminal condition
of the form ψ(q(T )) = 0, while minimizing φ(q(T )). Fixing the level set to φ(q) = m, this with ψ(q(T )) = 0
leads us to introduce a family of manifolds denoted Mm. We denote by A(q(0), T ) =

⋃
u∈U q(T, q0, u)

the union of terminal points of trajectories emanating at time t = 0 from q0 for each admissible control
u(·) ∈ U , u(·) ∈ L∞[0, T ]∩{u : |u| ≤ umax}, such that q(·, q0, u) is defined on the whole interval. Clearly an
optimal control u∗ must be chosen such that the terminal point q∗(T ) belongs to the boundary of A(q0, T )
and satisfies the transversality condition of the maximum principle. Hence, this viewpoint allows us to
re-state the problem as a time-optimal control problem which leads to the following optimality conditions.

Proposition 1.1 Define the Hamiltonian H(q, p, u) = 〈p, F (q, u)〉. By the maximum principle (Pon-
tryagin L. S. (1962)), an optimal control has to satisfy the following necessary optimality conditions: (i)
q̇ = ∂H

∂p (q, p, u) ṗ = −∂H∂q (q, p, u); (ii) H(q, p, u) = max|v|≤M H(q, p, v); (iii) ψ(q(T )) = 0; and (iv)

p(T ) = p0
∂φ
∂q + tδ ∂ψ∂q , where tδ ∈ Rk and p0 ≤ 0.

A pair (q, p) which satisfies the maximum principle, in the sense just stated, is called an extremal. The
maximum principle provides only necessary conditions, hence to complete the analysis one must classify
the behaviors of extremals of order zero near the switching surface to analyze the possible connections
between singular arcs of order zero.

A direct application to the contrast imaging problem gives q1(T ) = 0 and splitting p = (p1, p2),
p2(T ) = −2p0q2(T ), p0 ≤ 0, since φ(q) = −|q2|2 in the contrast problem. In the nontrivial case p0 6= 0,
one can normalize p0 = − 1

2 .

Remark 1.1 The optimal control problem can be mainly reduced to the analysis of the so-called singular
trajectories since the optimal solution is a concatenation of a sequence of bang-singular arcs.

The motivation of this article is to pursue the analysis of the singular flow with a special emphasis on
the exceptional extremals. The motivations are the following.
(1) Find the precise BS sequence in connection with the relaxation parameters.
(2) Relate the relaxation parameters to the feedback invariants of the system coded by the singular flow.
(3) Analyze the attractivity properties of the north pole for the singular flow in relation with the relax-
ations parameters. This is related to the experimental aspect of the problem, since in this setting the
experiment is repeated several times, requiring that the system relax to the equilibrium between each
run. This return time is much longer than the time to produce the desired contrast. The time-optimal
solutions are among singular trajectories, again demonstrating the significance of these extremals.
(4) The optimality status is coded in the singular flow using the concept of conjugate points.

Experiments focus on biological substances such as water, blood, cerebrospinal fluid, cerebral matter,
and fat. In this paper, we focus on the contrast between deoxygenated and oxygenated blood. For this pair
of substances, the parameters are Λdo = (γ1 = 1/(32.3·1.35),Γ1 = 1/(32.3·0.05), γ2 = 1/(32.3·1.35),Γ2 =
1/(32.3 · 0.2)).

2 THE SINGLE SPIN 1/2 CASE

An important analysis concerns the saturation problem for a single spin 1/2 particle. The system is
described by (1.1) and the problem is to drive in minimum time the magnetization vector from the north
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pole N = (0, 0, 1) to the center 0 of the Bloch ball. It is analyzed in detail in (Lapert M. (2010)) and we
present the main result. Due to the symmetry of revolution of the problem we can restrict the system to
x = 0 by uy ≡ 0 and the system is written as the single input, two-dimensional system q̇ = F0(q)+uF1(q)
where q = (y, z), |u| ≤ 1.

Applying the maximum principle, optimal solutions can be found by concatenating bang arcs, for which
|u| = 1, and singular arcs for which the control is given by H1 = 0, where H = H0 + uH1, Hi = 〈p, Fi〉
while (q, p) is the solution of the Hamiltonian dynamics q̇ = ∂H

∂p , ṗ = −∂H∂q . Differentiating H1 = 0 one
gets that the singular trajectories will form two lines: the vertical axis of revolution y = 0 and a horizontal
line given by z = γ/(γ − Γ) for which the singular control is given by us = γ(2Γ − γ)/(2(γ − Γ)y) and
us → ∞ as y → 0 if γ 6= 0. For the applications, the interesting parameter cases satisfy Γ > 3γ/2 and
the singular line z = γ/(2(γ − Γ)) is such that 0 > z > −1.

The main result is then the following.

Proposition 2.1 The optimal solution in the saturation problem is of the form bang-singular-bang-
singular.

3 THE EXCEPTIONAL SINGULAR TRAJECTORIES

Consider a smooth control system of the form ẋ = F0(x)+uF1(x), x ∈ X, and let H(x, p, u) = 〈p, F0(x)+
uF1(x)〉 = H0 + uH1 be the Hamiltonian lift.

Definition 3.1 For a system (F0, F1), an extremal pair (x, p) is called singular on [0, T ] if it satisfies
almost everywhere the equations ẋ = ∂H

∂p , ṗ = −∂H∂x ,
∂H
∂u = 0.

Proposition 3.1 On T ∗X \ {{{F1, F0}, F1} = 0}, singular extremals are the smooth solutions of ẋ =
∂Hs
∂p , ṗ = −∂Hs∂x starting at t = 0 from Σ′ : H1 = {H1, H0} = 0 where Hs = 〈p, F0 + usF1〉, us(x, p) =

−{{H1,H0},H0}
{{H1,H0},H1} .

3.1 Application to the contrast problem

The system under study is q̇ = F0(q)+uF1(q), q = (y1, z1, y2, z2) ∈ B2×B2 where B2 is the unit (Bloch)

ball with F0 =
∑2
i=1−Γiyi

∂
∂yi

+ γi(1− zi) ∂
∂zi

and F1 =
∑2
i=1−zi

∂
∂yi

+ yi
∂
∂zi

.

Observe that because of the two constraints H1 = {H1, H0} = 0 and the linearity with respect to p the

equations describing the singular flow reduce to dq
dt = F0(q) − D

′(q,λ)
D(q,λ) F1 where D = {{H1, H0}, H1} and

D′ = {{H1, H0}, H0} and λ is a one-dimensional time-dependent parameter whose evolution is described
by the adjoint equation for p.

If the transfer time is not fixed, then according to the maximum principle, this leads to the additional
constraint Hs = H0 + us(q, p)H1 = 0. Such singular extremals contained in the zero level are called
exceptional.

Introducing D = det(F0, F1, [F1, F0], [[F1, F0], F1]) and D′ = det(F0, F1, [F1, F0], [[F1, F0], F0]), the
singular control in the exceptional case is given by −D′(q)/D(q) and the exceptional trajectories are

solutions of a vector field Xs on the state space B2 ×B2 defined by dq
dt = F0(q)− D′(q)

D(q) F1.

The remainder of this article will be restricted to the exceptional case, associated to the analysis of the
contrast problem with no fixed transfer time. One consideration being its relation with the vector field
Xs and the singular set D(q) = 0 on the state space where the singular control explodes. According to
our previous analysis for a single spin, this leads to saturation of the singular control us near the surface
D = 0 and the bridge phenomenon to generate optimal sequences, concatenations of bang-singular arcs,
with several singular surfaces, a connection between two consecutive singular arcs being realized by a
bang arc which is tangent to the switching surface Σ : H1 = 0 at both extremities.

An important tool to analyze the problem is the introduction of the feedback classification of the
system, showing in particular the dependence with respect to the relaxation parameters. This is presented
in the next section.

4 FEEDBACK CLASSIFICATION AND THE EXCEPTIONAL TRAJECTORIES

Definition 4.1 Let E and F be two R-vector spaces and let G be a group acting linearly on E and F . A
homomorphism χ : G→ R \ {0} is called a character. Let χ be a character. A semi-invariant of weight χ
is a map λ : E → R such that for all g ∈ G and all x ∈ E, λ(g.x) = χ(g)λ(x); it is an invariant if χ = 1.
A map λ : E → F is a semi-covariant of weight χ if for all g ∈ G and for all x ∈ E, λ(g.x) = χ(g)g.λ(x);
it is called a covariant if χ = 1.
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Definition 4.2 Let C = (F0, F1) be the set of smooth systems on X ' Rn. Let (F0, F1), (F ′0, F
′
1) be two

elements of C. They are called feedback equivalent if there exists a smooth diffeomorphism ϕ of Rn and a
feedback u = α(x)+β(x)v, α, β smooth and β invertible such that F ′0 = ϕ∗(F0 +F1α) and F ′1 = ϕ∗(F1β),

where ϕ ∗ Z denotes the image of the vector field defined by ϕ ∗ Z = ∂ϕ
∂x

−1
Z ◦ ϕ. The set G = (ϕ, α, β)

endowed with the underlying multiplication rule is called the feedback group.

Definition 4.3 Let (F0, F1) ∈ C and let λ1 be the map which associates the constrained Hamiltonian

vector field (
#—

H ′s,Σ
′) whose solutions are singular trajectories. We define the action of (ϕ, α, β) ∈ G

on (
#—

H ′s,Σ
′) by the action induced by the symplectic change of coordinates (Mathieu transformation)

#—ϕ : x = ϕ(X), p = p ∂ϕ∂X
−1

, in particular the feedback acts trivially.

We have the following.

Theorem 4.1 The mapping λ1 is a covariant.

Now we shall examine this action restricted to the singular flow. Computing, we have the following.

Lemma 4.1 (1) DF0+αF1,βF1 = β4DF0,F1 , (2) D′F0+αF1,βF1 = β3(D′F0,F1+αDF0,F1), (3) Dϕ∗F0,ϕ∗F1(x) =

det
(
∂ϕ
∂x

−1
)
DF0,F1(ϕ(x)), and (4) D′ϕ∗F0,ϕ∗F1(x) = det

(
∂ϕ
∂x

−1
)
D′F0,F1(ϕ(x)).

From which we deduce the following proposition.

Proposition 4.1 (1) λ2 : (F0, F1)→ Xs is a covariant (the feedback group acting on Xs by a change of
coordinates only), (2) λ3 : (F0, F1)→ D is a semi-covariant, and (3) λ4 : (F0, F1)→ Xs

r = DF0 −D′F1

is a semi-covariant.

4.1 Geometric interpretation

Use the action of diffeomorphisms on (Xs, D = 0) to classify the set of systems (F0, F1) in relation with
the contrast problem. In particular, compute the feedback invariants in relation with the relaxation
parameters.

From the geometric point of view this is the classification of the trajectories of Xs, in particular near
the north pole which is a singular point. The surface D = 0 is the surface where the singular control
explodes, except for points where D′ = 0: the surface D = D′ = 0 being a feedback invariant. The
classification problem is introduced: the set D is a quartic form in dimension four, while D = D′ = 0 is
the intersection of two quartics. A first step is to reduce the problem in the vicinity of the north pole.

5 NUMERICAL SIMULATIONS OF EXCEPTIONAL SINGULAR TRAJECTORIES

In (Bonnard B. (2012)), the authors construct numerical methods to maximize contrast with controls
which are concatenations of one or more bang-singular arcs (motivated by Remark 1.1). We take a
similar approach here: we simulate an extremal of the form bang-exceptional, i.e., a bang arc followed
by an exceptional singular arc satisfying the problem statement. We denote the switching time from the
bang to singular arc as t1, and the final time as T .

5.1 Extremal conditions

As stated in §3, we haveH = 〈F0+uF1, p〉 = 0 everywhere on an extremal containing an exceptional singu-
lar arc. Therefore at the initial time, where q(0) = (0, 1, 0, 1), we have p(0) ∈ span

{(
0, 1, 0, 0

)
,
(
0, 0, 0, 1

)
,
(
1, 0,−1, 0

)}
.

At the switching time, we have H0 = H1 = {H0, H1} = 0, together giving that

p(t1) ∈ ker{F0, F1, [F0, F1]}. (5.1)

In particular, choosing an q(t1) along the bang arc at a desired switching time, we can find p(t1) such
that (q(t1), p(t1)) is a switching point of a possible bang-exceptional extremal. It also must be verified
that on the time interval [0, t1], H1 is positive.

5.2 Conjugate points

The concept of a conjugate point is related to second-order optimality conditions—a trajectory is locally
optimal prior to a conjugate point, and therefore it plays an important role in the study of optimal
synthesis.
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Definition 5.1 Let Ĥ(q, p) = 〈p, F (q, u)〉 where u is the exceptional singular control. Let z = (q, p) be

the reference extremal defined on [0, T ]. The variational equation δż = d
#—

Ĥ(z(t))δz is called the Jacobi
equation. A Jacobi field J(t), a nontrivial solution δz = (δq, δp), is said to be vertical at time t if
δq(t) = dΠz(t)δz(t) = 0, where Π is the canonical projection (q, p) 7→ q.

Definition 5.2 We define the exponential mapping for fixed q(0) = q0 as the mapping expq0 : (t, p0) 7→
Π(z(t, z0)) where z(·) is the solution of Ĥ with initial condition z0 = (q0, p0), p0 being normalized by
|p0| = 1. A time tc > 0 is said to be geometrically conjugate to zero if the exponential mapping is not of
maximal rank (n− 1) at t = tc and the associated point q(tc) is said to be geometrically conjugate to q0.

The conjugate point algorithm is as follows (Bonnard B. (2007)). The reference extremal is a solution
of dq

dt = Xs(q(t)) and the variational equation reduces to dδq
dt = ∂Xs

∂q (q(t))δq. To test the existence of a

conjugate point, we compute a single Jacobi field J0(t) whose projection on the q-space is denoted δq0 and
is a solution of the variational equation with initial condition q(0) = F1(q(0)). The conjugate point test
is δq0(t) ∈ span{F0(q(t)), F1(q(t))}, or equivalently, det[δq0(t), F0(q(t)), F1(q(t)), ad2 F1.F0(q(t))] = 0.

5.3 Numerical simulation

The computation is performed using the cotcot software package (Bonnard B. (2005)) in the following
manner. A bang-exceptional trajectory is characterized by the switching time t1. From this one-parameter
family of trajectories, regions where the first spin passes through a neighborhood of the origin are iden-
tified. In such a region, a pair of times such that the trajectory crosses the y1-axis on opposite sides of
the origin, and bisection is used to find t1 such that q1(T ) = 0.

Using this, the extremal producing maximum contrast is given by the switching time t1 = 0.3858, with
final time T = 8.9081 and contrast ‖q2(T )‖ = 0.4272. Along this trajectory, a conjugate point is found
at tc = 4.8776, and therefore this extremal is not locally optimal in its entirety. This result is illustrated
in Figure 5.1, which shows the state trajectory and associated control.
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(a) Projection of extremal onto (y1, z1)
plane.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Projection of extremal onto (y2, z2)
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(c) Value of the control u.

Figure 5.1 Illustration of numerical simulation in §5.3. Subfigures (a) and (b) display the state trajectory, with the initial

bang arc in blue, the exceptional singular arc in red, and the conjugate point location marked with a black ×. Subfigure

(c) shows the associated control.
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11 OPTIMALITY OF PARTIALLY SINGULAR

VARIATIONAL PROBLEMS

B. S. Goh*
Research Institute, Curtin University Sarawak

98009 Miri, Sarawak, Malaysia

Abstract: Modern mathematical theory of singular variational problems was motivated by the discovery
of intermediate thrust arcs of a rocket trajectory in an inverse square law field by D F Lawden in 1962.
Independent of this research, P A M Dirac and others in physics have developed since the 1950s a generalized
Hamiltonian dynamics for theoretical physics because of singular variational problems in two important
fields in theoretical physics. The electromagnetic field and Einsteins general gravitational field are Euler-
Lagrange equations of singular variational problems. There is still a need to have better mathematical
understanding of an extremal which is nonsingular in some control variables and singular in others. Here
some properties of a class of singular variational problems are analysed.
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Abstract: We present numerical computations of time-minimal transfers within the Earth-Moon system,
from the geostationary orbit to temporarily-captured near Earth orbiters. To this end, we use indirect
methods in optimal control initialized thanks to previously computed optimal transfers to the Lagrangian
point L1.

Key words: Temporarily-captured near Earth satellites; Time-minimal space transfers; Restricted 3-body
problem; Indirect methods in optimal control.

1 INTRODUCTION

This paper deals with numerical computations of space transfers in the Earth-Moon system, from the
geostationary orbit to temporarily-captured near Earth orbiters (TCO). Such objects are defined accord-
ing to two criteria: the planetocentric Keplerian energy and the planetocentric distance (Kary D M.
(1996)). The first study about their population characteristics has been carried out recently, providing
their steady-state size-frequency and residence-time distribution (Granvik M. (2012)), and the execution
of space missions to near Earth TCO would be a major scientific achievement. We present preliminary
work regarding the computation of simulated time-minimal transfers to such orbiters, based on indirect
methods in optimal control. Such time-minimal transfers are particularly important since the period
during which a TCO orbits around the Earth may be very short. As a first step of the analysis, we focus
on two-dimensional transfers by modeling the Earth-Moon system using the planar restricted three-body
problem. Our methodology relies on initializing a classical shooting method with the time-minimal trans-
fer to the equilibrium point L1 of the Earth-Moon system (Picot G. (2012)), so as to compute transfers
to the planar projections of the TCO going through a small neighborhood of the spatial location of this
point with a low velocity. A continuation method is also used to reduce the maximum bound on the
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engine propulsion. As a result, we obtain a collection of locally time-minimal transfers associated with a
wide range of maximal thrusts.

2 GEOMETRIC ANALYSIS AND NUMERICAL METHODS

Spatial trajectories in the Earth-Moon system are frequently modeled as solutions of the restricted three-
body problem, where the three bodies are the Earth, Moon, and our spacecraft (?). The Earth and Moon
are referred to as the primaries, since the mass of the spacecraft is assumed to negligible compared to
the masses of the other bodies, and therefore the spacecraft does not affect the motion of the primaries.
The primaries are assumed to be revolving circularly around their center of mass, which is chosen as the
origin of the coordinate system. This model is reasonable to describe the Earth-Moon system since the
eccentricity and inclination of the Moon’s orbit around Earth are small (0.0549 and 5.145 to the ecliptic,
respectively).

The distance between the primaries, their angular velocities, and the gravitational constant are nor-
malized to 1. So, in the rotating frame, the Earth is located at (−µ, 0) with mass 1 − µ, and the Moon
is located at (1− µ, 0) with mass µ, with the parameter µ ' 0.012153 being called the reduced mass. As
a first approach, we will suppose that the motion of the spacecraft is restrained to the plane defined by
the motion of the primaries. This motion is then governed by the equations

ẍ− 2ẏ − x =
∂V

∂x
+ u1, ÿ + 2ẋ− y =

∂V

∂y
+ u2 (2.1)

where −V = µ−1
%3

1
− µ

%3
2

is the mechanical potential of the problem, %1 and %2 are the distances to the

primaries and u = (u1, u2) is a control term corresponding to the acceleration provided by the the engine.
By defining the new variable q = (x, y, ẋ, ẏ), equation (2.3) can be written as a bi-input control system

q̇ = F0(q) + F1(q)u1 + F2(q)u2 (2.2)

with

F0(q) =


q3

q4

2q4 + q1 − (1− µ) q1+µ

((q1+µ)2+q2
2)

3
2
− µ q1−1+µ

((q1−1+µ)2+q2
2)

3
2

−2q3 + q2 − (1− µ) q2

((q1+µ)2+q2
2)

3
2
− µ q2

((q1−1+µ)2+q2
2)

3
2

 , F1(q) =


0
0
1
0

 , F2(q) =


0
0
0
1

 ,

The maximal thrust allowed by the engine is given by |u| which is assumed to be bounded by a
parameter ε. Our objective is to compute time-minimal numerical transfers from the geostationary orbit
Og to rendezvous with TCO at specific points on their orbits for values of ε representing different thrusts.
In mathematical terms, our aim is to solve optimal control problems of the form

q̇ = F0(q) + F1(q)u1 + F2(q)u2

minu(·)∈BR2 (0,ε)

∫ tf
t0
dt

q(0) ∈ Og, q(tf ) ∈ T CO
(2.3)

where T CO is a given trajectory of a TCO and tf is the transfer time that we want to minimize. Note
that a more realistic model would take into account the spacecraft mass variation by considering the
equation ṁ = −δ|u|. This is not the case in this paper.

Applying the Pontryagin Maximum Principle (Pontryagin L.S. (1962)), it turns out that, in the normal
case, every solution q(t) of the optimal control (3.6) is necessarily the projection of an extremal curve
(q(t), p(t)) solution of the system

q̇(t) =
∂H

∂p
, ṗ(t) = −∂H

∂q
(2.4)

where the pseudo-Hamiltonian function H is defined by H(q, p, u) = −1 + H0(p, q) + ε(u1H1(p, q)) +
u2H2(p, q)) with Hi(p, q) = 〈p, Fi(q)〉, i = 0, 1, 2 Moreover, we deduce from the maximization condition
that, whenever (H1, H2) 6= (0, 0), the control u is given by ui = Hi√

H2
1+H2

2

, i = 1, 2. Substituting in

H, yields the expression of the real Hamiltonian function Hr(z) = −1 + H0(z) + ε((H2
1 (z) + H2

2 (z))
1
2 )

which is identically zero on [0, tf ] since the transfer time is not fixed. Defining the switching surface
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Σ = {H1(p, q) = H2(p, q) = 0}, an element (q, p) ∈ R8\Σ is said to be of order 0. According to Bonnard
B. (2005), we state that every normal time-minimal trajectory is a concatenation of a finite number of
arcs of order 0 such that the control u instantaneously rotates by an angle π at junction points.

Such extremal solutions can be computed using a shooting method which relies on determining a
right initial condition (q0, p0) so that the corresponding solution of the Hamiltonian system (q̇(t), ṗ(t)) =
−→
Hr(q(t), p(t)) satisfies the required final condition. Since the value of q0 is fixed, our goal is to determine
an appropriate value of p0. Rewriting the required boundary conditions as R(q(0), p(0), q(tf ), p(tf )) = 0,
the boundary values problem we have to solve is{

(q̇(t), ṗ(t)) =
−→
Hr((q(t), p(t)))

R(q(0), p(0), q(tf ), p(tf )) = 0.
(2.5)

which is equivalent to finding a zero of the so-called shooting function E defined by

E : (p0, tf ) −→ R(q(0), p(0), q(tf ), p(tf )). (2.6)

In that case, the condition Hr = 0 is crucial and provide one of the needed equations so that solving
the shooting equation is a well-posed problem. Moreover, since ur(q, p) is smooth, so is E and we can
find such zeros using a Newton type algorithm, provided we can approximate them accurately enough.
The higher the maximum control bound ε, the shorter the corresponding transfer time and the Newton
algorithm converges easily to a solution of the shooting method whichever initial guess is used. Therefore,
we first compute a reference extremal whose projection on the phase space is a candidate to be a high-
thrust time-minimal transfer. A discrete homotopic method on the parameter ε, based on following a
smooth path of zeros (Bonnard B. (2010)), is then used to determine solutions of the shooting function
for smaller control bound and thus candidates to be low-thrust time-minimal transfers from Og to T CO.
Finally, the local optimality of such transfers is checked using the second order condition connected to the
geometric notion of conjugate point (Bonnard B. (2007)). Let us define t1c the first conjugate time along
a transfer q(t). It is known that q(t) is locally optimal on [0, t1c) in L∞ topology; if t > t1c then q(.) is
not locally optimal on [0, t]. The conjugate times can be easily numerically computed as they correspond
to the times at which the exponential mapping expq0,t : p0 −→ q(t, q0, p0) is not an immersion at p0 (
Bonnard B. (2007)).

3 METHODOLOGY AND RESULTS

Among a database of 16923 TCO numerically simulated spatial trajectories, we selected the 383 that
come within 0.1 lunar units of the well-known collinear equilibrium point L1 of the Earth-Moon system
( Szebehely V. (1967)), a Lunar unit being the distance between the Earth and the Moon. The value
0.1 is arbitrary but small enough to represent a neighborhood of L1 in which such trajectories can be
approximated by a solution of the spatial restricted 3-body problem. Among them, we examined the 100
with the smallest absolute perpendicular coordinate to the plane defined by the rotation of the Moon
around the Earth, at the time they are nearest L1. This choice was made, as a first approach, to guar-
antee that the dynamic of the considered trajectories with respect to this coordinate could be neglected
so that they could be approximated by their two-dimensional projection on the plane of rotation of the
Moon for a significant interval of time. The projections on this plane have been calculated at every time
by taking into account the position of the Moon in its orbit and the inclination of this orbit. The result-
ing bi-dimensional trajectories have then been expressed as trajectories in the planar restricted 3-body
problem by using the usual change of variable from the inertial to the rotating frame.

We set the point q0=(0.0947, 0, 0, 2.8792), expressed in the distance and time units of the restricted
3-body problem, as the initial position and velocity of the spacecraft on the geostationary orbit. For
each of the 100 TCO trajectories that have been selected, we fix the final condition as the position and
velocity as the one of the TCO when it is nearest to L1. Our computations were based on using the planar
time-minimal transfer from the geostationary orbit to L1 (Picot G. (2012)), associated with a maximum
thrust of 1N for a spacecraft of 350kg, to initialize the shooting method. This provided us with a col-
lection of 2-dimensional extremal transfers to the TCO. Each one of these was then used as the starting
point of a discrete continuation method, whose homotopic parameter was the engine propulsion, so as
to compute iteratively extremal transfers to TCO with lower thrust. At each step of the continuation
algorithm, the first conjugate time along every generated extremal was computed to ensure, according to
the second order condition, that it was locally time-optimal. These computations were carried out using
the software HAMPATH (Caillau J-B. (2012)) that computes solutions of indirect methods in optimal
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control and checks the second order optimality condition when smooth optimal control problems are
considered. As a result, the continuation algorithm provided 16 time-optimal transfers to distinct TCO
associated with a propulsion bound of 0.2N, that we arbitrarily defined to be the lowest acceptable thrust
to match the TCOs position and velocity. The minimum time needed to reach a TCO has been found
to be 9.9921 days with a maximum thrust of 1N and 46.7203 days with a maximum thrust of 0.2N. Let
us point out that 14 of the computed optimal transfer times associated with a maximum thrust of 0.2N
turned out to be shorter than the interval of time over which the motion to the TCO had been originally
simulated. This remark is crucial from the practical point of view since it suggests that the detection
time of some TCO, before they reach a small neighborhood of the point L1, would be large enough to
envision low-thrust time-optimal rendezvous missions with such objects.

Figure 5.1 displays several examples of locally time-minimal transfers from the geostationary orbit to
TCO, associated with thrust of 1N and 0.2N, represented in the rotating frame of the restricted 3-body
problem. Comparisons between the transfer time tf and the first conjugate time t1c along extremals are
provided in Figure 5.2.

4 CONCLUSION

This preliminary study provides with the first numerical approximations of time-optimal transfers to
TCO. Providing a precise-enough initial guess is always the biggest issue when using indirect methods
to solve optimal control problems. In that sense, the transfers we computed here are extremely valuable
since they can be used as initializations for future work. We can use these initializations to study transfers
to the entire database of TCO, and to widen our target set to including whole segments of the TCOS
trajectories, rather than only the points closest to L1. Furthermore, we have already begun to develop
more realistic studies of optimal transfers to TCO, such as the three-dimensional problem. We are also
working to consider the more-general N -body problem to take into account the influence of others planets
of the solar system on the motion of the spacecraft.
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(c) TCO 03813 , 1N, tf=9.982 days
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(d) TCO 03813, 0.2N, tf=55.3592 days
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(e) TCO 16803, 1N, tf=10.588 days

Figure 3.1 Locally time-minimal transfers to 3 distinct TCO, associated with different thrusts, in the rotating frame. In

each figure, the Earth (left) and the Moon (right) are shown as black circles and the point L1 by a star. The blue/green

trajectories represent neighborhoods of the TCO trajectories, displayed in the restricted 3-body problem. The red/yellow

trajectories represent the optimal rendezvous from the geostationary orbit to the TCO.



36

TCO tf for thrust=1N (d) t1c for thrust=1N (d) tf for thrust=0.2N (d) t1c for thrust=0.2N (d)

13933 10.606 13.924 58.768 64.426

11249 9.901 13.747 57.636 66.105

10585 9.997 30.474 55.011 119.644

16803 10.588 14.815 65.751 90.762

5481 10.900 25.722 58.781 100.056

8962 11.717 ∞ 59.384 76.056

12028 13.237 22.468 60.851 147.604

3813 9.982 13.895 55.359 ∞

14487 10.012 22.308 57.866 ∞

57 11.015 12.372 46.720 49.266

7548 12.027 17.460 58.685 ∞

3867 10.122 16.427 54.450 61.157

4980 11.305 ∞ 57.314 61.572

10979 9.999 ∞ 58.316 ∞

651 19.179 ∞ 72.196 ∞

Figure 3.2 Validation of the second order condition for several values of the thrust, by comparing the transfer time tf
and the first conjugate time t1c along extremals. The symbol ∞ is used when no conjugate time appears on the interval

[0, 15tf ].
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Abstract: The aim of this article is to investigate the new direction of the subgradient extragradient
method for solving variational inequalities. In our algorithm, the new direction is related with the fixed
point of a nonexpansive mapping and the current point. Simultaneously, the weak convergence theorem of
the algorithm is established.

37





Proceedings of the 5th International Conference on Optimization and Control with Applications
(OCA2012), Beijing, China, December 4-8, 2012

14 PERFORMANCE OF A DIFFERENTIAL
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SEARCH THROUGH PARALLEL COMPUTING AND
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Abstract: Differential Evolution is a population-based stochastic evolutionary optimization algorithm with
a high convergence speed. The choice of parameters values for the algorithm influences its performance, i.
e., the number of iterations necessary to reach a satisfactory result. A modified ED/rand/1/Bin strategy,
which includes a high initial population that rapidly diminishes to a pre-defined target value by using
elimination criteria, was implemented in the LabVIEWTM ’G’ language. This algorithm was run on a
parallel computing basis, using a network of desktop computers in which the master coordinator splits
the computational task and distributes it to the enabled stations. The system was set to repeatedly solve
the Ackley benchmark function problem in the —R20, using combinations of parameters defined through
the application of a Design of Experiments methodology. The algorithm performance under the different
conditions is analyzed, and a best set of parameters could be drawn.

Key words: Differential evolution; Optimization; Design of experiments; Parallel computing.
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Abstract: Robots are created to track a desired path or follow instructions. When their structures
are developed to be similar to the human body and to replicate human activities, to understand the force
capacities of humanoid robots are essential to perform optimal movements. Once contact forces are applied
by a humanoid robot the static equilibrium is affected and, depending on the magnitude of this force, the
robot can lose its stability and fall down. To correctly understand this dynamic it is necessary to create a
static model, to optimize the force capacity and to develop a software program capable of simulating tasks
and calculating the mechanic efforts on the robot’s joints. Based on previous studies where humanoid robots
models are discussed and information about geometry and structure were provided, this work presents a
generic model of a robot. The model proposed in this work was created by defining equations that operates
the static balance. Additionally, the differential evolution method was adopted to optimize the force capacity
of the robot. Considering the mathematical complexity involving the equations, this paper also describes
the development of a simulation tool to determine the acting forces and moments in generic situations.
Evaluating the simulation results, it is possible to analyze the most relevant factors on robots performance
when employed to accomplish tasks that need interaction efforts with the environment. This study could
be used as a reference to new project developments where the efforts distributions on the joints should be
taken into account to build new robots models. Moreover, the generic equations presented in this work
can be applied as well as on civil construction until to help senior citizens or with some kind of physical
incapacity.

Key words: Human robot; Static balance; Optimization.

1 INTRODUCTION

The development of robots that could replicate the human movements is constantly in evidence into
scientific and industrial researches and the possibilities to reduce human efforts, especially those associated
to dangerous and to high strength activities are evident. Moreover, humanoid robots can be used to help
seniors citizens or with some kind of physical incapacity.

Due to the wide applicability range of humanoid robots, distinct approaches to solve the movement and
force capacities problems appear in the literature and many research groups are currently been working
on this subject (Wu et al., 2011; Kim, 2011; Alouloua and Boubaker, 2012; Tax et al., 2012).
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The approaches to develop humanoids are strongly different in their mechanical structure, their sensing
and actuation capabilities and the way they process data to maintain the movement stability and to op-
timize force. Many techniques from conventional mathematical methods, such as quadratic programming
(Zhang et al., 2004) and nonlinear programming, have been proposed to deal with force optimization
problem in robotics. Conventional optimization techniques take in advantages in computing speed and
convergence with the objective function of continuous, differentiable and single peak value. However,
most methods often give a local rather than a global optimum solution.

Increasing interests in biology motivated the use of adaptive systems to solve real world optimization
problems. These techniques are been adopted to overcome the inherent limitations of conventional opti-
mization approaches, metaheuristics like evolutionary algorithms (EAs) (Kicinger et al., 2005; Fleming
and Purshouse, 2002; Gen and Yun, 2006; Tiwari et al., 2002) have been developed to solve many types
of optimization problems in robotics, see details in (Wang et al., 2008; Rout and Mittal, 2008; Alici et
al., 2006; Bergamaschi et al., 2008; Kalra et al., 2006).

This work proposes the solution of the static force capability optimization problem of humanoid robots
by using the Differential Evolution (DE) technique. The solution takes into account the robot joints
actuation limits and all possible configurations. Next section presents the humanoid robot model and
the main characteristics of the Differential Evolution approach are addressed in the sequence. Section 4
reports the aspects of the software that was developed to integrate the robot’s model and the optimization
algorithm. The next two sections illustrate tests and results using the software in order to provide the
best position for the robot’s parts in order to optimize the force considering a specific case study. Finally,
the conclusions are addressed at the last section of the paper.

2 HUMANOID ROBOT MODEL

This section describes the structural characteristics of the humanoid robot presented in this paper. It
also shows how the geometry of a limb is set and how the static balance can be calculated.

2.1 Geometry

A humanoid robot is a mechanical structure that contains upper and lower limbs. The limbs are
composed by revolute joints and links. The joints are supposed to provide torque while links need to
support all the forces internally transferred up. The resulting wrenches in the joints are caused by contact,
reaction and gravity forces.

Figure 2.1 Humanoid robot model.

The model adopted in this study simulates a human body, which contains two upper limbs and two
lower ones. Moreover, it contains a trunk that connects both shoulders and hips as it can be verified in
Fig. 2.1. All approaches in this study are based on the two-dimensional sagittal plane as presented in
Fig. 2.2. Considering a fixed trunk and free contact point or in the same way fixed contact point and
free trunk position, it can be noticed that in both cases there are infinite settings configurations (position
and orientation) for the robot.

In order to define a robot configuration, it is necessary to specify the contact points. After that, the
middle joints need to be set. It can be made by using the trigonometric relations as showed in Fig. 2.3,
where d1, d2 e d3 are the lengths of the links, D is the distance between the contact point and the limb’s
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Figure 2.2 a) Infinite configurations of the robot considering a fixed trunk angle; b) Infinite configurations of the robot

considering fixed contact points.

source and θ1, θ2 and θ3 are the angles. It can also be verified that there are two possible settings for
the limbs, it depends if the configuration is for the upper or for the lower one. If the considered limb is
the upper, then the middle joint is set backward and for the latter case it is set forward.

Figure 2.3 Geometric limb model.

2.2 Static Balance

After the geometry definition, it is necessary to evaluate the static balance. In this way, first is
calculated the mass center of the robot. As each link is considered as a rectangle, the mass center has
matched with the geometric center. Thus, there is a weight to be considered in the middle of each link
that affects the balance. As a result, there is an equivalent mass center around the robot (not necessarily
inside of it) which generates a resulting force that represents the entire robot weight.

In the sequence, the next step is to find the Zero Moment Point (ZMP ), which is defined as a reference
point for the balance of the bipedal. The ZMP is defined by the projection of the center of gravity on
the ground. The sum of the moments generated by all the external forces acting on the robot in relation
to the ZMP is equal to zero (Torres, 2006). The Zero Moment Point can be expressed by:

XZMP =
MgD +

∑n
i=1 Fidi

Mg +
∑n
i=1 Fi

, (2.1)
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where M is the total mass of the robot, g is the gravitational acceleration, D is the mass center of the
robot, i is the index that represents each of the n forces in the contacts, F is the contact forces and d is
the distance between the force and the reference point.

By using the humanoid geometry, mass center and the Zero Moment Point, the static balance can be
established through the free-body diagram of all joints or also by the Davies’ Method (Tsai, 1999).

2.2.1 Davies’ Method. First of all, the Davies’ Method consists on the use of graphs for representing
systems. The balance equations are gotten from the Kirchhoff-Davies cutset law, which establishes that
the algebraic sum of the efforts in each cut is zero (Erthal, 2010). Further, each cut provides a subset
which preserves the balance.

As a result of the method, the balance equations are written in the matrical format where the vectors
of the efforts have the same reference point. In addition, the already known efforts are called primary
variables, while the secondary ones are calculated forward for keeping the balance (Weihmann, et al.,
2012).

The advantages of the Davies’ Method when compared to the Free-Body Diagram technique are: the
clear formalism to solve the static analysis, the easiness of including new additional external forces and
also the matrical representation. Thus, these characteristics are used to justify the employ of the Davies’
Method along this work. More information about the Davies’ Method can be found in (Cazangi, 2008).

3 DIFFERENTIAL EVOLUTION

This section provides a brief overview about the Differential Evolution (DE) optimization method,
which is a population-based stochastic method created by Ken Price and Rainer Storn (Storn and Price,
1997; Price et al., 2005). The DE is a widespread method with an approach that can be easily learned
by any engineer or student looking for a simple optimization method. It was chosen due to the fact
that the modeling procedures of a humanoid robot generates a group of equations that results in a non-
linear function based on equations to define the geometry, the static balance and the force capability
optimization. Furthermore, the cost function evaluated inside the DE contains local minimums that
difficult the optimization. For solving this problem the crossover rate is set and the DE method can be
used to find the global minimum.

The method requires the setup of some parameters and the definition of an objective function that
describes the problem to be optimized (Storn and Price, 2005). The first step to apply the method is to
ascertain the decision variables that should be modified during the solution of the optimization problem.
The main idea is to find the best values to minimize the objective function. Further, it is required to
specify the boundary conditions, that are important to avoid unexpected results.

In the next step, it is necessary to define the key parameters accountable to handle the execution of
the method. The first one is the population size (N), which means the number of individuals, each of
them containing a set of decision variables. The following parameter are: the mutation factor (MF ), the
crossover rate (CR) and the stopping criterion (tmax).

Finally, it is needed to generate the cost (or objective) function which must be minimized. It contains
a sequence of treatments for the population being tested. These treatments are both the calculation of
the result for population and the preset penalties for those results. These penalties are applied when the
population yields unfavorable results.

The execution sequence of the method proceeds by following steps:

1. N groups of randomly-generated solutions are created between its boundary constraints. It com-
poses a population and each group is called individual;

2. The cost function value is calculated for each individual;

3. A mutation is executed and a new population is generated, where each new member is descendent
from a member of the last population;

4. The cost function value is calculated to the mutant population;

5. Both values calculated are compared and only the best individuals are kept;

6. Update the generation’s counter and;

7. Loop to step 2 while the stopping criterion is not met or until the maximum number of iterations
be reached.
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4 SOFTWARE DEVELOPMENT

Based on the robot model described in previous sections an object-oriented software was created
to manage and process all information about the humanoid robot structure, its static balance and its
static force capacity. By using object-oriented concepts it is possible to develop larger codes and reduce
the complexity in order to model real situations of interactions between a humanoid robot and the
environment. Considering this application, both environment and robot became a class (objects) in the
software and its instances were used to compose and simulate a real task.

The best advantage of object-oriented programming is the possibility to separate the objects by their
features. It makes the software flexible and fitter to get updated (McLaughlin et al., 2006). Furthermore,
it provides a clean script that avoids time-loss during the development process.

The interface was designed in MATLAB in order to simplify the usage. Forms that allow changes
in the robot features by the users were also been provided. Further, it is possible to lay the humanoid
under external forces with different values and establish the robot’s static balance. Moreover, the user
can order the optimization of the humanoid’s static force. The results are shown in graphics and text
fields to facilitate the analysis.

5 TESTS AND SIMULATIONS

With the objective of testing the software and evaluating the optimization technique on this problem,
a case study was proposed. It consists in the search for the largest force on the horizontal axis to push
an object. Its configurations are shown in Tab. 5.1, where the mass and the length of the links and the
maximum torque of the joints are specified.

To optimize the static force, the key parameters and the decision variables was chosen strategically as
it is shown in Subsection 5.1. The results are carefully described in Subsection 5.2.

Table 5.1 Setup of the humanoid.

Links Mass (kg) Length (m) Joints Maximum Torque (N.m)

Forearms 1.0 1.0 Fists absent
Biceps 1.0 1.0 Elbows 10.0
Trunk 2.0 2.0 Shoulders 20.0
Thighs 2.0 1.2 Hips 40.0
Calfs 1.5 1.2 Knees 45.0

Ankles absent

5.1 Simulation Parameters

The setup of the optimization method follows the sequence described in Section 3. Thus, the decision
variables defined are the contact points between the robot and the environment and the force on the
horizontal axis. Assuming that both shoulders have the same position in the plane, the geometric limits
of the contacts are equal. The same situation occurs with the hips and consequently with the ankles.

As an initial approach, the friction forces between fists and the object was neglected. Hence, the
only vertical forces are the weight of the robot and the reaction forces on the ground. Considering that
the friction force on the ground is the support of the robot horizontally, it is possible to evaluate the
force limit: static friction coefficient multiplied by normal force. As the coefficient adopted is µ = 0.5
and the normal force calculated is N = 127.4N , the maximum sum of the forces sustained by feet is
FXmax = 63.7N .

After defining the forces described above, the control parameters could be set (Storn and Price, 1997).
The population size adopted was ten times the number of decision variables (Liu and Lampinen, 2005),
resulting in N = 60. The mutation factor adopted was MF = 0.8 and the crossover rate was CR = 0.5 (
Weihmann, et al., 2012). The stopping criterion tmax was chosen as 500 and can be changed if convergence
is not achieved.

The next step is the cost function definition, which is composed by the optimization function Fwrench
and its constraints Fpenalties. As the objective is to optimize the maximum horizontal forces FX1 and FX2

and considering that the DE method searches the global minimum, the main equation for this problem
can be defined as presented on Eq. 5.1.
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Fwrench =
1

|FX1
|

+
1

|FX2
|

(5.1)

where FX1
and FX2

are the horizontal forces in the contact.
The conditional penalty installment is composed by the sum of forces in the opposite way to the

intended (Eq. 5.2), the joints overloaded (Eq. 5.3), the contact points that are out of the range limits of
the limbs (Eq. 5.4), the middle joints through the object or the ground (Eq. 5.5), ZMP out of polygon of
stability (Eq. 5.6) and the insufficient friction force on the ground (Eq. 5.7).

Fforces = Kw(|Fx1
|+ |Fx2

|) (5.2)

Ftorques = Kt(

n∑
i=1

|Ti|) (5.3)

Fcontacts = Kc(

n∑
i=1

|CPi|) (5.4)

Fjoints = Kj(

n∑
i=1

|MJi|) (5.5)

Fzmp = Kz|ZMP − x1| (5.6)

Ffriction = Kfµ (5.7)

where Kw, Kt, Kc, Kj , Kz and Kf weight the contributions, T are the torques in the joints, CP are the
contact points, MJ are the middle joints, ZMP is the Zero Moment Point, x1 the position of the back
foot on the ground and µ is the static friction coefficient. Assuming Eq. 5.8, the cost function can be
described by Eq. 5.9.

Fpenalties = Fforces + Ftorques + Fcontacts + Fjoints + Fzmp + Ffriction (5.8)

Fcost = Fwrench + Fpenalties (5.9)

In this work, Kw=Kt=Kc=Kj=Kz=Kf=100, that is just a high valued constant used to emphasize
the penalty because all the situations quoted are worthless. The strategy employed was rand/1/bin
and seven different angles between trunk and horizontal axis were adopted in order to understand how
this parameter affects the efforts and the force capability. The method was executed on a 3.40GHz i7
processor with 8GB of random access memory.

5.2 Results

In this section the results of the DE method applied in the static force capability of the humanoid
robot are reported and discussed. The adopted case study was described above on Section 5.1.

According to the results reported in Tab. 5.2, it can be seen the mean minimum value found in
each situation, the total horizontal force achieved and also the total time consumed by each of the 700
optimization runs (totaling 350, 000 cost function evaluations).

The best result was reached with the angle 1.047198 radians and the resultant torque in each joint
associated to this case is shown in Tab. 5.3. It can also be seen in Tab. 5.3 the usage percentage of each
joint. Notice that some of it are almost fully loaded while others are nearly unladen. It is not a profitable
circumstances in a robot project design view.

The final configuration (position) of the robot is shown in Fig. 5.1, where it can be seen that the Zero
Moment Point appears in its limit, which is the same location where the lower limb 1 touches the ground.
It means that the robot uses all force capacity offered by the current configuration. Considering that the
robot mass does not change, there are two ways to upgrade the horizontal resultant force: by improving
the friction on the ground or by changing the geometry, probably by tilting the trunk.
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Table 5.2 Optimization results using Differential Evolution (DE).

Angle (rad) Minimum ($) Total force (N) Time elapsed (m)

1.047198 0.0734 48.3378 17.7179
1.134464 0.0768 46.3040 17.7157
1.221730 0.0827 44.2641 17.7094
1.308997 0.0921 39.8545 17.7278
1.396263 0.1057 36.7777 17.6923
1.483530 0.1107 34.2297 17.6992
1.570796 0.1250 30.2353 17.7287

Table 5.3 Resultant torques of the best angle.

Joints Available torque (N.m) Required torque (N) Availed Torque(%)

Elbow 1 10 8.0957 80.9567
Elbow 2 10 9.9122 99.1228

Shoulder 1 20 -19.9712 99.8560
Shoulder 2 20 -19.8315 99.1577

Hip 1 40 8.1443 20.3607
Hip 2 40 -2.4975 6.2438

Knee 1 45 -4.1487 9.2195
Knee 2 45 32.5462 72.3248

Figure 5.1 Robot’s optimal position.

6 CONCLUSION

This work presented an initial approach for humanoid robots modeling with the purpose of describing
its interactions to the environment by using the static balance equations. Considering external forces,
the optimization of the static force capacity by using the Differential Evolution method were performed
in order to determinate the optimal robot position to maximize the efforts performed by its joints and
links within the structure limitation.

Although the DE is a highly assured and widespread method, it is evident the importance of comparing
the DE results in terms of computational effort and optimization efficiency to another optimization
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method, mainly because it’s just the beginning of a wide range of research on humanoid robots, which
can also have a non-static approach. Moreover, the DE optimization method showed high percentage of
efficiency in this application considering that nearly values were found in several simulations.

In the sequence of this work, both comparisons to another optimization method and reduction of the
algorithm processing time will be the main objectives of the authors’ research. Parallel programming
will be used to almost reach the entire processor capacity and to reduce the algorithm processing time.
In a project design view, the joint torques optimization to reduce production costs can be identified as a
potential application possibility of the software developed in this research.
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Federal University of Paraná, Curitiba, 81530-900, Brazil
cDepartment of Management

Federal University of Itajubá, Itajubá, 37500-903, Brazil

Abstract: Linear Programming models (LP) is a widely used framework to address the problem of
production-planning, which has been studied for several decades. However, standard LP models presents a
number of drawbacks in that their recommendations are inconsistent with the queueing behavior observed in
most production facilities. One such drawback is that the dual variables associated with capacity constraints
will only take nonzero values when the resource is fully utilized, contradicting both theoretical results
from queueing theory and practical experience from the shop floor. Another serious drawback is related
to lead time. Most LP models assume that a resource can maintain a constant lead time regardless of its
workload, again contradicting basic queuing insights. Practical experience and queuing theory show that the
performance of production system is affected by the loading of the system related to its capacity, in particular
the lead time, i.e., the mean time between the release of work for production and its completion, increase
nonlinearly with increasing resources utilization. Thus, deterministic models for production planning suffer
from a problem that in order to match demand and supply they need to consider lead times to plan releases,
but in doing so, they determine levels of resources utilization, which, in turn, determines the realized lead
time of production. A number of iterative approaches has been proposed to deal with this circularity. These
involve assuming fixed lead times to obtain a release plan, and then simulating the release plan to obtain
realized lead times estimates. The estimates are then used to generate a new release plan, until the procedure
converges. Nevertheless, at the best of our knowledge the convergence of these approach is not yet very
well established. In this paper we address the pointed circularity through the use of clearing function, first
introduced by Graves, Karmarkar, and Srinivasan et alli, and more recently studied by Asmundsson, Kefeli
et alli, Irdem at alli, and Uzsoy and Sampaio, just to name a few. The clearing function is an increasing
bounded concave function that expresses the expected throughput of a capacitated resource over a period
of time as a function of the average Work–In–Process (WIP) level in the system over that period. The
classical scheme used to decompose this problem, however, does not works properly in presence of nominal
capacity constraints, and since CF function is a kind of capacity constraint, the classical scheme does not
work properly in presence of clearing function, as we can see in Sampaio, thus requiring a new decomposition
scheme, which is actually the problem we address here. The scheme we present, which works properly in
presence of clearing function, combines decomposition with penalty function for the subproblems, which
assure a quite balanced production related to capacity at each period in the planning horizon. The whole
idea of the approach is to penalize unbalanced production: the more a product of high profitability is
produced the more a product less profitable becomes attractive to be produced.
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17 EXPERIMENTAL OPTIMIZATION OF THE

MACHINING P ARAMETERS
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Abstract: The surface roughness is one most important requirement in the machining process. The
determination of machining parameters is an important stage in the manufacturing process and tool life.
In this paper we propose to optimize machining parameters of iron in milling process in an industrial plant
agricultural machine using response surface methodology (RSM). We calculated the effects of machining
parameters: speed, feed and depth of cut on the response variables about surface roughness and cycle time
of the milling operation. Applying this RSM allowed to plan and execute test efficiently, modeling the
response variables according to adjustment of process parameters and thus determine the optimal setting of
parameters that optimizes simultaneously the surface roughness and cycle time, providing to evaluate the
material loss and cost of operation.

Key words: Optimization; Response surface methodology; Machining; Milling process.
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Abstract: The modeling and optimization of processes is a quite powerful strategy, since it allows in-
vestigating variables that influence quality characteristics of the product or manufacture processes. The
literature seems to be more focused on the data analysis and regression model for the problem the researcher
is confronted with optimization. This paper proposes a approach for modeling and optimization of experi-
mental data in manufacture processes, reinforcing idea that planning and conducting data modeling are so
important as formal design and analysis. The manufacture case studies illustrate the strong relationship of
the results with incorporating presented approach into practice. Moreover, in this case study consolidating
a fundamental advantage of regression models and optimization provide more knowledge about products,
processes and technologies, even in unsuccessful case studies.

Key words: Optimization; Regression models; Mining process.
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Abstract: In manufacturing process there is the seasonality and it is an important point to be considered
in any decision or planning. Professionals of maintenance face tasks that range since the specification about
the more adequate maintenance modality for the system (a line production or part of it, a function of
machine), the determination and choose of critical item, the necessity of redundancy, fault cause finding
until the optimal moment of the system stop for intervention. In order to assure the accomplishment of
such tasks assertively, professionals search for tools that help them in decision-making processes. Some tools
comprehend adoption of matrix or complex mathematical models. Efficiency of these mathematical models
depends on considering all the process variables, such as: predictable or not, quantitative or qualitative, as
well as, objective or subjective. When dealing with diagnosis about the operation conditions of equipment,
failure identification and anticipation one, it is not easy to apply an algorithmic solution, because the
universe of discourse is so wide. The decision making must be based on consistent diagnosis, which must
foresee the actions or repair. These diagnostics can be based on information, heuristic knowledge, linguistic
variables, and intuitive/deductive feelings. As far as engineering is concerned, instrumentation is used to
measure, register, and control of physical variables (e.g.: temperature, strength, displacement, motion, time,
speed, acceleration, pressure, etc.) that have influence on any process or system. In this context, system is an
object to be care, an industrial process, part of this process, and machine or even a small part of it. In current
industrial society, control theory and application are of the most important technologies, since primary
processes levels moved by steam engine until current state when there is great interaction among information
systems and production processes. During all the Industrial Revolution, promoted by control theory, the
mathematical modeling of processes had been based on linear aspects. However, this transformation success
depends on the methodology of mathematical modeling used, and in the case of control theory, it came to
a stage where precision became a hard or even impossible task. Human being usually strive for modeling
mathematically the nature processes and, often, is impossible for a human operator controls several systems
without understanding about mathematics, or all involved physics details. This operator is, however, able
to handle input variables that influence the process outputs. This fundamental realization leads to a new
focus in (complex) industrial process theory where the concept of ”artificial intelligence” (AI), through of
characteristics emulation of human behavior, arose as an alternative of control and modeling. An important
fact is that mathematical modeling of industrial processes has been substituted for a modeling that makes
possible the handling of control variables in a way to reach the aimed outputs. This article proposes the
use of Fuzzy Logic as an underlying support tool for planning and decision-making for convenient moment
for maintenance in production process equipments (optimization). The work focuses that planning and
intervention decisions involve technical aspects (quantitative variables), management aspects, and cultural
values (qualitative variables). The Fuzzy rules are used as a basis for diagnosis and decision making to
determine opportune moments to apply maintenance, in order to avoid profit loss. In this way, it is shown
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that the non-availability of processes is minimized and maintenance can be set for a suitable moments in
time.

Key words: Expert systems; Maintenance strategy; Optimization; Fuzzy logic.
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Abstract: To pursuit the plant-wide optimization of mineral process, a hybrid intelligent optimization ap-
proach is proposed. The objective of optimization is that the production indices defined as the performance
related to the final product quality and production rate fall into their target ranges; whilst the decision
variables are operational indices of each unit, which is related to units’ intermediate product quality, ef-
ficiency and consumption. In this context, the domain knowledge of process engineers are mimicked and
combined with the framework in terms of feedback, prediction and feed-forward schemes so as to realize the
required optimization. The effectiveness of the proposed approach has been demonstrated by the practical
application results.

Key words: Mineral process; Operational indices; Multiobjective optimization; Dynamic tuning; Perfor-
mance prediction.

1 INTRODUCTION

Mineral processing is a production process consisting of multiple units. These units have different purposes
and perform their own manufactory tasks to make their objectives fall into the target ranges, where
these objectives are defined as the operational indices and characterize the intermediate product quality,
efficiency, consumption of each unit process. On the other hand, these units also cooperate together to
fulfill the mission of the multiple units composed process and to ensure the global production indices,
which characterize the final product quality, yield, consumption and costs, fall into their target ranges.

In recent years, the optimal operation and control with objectives of the operational indices of units
has attracted much attentionNevertheless, there is no unified method for optimal operation and control
that is applicable for all industrial processes, because it is closely connected with industry technique
knowledge.

In petroleum and chemical industries, a two layered structure consisting of real-time optimization
(RTO) and single input single output (SISO) control has been widely used to perform the optimal
operation of unit-process. RTO is a model-based method, where the precise static process models usually
are adopted, and its performance objective is the operating profit of a unit, which is a function of
controlled variables, whilst the operational indices are taken as the constraints. The decision variables
of RTO are the set-points of SISO control system and these set-points are followed by the outputs of
controlled variables to ensure the production process running on an economically optimal point, so as
to achieve the profits as high as possible . Since RTO uses static models of the concerned process, the
optimization routine could not start until the process reaches a new steady state when there are changes
in its operating conditions or when a system disturbance occurs. Therefore, the whole optimization
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process is subjected to some time delays. Indeed, the integration of RTO and model predictive control
can be used to solve the problems using long execution period and would therefore lead to inconsistency
with respect to relatively fast response of control layer during the integration between the RTO and the
control systems .

The aforementioned method needs to establish the static or dynamic models of a process and its con-
straints. And its optimization is performed in an open loop manner. Furthermore, in the complicated
industrial processes, there always exist some unmodelled dynamics and uncertainty disturbances. There-
fore, all of these make it very difficult to apply in the complicated industrial processes. In this context,
existing process operation optimal control research is very much problem based and is focused on specific
plant. For instance, proposed a hybrid supervision system which combines a nominal control with an in-
telligent control, leading to a much improved final product quality of a laminar cooling process. A hybrid
intelligent control approach for process optimal operation is proposed, which adjusts the set-points of the
control loops according to the operational indices and the operation condition in real-time and the fault
working situation diagnosis and tolerant control are considered as wellThe successful application in the
shaft furnace roasting process of mineral processing shows the effectiveness of the proposed approach.

The decision optimization of the operational indices for the industrial processed composed of multiple
units involves multi-objectives, such as product quality, yield, consumption of energy and raw materials.
At the same time, the performance, operational indices, are closely related to the domain knowledge.
And the dynamic model between the operational indices and the global production indices and the
process constraints cannot achieve easily. Also there are many uncertainties in the production conditions.
Therefore, it is very difficult to realize the optimal decision making of the operation indices using existed
optimization methods. That leads to the result that the decision making of the operational indices
can only be performed manually according to the operator’s experience, which, however, cannot ensure
optimization of the global production indices.

Motivated by this problems, a novel multi-objective hybrid intelligent optimization of operational
indices for industrial mineral processing is proposed in this paper, which combines the multi-objective
optimization, performance indices prediction and dynamic turning. The proposed approach has been
applied to a hematite iron ore mineral processing successfully and the effectiveness is proved by the
application results.

2 PROBLEM DESCRIPTION

The procedures of a mineral processing production process of hematite iron ore (as shown in Fig. 2.1)
can be divided into two sub-production line, namely the weak magnetic production line (WMPL) and the
strong magnetic production line (SMPL), according to the magnetic density of the magnetic separation
process. The weak magnetic sub-production line includes the shaft furnace roasting process, grinding
process, and weak magnetic separation process whilst the strong magnetic sub-production line consists
of the grinding process, strong magnetic separation process. In addition, there are the concentrated ores
condensing and tailing condensing also for sharing by the two sub-processes.

As shown in Fig. 2.2, the decision making of operational indices for the mineral processing of hematite
iron ore, which composed of multiple units that perform certain tasks, involves scheduling, technical
department, operational optimization and control system, and process control system. Scheduling de-
termines the global production indices of whole production line,Qk(k = 1, 2), Qk ∈ [Qk,min, Qk,max],
where Q1 is the product quality, the daily mixed concentrate grade, and Q2 is the daily yield of con-
centrated ore. Qk,min and Qk,max are the lower and upper limits of Qk. According to the obtained
global production indices, Qk(k = 1, 2), the technical department generates the operational indices of
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each unit process rij , rij ∈ [rij,min, rij,max], where represents the number of units and represents the
product quality, efficiency and consumption index, respectively. Taking the operational indices as the
target of operational optimization and control system of ith unit, it calculates the set-points of control
loops for process control system, and control system ensures the output of the controlled variables to
follow up prescribed set-points, so as to make the actual global production indices into its target range.

In this case study, the global production indices provided by the scheduling system of mineral process
are daily mixed concentrate grade and daily yield of concentrated ore . The operational indices decided by
the technical department are the magnetic tube recovery rate (MTRR) , the grinding particle size of weak
magnetic production line (PSWMPL) , the concentrate grade of WMPL (CGWMPL) , the tailing grade
of WMPL (TGWMPL) , the grinding particle size of strong magnetic production line (PSSMPL) , the
concentrate grade of SMPL (CGSMPL) , the tailing grade of SMPL (TGSMPL) . Then these operational
indices are sent to the operational optimization and control system and transferred into the set-points of
control systems. The set-points of control systems are shown in Table 1.

3 OPTIMIZATION OF OPERATIONAL INDICES

To solve the problem, a novel strategy of operational indices optimization is proposed as shown in Fig.
3.1, where the evolutionary algorithm is combined with the case-based reasoning (CBR) to generate the
near-optimal solution. Then the performance prediction, evaluation and dynamic tuning are adopted
to solve this optimization problem. It is composed of four modules (see Fig. 3.1), including a module
of optimization operational indices , a predictive model for production indices, a priori-evaluation and
a posteriori-evaluation with dynamic tuning module. The purpose of this structure is to cope with the
uncertainty caused by vk.
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Table 2.1 The operational indices and set-points of control system of mineral processing

Unit Performance

Shaft
furnace
of
WMPL

The operational indices:
r1: Magnetic tube recovery rate (MTRR)

The set-points of control system:
y∗11: Temperature (◦C)
y∗12: Flow rate of reducing gas (m3/s)
y∗13: Discharge time (s)

Grinding
of
WMPL

The operational indices:
r2: Grinding particle size (PSWMPL)

The set-points of control system:
y∗21: Feed rate of raw ore (T/h)
y∗22: Flow rate of feed water (m3/s)
y∗23: Density (%)

Weak
magnetic
separation

The operational indices:
r31: Concentrate grade (CGWMPL)
r32: Tailing grade (TGWMPL)

The set-points of control system:
y∗31: Density of feed ore pulp (%)
y∗32: Electricity currency (A)
y∗33: Flow rate of water (m3/s)

Grinding
of SMPL

The operational indices:
r4: Grinding particle size (PSSMPL)

The set-points of control system:
y∗41: Feed rate of raw ore (T/h)
y∗42: Flow rate of feed water (m3/s)
y∗43: Density (%)

Strong
magnetic
separation

The operational indices:
r51: Concentrate grade (CGSMPL)
r52: Tailing grade (TGSMPL)

The set-points of control system:
y∗5 : On/off of the machines
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A detailed description for each module is discussed in the following.
1) Optimization of operational indices: Determines the near-optimal operational indices according to

the targets of production indices Q∗k and the constraints (??)-(??).

2) Predictive model for production indices: Predicts the production indices Q̂k according to the near-
optimal operational indices rij from the optimization part and the boundary conditions B.

3) Priori-evaluation and dynamic tuning: Produces the regulation value for the operational indices
according to the targets Q∗k and predictions Q̂k(t) of the production indices.

4) Posteriori-evaluation and dynamic tuning: This unit calculates the correcting value ∆r(T ) for the
operational indices using the error between the targets Q∗k and the actual values Qk(T ) of the production
indices. Here, T is the sampling (or assay?) period of the production indices.

Finally, the operational indices of each unit can be generated as shown in Fig. 3.1.

4 APPLICATION RESULTS AND ANALYSIS

The decision making system of operational indices for the mineral processing of hematite iron ore is de-
veloped. This system consists of the optimization of operational indices and five operational optimization
& control systems of unit-processes which are the shaft furnace, the grinding unit of SMPL and WMPL,
the strong magnetic separation unit and the weak magnetic separation unit. The operational indices of
each unit and the set-points of control systems are shown in Table 2.1.

The industrial application results over one week’s operation are given when the 8 series of the produc-
tion are all in the normal condition. The sampling and statistical periods of all the indices are of two
hours.

Over one week’s operation, it is can be seen that when the production conditions vary the proposed
approach can provide the optimal operational indices and are taken as the targets of the lower level
systems. The performance of the proposed approach is superior to that of the manual decision making.
The operational indices r1, r2, r31, r4 and r51 are enhanced by 2, 1.98, 1.26, 1.49 and 0.57, and r32 and
r52 are cut down by 0.69 and 0.31, respectively. This improvement(or reduction) leads to the finally
improvements of the daily mixed concentrate grade and daily yield of concentrated ore of the whole
production line. The statistical analysis results of one month show the averages of the daily mixed
concentrate grade and daily yield are improved by 0.57% and 132.37t/d, respectively, as compared to
those of manual operation.

5 CONCLUSION

Manual decision making of the operational indices cannot ensure global optimization of the industrial
process. To solve this problem, a hybrid intelligent operational indices optimization approach is proposed.
If the operating points vary or uncertain disturbances occur, the proposed approach will automatically
adjust the operational indices of each unit-process. The modified operational indices are then taken
as the targets and are tracked by the lower level systems to realize production’s global optimization of
mineral process. The real application results shows the effectiveness of the proposed approach and the
high potential of being further applied in the operational indices optimization of other complex industrial
processes under dynamic environment.
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21 TYPICAL OPTIMIZATION PROBLEMS AND ITS

ENGINEERING

APPLICATIONS IN CHEMICAL PROCESS

Wenli Du*a, Weimin Zhonga, Feng Qiana
aKey Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education

East China University of Science and Technology, Shanghai,200237,China

Abstract: Due to the shortage of energy, increasingly tight regulation on environment control and glob-
alization of competition on the product price and quality, the development of chemical industries are facing
great pressure. Optimization technique is the critical engineering method to solve such problems, which is
able to effectively decrease production cost and satisfy various constrains simultaneously by improving the
plant design and operation related parameters, and therefore promote the efficiency and profit. However,
with the increase of the optimization scope, a great deal of new problems and difficulties concerning the op-
timization objective and problem have been brought up, such as, that the frequent variation of the feedstock
and the raw material composition and property have the significant influence on the production efficiency.
Another difficulty could be that in the optimization process not only the requirements on the maximization
of the product quality and efficiency should be satisfied, but the short or long term performance indexes
concerning the equipment safety and operation efficiency should also be taken into consideration. Since
most of these types of problem are NP-hard, it is always difficult to solve them especially in the case of
large-scale, complex constrains and uncertainty. Therefore, searching of the optimal operation condition
for the large scale industrial production process puts forward the new challenge for the real time optimiza-
tion theory and method. Regarding to the typical problems in chemical production process together with
practical industrial application cases, this paper gives the application state of the typical cases including
the multi-objective based optimization for the p-xylene oxidization process, MILP (Mixed Integer Linear
Programming) problem based optimization for energy usage of the steam network, and grade change opti-
mization for TE process on the basis of intelligent approach for dynamic optimization. In the last, the key
problems and difficulties existing in the current engineering optimization are analyzed, while the research
direction in future are proposed, that is, the research on system modeling with merge of process mechanism,
knowledge and operation information, research on integration of industrial process control and optimization,
and research on multi-objective optimization method dealing with general behavior of the industrial process
system.

Key words: Engineering Optimization; Real Time Optimization; Optimization Algorithm; Chemical
Process.
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22 PARAMETER IDENTIFICATION FOR ZINC

SOLUTION PURIFICATION: AN OPTIMAL CONTROL

APPROACH

Yonggang Li*a, Kok Lay Teob, Qinqin Chaia,b, Ryan Loxtonb
aSchool of Information Science and Engineering, Central South University, Changsha, China, 410083

bDepartment of Mathematics and Statistics, Curtin University, Perth, Australia, 6102

Abstract: In this talk, we will introduce an interacting continuously stirred tank (ICSTR) model with
multiple time delays for zinc solution purification process. In the ICSTR model, the time delays and the
reaction kinetic parameters are unknown. To identify these unknown parameters, a dynamic optimization
problem, whose cost function measures the discrepancy between predicted and observed system output, is
formulated. Then a computational approach based on optimal control techniques is proposed to determine
the decision variables, namely, the unknown parameters. Finally, a numerical simulation is carried out based
on experimental data collected from a zinc production factory in China. The results obtained indicate that
the proposed parameter identification approach is highly effective.

Key words: Zinc solution purification; Interacting continuously stirred tank reactors; Time delay systems;
Reaction kinetic parameter; Parameter identification; Optimal control.
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23 A PREDICTIVE-MODEL-BASED EXPERT

CONTROL SYSTEM FOR THE CONTINUOUS

CARBONIZATION PROCESS OF SODIUM ALUMINATE

SOLUTION

Xiaoli Wang*a, Chunhua Yanga, Weihua Guia and Zhikun Hua
aSchool of Information Science & Engineering, Central South University

Changsha 410083, People’s Republic of China

Abstract: Continuous carbonization of sodium aluminate solution is a key process in the sintering
alumina production, whose product Al(OH)3 determines the output and the quality of alumina directly.
Precipitation ratios of all troughs should be stabilized in expected ranges and maximal ratio of the last
trough is expected to obtain Al(OH)3 particles with certain strength, size and purity. In this paper, based
on the analysis of the process mechanism, an expert control system based on neural network predictive model
is designed to stabilize and optimize the process. The expert controller is composed of main expert rules
and compensation expert rules that are based on the output of the predictive model, which are coordinated
to get the regulation values of the operation variables. An objective is established to make sure that the
regulation value is optimal so that expected maximal ratio of the last trough is tracked. And the predictive
model is based on variables clustering and PCA. Finally, the results of actual runs using the system are
presented. They show that great benefits can be obtained both in Al(OH)3 output and quality.

Key words: Sintering alumina production; Continuous carbonization process; Precipitation ratio; Expert
control; Predictive control.
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24 INTELLIGENT OPTIMIZATION FOR THE RAW

SLURRY PREPARING PROCESS OF ALUMINA

SINTERING PRODUCTION

Yalin Wang*, Chunhua Yang, Weihua Gui
School of Information Science & Engineering,

Central South University, Changsha, 410083, PRC

Abstract: As a key process in alumina sintering production, the raw slurry preparing is very important
to guarantee quality and improve benefits, which includes a blending sub-process and three re-mixing sub-
processes. In the blending sub-process, the first-time raw slurry is made by blending and wet grinding all
kinds of raw materials including bauxites, limestone, anthracite, alkali, etc. Because the qualities of the
first-time raw slurry always cannot meet the requirements of the following sintering process, the first-time
raw slurry in different tanks are re-mixed in the re-mixing sub-process. Due to instability of mine sources,
data incompleteness and large time-delay of measurement, there are many uncertainties in the raw slurry
preparing process. Considering the uncertainties and long process characteristics, an intelligent optimization
system is developed to make the raw slurry preparing process run in the optimal state.

The intelligent optimization system consists of three parts: a raw material proportioning optimization
subsystem, a re-mixing operation optimization subsystem, and an intelligent coordinator.

The raw material proportioning optimization aims to improve the first-time raw slurry quality as close to
its quality indices as possible by optimizing the raw slurry proportioning. In which, the quality indices of the
first-time raw slurry are the intermediate target which should be determined by the intelligent coordinator.
For this, in the subsystem, an integrated prediction model is first proposed to predict the quality of the
first-time raw slurry based on the compositions of raw materials and their proportioning. The prediction
model is mainly composed of the mechanical model based on the mass balance principle and the intelligent
residual compensation model based on back propagation neural networks. If there exist errors between the
quality prediction and the quality indices, a multi-objective hierarchical expert reasoning strategy based
on the integrated prediction model and the expert knowledge is employed to adjust the set point of raw
material proportioning for the distributed control system, where the knowledge base with precedence level
is constructed to improve the reasoning efficiency, and the bias between the model prediction and the
intermediate target is used to evaluate the reasoning result.

The purpose of the re-mixing operation optimization is to provide an optimal combination of selected
tanks for the re-mixing of raw slurry so as to make the quality of re-mixing raw slurry meet the require-
ments of sintering process and to stabilize the re-mixing sub-process. Here, the optimal re-mixing model
with uncertainty is built and genetic algorithm is adopted to solve the nonlinear combination optimization
problem.

The coordinator is the key part which is used to cooperate the two optimization sub systems and take
charge of real-time regulation of the introduced intermediate target.

The proposed intelligent optimization system was applied to the raw slurry preparing process of an alu-
mina smeltery in China. By using the optimization system, the process performances are greatly improved
in two aspects: the quality of raw slurry and the simplification of two re-mixing operation. The simplifi-
cation increases the throughout of raw slurry, raises the eligibility rate and reduces energy consumption.
Furthermore, the improvement of raw slurry quality makes downstream sintering process more stable.

Key words: Intelligent optimization; Raw slurry preparing process; Integrated prediction model; Expert
reasoning.
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25 UNIFIED DUALITY THEORY FOR

CONSTRAINED EXTREMUM PROBLEMS

Shengkun Zhu* and Shengjie Li
College of Mathematics and Statistics

Chongqing University, Chongqing 401331, China

Abstract: By virtue of the image space analysis approach, a unified duality scheme for a constrained
extremum problem based on the class of regular weak separation functions in the image space is proposed.
Some equivalent characterizations to the zero duality property are obtained under an appropriate assump-
tion. Moreover, some necessary and sufficient conditions for the zero duality property are also established
in the form of the perturbation function. Simultaneously, the Lagrange-type duality, Wolfe duality and
Mond-Weir duality are discussed as special duality schemes in a unified interpretation. As applications,
some special cases of the class of regular weak separation functions are discussed.
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26 A MULTIOBJECTIVE MULTICLASS SUPPORT

VECTOR MACHINE BASED ON ONE-AGAINST-ONE

METHOD

Shoki Ishida*, Keiji Tatsumi, Tetsuzo Tanino
Division of Electrical, Electronic and Information Engineering,

Graduate School of Engineering, Osaka University,

2-1 Yamadaoka, Suita, Osaka, 5650871, Japan

Abstract: Recently, some kinds of extensions of the binary support vector machine (SVM) to multiclass
classification have been proposed. In this paper, we focus on an all-together method called the multiobjective
multiclass support vector machine (MMSVM), which is aimed at maximizing the geometric margins for the
generalization ability, while it requires a large amount of computational resources because it is formulated
as a large-scale multiobjective optimization problem. In this paper, we propose a new all together method
which constructs a classifier by making use of binary SVMs obtained by the one-against-one method which
requires less computational resources. Moreover, in order to solve the multiobjective optimization problem,
we derive a single objective optimization problem by using a reference point method. The proposed model
can be expected to have the high generalization ability and reduce computational resources.

Key words: Support vector machine(SVM); Multiclass classification; One-against-one method; All-
together method; Reference point.

1 INTRODUCTION

The support vector machine (SVM) is one of popular methods for the machine learning because it has
high generalization ability to solve binary classification problems. However, its extension for multiclass
classification is still an ongoing research issue. These extended methods can be roughly grouped into two
categories: the first method constructs a discriminant function by combining multiple SVMs for binary
classification problems which are derived from the original multiclass classification problem, such as one-
against-one and one-against-all methods. Many kinds of combination techniques such as the majority
voting, the directed binary tree structure and the error correcting output code, have been proposed. The
second method called all-together directly finds a discriminant function by solving one optimization prob-
lem, where all patterns are classified into the corresponding classes (Ratliff and Rosenthal (1983)). The
one-against-one and one-against-all methods require less computational resources than the all-together
method for training, because the former two methods train multiple binary SVMs while the latter needs
solving a large-scale optimization problem. Moreover, through some numerical experiments it is reported
that the latter method is not exceptionally superior to the former ones in the sense of classification
performance. Therefore, the former method have been mainly investigated so far.

On the other hand, in (P. Tseng and S. Yun. (2009)) a new all-together method is proposed, which is
called multiclass multiobjective SVM (MMSVM). The proposed model is formulated as an optimization
problem with new objective functions which maximize the geometric margins which are the minimal
distances of training patterns to the corresponding discriminant hyperplanes. Then, in order to maxi-
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mize multiple geometric margins simultaneously, it is formulated as a multiobjective optimization (MO)
problem (Z.Q.Luo and P. Tseng. (1992), P. Tseng and S. Yun. (2009)). Moreover, a single-objective
optimization problem is derived by using scalarization approaches to solve the MO, and it is reported that
it has high generalization ability. However, since the model still requires a large amount of computational
resources, it is difficult to apply it to a large-scale classification problem.

Therefore, in this paper, we limit the feasible region of the optimization problem in MMSVM by
exploiting binary SVMs obtained by the one-against-one method. The proposed model finds weights of
combination of binary SVMs that maximizes the geometric margins, which can reduce the computational
resources. At the same time, the proposed model is a multiobjecive optimization problem similarly to
the MMSVM, and thus, we derive a single-objective optimization model based on reference point method
to obtain a Pareto optimal solution of the proposed model approximately.

2 MULTICLASS CLASSIFICATIION

In this paper, we consider the following multiclass classification problem. For given data: D = {xi, yi}, i ∈
I := {1, ..., l}, where xi ∈ Rn denotes an input pattern and yi ∈ P := {1, ...,m} denotes the corresponding
class, we construct a classifier f(x) which divides all patterns into the corresponding classes such that
yi = f(xi). Let us consider linearly separable data D. Although in this paper, for the sake of simplicity
of argument, we mainly consider linear models, which can be easily extended into nonlinear models by
mapping input patterns into an appropriate high-dimensional feature space.

Some kinds of extensions of the binary SVM to multiclass classification have been proposed. In this
paper, we focus on the one-against-one and all-together methods. In the one-against-one method, a
P -class problem is transformed into P (P − 1) binary classification problems. Namely, we determine the
decision variables by training binary SVMs for all the combinations of class pairs. In determining decision
variables for a pair, we use the training data for the corresponding two classes. The decision function for
classes p and q is given by

fpq(x) = wpq>x+ bpq, (2.1)

where wpq, bpq, p, q ∈ P are decision variables. The decision function, which is used to classify patterns,
is constructed by combining obtained binary SVMs. As a popular combination method, the decision
directed acyclic graph (DDAG) SVM (P.Tseng. (2001)) is often used, which classifies pattern by using
binary SVMs in the order of the priority given by an appropriate graph. This method can obtain high
generalization by making the structure of a graph. However, the generalization depends heavily on the
selection of the graph, and its appropriate selection is often difficult.

In the all-together method, the aim is finding the following function:

f(x) = argmax
p
{wp>x+ bp}, (2.2)

where (wp, bp) ∈ Rn+1, p ∈ P are decision variables. The linear function wp>x+ bp indicates the degree
of confidence when a point x is classified into class p. Then,

(wp − wq)>x+ bp − bq = 0, p 6= q, p, q ∈ P, (2.3)

is the discriminant hyperplane which distinguishes between classes p and q. Decision variables are directly
found by solving a single optimization problem, as follows:

(O)
min
w,b

1

2

∑
p=1

∑
q>p

‖wp − wq‖2

s.t (wp − wq)>xi + (bp − bq) ≥ 1, i ∈ Ip, q > p, p, q ∈ P,
(2.4)

where Ip denotes an index set defined by Ip := {i ∈ I | yi = p}. The model maximizes 1/ ‖ wp−wq ‖ for
all pairs (p, q), q 6= p, p, q ∈ P for the generalization ability. Then, 1/ ‖ wp − wq ‖ denotes the functional
margin, which is the distance between the discriminant hyperplane (2.3) and two normalized support
hyperplanes parallel to (2.3),

(wp − wq)>x+ bp − bq = 1 and (wp − wq)>x+ bp − bq = −1.

In binary classification the functional margin can exactly denote the distance between the discriminant
hyperplane and the nearest corresponding pattern, while in multiclass classification the margin cannot
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necessarily do. The distance is defined an exact margin d(w, b) called a geometric margin which is the
distance of the nearest pattern in the corresponding classes to the discriminant hyperplane as follows:

dpq(w, b) = min
i∈Ip∪Iq

| (wp − wq)>xi + (bp − bq) |
‖ wp − wq ‖

, q > p, p, q ∈ P. (2.5)

It cannot guarantee that margins obtained by minimizing ‖ wp − wq ‖, q 6= p ∈ P in model (O)
are equal to the geometric margins. Here, note that maximizing the geometric margins guarantees
the generalization ability. Therefore, in (P. Tseng and S. Yun. (2009)) a piecewise linear hardmargin
multiobjective multiclass SVM (MMSVM) was proposed. The problem maximizes all geometric margins
simultaneously by adding a vector σ ∈ Rm(m−1)/2:

(M)

max
w,b,σ

(
σ12

‖ w1 − w2 ‖
, ...,

σ(m−1)m

‖ wm−1 − wm ‖

)
s.t. (wp − wq)>xi + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ P,

(wq − wp)>xi + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ P,
σpq ≥ 1, q > p, p, q ∈ P.

Then, in order to solve the multiobjective optimization problem (M), two kinds of single objective opti-
mization problems were proposed by scalarization approaches to multiobjective optimization, ε-constraint
approach and Benson’s method (Z.Q.Luo and P. Tseng. (1992), P. Tseng and S. Yun. (2009)). These
problems can be regarded as single-objective second-order cone programming (SOCP) problems, which
are easily solvable due to convexity. MMSVM was shown to have high generalization abilities in numerical
experiments.

Since MMSVM requires a large amount of computational resources, it is difficult to apply it to a
large-scale classification problems. However, since MMSVM can obtain high generalization, it will be an
effective model if computational resources are reducible. Therefore, in this paper we use weights obtained
by the one-against-one method to reduce computational resources in solving (M).

3 MULTIOBJECTIVE MULTICALASS MODEL BASED ON ONE-AGAINST-ONE METHOD

In this section, we propose a new MMSVM model which requires less computational resources by using
binary SVMs of the one-against-one method.

Now, suppose that w̄pq, p, q ∈ P are weights obtained by training a binary SVM which distinguishes
classes p and q in the one-against-one method. We propose a new model where wp in MMSVM are
restricted as a linear sum of w̄pq to reduce computational resources. Then, by introducing additional
variables αpq, p, q ∈ P , and adding constraints

wp =

m∑
q=1

αpqw̄pq (3.1)

to the MMSVM model (M), discriminant function (2.2) changes to the following unified discriminant
function:

f(x) = argmax
p

{
m∑
q=1

αpqw̄pq>x+ bp

}
, (3.2)

and thus, the optimization problem (M) changes to the following problem:

max
α,b,σ

 σ12∥∥∥∥∥
m∑
r

α1rw̄1r −
m∑
r

α2rw̄2r

∥∥∥∥∥
, ...,

σ(m−1)m∥∥∥∥∥
m∑
r

α(m−1)rw̄(m−1)r −
m∑
r

αmrw̄mr

∥∥∥∥∥


(M−OAO) s.t.

(
m∑
r=1

αprw̄pr −
m∑
r=1

αqrw̄qr

)>
xi + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ P,

(
m∑
r=1

αqrw̄qr −
m∑
r=1

αprw̄pr

)>
xi + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ P,

σpq ≥ 1, q > p, p, q ∈ P.
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This problem means finding (αpq, bp), p, q ∈ P to maximizes geometric margins in the discriminant
function (3.2).

Let us compare the sizes of problems of (M-OAO) with (M). The number of variables of them are m2

and m(m + 2n + 1)/2, respectively. Since m << n in general, the proposed model can be expected to
require a less amount of computational resources than (M).

Next, in order to solve the multiobjective optimization problem (M-OAO), we propose single objective
optimization problem by a similar scalarization approach, which can be used for (M). In this case, we
use a reference point method which finds the Pareto optimal solution which is the nearest point from the
reference point. Then, we can derive the following single objective optimization problem:

(RP−OAO)

min
α,b,σ,l

lM

s.t. lM ≥ lpq, q > p, p, q ∈ P,
d̄pq −

σpq∥∥∥∥∥
m∑
r=1

αprw̄pr −
m∑
r=1

αqrw̄qr

∥∥∥∥∥
= lpq, q > p, p, q ∈ P,

lpq ≥ 0, q > p, p, q ∈ P,(
m∑
r=1

αprw̄pr −
m∑
r=1

αqrw̄qr

)>
xi + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ P,(

m∑
r=1

αqrw̄qr −
m∑
r=1

αprw̄pr

)>
xi + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ P,

σpq ≥ 1, q > p, p, q ∈ P,

where d̄pq, p, q ∈ P denotes the reference point. In this paper, we use the margins obtained by binary
SVMs trained for binary problem between class pairs as the reference point because the margins express
the upper bounds of margins which can be obtained in MMSVM. Since the (RP-OAO) is difficult to
solve directly because of fractional constrains, we transformed it into a SOCP problem whose optimal
solution is an approximate Pareto optimal one for (M-OAO). Moreover, we can exactly obtain the Pareto
optimal solution by using the ε-constraint approach or Benson’s method furthermore. The computational
complexity for solving the SOCP problem is less than it for the SOCP problem (M) because of the number
of variables.

On the other hand, we need to decide constants d̄ and ε in the SOCP problems of (RP-OAO) and
(M), respectively. In (P. Tseng and S. Yun. (2009)), to solve a SOCP problem of (M) on the basis of
ε-constraint approach, the optimal solution of (O) is used in order to determine ε. Thus, all training
data are necessary to solve (O). While, the one-against-one method used by the proposed method needs
only two classes training data at a time. Therefore, we conclude that the proposed model reduces the
computational complexity with comparison of (M).

4 CONCLUSION

In this paper, we have focused on the one-against-one and the all-together method of the support vector
machine (SVM) for multiclass classification, and proposed a multiobjective model (M-OAO) which con-
struct a multiclass classifier as a weighted combination of binary SVMs obtained by the one-against-one
method. Since the proposed models are formulated as a multiobjective optimization problem, we have
proposed a single-objective problem (RP-OAO) based on a reference point method. The proposed model
is required less computational resources.
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27 AN IMPROVED TWO-STEP METHOD FOR

SOLVING GENERALIZED NASH EQUILIBRIUM

PROBLEMS

Deren Han*
School of Mathematical Science

Nanjing Normal University, Nanjing, 210046

Abstract: The generalized Nash equilibrium problem (GNEP) is a non-cooperative game in which the
strategy set of each player, as well as his payoff function, depend on the rival players strategies. As
a generalization of the standard Nash equilibrium problem (NEP), the GNEP has recently drawn much
attention due to its capability of modeling a number of interesting conflict situations in, for example, an
electricity market and an international pollution control. In this paper, we propose an improved two-step (a
prediction step and a correction step) method for solving the quasi-variational inequality (QVI) formulation
of the GNEP. Per iteration, we first do a projection onto the feasible set defined by the current iterate
(prediction) to get a trial point; then, we perform another projection step (correction) to obtain the new
iterate. Under certain assumptions, we prove the global convergence of the new algorithm. We also present
some numerical results to illustrate the ability of our method, which indicate that our method outperforms
the most recent projection-like methods of Zhang et al. (2010).

Key words: Convex programming; Generalized Nash equilibrium; Quasi-variational inequality problems;
Two-step methods; Projection methods.
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28 EXISTENCE AND BOUNDEDNESS OF

SOLUTIONS TO THE HEMIVARIATIONAL

INEQUALITIES OF HARTMAN-STAMPACCHIA TYPE

Yongle Zhang*
Sichuan Normal University

Abstract: We consider the existence and boundedness of solution for variational-hemivariational inequal-
ities of Hartman-Stampacchia type, when the mapping has a certain kind of monotonicity and when the
mapping is only upper semicontinuous, respectively. On the one hand, assuming that the mapping is set-
valued, lower hemicontinuous and stably quasimonotone with respect to a certain set, when the constraint
set is bounded, we prove the existence of solution; when the constraint set is not bounded, we derive a
suffcient condition for the existence of solutions and a suffcient condition for the existence and boundedness
of solution. On the other hand, assuming that the mapping is set-valued and upper semicontinuous and
the space is Euclidean space, when the constraint set is bounded, we prove the existence of solutions; when
the constraint set is unbounded, we give a suffcient condition for the existence of solutions and a suffcient
condition for the existence and boundedness of solutions.
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29 A MODIFIED DOUBLE PROJECTIVE

ALGORITHM FOR SOLVING QUASIMONOTONE

VARIATIONAL INEQUALITIES

Minglu Ye*a,b
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Sichuan Normal University, Chengdu 610068
bCollege of Mathematics

China West Normal University, Nanchong 637002

Abstract: The modified double projective method for solving quasimonotone variational inequalities is
studied. Motivated by the solutions of variational inequality can be divided into nontrivial solutions and
trivial solutions in the discussion of the existence of quasimonotone variational inequalities. Our method
is proven to be globally convergent under the assumption of nontrivial solutions is nonempty. A necessary
and sufficient conditions of trivial solutions is presented under the assumption of the interior of the closed
and convex subset is nonempty. To our best of knowledge, this is the first discussion of projection method
for solving quasimonotone variational inequalities.
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30 ON THE SUBSPACE MINIMIZATION

CONJUGATE GRADIENT METHOD

Yu-Hong Dai*a

LSEC, ICMSEC, AMSS, Chinese Academy of Sciences

P.O. Box 2719, Beijing 100190, China.

Abstract: The linear conjugate gradient method is an optimal method for solving symmetrical and positive
definite linear equations. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient
method, however, heavily restricted the use of conjugate gradient method in large-scale optimization. This
is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the
loss of conjugacy property of the search directions in various occasions. In this talk, I shall pay much
attention on the subspace minimization conjugate gradient method by Yuan and Stoer (1995). Some nice
theoretical properties of the method will be explored and some promising numerical results will be provided.
Consequently, we can see that the subspace minimization conjugate gradient method can become a strong
candidate for large-scale optimization.
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31 MATHEMATICAL MODELS FOR SOME

PROBLEMS IN ELECTRICITY MARKET IN CHINA AND

CORRESPONDING DISCUSSIONS

Li Zhang*a and Wenyu Sunb
a The business School, Nanjing Normal Univerity

bThe school of Mathematics, Nanjing Normal Univerity

Abstract: This paper talk about the power pricing in electricity market in general. There are some
key points for the process of the power pricing. Then the models for it is set up. Secondly transmission
congestion management is very important to the security of the power network. It gives out some kinds of
optimal models for the problem and has some discussions.
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32 AN EXACT PENALTY METHOD FOR

GENERALIZED NASH EQUILIBRIUM PROBLEMS

Lingling Xu*a, Kok lay Teob and Changjun Yub
aThe school of Mathematics, Nanjing Normal Univerity

b Department of Mathematics and Statistics

Curtin University Perth, W.A., Australia

Abstract: In this paper, we present an exact penalty function method to reduce the GNEP into a Nash
equilibrium problem. Then, it is solved by using the projection method. We also report some numerical
results so as to illustrate the efficiency of the method proposed.
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33 DESIGN OF ALLPASS VARIABLE FRACTIONAL

DELAY FILTER WITH SIGNED POWERS OF TWO

COEFFICIENTS

Changjun Yu*a,b, Kok Lay Teoa, Hai Huyen Dama

aDepartment of Mathematics and Statistics

Curtin University, Perth, Australia
bDepartment of Mathematics

Shanghai University, Shanghai, 200444, PRC

Abstract: This paper investigates the optimal design of allpass variable fractional delay (VFD) filters
with coefficients expressed as sums of signed powers-of-two terms, where the weighted integral squared
error is the cost function to be minimized. A new optimization procedure is proposed to generate a reduced
discrete search region. Then, a new exact penalty function method is developed to solve the optimal
design problem for allpass VFD filter with signed powers-of-two coefficients. Design examples show that
the proposed method is highly effective. Compared with conventional methods, our method can achieve a
higher accuracy with less computation.

Key words: Allpass variable fractional delay filter; Signed powers-of-two; Exact penalty function method;
Integer programming.
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34 OPTIMAL MACHINE MAINTENANCE

SCHEDULING WITH RANDOM BREAKDOWN TIMES

Yufei Sun*a, Grace Awa, Kok Lay Teo, Ryan Loxton
Department of Mathematics and Statistics

Curtin University, Perth, Australia

Abstract: We investigate the optimal time to replace and overhaul a machine while minimizing cost and
ensuring the minimum output is met. We model machine breakdowns using an appropriate probability
distribution, and include a probabilistic constraint to limit the probability of breakdowns to be below
a specified level. We show that the problem of determining an optimal maintenance schedule can be
formulated as a stochastic optimal control problem governed by an Ito differential equation. The problem is
then transformed into a deterministic optimal control problem with continuous inequality constraints. This
equivalent problem can be solved using the time-scaling transformation and the constraint transcription
method.
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35 CORPORATE BOND PORTFOLIO

OPTIMIZATION WITH DEFAULT RISKS

Grace Aw*a, Yufei Suna, Kok Lay Teo, Ryan Loxton
Department of Mathematics and Statistics

Curtin University, Perth, Australia

Abstract: We investigate the optimal bond portfolio a pension fund should hold in order to meet all outgo
and to maximize the cash of the fund at the end of the period considered. We consider two situations:
the first is where bond defaults are assumed not to occur, and the second is where we allow bond defaults.
This leads to two stochastic discrete-time optimal control problems. We show that these problems can be
transformed into standard deterministic problems and then solved using conventional methods. We then
compare the results obtained by solving both problems.
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36 ON INVESTIGATION OF PRICE CHANGES IN

PRICING AND PRODUCTION PLANNING

Elham Mardaneh*a

Department of Mathematics and Statistics

Curtin University

Abstract: Joint pricing and production decisions are crucial to the competitiveness of a manufacturing
company. A common assumption in coordination of pricing and production planning decisions is that the
price-adjustments are costless. However, those costs are not negligible, as they may take up a significant
part of the firms reported profit. In this work, we consider multi-product multi-period production planning
systems with costly price-adjustments. A capacitated setting is investigated and a demand-based model in
which the demand is a function of the price is introduced. Effective computational models will be developed
for both deterministic and stochastic price dependent demand. Both fixed and variable price-adjustment
costs will be considered. For the uncertain case, we focus on an additive demand model for which the
underlying random variable is normally distributed. By using a chance constrained programming approach,
we show that the model is still solvable. The aim of the work is to utilize the existing commercial packages for
modelling and optimization to compare the effectiveness of various models for large-scale realistic problems.

Key words: Price-Adjustment Cost; Pricing; Production Planning; Uncertain Demand.
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37 A POWER PENALTY METHOD FOR A

FINITE-DIMENSIONAL OBSTACLE PROBLEM ARISING

IN FINANCIAL ENGINEERING

Song Wang*a

School of Mathematics and Statistics

University of Western Australia, Perth, Western Australia

Abstract: In this talk we present a power penalty method for solving a nonlinear optimization problem
in Rn arising from the discretization of a financial option pricing problem under transaction costs. This
problem is first formulated as a mixed complementarity problem of which the nonlinear mapping involved
is not strongly monotone. We then approximate the mixed complementarity problem by a penalty equation
containing a power penalty term with a penalty constant λ > 1 and a power constant α ≤ 1. We show
that the solution to the penalty equation converges to that of the original problem at the exponential rate
of order λ−1/α as λ goes to infinity. We will present some numerical results to demonstrate the usefulness
and convergence rates of the proposed method.
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38 AN INTELLIGENT REACTIVE POWER

OPTIMIZATION METHOD FOR DFIG WIND FARM

Ling Yun Wang*, Yue Hua Huang
College of Electrical Engineering and Renewable Energy

China Three Gorges University, Yichang, 443002, PRC

Abstract: We study a reactive power optimization model and algorithm in power system network re-
garding of reactive power control capability of DFIG wind farm, so as to provide sufficient reactive power
compensation for the power system when the node voltage sags. First, the effect of wind speed fluctuation
on DFIG wind farm reactive power capacity is analyzed. The reactive power capability limits of the DFIG
wind farm are used as the constraints and the DFIG wind farm is regarded as a continuous reactive power
source to participate in the reactive power optimization. Then, the summation of active power loss and
node voltage deviation is chosen as the objective function. This reactive power optimization problem can
be transformed into a nonlinear mixed integer optimization problem. Finally, as an example we consider
an IEEE 33-node power system. We solve this numerical example using a genetic optimization algorithm
to validate the effectiveness of the proposed method.

Key words: Reactive power; Wind farm; DFIG; Genetic optimization.
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39 A CLASS OF MAX-MIN OPTIMAL CONTROL

PROBLEMS WITH APPLICATIONS TO

CHROMATOGRAPHY

Ryan Loxton*a, Qinqin Chaib, Kok Lay Teoa
aDepartment of Mathematics and Statistics

Curtin University, Perth, Western Australia
bSchool of Information Science and Engineering

Central South University, Changsha, China

Abstract: In this paper, we consider a class of non-standard optimal control problems in which the
objective function is in max-min form and the state variables evolve over different time horizons. Such
problems arise in the control of gradient elution chromatography—an industrial process used to separate
and purify multi-component chemical mixtures. We develop a computational method for solving this class
of optimal control problems based on the control parameterization technique, a time-scaling transformation,
and a new exact penalty method.

Key words: Optimal control; Control parameterization; Time-scaling transformation; Exact penalty
function.

1 PROBLEM STATEMENT

Consider a master system consisting of m coupled subsystems. The dynamics of the ith subsystem are
described by the following set of ordinary differential equations:

ẋi(t) = f i(x1(t), . . . ,xm(t),u(t))χ[0,τi](t), t ≥ 0, (1.1)

xi(0) = ζi, (1.2)

where xi(t) ∈ Rn is the state of the ith subsystem, τi is the terminal time of the ith subsystem (a free
decision variable), ζi ∈ Rn is the initial state of the ith subsystem (a given vector), u(t) ∈ Rr is the
control input, and the indicator function χ[0,τi] : R→ R is defined by

χ[0,τi](t) =

{
1, if t ∈ [0, τi],

0, if t /∈ [0, τi].

We assume that f i : Rmn × Rr → Rn in (1.1) is a given continuously differentiable function.
The control function in (1.1) is subject to the following bound constraints:

aj ≤ uj(t) ≤ bj , t ≥ 0, j = 1, . . . , r, (1.3)

where uj(t) is the jth element of u(t) and aj and bj are given constants such that aj < bj . Any measurable
function u : [0,∞) → Rr satisfying (1.6) is called an admissible control. Let U denote the class of all
such admissible controls.
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We collect the subsystem terminal times into a vector τ = [τ1, . . . , τm] ∈ Rm. Let T denote the set of
all such vectors with components satisfying τi ≥ 0, i = 1, . . . ,m. Furthermore, let T denote the terminal
time of the overall system. Then clearly,

T = max{τ1, . . . , τm}.

The subsystems described by (1.1)-(1.2) are subject to the following terminal state constraints:

Φi(x
i(τi)) = 0, i = 1, . . . ,m, (1.4)

where each Φi : Rn → R is a given continuously differentiable function.
Our optimal control problem is stated below.

Problem 1 Choose τ ∈ T and u ∈ U to maximize the objective functional

J(τ ,u) = min
i6=j

Ψ(τi, τj , T,x
i(τi),x

j(τj)), (1.5)

subject to the dynamic system (1.1)-(1.2) and the constraints (1.4), where Ψ : R×R×R×Rn×Rn → R
is a given continuously differentiable function.

Problem 1 presents two major challenges for existing optimal control methods: (i) the objective functional
is non-smooth; and (ii) the state variables are defined over different time horizons.

Farhadinia et al. (see Farhadinia B. (2009)) developed a computational method for solving Problem 1
with Ψ = −T . In this case, Problem 1 reduces to a time-optimal control problem in which the aim is
to minimize the terminal time of the overall system. Our goal in this paper is to develop a new method
that is applicable to more general problems.

2 APPLICATIONS TO CHROMATOGRAPHY

Optimal control problems in the form of Problem 1 arise in chromatography—a separation and purification
process that plays an important role in many industrial settings. A typical chromatography system
consists of a column containing an absorbent (called the stationary phase) and a liquid that flows through
the column (called the mobile phase). The mixture to be separated is injected into the mobile phase
and flows through the column. Because the different components in the mixture are attracted to the
stationary phase in different degrees, they travel through the column at different speeds, and thus they
exit the column at different times (called retention times). Therefore, the mixture is gradually separated
while moving through the column.

Jennings et al. (Jennings L. S. (1995)) and Chai et al. (Chai Q. (2012)) have considered a special case
of Problem 1 in which the aim is to maximize separation efficiency in a chromatography system. In this
problem, the subsystems correspond to the different components in the mixture, and the terminal times
are the retention times. The terminal state constraints (1.4) arise because of a requirement that the
concentration of each component reach a given value at the corresponding retention time. Meanwhile,
the objective functional, which is obtained by setting Ψ = (τj − τi)2/T in equation (1.5), measures the
minimum duration between successive retention times—a quantity that should be maximized.

3 CONTROL PARAMETERIZATION

In this section, we apply the control parameterization method (see Teo K. L. (1991)) to approximate
Problem 1 by a finite-dimensional optimization problem.

Let p ≥ 1 be a given integer. We approximate the control u in (1.1)-(1.2) by a piecewise-constant
function that switches value at each terminal time and at p−1 locations between each pair of consecutive
terminal times. The approximate control is defined as follows:

up(t) =

mp∑
k=1

σkχ[tk−1,tk)(t), (3.1)

where tk is the kth control switching time, σk ∈ Rr is the control value on subinterval [tk−1, tk), and the
characteristic function χ[tk−1,tk) : R→ R is as defined in Section 1. The control switching times satisfy

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tmp−1 ≤ tmp = T. (3.2)
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Furthermore, every pth control switching time coincides with one of the subsystem terminal times.
In view of (1.6), we have the following constraints on the control values:

aj ≤ σkj ≤ bj , j = 1, . . . , r, k = 1, . . . ,mp, (3.3)

where σkj is the jth component of σk.
Let

vij =

{
1, if subsystem i has the jth earliest terminal time,

0, otherwise.

Hence, if vij = 1, then subsystem i terminates at time t = tjp. Clearly,

m∑
j=1

vij = 1, i = 1, . . . ,m, (3.4)

and
m∑
i=1

vij = 1, j = 1, . . . ,m. (3.5)

Substituting the approximate control defined by (3.1) into the dynamic system (1.1)-(1.2) yields

ẋi(t) =

m∑
j=1

vijf
i(x1(t), . . . ,xm(t),σk)χ[0,tjp](t), t ∈ [tk−1, tk), k = 1, . . . ,mp, (3.6)

xi(0) = ζi. (3.7)

Furthermore, the terminal constraints (1.4) become

m∑
j=1

vijΦ(xi(tjp)) = 0, i = 1, . . . ,m. (3.8)

The binary constraints vij ∈ {0, 1} are difficult to enforce explicitly. Hence, we replace vij ∈ {0, 1} with
the following set of non-discrete constraints:

m∑
j=1

vij(j
2 − j + 1

3 )−
{ m∑
j=1

vij(j − 1
2 )

}2

=
1

12
, i = 1, . . . ,m, (3.9)

and

0 ≤ vij ≤ 1, i = 1, . . . ,m, j = 1, . . . ,m. (3.10)

The following theorem, proved in Chai et al. (Chai Q. (2012)), shows that (3.9) and (3.10) imply vij ∈
{0, 1}.

Theorem 3.1 Suppose that vij, i = 1, . . . ,m, j = 1, . . . ,m satisfy (3.4) and (3.10). Then for each
i = 1, . . . ,m, equation (3.9) holds if and only if there exists a q ∈ {1, . . . ,m} such that viq = 1 and
vij = 0 for all j 6= q.

The subsystem terminal times occur at t = tjp, j = 1, . . . ,m. Let qj denote the unique index satisfying
vqjj = 1. Then

xqj (tjp) = v1jx
1(tjp) + · · ·+ vmjx

m(tjp). (3.11)

We can now state the following finite-dimensional approximation of Problem 1.

Problem 2 Choose tk and σk, k = 1, . . . ,mp and vij , i = 1, . . . ,m, j = 1, . . . ,m to maximize the
objective function

Jp = min
i 6=j

Ψ(tip, tjp, tmp,x
qi(tip),x

qj (tjp))

subject to the dynamic system (1.7)-(3.7) and the constraints (3.2)-(3.5) and (3.8)-(3.10).
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4 TIME-SCALING TRANSFORMATION

Standard optimization algorithms will struggle with Problem 2 because the switching times in (1.7)-(3.7)
are variable (see Loxton R. (2008)). Thus, in this section, we will apply a novel time-scaling transformation
to map the switching times to fixed points in a new time horizon. To do this, we introduce a new time
variable s ∈ [0,mp] and relate s to t through the following differential equation:

dt(s)

ds
= ω(s), t(0) = 0, (4.1)

where ω : [0,mp]→ [0,∞) is a piecewise-constant function with fixed switching times at s = 1, . . . ,mp−1.
We express ω mathematically as follows:

ω(s) =

mp∑
k=1

θkχ[k−1,k)(s),

where θk = tk − tk−1 is the duration between consecutive switching times in the original time horizon.
Clearly,

θk ≥ 0, k = 1, . . . ,mp. (4.2)

For s ∈ [k − 1, k], integrating (4.1) gives

t(s) =

∫ s

0

ω(η)dη =

k−1∑
l=1

θl + θk(s− k + 1).

Thus, for each k = 1, . . . ,mp,

t(k) =

k∑
l=1

θl =

k∑
l=1

(tl − tl−1) = tk.

This shows that the time-scaling transformation defined by (4.1) maps t = tk to the fixed integer s = k.
In particular, the terminal time t = T is mapped to s = mp:

t(mp) =

mp∑
k=1

θk = tmp = T = max{τ1, . . . , τm}.

After applying the time-scaling transformation, the approximate control (3.1) becomes

ũp(s) = up(t(s)) =

mp∑
k=1

σkχ[k−1,k)(s).

Furthermore, the dynamic system (1.7)-(3.7) becomes

˙̃xi(s) =

m∑
j=1

vijθkf
i(x̃1(s), . . . , x̃m(s),σk)χ[0,jp](s), s ∈ [k − 1, k), k = 1, . . . ,mp, (4.3)

x̃i(0) = ζi, (4.4)

where x̃i(s) = xi(t(s)). Constraints (3.8) become

m∑
j=1

vijΦ(x̃i(jp)) = 0, i = 1, . . . ,m. (4.5)

Also, (3.11) becomes
x̃qj (jp) = v1jx̃

1(jp) + · · ·+ vmjx̃
m(jp).

We now state the following transformed optimal control problem, which is equivalent to Problem 2.

Problem 3 Choose θk and σk, k = 1, . . . ,mp and vij , i = 1, . . . ,m, j = 1, . . . ,m to maximize the
objective function

J̃p = min
i6=j

Ψ̃(θ, x̃qi(ip), x̃qj (jp))

subject to the dynamic system (4.3)-(4.4) and the constraints (3.3)-(3.5), (3.9), (3.10), (4.2), and (4.5),
where

Ψ̃(θ, x̃qi(ip), x̃qj (jp)) = Ψ(θ1 + · · ·+ θip, θ1 + · · ·+ θjp, θ1 + · · ·+ θmp, x̃
qi(ip), x̃qj (jp)).
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5 TRANSFORMATION INTO SMOOTH FORM

In this section, we transform Problem 3 into a smooth optimization problem. Let ξ be a new decision
variable, where

ξ = min
i6=j

Ψ̃(θ, x̃qi(ip), x̃qj (jp)).

Then we have the following set of inequality constraints:

Ψ̃(θ, x̃qi(ip), x̃qj (jp)) ≥ ξ, i 6= j. (5.1)

It is clear that Problem 3 is equivalent to the following smooth optimization problem.

Problem 4 Choose ξ, θk, σk, and vij to maximize the objective function J̄p(ξ) = ξ subject to the
dynamic system (4.3)-(4.4) and the constraints (3.3)-(3.5), (3.9), (3.10), (4.2), (4.5), and (5.1).

Standard optimization algorithms will typically struggle with Problem 4 because constraints (3.4), (3.5),
(3.9), and (3.10) restrict vij to be binary decision variables. In the next section, we will describe an exact
penalty method for solving Problem 4.

6 AN EXACT PENALTY METHOD

Define
γ =

[
ξ, θ1, . . . , θmp, (σ

1)>, . . . , (σmp)>, (v1)>, . . . , (vm)>
]>
, (6.1)

where
vi = [vi1, . . . , vim]>.

Furthermore, define a constraint violation function as follows:

∆(γ) =

m∑
i=1

{ m∑
j=1

vij − 1

}2

+

m∑
j=1

{ m∑
i=1

vij − 1

}2

+

m∑
i=1

{ m∑
j=1

vijΦ(x̃i(jp))

}2

+

m∑
i=1

{ m∑
j=1

vij(j
2 − j + 1

3 )−
[ m∑
j=1

vij(j − 1
2 )

]2

− 1
12

}2

+
∑

i,j=1,...,m
i 6=j

max{ξ − Ψ̃(θ, x̃i(ip), x̃j(jp)), 0}2,

where γ is defined by (6.1). Clearly, ∆(γ) = 0 if and only if the current values of the decision variables
are feasible for Problem 4.

Define a penalty function as follows:

Gpµ(ε,γ) = −ξ + ε−α∆(γ) + µεβ , (6.2)

where ε is a new decision variable, µ > 0 is the penalty parameter, and α and β are fixed constants
satisfying 1 ≤ β ≤ α. The new decision variable ε is subject to the following bound constraints:

0 ≤ ε ≤ ε̄, (6.3)

where ε̄ > 0 is a given constant.
In the penalty function (6.2), the last term µεβ is designed to penalize large values of ε, while the middle

term ε−α∆(γ) is designed to penalize constraint violations. When µ is large, minimizing (6.2) forces ε
to be small, which in turn causes ε−α to become large, and thus constraint violations are penalized very
severely. Hence, minimizing the penalty function for large values of µ will likely lead to feasible points.
On this basis, we can approximate Problem 4 by the following penalty problem.

Problem 5 Choose ε and γ to minimize the penalty function Gpγ(ε,γ) subject to the dynamic sys-
tem (4.3)-(4.4) and the bound constraints (3.3), (3.10), (4.2), and (6.3).

Problem 5 can be viewed as an optimal parameter selection problem with multiple characteristic times.
Such problems can be solved effectively using the computational method described in Loxton R. (2008),
which uses gradient-based optimization techniques. It can be shown that under mild assumptions, when
the penalty parameter µ is sufficiently large, any local solution of Problem 5 generates a corresponding
local solution for Problem 4 (see Lin Q. (2012)). Thus, the penalty function (6.2) is exact in the sense
that feasibility is attained for finite values of the penalty parameter.
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Solving Problem 2 amounts to solving Problem 5 for an increasing sequence of penalty parameters,
where the solution at each iteration is used as the initial guess for the next iteration. The solution of
Problem 2 can be used to generate a suboptimal control for Problem 1 through equation (3.1). See Chai
Q. (2012) and Lin Q. (2012) for more details.
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40 STABILITY ANALYSIS AND OPTIMAL

CONTROL OF SINGULAR STOCHASTIC SYSTEMS

Qingling Zhang*a, Shuangyun Xinga,b
aInstitute of Systems Science, Northeastern University

Shenyang, Liaoning Province,110189 ,China
bCollege of Science, Shenyang Jianzhu University
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Abstract: In this paper, the control problem of the class of singular stochastic systems is studied.
Firstly, under some appropriate assumptions, results on mean-square admissibility are developed and the
corresponding LMI sufficient condition is given. Secondly, the finite time horizon linear quadratic regulation
(LQR) problem of the singular stochastic system is investigated, in which the coefficients are allowed to be
random in control input and quadratic criterion. Some results involving new generalized stochastic Riccati
equation are discussed as well. Finally, the proposed singular stochastic LQR control model provides to
be an appropriate and effective framework to study the portfolio selection problem in light of the recent
development on general stochastic LQR problems.

Key words: Singular stochastic systems; Mean-square stability; Linear quadratic control; Generalized
stochastic Riccati equation.
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41 THE LS-SVM APPROXIMATE SOLUTION TO

AFFINE NONLINEAR SYSTEMS WITH PARTIALLY
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Guoshan Zhang*a, Shiwei Wanga, Yiming Wanga and Wanquan Liub
aSchool of Electrical Engineering and Automation

Tianjin University, Tianjin, 300072, China
bDepartment of Computing
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Abstract: By using the Least Squares Support Vector Machines (LS-SVMs), we develop a numerical
approach to give an approximate solution for affine nonlinear system with unknown function part but
solutions of a discrete point sequence of the system are known. From the point of view of control theory,
it makes sense to consider the approximate solution for such nonlinear systems. This approach can obtain
continuous and differential approximate solutions of the nonlinear differential equations and avoids knowing
the structure of unknown nonlinear part and identifying its coefficients, and approximate solutions for the
unknown and known parts can also be given. Technically, we first transform the unknown and known parts
of the affine nonlinear system into feature spaces with nonlinear feature maps. Then we formulate the
original problem as an approximation problem via kernel trick with LS-SVMs. Furthermore,the original
approximate solution can be expressed as some linear forms whose coefficient matrices are coupling square
matrices, and then solve them as a linear regression problem. Finally, some examples are presented to
illustrate the validity of the proposed method.

Key words: Least Squares Support Vector Machines (LS-SVMs); Affine nonlinear systems; Coupling
square matrices; Approximate solutions.
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42 H∞ CONTROL OF DISCRETE-TIME

SINGULARLY PERTURBED SYSTEMS VIA STATIC

OUTPUT FEEDBACK

Dan Liua, Lei Liua, Ying Yang*a
aState Key Laboratory for Turbulence and Complex Systems

Department of Mechanics and Aerospace Engineering

College of Engineering

Peking University, Beijing, 100871, PRC

Abstract: This paper concentrates on H∞ control problems of discrete-time singularly perturbed systems
via static output feedback. Two methods of designing H∞ controllers, which ensure the closed-loop system
is asymptotically stable and meets a prescribed H∞ norm bound, are presented in terms of LMIs. Based
on some matrix transformations, the proposed approaches are derived by optimizing γ and ε respectively.
Furthermore, the stability upper bound of ε is also obtained. The validity of the proposed results is
demonstrated by a numerical example.

Key words: discrete-time singularly perturbed system; static output feedback; asymptotical stability; H∞
performance; linear matrix inequality (LMI).

1 INTRODUCTION

Singularly perturbed systems, described by parameter related state-space models in control theory, widely
exist in industrial processes. The existence of the small parameter causes high dimensionality and ill-
conditioning problems. Thus, stability bounds of the singular perturbation parameter have been exten-
sively studied. A traditional method of decomposing the original system into fast and slow subsystems
was presented in (Sen. (1993)). In (Liu W. Q.(1996)), two algorithms to compute and improve the sta-
bility bound were developed. Moreover, (Liu W. Q.(1997)) established a method to testify the stability
of singularly perturbed systems without fast-slow decomposition, which revealed the close relationship
between stability and the system matrix. More details are discussed in (Geromel. J. C . (1998)), (Shi.
(1999)).

Recent years, state feedback control of singularly perturbed systems have attracted much attention,
see (Dong J. X. (2007)), (Xu S. Y. (2009)), (Ivan M. (2012)), (Vrabel R. (2012)) and (Chen J. (2011)).
Though state feedback can achieve desired properties, it requires the availability of all state variables,
which can not be satisfied in most of the practical systems. While dynamic output feedback usually
increases the dimension of the original system. Therefore, static output feedback plays an important role
in control theory with its simpleness and low cost. The primal point involved in static output feedback
is the decoupling problem. In (Han Q. L. (2008)), special inequality and new variables were used to deal
with the nonlinear inequality. An effective technique of introducing a stabilizing state feedback controller
and some matrix transformations were proposed in (Boukas. E. K. (2005)), which is adopted in this
paper due to its easy implementation.
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Motivated by the above studies, we design an H∞ controller via static output feedback to stabilize a
discrete-time singularly perturbed system and guarantee that the resulting closed-loop system satisfies a
prescribed H∞ norm bound. The rest of this paper is organized as follows. Section 2 states the system
description and some useful lemmas. In section 3, two LMI-based methods are proposed to design a
static output feedback controller for the system presented in section 2. A numerical example is given
to demonstrate the effectiveness of the proposed results in section 4. Finally, conclusions are given in
section 5.

Throughout this paper, the following notations will be adopted. AT denotes the transpose of matrix
A. Blocks induced by symmetry is denoted by *. Sym{A} denotes A+AT.

2 PROBLEM DESCRIPTION

Consider a class of linear fast sampling discrete-time singularly perturbed systems of the following form: xk+1 = Aεxk +B1εwk +B2εuk
zk = C1xk +D11wk +D12uk
yk = C2xk

(2.1)

where xk =

[
x1k

x2k

]
, Aε =

[
In1 + εA11 εA12

A21 A22

]
, B1ε =

[
εB11

B12

]
, B2ε =

[
εB21

B22

]
, C1 =

[
CT

11

CT
12

]T

,

C2 =

[
CT

21

CT
22

]T

, xk ∈ Rn is the state vector, in which x1k ∈ Rn1 , x2k ∈ Rn2 and n1 + n2 = n;

uk ∈ Rm1 is the control input; wk ∈ Rm2 is the disturbance input which belongs to L2[0,∞); yk ∈ Rql
is the measurement output; zk ∈ Rq2 is the controlled output. The scalar ε > 0 denotes the singular
perturbation parameter.

In the rest of this paper, we will assume system (2.3) is completely controllable and observable. We
will also assume not all of its state variables are available. Introduce the following static output feedback
control law:

uk = Fyk, (2.2)

then the resulting closed-loop system can be obtained as follows xk+1 = Ãεxk +B1εwk
zk = C̃1xk +D11wk
yk = C2xk

(2.3)

where Ãε =

[
In1 + εÃ11 εÃ12

Ã21 Ã22

]
, with

[
Ã11 Ã12

Ã21 Ã22

]
=

[
A11 A12

A21 A22

]
+

[
B21

B22

]
F
[
C21 C22

]
,

C̃1 =
[
C̃11 C̃12

]
, with

[
C̃11 C̃12

]
=
[
C11 C12

]
+D12F

[
C21 C22

]
.

The H∞ problem studies in this paper can be described as: Given a scalar γ > 0 and a discrete-time
singularly perturbed system (2.3), design a static output feedback controller in form of (2.4) such that
the closed-loop system (3.4) is asymptotically stable and its transfer function from ω to z:

G(z) = C̃1(zI − Ãε)−1B1ε +D11, (2.4)

satisfies ‖G‖∞ < γ.
The following lemmas will be used in establishing our main results:

Lemma 2.1 (Boukas. E. K. (2005)) The following two statements are equivalent:

Let A, B and C be given such that the following LMI is feasible in X and Y .[
A B
BT 0

]
+ Sym

{[
X
Y

]
[ CT −I ]

}
< 0

Let A, B and C be given such that the following LMI holds.

A+BCT + CBT < 0

Lemma 2.2 (Boukas. E. K. (2005)) The following two statements are equivalent:
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Let A, B and C be given such that the following LMI is feasible in G.[
A B + CGT

BT +GCT −G−GT

]
=

[
A B
BT 0

]
+ Sym

{[
0
I

]
G[ CT −I ]

}
< 0

Let A, B and C be given such that the following LMIs hold.

A < 0, A+BCT + CBT < 0

3 MAIN RESULTS

In this section, two LMI-based methods of designing static output feedback controllers are proposed to
ensure asymptotical stability of system (3.4). The first result is given in form of an ε−independent LMI,
while the second is presented by two LMIs which are related to ε. Furthermore, the stability upper bound
of ε is obtained.

Before giving the results, let F0 be a stabilizing state feedback controller gain of system (2.3). In
other words, the matrix F0 is chosen to make Aε0 = Aε +B2εF0 stable. Then we introduce the following
transformations which will be used in the rest of this paper:

A0 = A+B2εF0, C20 = C2 +D12F0, FC2 = S + F0,

where A0 =

[
A110 A120

A210 A220

]
, A =

[
A11 A12

A21 A22

]
, C20 =

[
CT

210

CT
220

]T

, S =

[
ST

1

ST
2

]T

, F0 =

[
FT

01

FT
02

]T

.

Theorem 3.1 For a discrete-time singularly perturbed system (2.3), given a stabilizing state feedback con-
troller with gain F0, if there exists matrices P11 > 0, P22 > 0, G > 0, and matrices P12, L, Xij , Ykj,(i=1,. . . ,5,
k,j=1,2) with appropriate dimensions, such that the following LMI holds: Ξ−XFT

0 T − (XFT
0 T )T Φ−X − TTF0Y

T XCT
2 + TTL

* −Y − Y T Y CT
2

* * −G−GT

 < 0, (3.1)

where X = [Xij ], Y = [Ykj ], i = 1, . . . , 5, k, j = 1, 2,
∆110 = P11A

T
110 + P12A

T
120 + (P11A

T
110 + P12A

T
120)T, ∆120 = P11A

T
210 + P12A

T
220 − P12,

Φ =


0 P22

P11 P12

0 0
0 0
0 0

, T =


0
B21

B22

D12

0


T

, Ξ =


−P22 P22A

T
120 P22A

T
220 P22C

T
120 0

* ∆110 ∆120 P11C
T
110 + P12C

T
120 B11

* * −P22 0 B12

* * * −γI D11

* * * * −γI

,

then there exists a scalar ε∗ > 0 such that for every ε ∈ (0, ε∗], system (3.4) is asymptotically stable and
its transfer function satisfies ‖G‖∞ < γ with the static output feedback controller gain F = LG−T.

Proof : For all ε ∈ (0, ε∗], let P (ε) =

[
εP11 εP12

* P22

]
> 0 satisfy discrete bounded real lemma in (

Gahinet P. (1994)). By some matrix transformations and simplification, we have

Π =


−P22 P22Ã

T
12 P22Ã

T
22 P22C̃

T
12 0

* ∆11 + ∆T
11 ∆12 − P12 Γ1 B11

* * −P22 0 B12

* * * −γI D11

* * * * −γI

 < 0. (3.2)

To turn (3.2) into an LMI, we will use the same idea proposed in (Mehdi, D. (2003)). By substituting
the transformations defined before, we get another form of (3.2):

Ξ + Φ(TTS)T + (TTS)ΦT < 0, (3.3)

where Ξ,Φ, S and T are given as before.
Applying lemma 2.1 and lemma 2.1 to (3.3) respectively, we get Ξ−XFT

0 T − (XFT
0 T )T Φ−X − TTF0Y

T XCT
2

* −Y − Y T Y CT
2

* * 0

+ Sym


 0

0
I

G [ FTT 0 −I
] < 0,(3.4)



116

By letting L = FGT we can finally conclude (3.1). This completes the proof. 2

Both the static output feedback gain matrix F and the minimum H∞ norm γ can be obtained by
solving the following optimization problem:
OP1.

min
Pmj ,Xij ,Ykj ,L,G,

γ

where i = 1, . . . , 5, m ≤ j, m, k, j = 1, 2, subject to γ > 0, P11 > 0, P22 > 0, G > 0 and the LMI in (3.1).
Note that the result in Theorem 3.1 is finally obtained by solving a γ related optimal problem. While

in the following part, a different designing approach is given by solving an optimal problem in which ε is
involved.

Theorem 3.2 Given a scalar γ > 0 and a stabilizing state feedback controller with gain F0 , if there
exists matrices P11 > 0, P22 > 0, P12, L, G > 0, Qmm > 0, Qmn, n < m, m, n = 1, 2, 3, 4, and
matrices Xi, i = 1, . . . , 4, Y, X̃l, X̃2, Ỹ , with appropriate dimensions, such that the following set of
LMIs hold:

Q̃1 Q̃2 −X̃1 X̃1B21 + CT
2 L

T − FT
0 G

T

Q̃3 Q̃4 pT
12 − X̃2 X̃2B21

−X̃T
1 p12 − X̃T

2 −Ỹ − Ỹ T Ỹ B21

BT
21X̃

T
1 + LC2 −GF0 BT

21X̃
T
2 BT

21Ỹ
T −G−GT

 < 0, (3.5)


Π11 * * * * *
0 −γI * * * *

Π31 Π32 Π33 * * *
Π41 Π42 Π43 Π44 * *
−XT

1 −XT
2 Φ−XT

3 −XT
4 −Y − Y T *

ΨTXT
1 − LC2 +GF0 ΨTXT

2 ΨTXT
3 ΨTXT

4 ΨTY T −G−GT

 < 0, (3.6)

where Q = QT = [Qin],
[

Π41 Π42 Π43 Π44

]
=
[
Q 02∗2 −ε∗Q

]
,
[
Q̃1 Q̃2

]
= −[Qkn], k =

1, 2, 3,

Q̃3 =
[
−Q41 + pT

12A110 −Q44

]
, Q̃4 =

[
−Q43 + pT

12B11 −Q44

]
, Ψ =

[
BT

22 BT
21 DT

12

]T
,

Π11 =

[
−ε∗P11 *
−PT

12 −P22

]
, Π31 =

 PT
12 + P22A210 P22A220

ε∗P11 + P11A110 + PT
12A210 P11A120 + P12A220

C110 C120

,

Π32 =

 P22B12

P11B11 + P12B12

D11

, Π33 =

 −P22 * *
−P12 −ε∗P11 *

0 0 −γI

, Φ =

 P22 0 0
P12 P11 0
0 0 I

,

then for any singular perturbation parameter ε ∈ (0, 1
ε∗ ], by introducing a static output feedback controller

in form of (2.4), the closed-loop fast sampling system (3.4) is asymptotically stable and its transfer
function satisfies ‖ G ‖∞< γ with the controller gain F = G−1L.

Proof : For any ε ∈ (0, 1
ε∗ ], let P (ε) =

[
1
εP11 *
PT

12 P22

]
> 0 satisfy discrete bounded real lemma in (

Gahinet P. (1994)), after some matrix transformations we get[
Θ11( 1

ε ) *
Θ21( 1

ε ) Θ22( 1
ε )

]
+

[
εΩ 0
0 0

]
< 0, (3.7)

where

Ω =


0 * * *
0 0 * *
0 0 0 *

PT
12Ã11 PT

12Ã12 PT
12B11 0

, Θ11( 1
ε ) =


− 1
εP11 * * *
−PT

12 −P22 * *
0 0 −γI *

PT
12 + P22Ã21 P22Ã22 P22B12 −P22

,

Θ21( 1
ε ) =

[ 1
εP11 + Υ11 Υ12 Υ13 −P12

C̃11 C̃12 D11 0

]
, Θ22( 1

ε ) =

[
− 1
ε p11 *
0 −γI

]
,

Υ11 = P11Ã11 + P12Ã21, Υ12 = P11Ã12 + P12Ã22, Υ13 = P11B11 + P12B12.
If there exists a positive definite matrix Q = [Qij ],(i, j = 1, . . . , 4) satisfies the following two matrix
inequalities

Ω−Q < 0, (3.8)
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Θ21(ε∗) Θ22(ε∗) *
Q 0 −ε∗Q

 < 0, (3.9)

Applying the Schur complement to (3.9) and considering ε ∈ (0, 1
ε∗ ], we get[

Θ11( 1
ε ) *

Θ21( 1
ε ) Θ22( 1

ε )

]
+

[
εQ 0
0 0

]
< 0, (3.10)

Taking (3.8) into consideration, we have (3.7).
To turn (3.8) and (3.10) into LMIs, we still adopt the same technique used in (Mehdi, D. (2003)).

Finally we can conclude (3.5) and (3.6) by considering the expression of S. This completes the proof. 2

We can obtain the static output feedback controller gain matrix F and the stability upper bound of
the singular perturbation parameter which we record as 1

ε∗ by solving the following optimal problem:
OP2.

min
Pij , Qmn, Xk, Y, X̃l, Ỹ ,L, and G

ε∗

where i ≤ j, i, j, l = 1, 2, m, n, k = 1, . . . , 4, subject to ε∗ > 0, Pii > 0, Qnn > 0, G > 0, and LMIs in
(3.5), (3.6).
Remark: The result in Theorem 3.1 finally turns into OP1, which is solved by optimizing γ. While
results in Theorem 3.2 are obtained by solving OP2, which optimizes the stability upper bound 1

ε∗ .

4 A NUMERICAL EXAMPLE

In this section, a numerical example is presented to illustrate the effectiveness of the proposed results.
Example: Consider a discrete-time singularly perturbed system described by (2.3) with

Aε =

[
1 + 0.2129ε 1.8140ε
−0.1814 0.8179

]
, B1ε =

[
0

0.1

]
, B2ε =

[
0.1874ε
0.1812

]
, C1 =

[
1 1 0
0 1 0

]T

,

D11 =
[

0.01 0 0
]T
, D12 =

[
0.31 0 0

]T
, C2 =

[
0.4394 0.1372

]
.

By solving the optimal problem OP1, we can get the static output feedback controller gain Fγ and
the minimum H∞ norm of the closed-loop system γ:

Fγ = −0.1078, γ = 0.8557.

According to OP2, we can solve the corresponding LMIs with γ = 1. The obtained static output
feedback controller gain Fε and the stability upper bound of ε are:

Fε = −23.3354,
1

ε∗
= 0.2775.

Remark: Though the performance of the closed-loop system is not as good as the state feedback
case, static output feedback controller plays a more important role in implemental sense with proper
performance.

5 CONCLUSION

In this paper, H∞ control problems for fast sampling singularly perturbed systems via static output
feedback have been discussed. Rather than adopting the traditional design method of decomposing the
original system into fast and slow subsystems, two LMI-based sufficient conditions have been given to
guarantee the existence of static output feedback controllers and the asymptotical stability of the closed-
loop system with a transfer function whose H∞ norm is less than γ. The obtained LMI results can be
solved easily with matlab. The proposed methods simplify the controller design procedure.
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Abstract: Two admissibility conditions of two dynamic input-out economic models with multiple delays
and with probably singular capital coefficient matrices are addressed respectively. By simple transformation,
the economic models are written as two discrete-time singular systems with commensurate delays, then a
delay-independent admissibility condition and a delay-dependent admissibility condition are presented and
expressed in terms of linear matrix inequalities (LMIs) by Lyapunov approach. Two numerical examples
for the dynamic input-out economic models are illustrated, which show the effectiveness of the proposed
methods.

Key words: Dynamic input-output economic model; Multiple delays; Admissibility; Discrete-time singular
system with commensurate delays.

1 INTRODUCTION

A dynamic Leontief model of a multi-sector economy (Leontief W. (1936)) has the form:

x(k) = Ax(k) +B[x(k + 1)− x(k)] + y(k) (1.1)

where k is a time index, x(k) = [x1(k), . . . , xn(k)]T and y(k) = [y1(k), . . . , yn(k)]T denote the total
outputs and final net demands of n sectors respectively for the kth year. A = (aij)n×n and B = (bij)n×n
are respectively the technical coefficient matrix and the capital coefficient matrix, where aij ≥ 0, bij ≥ 0.
System (1.1) is assumed to operate for the period k = 0, 1, . . . ,K − 1. (1.1) can be rewritten as:

Bx(k + 1) = (I −A+B)x(k)− y(k)

I is an identity matrix. Commonly, some rows of the matrix B are only zero elements since not every
sector produces capital goods (agriculture being a typical example in many models). Therefore, matrix
B may be singular, rank(B) ≤ n. Studies have been done for system (1.1) when B is singular in the
literature. Stability analyses of dynamic input-output economic model were performed in (P.Tseng.
(2001)) and (Z.Q.Luo and P. Tseng. (1992)). The problem of positive solutions of discrete dynamic
Leontief input-output model has been studied in (P. Tseng and S. Yun. (2009)). However, these papers
do not consider the case of multiple delays. This paper discusses the admissibility conditions of the
Leontief model (1.1) with multiple delays and with possibly singular capital matrices.
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2 ADMISSIBILITY CONDITION OF DYNAMIC INPUT-OUTPUT ECONOMIC MODEL (I)
WITH MULTIPLE DELAYS

2.1 Dynamic Input-Output Economic Model (I) with Multiple Delays

Consider a dynamic input-output economic model with multiple delays described by:

x(k) = Ax(k) +

T∑
τ=1

Bτvτ [x(k + τ)− x(k + τ − 1)] + y(k) (2.1)

where Bτ ∈ Rn×n is the capital coefficient matrix for the kth year investment and effectiveness after τ
year. Matrix Bτ may be singular, rank(Bτ ) ≤ n. vτ ∈ Rn×n is the decision coefficient matrix with a
diagonal structure. The diagonal element viτ represents the ratio of the (k − τ)th year investment and
increased production after τ year to the total increased production in the kth year (τ = 1, 2, . . . , T ) for
the ith sector. Obviously, for a certain k year, there is

0 ≤ viτ ≤ 1 (i = 1, 2, . . . , n, τ = 1, 2, . . . , T )

T∑
τ=1

viτ = 1 (i = 1, 2, . . . , n)

T is the maximum delay of the investment effectiveness, and n is the number of the sectors. In the
market economy, the final net demands y(k) are related to the wage level and the price level, and the
total outputs x(k) are decided by profits which are relevant to price and wage rate. Thus, it is reasonable
to assume

y(k) = Wx(k) (2.2)

where W = [wij ]n×n is a square matrix, with wij ≥ 0. Replacing y(k) in (2.1) with (2.2) and by simple
identical transformation, we get

HTx(k + T ) = HT−1x(k + T − 1) +

T−2∑
τ=1

Hτx(k + τ) +Gx(k), T ≥ 3 (2.3)

where

HT = BT vT , HT−1 = BT vT −BT−1vT−1, Hτ = Bτ+1vτ+1 −Bτvτ ,
G = B1v1 −A+ I −W

I is an identity matrix. Letting k + T = k0 + 1, (2.3) is rewritten as:

HTx(k0 + 1) = HT−1x(k0) +

T−2∑
τ=1

Hτx[k0 − (T − 1− τ)] +Gx[k0 − (T − 1)], T ≥ 3 (2.4)

It is noted that matrix HT may be singular, so the economy model (2.4) is a discrete-time singular
system with commensurate delays. We will derive an admissibility condition of model (2.4), which is very
important to ensure the normal operation of the economic model.

2.2 Problem Statement and Preliminaries

Consider the discrete-time singular system with commensurate delays described by

Ex(k + 1) = Ax(k) +

m∑
i=1

Aix(k − di) (2.5)

x(k) = φ(k), k = −dm,−dm + 1, . . . , 0

where x(k) ∈ Rn is the state vector. E ∈ Rn×n may be singular, rank(E) = r ≤ n. A, Ai are constant
matrices with appropriate dimensions. The scalar di = i, i = 1, 2, . . . ,m is the commensurate delay of
the system. φ(k) is a compatible initial condition.
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2.3 Delay-Independent Admissibility Condition for Singular System with Commensurate Delays

Theorem 2.1 Discrete-time singular system (2.5) with commensurate delays is admissible if there exist
matrices P > 0, Qi > 0, i = 1, 2, . . . ,m, P,Qi ∈ Rn×n and a symmetric matrix Φ ∈ R(n−r)×(n−r)

satisfying

Θ =


Θ11 Θ12 · · · Θ1,m Θ1,m+1

∗ Θ22 · · · Θ2,m Θ2,m+1

...
...

. . .
...

...
∗ ∗ · · · Θm,m Θm,m+1

∗ ∗ · · · ∗ Θm+1,m+1

 < 0 (2.6)

where

Θ11 = ATXA− ETPE +Q1

Θ1,j = ATXAj−1, j = 2, . . . ,m+ 1

Θi,i = AT
i−1XAi−1 +Qi −Qi−1, i = 2, . . . ,m

Θi,j = AT
i−1XAj−1, i = 2, . . . ,m, j = i+ 1, . . . ,m+ 1

Θm+1,m+1 = AT
mXAm −Qm

X = P − STΦS

Matrix S ∈ R(n−r)×n is of full row rank and satisfying SE = 0.

Remark 2.1 Theorem 2.1 presents a delay-independent admissibility condition for system (2.5). This
criterion is also applicable to economic model (2.1). Compared with system (2.5), the element values of
the coefficient matrices in economic model (2.1) are nonnegative due to economic significance.

2.4 Numerical Example

Example 2.1 Consider a dynamic input-output economic model with multiple delays described by:

x(k) = Ax(k) +

3∑
τ=1

Bτvτ [x(k + τ)− x(k + τ − 1)] + y(k)

where

A =

[
1.7 0.12
0.1 1.2

]
, B1 =

[
5 0.1

0.5 4

]
, B2 =

[
2.5 0.5
1 2

]
, B3 =

[
5 2.5
0 0

]
,

v1 =

[
0.2 0
0 0.2

]
, v2 =

[
0.4 0
0 0.4

]
, v3 =

[
0.4 0
0 0.4

]
, y(k) = Wx(k),W =

[
0.4 0.5
0.8 1

]
By simple computation, the model is rewritten as a discrete-time singular system with commensurate
delays described by:

Ex(k + 1) = A0x(k) +A1x(k − 1) +A2x(k − 2)

where

E =

[
2 1
0 0

]
, A0 =

[
−0.2 0.2
−0.4 −0.8

]
, A1 =

[
0 0.18

0.3 0

]
, A2 =

[
−0.1 −0.6
−0.8 −0.4

]
Assuming S = [0, 1], by Theorem 2.1, LMI (2.6) is feasible. It means that the discrete-time singular
system with commensurate delays is admissible. Thus, the economic model with multiple delays and with
singular capital coefficient matrix is admissible.

3 ADMISSIBILITY CONDITION OF DYNAMIC INPUT-OUTPUT ECONOMIC MODEL (II)
WITH MULTIPLE DELAYS

3.1 Dynamic Input-Output Economic Model (II) with Multiple Delays

Consider a dynamic input-output economic model with multiple delays described by:

x(k) = Ax(k) +

T∑
τ=1

Bτvτ [x(k + τd)− x(k + (τ − 1)d)] +B0v0[x(k + Td+ 1)− x(k + Td)] + y(k) (3.1)



122

where d is a positive integer, presenting the delay. Bτ , B0 ∈ Rn×n are the capital coefficient matrices for
the kth year investment and effectiveness after τd (τ = 1, 2, . . . , T ), Td+ 1 year, respectively. Matrix Bτ ,
B0 may be singular, rank(Bτ ) ≤ n, rank(B0) ≤ n. vτ , v0 ∈ Rn×n are the decision coefficient matrices
with diagonal structures. The diagonal element viτ , vi0 represent the ratio of the (k−τd)th, (k−Td−1)th
year investment and increased production after τd, Td+ 1 year to the total increased production in the
kth year (τ = 1, 2, . . . , T ) for the ith sector. Obviously, for a certain k year, there is

0 ≤ viτ ≤ 1, 0 ≤ vi0 ≤ 1 (i = 1, 2, . . . , n, τ = 1, 2, . . . , T )

T∑
τ=1

viτ + vi0 = 1 (i = 1, 2, . . . , n)

T is the maximum multiple of delay of the investment effectiveness, and n is the number of the sectors.
It is assumed y(k) = Wx(k) similarly as (2.2). Substituting y(k) = Wx(k) into (3.1) and by simple
identical transformation, we get

B0x(k + Td+ 1) = BTx(k + Td) +

T−1∑
τ=1

Bτx(k + τd) +Gx(k) (3.2)

where

B0 = B0v0, BT = B0v0 −BT vT , Bτ = Bτ+1vτ+1 −Bτvτ , G = B1v1 −A+ I −W

I is an identity matrix. Letting k + Td = k0, (3.2) is rewritten as:

B0x(k0 + 1) = BTx(k0) +

T−1∑
τ=1

Bτx(k0 − (T − τ)d) +Gx(k0 − Td) (3.3)

It is noted that matrix B0 may be singular, so the economy model (3.3) is a discrete-time singular system
with commensurate delays. Specially, if d = 1, model (II) is turned into model (I).

3.2 Problem Statement and Preliminaries

Consider the discrete-time singular system with commensurate delays described by

Ex(k + 1) = Ax(k) +

m∑
i=1

Aix(k − di) (3.4)

x(k) = φ(k), k = −dm,−dm + 1, . . . , 0

where x(k) ∈ Rn is the state vector. E ∈ Rn×n may be singular, rank(E) = r ≤ n. A, Ai are constant
matrices with appropriate dimensions. The scalar di = id (i = 1, 2, . . . ,m) is the commensurate delay
where d is a positive integer presenting the delay. φ(k) is a compatible initial condition.

3.3 Delay-Dependent Admissibility Condition for Singular System with Commensurate Delays

Theorem 3.1 Given positive integer d, discrete-time singular system (3.4) with commensurate delays
is admissible if there exist matrices P > 0, Qi > 0, Ri > 0, i = 1, 2, . . . ,m, P,Qi, Ri ∈ Rn×n and a
symmetric matrix Φ ∈ R(n−r)×(n−r) such that

Θ =


Θ11 Θ12 · · · Θ1,m Θ1,m+1

∗ Θ22 · · · Θ2,m Θ2,m+1

...
...

. . .
...

...
∗ ∗ · · · Θm,m Θm,m+1

∗ ∗ · · · ∗ Θm+1,m+1

 < 0 (3.5)
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where

Θ11 = ATXA− ETPE +Q1 − ETR1E + d2(A− E)T
m∑
f=1

Rf (A− E)

Θ12 = ATXA1 + d2(A− E)T
m∑
f=1

RfA1 + ETR1E

Θ1,i = ATXAi−1 + d2(A− E)T
m∑
f=1

RfAi−1, i = 3, . . . ,m+ 1

Θi,i = AT
i−1XAi−1 +Qi −Qi−1 + d2AT

i−1

m∑
f=1

RfAi−1 − ETRi−1E − ETRiE

Θi,i+1 = AT
i−1XAi + d2AT

i−1

m∑
f=1

RfAi + ETRiE

Θi,j = AT
i−1XAj−1 + d2AT

i−1

m∑
f=1

RfAj−1, i = 2, . . . ,m, j = i+ 2, . . . ,m+ 1

Θm+1,m+1 = AT
mXAm −Qm + d2AT

m

m∑
f=1

RfAm − ETRmE

X = P − STΦS

Matrix S ∈ R(n−r)×n is of full row rank and satisfying SE = 0.

Remark 3.1 Theorem 3.1 shows a delay-dependent admissibility condition for system (3.4). This con-
dition is applicable to economic model (3.1). Specially, it is noted that with d = 1, system (3.4) becomes
system (2.5). Correspondingly, Theorem 2.1 is derived from Theorem 3.1.

3.4 Numerical Example

Example 3.1 Consider a dynamic input-output economic model with multiple delays described by:

x(k) = Ax(k) +

2∑
τ=1

Bτvτ [x(k + τd)− x(k + (τ − 1)d)] +B0v0[x(k + 2d+ 1)− x(k + 2d)] + y(k)

where

A =

[
4 0

0.2 0.1

]
, B1 =

[
8.25 0
1.25 0.25

]
, B2 =

[
6 0
0 0.6

]
, B0 =

[
20 0
0 0

]
,

v1 =

[
0.4 0
0 0.4

]
, v2 =

[
0.5 0
0 0.5

]
, v0 =

[
0.1 0
0 0.1

]
y(k) = Wx(k),W =

[
0.5 0
0.5 1

]
, d = 2

By simple computation, the model is rewritten as a discrete-time singular system with commensurate
delays described by:

Ex(k + 1) = A0x(k) +A1x(k − 2) +A2x(k − 4)

where

E =

[
2 0
0 0

]
, A0 =

[
−1 0
0 −0.3

]
, A1 =

[
−0.3 0
−0.5 0.2

]
, A2 =

[
−0.2 0
−0.2 0

]
Assuming S = [0, 1], by Theorem 3.1, LMI (3) is feasible. Thus, the economic model with multiple delays
and with singular capital coefficient matrix is admissible.
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Abstract: In an ordered decision information system, objects are preference-ordered by the condition
criteria, and also they are assigned to decision classes with preference-ordered. In practice, it is always
assumed that the “dominance principle” should be observed in an ordered decision information system, i.e.,
an object not worse than the other on all the considered criteria should be assigned to a better decision class
than others. However, because of limited discriminatory power of the criteria and hesitation of the decision
maker, the “dominance principle” is often violated for some objects (S. Greco, B. Matarazzo, R. Slowinski,
2002), and in this case, one calls the ordered decision information system inconsistent. Since the Pawlak
rough set model, which concerns the indiscernibility between objects, can not cope with the inconsistency
in ordered decision information systems, the dominance-based rough set approach (DRSA) was proposed to
deal with inconsistency and draw “at least” and “at most” decision rules (Greco, Matarazzo, and Slowinski,
1998, 2001, 2002).

Nowadays, the most representative approaches and software system JAMM (http://idss.cs.put.poznan.
pl, 2006) for computing minimal decision rules in ordered decision information systems employ the ideas of
system LERS (Learning from Examples based on Rough Sets) (J. W. Grzymala-Busse, 1992). Motivated by
the ideas in LEM2 algorithm (J. W. Grzymala-Busse, 1992) and the MODLEM algorithm (J. Stefanowski,
1998) developed for Pawlak rough set model, a heuristic algorithm, called DOMLEM(Greco, Matarazzo, and
Slowinski, 2001, 2002), was proposed to induce minimal decision rules from the ordered decision information
systems. The DOMLEM algorithm is of polynomial time complexity, and it can obtain a minimal set of the
minimal certain (possible) decision rules, which can cover all the objects in the lower (upper) approximation
of the upward (downward) unions of decision classes. However, it can not compute all the minimal decision
rules. Two algorithms, which are used respectively to induce all rules and subset of all rules, were proposed
(S. Greco, R. Slowinski, J. Stefanowski1 and M. Zurawski, 2004; J. Stefanowski, 2001; M. Zurawski, 2001),
and their extended versions are included in the software systems JAMM. The former algorithm can induce
all minimal decision rules for a given data table, but its computational complex is exponential with respect to
the number of attributes. The last algorithm can satisfy user’s requirements, e.g., sufficiently high strength
and confidence, or with a limited number of elementary conditions, but its computational cost is higher
than that of the DOMLEM.

As we know, in Pawlak rough set model, discernibility function approach was successfully used in drawing
minimal decision rules. However, up to now, we have not found any computational approach for minimal
decision rules by using discernibility function and Boolean reasoning technique for ordered decision informa-
tion systems. In this paper, we will employ discernibility function to compute minimal “at least” decision
rules and minimal “at most” decision rules.

Let us give a logical interpretation of the minimal decision rules. In a symbolic decision information
system S = (U,C ∪ {d}, V, f), the rule ∧b∈B(b,= vb) → (d,= k) is called minimal one if it is true in
S and ∧q∈Q(q,= vq) → (d,= k) is false in S for any sub-formula ∧q∈Q(q,= vq) of ∧b∈B(b,= vb) with
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Q ⊂ B (J. Bazan, M. Szczuka, M. Wojna and M. Wojnarski, 2004; Z. Pawlak, 2007). For two decision rules
∧p∈P (p,= vp) → (d,= s) and ∧q∈Q(q,= vq) → (d,= t), if the objects covered by the former rule are also
covered by the latter rule, then the former rule can be implied by the latter one. And in this case, s = t,
P ⊇ Q, and vq = uq for any q ∈ Q. So, one can see that, two rules possess implication relation if and only
if they have the same decision part and the condition part of one rule is a sub-formula of the other one.
Therefore, the minimal decision rule is one which can not be implied by any other rules. By constructing a
decision-relative discernibility function of object x, and computing all prime implicants of the discernibility
function, one can obtain the reducts of x and get the optimal decision rules corresponding to x (Z. Pawlak,
2007), where the reduct of x is the minimal set of condition attributes satisfying [x]B = [x]C , and the
optimal decision rule is actually a minimal decision rule.

In the dominance-based rough set approach, the “at least” and “at most” decision rules, which are pre-
sented respectively as the form of ∧b∈B(b,≥ vb)→ (d,≥ k) and ∧b∈B(b,≤ vb)→ (d,≤ k), are implications.
The minimal “at least” (“at most”) decision rule was defined as such an implication that there is no other
implication with a left-hand side (LHS) of at least the same weakness (in other words, a rule using a subset
of elementary conditions and/or weaker elementary conditions) and a right-hand side (RHS) of at least the
same strength (in other words, a rule assigning objects to the same union or sub-union of classes (S. Greco,
B. Matarazzo and R. Slowinski, 2002). We give a logical interpretation of the minimal “at least” decision
rule as follows.

For two “at least” decision rules ∧q∈Q(q,≥ vq) → (d,≥ t) and ∧p∈P (p,≥ vp) → (d,≥ s), we call the
former one implies the latter one, if the following three conditions are satisfied:

C1: Q ⊆ P ;
C2: ∀q ∈ Q, vp ≤ up;
C3: t ≥ s.
Then, the minimal rule can be conceived as a rule that can not be implied by any other rules.
The implication relationship between the “at least” decision rules is obviously more complicated than

that between the decision rules in Pawlak rough set model. We can define and compute the optimal
decision rules in ordered decision information systems, as did in the Pawlak rough set model established
for symbolic decision information systems. Unfortunately, different from the case in the Pawlak rough set
model, in DRSA, the optimal decision rules are not necessarily minimal decision rules. So, to compute the
minimal decision rules for ordered decision information systems, we will propose a method to compute the
minimal decision rules by deleting the redundant decision rules.

For an ordered decision information system S = (U,C ∪ {d}, V, f), in order to optimize the “at least”
decision rule ∧c∈C(c,≥ c(xi)) → (d,≥ s) generated by xi ∈ R�C(Cl≥s ), one should simplify as much as
possible its conditional part by deleting some conjunctive terms while keeping its decision part unchanged,
i.e., delete as many conjunctive terms in ∧c∈C(c,≥ c(xi)) as possible with the constraint that the set
B, which consists of condition attributes in the remainder ∧b∈B(b,≥ b(xi)), satisfies min[xi]

�
B ≥ s. We

call such B as a reduct of xi with respect to (d,≥ s). ∧c∈B(c,≥ c(xi)) → (d,≥ s) is called an optimal
decision rule of ∧c∈C(c,≥ c(xi)) → (d,≥ s), and it satisfies the condition C1 of the minimal decision rule.
We can demonstrate that, the reduct of xi with respect to (d,≥ s) can be computed by constructing the
discernibility function ∆�s ([xi]

�
C) = ∧d(y)<s(∨α�(y, xi)).

To discard those optimal decision rules which can be implied by others, we propose a new concept called
rule-vector. For a rule r([xi]

�
B , s): ∧b∈B(b,≥ b(xi))→ (d,≥ s), we define a corresponding n+ 1 dimensional

vector, which is denoted as: V ([xi]
�
B , s) = (u1, u2, · · · , un, s), where ul = cl(xi) if cl ∈ B, and ul is denoted

as “*” if cl /∈ B, for 1 ≤ l ≤ n. We call V ([xi]
�
B , s) a rule-vector corresponding to the rule r([xi]

�
B , s). By

computing minimal rule-vectors of the set of all rule-vector corresponding to the optimal decision rules, we
can obtain the minimal decision rules which satisfy both condition C1, C2 and C3. This can be done by
comparing each V ([xi]

�
B , s) with every other V ([xj ]

�
P , s) and deleting the larger one if the two rule-vectors

can be compared.
In a similar way, we can compute all the minimal “at most” decision rules.
Experimental results show that our approach costs much less time than the famous JAMM algorithm

does in computing minimal “at least” and “at most” decision rules, especially for the ordered decision
information systems containing more condition attributes.

Key words: Rough set; Ordered information system; Dominance relation; Decision rule; Discernibility
function.
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45 TO LEARN THE UNCORRELATED AND

DISCRIMINANT COLOUR SPACE FOR FACIAL

EXPRESSION RECOGNITION
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Abstract: Recent research has shown improved performance by embedding the colour information into
facial expression recognition. However, the RGB colour space may not always be the most desirable space
for representing the colour information. This paper addresses the problem of how to learn an optimum
colour space for facial expression recognition based on the given training sample set. There are two typical
learning colour spaces which have been used for face recognition. The uncorrelated colour space (UCS)
decorrelates the three component images of RGB colour space using principal component analysis, and the
discriminant colour space (DCS) creates three new component images by applying discriminant analysis.
We will investigate these two colour spaces for facial expression recognition. First, colour face images are
transformed into these colour spaces and represented by concatenating their component vectors. Secondly,
facial expression recognition is achieved by utilizing Fisher Linear Discriminant (FLD) and support vector
machines. We test these colour spaces with two classifiers on Curtin-Kinect dataset in three ways: person-
independent, person-dependent and crossing image datasets. The results reveal that the uncorrelated colour
space is more effective than RGB space in colour information representation for facial expression recognition,
but the discriminant colour space is not as expected.

Key words: Color facial expression recognition; FLD; DCS.
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46 CONTENT BASED IMAGE RETRIEVAL USING

LOCAL DIRECTIONAL PATTERN AND COLOR

CUMULATIVE HISTOGRAM

Juxiang Zhou* and Tianwei Xu
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Abstract: Content based image retrieval (CBIR) has many important practical applications in database
management and computer vision, especially due to ever-increasing of the easily captured digital color
images. In fact, texture, color and shape are three important features in a CBIR system. So the main focus
of CBIR research is to develop feature extraction method in terms of expressing effective texture, color
and shape features in a similar way of human visual perception. In this paper, a new feature extraction
method is developed by using Local Directional Pattern (LDP) and color cumulative histogram which not
only can capture color, texture and shape properties, but also utilize different color space effectively due
to special properties in these two color spaces. First the RGB image is converted into HSV model, and
LDP descriptor is used to describe visual texture and geometrical features using the V (value) image. Then
color texture is extracted from color cumulative histogram in RGB color space with color quantization. At
last these features are combined as final image features for image retrieval with different distance measures.
The WANG image database is used to validate the proposed method effectively. The performance has
been evaluated in comparison with some existing methods, and the results demonstrate that the proposed
approach is more effective for image retrieval and can be used directly on natural images without any
segmentation and preprocessing.

Key words: Color Image retrieval; LDP; HSV; RGB.
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47 MODIFIED PEDESTRIAN MODEL WITH ITS

APPLICATION TO EXIT DESIGN

Hairong Dong*a, Xiaoxia Yanga, Qianling Wanga, Xiaoming Hub, Bin Ninga
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Beijing Jiaotong University, Beijing, 100044, PRC
bOptimization and Systems Theory
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Abstract: Pedestrian dynamics is an important issue for the design of evacuation strategy in emergency
situation. One of the central issues in emergency management is how to establish an appropriate model
for pedestrians. Therefore, it is very necessary to investigate various pedestrian models and come up with
a new one with high mimicry of real pedestrian dynamics. Typical social force model is widely studied in
recent years, concerning more about psychological and physical factors. This paper proposed a modified
social force model, considering the socio-psychological force has a relationship with pedestrians distance,
vision field and degree of excitement. The proposed model can significantly improve the computational
efficiency in the simulation process. Numerical simulations are also carried out to analyze the effect of the
different exit width over different pedestrian densities using the modified social force model, which indicates
a moderate exit width should be chosen for different situations to realize the expected effect.

Key words: Social force model; Pedestrian dynamics; Pedestrian evacuation.
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48 DISSIPATIVE CONTROL FOR A CLASS OF

LINEAR OUTPUT TRACKING SYSTEMS

Yi Zhanga,b, Yile Zhangb
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Abstract: In this paper, a class of tracking systems is transformed into the augmented form, and then, the
problem of dissipative control and passive control for the augmented system is investigated. An improved
storage function is constructed and the subsequent analysis provides some new sufficient conditions in the
form of LMIs for nominal and time-delay representations. Dissipative state feedback controllers are designed.
A numerical simulation example is given to illustrate the effectiveness of the theoretical result.

Key words: Tracking systems; Dissipative control; State feedback controller; LMIs.
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STABILITY BOUNDS FOR SINGULARLY PERTURBED
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Abstract: In this paper, unified optimization problem for the stability upper bound ε∗ and the H∞
index γ based on state feedback is considered for singularly perturbed systems. First, a sufficient condition
for the existence state feedback controller is presented in terms of linear matrix inequalities such that the
resulting closed-loop system is asymptotically stable if 0 < ε < ε∗ and guarantees H∞ performance index.
Furthermore, a new algorithm to optimize these two indices simultaneously is proposed based on Nash game
theory which transfers multi-objective problem into a single objective problem and develops a new way to
determine the objective weights. Then an optimal state feedback controller can be obtained. Finally, some
numerical examples are provided to demonstrate the effectiveness and correctness of the proposed results.

Key words: Singularly perturbed systems; Stability; H∞ performance; State feedback control; Linear
matrix inequality (LMI); Nash game approach.

1 INTRODUCTION

Singularly perturbed systems often occur naturally in many branches of applied mathematics, see (Kumar
M. (2011)). Some popular approaches are adopted to deal with these systems, like the reduced technique
(Cao L. (2005)), separate designs for slow and fast subsystems and descriptor systems approach(Zhong
N. (2007)). Optimization problems for singular perturbed system have become popular research topics
in recent years. Here, we only discuss the optimal control for stability upper bound ε∗ and H∞ index.
(Liu W. (1996)) gives a characterization for upper bound ε∗ of the parasitic parameter ε. (Tan W.
(1998)) derived a set of ε-independent sufficient and necessary conditions for the H∞ control problem in
a different way (via dynamic output feedback). All these results are “one-player” optimal problem that
has only one performance considered. (Xu S. (2009)) gave some sufficient conditions for optimizing H∞
norm bound γ and stability upper bound ε, which searched optimal γ for the given ε and vice versa. The
proper algorithm research is an important task in future. (Zhang G. (2012)) considered H2/H∞ optimal
problem for descriptor system based on Nash game approach, which provided some effective ideas for our
subject.

In this paper, unified optimization problem for the upper bound ε∗ and the H∞ index γ based on
state feedback is studied. A sufficient condition for the existence state feedback controller is presented
in terms of LMIs such that the resulting closed-loop system is asymptotically stable if 0 < ε < ε∗ and
also guarantees H∞ performance index. The main contribution of this paper is to derive an algorithm to
optimize these two indices based on Nash game theory. We translate multi-objective problem into single
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objective problem and develop a new way to determine the objective weights. Finally, some numerical
examples are provided to demonstrate the effectiveness and feasibility of the proposed results.

2 PROBLEM FORMULATION

Consider a linear time-invariant singularly perturbed system described by Eεẋ(t) = Ax(t) +B1u(t) +B2w(t)
z(t) = C1x(t) +D1u(t)
y(t) = C2x(t) +D2w(t)

(2.1)

where x(t) =

[
x1(t)
x2(t)

]
, Eε =

[
In1

0
0 εIn2

]
and the scalar ε > 0 is a small singular perturbed parameter.

x(t) ∈ Rn is the state vector with x1(t) ∈ Rn1 (slow state) and x2(t) ∈ Rn2 , n1 + n2 = n (fast state).
u(t) ∈ Rm is the input vector, w(t) ∈ Rl is the disturbance input which belongs to L2[0,∞). And
z(t), y(t) ∈ Rp are the controlled output and the measurement output respectively.

For the system (2.3) consider the state feedback control law

u(t) = Kx(t) (2.2)

where K ∈ Rm×n is the control gains to be solved.
Substituting (2.4) into (2.3), one can obtain the resulting closed-loop system given by E(ε)ẋ(t) = (A+B1K)x(t) +B2w(t)

z(t) = (C1 +D1K)x(t)
y(t) = C2x(t) +D2w(t)

(2.3)

The purpose of this paper is to design state feedback controller (2.4) for the system (2.3), such that
for any ε ∈ (0, ε∗] the closed-loop system (2.3) is asymptotically stable and satisfies the H∞ performance
γ.

3 MAIN RESULTS

3.1 State Feedback Controller Design for Singularly Perturbed Systems

Theorem 3.1 The closed-loop system (2.3), which is constituted by system (2.3) and state feedback
controller (2.4), will be asymptotically stable and guarantees H∞ performance index γ > 0 for any ε ∈
(0, ε∗], if there exist matrices Pi(i = 1, 2, 3, 4, 5) and Pi = PT

i (i = 1, 2, 3, 4) and K such that the following
matrix inequalities hold

P1 > 0,

[
P1 + εP3 εPT

5

P5 P2 + εP4

]
> 0,

[
P1 + εP3 εPT

5

εP5 εP2 + ε2P4

]
> 0 (3.1)

 PT
0 Â+ ÂTP0 PT

0 B2 (C1 +D1K)T

∗ −γ2I 0
∗ ∗ −I

 < 0, (3.2)

 PT
0 Â+ ÂTP0 PT

0 B2 (C1 +D1K)T

∗ −γ2I 0
∗ ∗ −I

+ ε

 P̂T
0 Â+ ÂTP̂0 P̂T

0 B2 0
∗ 0 0
∗ ∗ 0

 < 0, (3.3)

where ∗ is denoted the symmetric terms in a symmetric matrix, P0 =

[
P1 0
P5 P2

]
, P̂0 =

[
P3 PT

5

0 P4

]
, Â =

A+B1K.

Proof : First of all, we define P (ε) = P0 + εP̂0, then

ET(ε)P (ε) =

[
P1 + εP3 εPT

5

εP5 εP2 + ε2P4

]
(3.4)
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Because of (3.4), it is obviously that ET(ε)P (ε) = PT(ε)E(ε) > 0. In this case, we choose a Lyapunov
Functional

V (t, ε) = xT(t)ET(ε)P (ε)x(t) > 0 (3.5)

Then, the time-derivative of V (t, ε) along the solution of (2.3) gives

V̇ (t, ε) = xT(t)(PT(ε)(A+B1K) + (A+B1K)TP (ε))x(t) + xT(t)PT(ε)B2w(t). (3.6)

When w(t) = 0, substituting P0 and P̂0 into (3.6), from matrix inequalities (3.5) and (3.3), we can obtain

V̇ (t, ε) < 0.

Therefore the resulting closed-loop system (5) is asymptotically stable for any ε ∈ (0, ε∗].
Secondly, interpret ‖z(t)‖2 < γ‖w(t)‖2 into integral form. And it is equivalent to

Jzw =

∫ ∞
0

[zT(t)z(t)− γ2wT(t)w(t) + V̇ (t, ε)]dt+ V (t, ε)|t=0 − V (t, ε)|t=∞. (3.7)

Since V (t, ε)|t=0 = 0 under zero initial condition and V (t, ε)|t=∞ ≥ 0, we can derive

Jzw ≤
∫ ∞

0

[zT(t)z(t)− γ2wT(t)w(t) + V̇ (t, ε)]dt =

∫ ∞
0

ξT(t)Πξ(t)dt. (3.8)

where

ξ(t) =

[
x(t)
w(t)

]
,Π =

[
P (ε)TÂ+ ÂTP (ε) + (C1 +D1K)T(C1 +D1K) PT(ε)B2

∗ −γ2I

]
Take P0, P̂0 into (3.8). Since the matrix inequalities (3.5) and (3.3) hold, then Π < 0 hold. 2

Theorem 3.2 The closed-loop system (2.3) will be asymptotically stable and guarantees H∞ performance
index γ > 0 for any ε ∈ (0, ε∗], if there exist matrices Pi(i = 1, 2, 3, 4, 5) with Pi = PT

i (i = 1, 2, 3, 4) and
V such that (3.4) and the following LMIs hold{

ϕ1 < 0,
ϕ1 + εϕ2 < 0,

(3.9)

where P0 and P̂0 are defined as in the Theorem 3.1.

ϕ1 =

 PT
0 A

T +AP0 + V TBT
1 +B1V B2 PT

0 C1 + V TDT
1

∗ −γ2I 0
∗ ∗ −I

 , ϕ2 =

 P̂T
0 A

T +AP̂0 0 P̂T
0 C

T
1

∗ 0 0
∗ 0 0

 .
In this case, the controller gain is given by K(ε) = V (P0 + εP̂0)−1.

In order to obtain the optimal {ε, γ}, we should solve the minimization problem described by

min γ, max ε
s.t.(3.4), (3.9)

(3.10)

4 OPTIMIZATION ALGORITHM

The optimal control problem can be converted into finding the Nash equilibria point u∗. u∗ can be
regarded as trade-off or proper controller such that ε and γ achieve “win-win” situation.

Algorithm 1 is given to obtain a set of {εi, γi} by solving two convex optimization problems.

Algorithm 1

Step 1: Set i = 1 and γi = γmax, εi = εmin (γmax > 0 and εmin > 0 are real constant).

Step 2: Let i = i+ 1, εi = εi−1, solving the optimization problem (OP1):

min γi,
s.t.(3.4), (3.9)

(4.1)
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Step 3: Let i = i+ 1, γi = γi−1, solving the optimization problem (OP2):

min−εi,
s.t.(3.4), (3.9)

(4.2)

Step 4: If εi > εi−1, γi < γi−1 and i < N (N is the upper bound for the iteration number), then go
back to Step 2. Otherwise, stop.

Then go to normalized processing.

Algorithm 2

There are n strategies set K = {K1,K2, · · · ,Kn}. Let the objects set {ε, γ} or A = {aj}, j = 1, 2,
that is a1 = ε, a2 = γ. Then the object matrix is B = [bij ]n×2, where bij means that the object
aj of the strategy Ki. Define the membership matrix R = {rij}, i = 1, 2, · · · , n, j = 1, 2, and

rij =
bij−bimin

bimax−bimin
. Determine the desired method E = {ej}, j = 1, 2, and e1 = max{ri1}, e2 =

min{ri2}, 1 ≤ i ≤ n.

We select fi(µ) =
∑2
j=1 µj(ej − rij), where µ1, µ2 is the weight vectors for the objects. For the

given weight vectors µj , the strategy Ki is optimal when the fi(µ) achieves minimum.

min{
∑n
i=1 fi(µ)},

s.t.

{ ∑2
j=1 µ

2
j = 1,

µj ≥ 0.

(4.3)

Using the nonlinear programming principle, introduce the Lagrange function. Then the expression
for µj is obtained. Compute fi(µ), then the minimum f∗i (µ) can be found and the corresponding
strategy K∗i is the optimal controller gain. Now, ε∗i and γ∗i is optimal value which we expected.

5 NUMERICAL EXAMPLE

Example 1: [Zhong N. (2007)] Consider a singularly perturbed system (2.3) with the the following given
parameter

Eε =

 1 0 0
0 ε 0
0 0 ε

 , A =

 −1 −1 −1
0 0.1 0
1 0 −0.1

 , B1 =

 0
1
1

 , B2 =

 0.1
0.2
0.1


C1 =

[
0.1 0.1 0.1

]
, C2 =

[
0 1 1

]
, D1 = D2 = 0.

From Tab 2.1, one can see that the H∞ performance index γ with those obtained in this paper is less
conservative.

Table 5.1 Comparison between Zhong N. (2007) and Theorem 3.2

ε γ

Zhong N. (2007) Theorem 3.2

0.001 0.1692 0.1150
0.01 0.2384 0.0987
0.05 4.7725 0.0451
0.1 None 0.0285

Example 2: Consider magnetic tape control system [Nguyen T. (2012)] with the system matrices
given by

Eε =


1 0 0 0
0 1 0 0
0 0 ε 0
0 0 0 ε

 , A =


0 0.4 0 0
0 0 0.345 0
0 −0.524 −0.465 0.262
0 0 0 −1

 , B1 =


0
0
0
1

 , B2 =


0
0
0
1


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C1 =
[

0.11 0.12 0.13 0.1
]
, C2 =

[
1.8 0 3.7 0

]
, D1 = 0.1, D2 = 0.1.

In [Nguyen T. (2012)], one sets ε = 0.1. Using the result Theorem 3.2, we get the H∞ performance
index

γ = 0.2006,K =
[
−1.1 −1.2 −1.3 −1

]
.

Then unified optimize γ and ε based on Algorithm 1, one can obtain

γmin = 0.0020, εmax = 0.7846,K =
[
−1.4816 −1.4602 −1.4203 −1.7433

]
.

Set the initial value of the state vectors and the disturbance input

x0 =
[
−2 3 −4 −1

]
, w(t) = 0.1 sin t.

Now the trajectories of the output vectors y(t) are shown in Figure.5.1.

Figure 5.1 Comparison with y(t) under the case of different ε.

Example 3: Consider a singularly perturbed system (2.3) with the the following given parameter

Eε =

[
1 0
0 ε

]
, A =

[
1 −2
3 4

]
, B1 =

[
2.5
1

]
, B2 =

[
0
1

]

C1 =
[

1 0
]
, C2 =

[
0 1

]
, D1 = 0.1, D2 = 0.

In light of Algorithm 1 and Algorithm 2, one can get

γmin = 0.3055, εmax = 1.5,K =
[

94.7127 −787.8431
]
.

Now the trajectories of the state vectors x(t) are shown in Figure.5.2.

Figure 5.2 state curves with ε = 1.5.
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6 CONCLUSION

In this paper, we have considered the unified optimization problem for the upper bound stability ε∗ and
the H∞ index γ based on state feedback. A sufficient condition for the existence state feedback controller
has been presented in terms of LMIs such that the resulting closed-loop system is asymptotically stable
if 0 < ε < ε∗ and guarantees H∞ performance index. Then an algorithm to optimize these two indices
based on Nash game theory has been derived. It can translate multi-objective into single objective
and develops a new way to determine the objective weights. Using this algorithm, the corresponding
optimal state feedback controller with the upper bound of singular perturbation parameter with meeting
a prescribed H∞ performance bound requirement can be obtained. Finally, several numeral examples
have demonstrated the feasibility, the effectiveness and the less conservatism of the new results.
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1 ABSTRACT

The trajectory-tracking problem of a reentry hypersonic vehicle is studied in this paper. Due to the
complicated aerodynamics characteristic and tight integration configuration, the model of the vehicle is
highly nonlinear and multi-constrained, which poses significant challenge to the control problem. This
paper develops a trajectory tracking method based on the model predictive control (MPC). In order to
improve the speed of MPC, the optimization problem at each time step is transformed into a convex form
and, accordingly, convex optimization is used to obtain the control action. The resulting model predictive
control method is able to take into consideration the constraints on heat, dynamic pressure, and control
efforts, which sets it aside from most classical methods. The newly developed convex optimization solver
CVXGEN is utilized successfully in the evaluation of the method, and derives the solutions in milliseconds.
This makes real-time applications of the MPC feasible. Simulation results show that the proposed tra-
jectory tracking strategy possesses good performance in the presence of aerodynamic uncertainties. All
the constraints are satisfied even when the given nominal trajectory has large perturbations.

Hypersonic vehicles have large lift-to-drag ratio and good maneuverability, which makes related re-
search topics more and more popular recently. This paper studies the control problem of a reentry
hypersonic vehicle which reentries the atmosphere at the altitude of 80 km and follows the nominal tra-
jectory until it hits the target with a certain velocity. However, the trajectory-tracking problem of reentry
hypersonic vehicles is always tricky. Firstly, the control model of the system is highly nonlinear due to
the unique configuration of hypersonic vehicles. Secondly, there are all kinds of constraints to the states
and control signals due to considerations of aerodynamic stability, thermal condition and mechanical
requirements, which are nonlinear too. Thirdly, the uncertainties of the model parameters could be large
because, by now, we only have limited knowledge about the aerodynamic characteristics under hypersonic
conditions.

The dynamics of the hypersonic vehicle considered is represented as:

ḣ = v sin γ, (1.1)

v̇ = − ρ0

2m
e−βhSv2(cD0 + CD1α

2 + CD2e
CD3v)− µ

(Re + h)2
sin γ, (1.2)

γ̇ = − ρ0

2m
e−βhSv(cL0 + CL1α+ CL2e

CL3v) +
v cos γ

Re + h
− µ

(Re + h)2v
cos γ. (1.3)

∗E-mail address: feng tttf@hit.edu.cn
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The trajectory of the vehicle has to satisfy the following constraints:

KQ(ρ0e
−βh)

1
2 v3 ≤ Qdmax, (1.4)

1

2
ρ0e
−βhv2 ≤ Pdmax, (1.5)

√
L2 +D2

mg0
≤ nLmax, (1.6)

αmin ≤ α ≤ αmax, (1.7)

α̇min ≤ α̇ ≤ α̇max. (1.8)

According to the idea of model predictive control, the control action at each time step is obtained by
solving an online optimization problem. Solving a nonconvex optimization problem using general purpose
methods can be slow, and this has limited MPC to applications with sampling time measured in seconds
or minutes. In order to speed up the computation, the optimization problem in this paper is transformed
into a convex form as follows:

min
x1,...,xT+1
u0,...,uT

J

s.t.

 x(i+ 1) = A(i)x(i) +B(i)u(i) + w(i),
u(i) ≤ umax,
Cax(i) + Cbu(i) + Cc ≤ 0,

i = 0, ..., T,
(1.9)

where the performance index J is defined by

J =

T∑
i=1

{(x(i)− xr(i))TQ(x(i)− xr(i)) + u(i)TRu(i) + (u(i)− u(i− 1))TRd(u(i)− u(i− 1))}

+ (x(T + 1)− xr(T + 1))TQf (x(T + 1)− xr(T + 1)).

When we choose T = 20, the above optimization problem has 1803 non-zero KKT matrix entries.
It takes less than 2 milliseconds to solve this optimization problem by the solver CVXGEN, which is fast
enough to satisfy the requirement of real-time computation.
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Shuisheng Zhou, Feng Ye, Yangyang Zhao, Yajing Wu
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Abstract: For the support vector machine(SVM) learning, the least squares SVM(LS-SVM) model derived
by duality is a widely used model since it has an explicit solution. But its limitation is that the solution
lacks sparseness. In this paper, we derive another equivalent LS-SVM model by the representer theorem,
and prove that the new model can be solved exactly at some sparse solutions, but not the approximate
sparse solution as some researchers(Suykens et al., 2000; Suykens et al., 2002b; Kruif and Vries, 2003; Zeng
and Chen, 2005; Jiao et al., 2007; Kuh and Wilde, 2007) did. For the linear leaning problem, our theoretical
analysis and experimental results support the new model gives the sparsest solutions in all SVM models.

Key words: Support vector machine(SVM); representer theorem; RKHS; sparseness

1 INTRODUCTION

In a learning problem, an input set T = {(x1, y1), · · · , (xm, ym)} for samples xi ∈ Rn along with corre-
sponding targets yi is given, and a deterministic function that best represents the relation between input
vectors and class labels is learned form the input samples.

Based on the Vanpnik and Chervonkis’ structural risk minimization principle (Vapnik, 1999; Vapnik,
2000), support vector machine(SVM) is a computationally powerful and successful machine learning
method. It is widely used in classification and regression problems, such as character identification,
disease diagnoses, face recognition, the time serial prediction. For the classification problem, the SVM
model solves the following optimization problem

min
w∈H,b∈R,ξ∈Rm

λ

2
‖w‖2H +

m∑
i=1

L(ξi), (1.1a)

s.t. yi(〈w, k(·, xi)〉H + b) + ξi = 1, i = 1, 2, · · · ,m, (1.1b)

to find the optimal classification function

f(x) = 〈w, k(·, x)〉H + b, (1.2)

where λ > 0 is the regularization parameter, the loss function L : R → R+ ∪ {+∞} has some typical
forms for different learning problems, k : Rm × Rm → R is a kernel function with a good generalized
capacity and H is a reproduced kernel Hilbert spaces(RKHS) corresponding to the kernel function k with
the reproducing property that admits g(x) = 〈g(·), k(·, x)〉H and especially 〈k(·, x), k(·, z)〉H = k(x, z) for
all g ∈ H and x, z ∈ Rm. Commonly, model (1.1) can be convert to a finite dimensional problem by
representer theorem (Schölkopf et al., 2001; Keerthi et al., 2006; Chapelle, 2007) or duality (Joachims,
1998; Platt, 1999; Suykens and Vandewalle, 1999; Vapnik, 2000; Cristianini and Shawe-Taylor, 2000; Fine
and Scheinberg, 2001; Ferris and Munson, 2004; Zhou et al., 2007), which admits the solution w ∈ H to
model (1.1) can be represented as

w =

m∑
j=1

αjk(·, xj). (1.3)
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Based on model (1.1), one simple and efficient method is the least squares support vector machine(LS-
SVM) (Suykens and Vandewalle, 1999; Suykens et al., 2002b) with the least squared loss L(u) = 1

2u
2

in the model (1.1). Experimental comparisons (Van Gestel et al., 2004) show that LS-SVM has good
performance on many applications, but one obvious limitation is that the solution to LS-SVM lacks the
sparseness, and hence its its test speed is significantly slower than others SVM models.

Suykens et al.(Suykens et al., 2000) proposed a pruning approach to improve the sparseness of LS-SVM
by iteratively removing some samples(such as 5%) with smallest the support value spectrum, i.e., the
absolute value of the current solution of LS-SVM, and some other studies on pruning method (Kruif and
Vries, 2003; Zeng and Chen, 2005; Kuh and Wilde, 2007 etc.) are reported. All these pruning algorithms
require solving a system of linear equations (slowly decreasing in size) many times, which incurs a large
computational cost, and only give an approximate solution at last.

Jiao et al.(Jiao et al., 2007) present another fast sparse approximation scheme for LS-SVM to deal
with the sparseness, in which the approximated decision function is built iteratively by adding one basis
function from a kernel-based dictionary at one time until the ε criterion satisfied, and a probabilistic
speedup scheme is used to further improve the speed of their algorithms.

All the works for LS-SVM mentioned above are based on solving a system of linear equations Bα = b
with a nonsingular dense matrix B and a dense vector b. The original LS-SVM (Suykens and Vandewalle,
1999) solves it exactly and must meet an unique dense solution, the others (Suykens et al., 2000; Kruif
and Vries, 2003; Zeng and Chen, 2005; Kuh and Wilde, 2007; Jiao et al., 2007) are to iteratively reach an
approximate sparse solution. Of course, they will meet a non-sparse solution if the approximation errors
is small.

In this paper, we focus on an equivalent LS-SVM model induced by the representer theorem, which is
also based on solving a system of linear equation Bα = b, but the coefficients matrix B is always singular.
Hence the new model may have multi-solutions, which include some sparse solutions. For linear learning
problem with n� m, we can prove the model has a sparse solution at most with n non-zero components,
which is sparser than the solutions obtained by other SVM learners–So the model can be called sparest
LS-SVM at this situation.

For nonlinear kernel learning problem, if its kernel matrix has low rank or is approximated with a
low-rank matrix, we also prove that the model can give a sparse solution with r non-zero components
where r is the rank of kernel matrix or the rank of approximated kernel matrix.

The rest of the paper is organized as follows. We review the LS-SVM model induced by duality in
Section 2.1 and derive the new LS-SVM model by representer theorem in Section 2.1. In Section 2.3, we
prove the equivalence of two models and we prove that the new model may meet the sparse solution in
Section 3. Section 4 gives some elementary experiments and Section ?? concludes the paper.

2 TWO RELATED LS-SVM MODELS

There are two kinds of LS-SVM models. One is induced by the duality and the other is induced by the
representer theorem.

2.1 LS-SVM models induced by duality

Many researcher focus on the LS-SVM models are induced by duality, such as Suykens and Vandewalle,
1999; Kruif and Vries, 2003; Zeng and Chen, 2005; Kuh and Wilde, 2007; Jiao et al., 2007 and the
references therein. They study the Wolf duality of (1.1) with the least squared loss L(u) = 1

2u
2, which is

equivalent to

min
β

1
2β
>Kβ + λ

2β
>β − y>β, s.t. e>β = 0, (2.1)

where the kernel matrix K satisfies Ki,j = k(xi, xj) and e is a vector whose components are all 1. It is
solved by the following system of linear equations:[

0 e>

e λI +K

] [
b
β

]
=

[
0
y

]
(2.2)

where I is identity matrix. The duality relationship maintains w =
∑m
j=1 βjk(·, xj). The corresponding

output of a new sample x is predicted by f(x) =
∑
j βjk(xj , x) + b.

For the nonlinear problem in a large feature kernel space reproduced by a kernel function such as
Gaussian kernel, the offset b in (1.2) can be omitted without loss the generalization performance (
Steinwart, 2003; Steinwart and Christmann, 2008), then one simpler LS-SVM model is proposed to
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solve the following system of linear equations

(λI +K)β = y. (2.3)

The output of a new input x is predicted as the sign of f(x) =
∑
j βjk(xj , x).

2.2 LS-SVM models induced by representer theorem

By representer theorem(Schölkopf et al., 2001; Keerthi et al., 2006; Chapelle, 2007), the solution w of
(1.1) admits (1.3). Plugging (1.3) in (1.1) and eliminating ξi with the equality constraint, we have

min
α

λ
2α
>Kα+ 1

2α
>KK>α+ m

2 b
2 + be>Kα− y>Kα− be>y + m

2 . (2.4)

Its solution is reached by solving the following system of linear equations:[
m e>K>

Ke λK +KK>

] [
b
α

]
=

[
e>y
Ky

]
(2.5)

The variation form without offset b in (1.2) is to solve the following system of linear equations:[
λK +KK>

]
α = Ky. (2.6)

2.3 The properties of the related models

Comparing the two models, we have the following conclusions:

Proposition 2.1 Since the kernel matrix is always a dense matrix, so:
i) No matter the kernel matrix is full rank or not, the solution of the LS-SVM models (2.2) and (2.3)

induced by the duality are unique and dense(non-sparse);
ii) If the kernel matrix is not full rank, the solution of the LS-SVM models (2.5) and (2.6) induced by

the representer theorem may have multi-solutions;
iii) If the rank of the kernel matrix is r(≤ m), the LS-SVM models (2.5) and (2.6) induced the

representer theorem have a sparse solution with r non-zero components.

All of those can be proven by Gaussian elimination procession.

Theorem 2.2 Those two types models are equivalent to each other correspondingly. Precisely,
i) the unique solution of (2.2) is always the solution of (2.5), and the unique solution of (2.3) is always

the solution to (2.6);
ii) the classification function corresponding to the unique solution of (2.2) meets the same classification

function corresponding to the all solutions of (2.5), and the classification function corresponding to the
unique solution of (2.3) meets the same classification function corresponding to the all solutions of (2.6).

Proof : i) If let (β̄, b̄) solves (2.2), we have (λI +K)β̄ + b̄e = y and e>β̄ = 0. Then

mb̄+ e>K>β̄ = e>eb̄+ λe>β̄ + e>Kβ̄ = e>((λI +K)β̄ + eb̄) = e>y,

and
Keb̄+ (λK +KK>)β̄ = K

(
(λI +K)β̄ + b̄e

)
= Ky.

Namely, [
m e>K>

Ke λK +KK>

] [
b̄
β̄

]
=

[
e>y
Ky

]
Hence (β̄, b̄) solves (2.5) and the proof of the solution of (2.3) β̄ solving (2.6) is similar.

ii) It is true since all solutions to the models induced by representer theorem are equivalences.

3 THE SPARSENESS OF THE MODELS INDUCED BY REPRESENTER THEOREM

In this section, we study how to obtain the sparsest solution of the new model induced by representer
theorem.
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Lemma 3.1 Given inputs set S = {xi ∈ Rn|i = 1, 2, ...,m} and its semi-positive definite kernel matrix
K ∈ Rm×m, if rank(K) = r, then there exists a basic set B ∈ S with r inputs(and the non-basic subset
N including the rest m− r inputs) such that the kernel matrix K can be rearranged as:

K =

[
KBB KBN

KNB KNN

]
=

[
KBB KBBT

>

TKBB TKBBT
>

]
=

[
Ir
T

]
KBB

[
Ir T>

]
(3.1)

where KBB ∈ Rr×r is the full rank kernel matrix of B and T ∈ R(m−r)×r satisfies KNB = TKBB.

Proof : Since rank(K) = r, there have r linear independent rows of K. Put the inputs corresponding

to those r rows into basic set B. Then kernel matrix can be rearranged as K =

[
KBB KBN

KNB KNN

]
and

the first r rows of K are linear independent. Hence the rest r − m rows can be resented by the first
r rows. Namely, there exists matrix T ∈ R(m−r)×r such that [KNB KNN ] = T [KBB KBN ]. Then
KNB = TKBB , KBN = K>NB = K>BBT

> = KBBT
> and KNN = TKBN = TKBBT

>. Then (3.1) is

proven and hence KBB is a full rank matrix. This completes the proof.

Theorem 3.2 Let the kernel matrix K satisfy rank(K) = r. Then,
i) LS-SVM model (2.6) has a solution α at most with r non-zero components corresponding to basic

set B in Lemma 3.1 and αN = 0.
ii) LS-SVM model (2.5) has a solution (α, b) such that α at most with r non-zero components corre-

sponding to basic set B in Lemma 3.1 and αN = 0.

Proof : i) Plugging (3.1) in (2.6), we can show that (2.6) is equivalent to{
Q[Ir T>]α = KBB [Ir T>]y,

TQ[Ir T>]α = TKBB [Ir T>]y,
(3.2)

where
Q := λKBB +KBB(Ir + T>T )KBB = λKBB +KBBKBB +KBNK

>
BN .

Obviously the second equality in (3.2) is redundant for solving these linear equations and the first equality
can be solvable at {

αB = Q−1[KBB KBN ]y,
αN = 0.

(3.3)

ii) LS-SVM model in (2.5) can be simplified by eliminating b. With b = 1
m (e>y − e>Kα), we have[

λK +KK> − 1
mKee

>K
]
α = Ky − 1

mKee
>y. (3.4)

Then we can similarly show that (3.4) is equivalent to the following system of linear equations Q̄[Ir T>]α = KBB [Ir T>]
(
y − e>y

m e
)
,

T Q̄[Ir T>]α = TKBB [Ir T>]
(
y − e>y

m e
)
,

(3.5)

where

Q̄ := λKBB +KBB [Ir T>](Im −
1

m
ee>)[Ir T>]>KBB = Q− 1

m
pp>,

with p = [KBB KBN ]e. Again noticed than the second equality in (3.5) is redundant and hence the
model (2.5) can be solved at 

αB = Q̄−1[KBB KBN ]
(
y − e>y

m e
)
,

αN = 0,
b = 1

m (e>y − p>αB).

(3.6)

This completes the proof.

Furthermore, for linear problem, we have

Theorem 3.3 For linear classification problems with offset b on input set T = {(xi, yi)|xi ∈ Rn, yi ∈
{−1, 1}, i = 1, 2, ...,m} (n � m), let X = [x1 x2 · · · xm]> and XB comprised by any r (usually the
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same as n)linear independent inputs as its rows. Then the output classification function of LS-SVM
model (2.5) is

f(x) = (x− x̄)>w + 1
me
>y,

where x̄ = 1
mX

>e and w = X>B Q̄
−1XB(X>y − e>yx̄) satisfies Q̄ = XB(λIn +X>X −mx̄x̄>)X>B .

The total computational complexity for linear classification problems with LS-SVM model (2.5) is less
than O(mn2), and memory cost is O(mn). This is similar as the model (2.2) induce by duality, where

SMW identity (Golub and Loan, 1996) (Im+λXX>)−1 = Im−X
(
λIn +X>X

)−1
X> is used to reduce

the computational complexity. However, LS-SVM model (2.5) has a sparse solution at most with n non-
zeros components–This is the least number of inputs to present a typical hyperplane in Rn. Comparing
with other SVM models(such as C-SVM(Vapnik, 2000), ν-SVM(Schölkopf et al., 2000)etc.), we should
call this model the sparest LS-SVM.

4 EXPERIMENTAL RESULTS FOR LINEAR CLASSIFICATION PROBLEM

In this section, we perform some elementary experiments to illustrate our LS-SVM models induced by
representer theorem can achieve sparser exact solution while others methods(Suykens et al., 2000; Zeng
and Chen, 2005; Kuh and Wilde, 2007; Jiao et al., 2007 are to achieve the approximated sparse solution
of LS-SVM).

Firstly we give a toy example with 8 separable input samples in R2 assigned two class as Figure 4.1
shows. We train this set by the new sparsest LS-SVM model (2.5) and the traditional non-sparse LS-SVM
(2.2). For the sparsest model, the first sample at upper-left corner is assigned to the basic set B , and the
second sample in B is chosen corresponding to Figure 4.1(a)-(f) respectively. The sample at lower-right
corner can not be the second basic sample because it is linear independent with the first one. The result
of traditional non-sparse LS-SVM is plotted in Figure 4.1(g), where all samples are the “support vectors”
and the size of bullet(• or •) is in proportion to its weight. It needs to mention that, for LS-SVM,
those samples with non-zero weight have already lost the meaning as the support vectors. However, for
consistent with normal SVM, we still call them “support vectors”.
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Figure 4.1 Sparse LS-SVMs (a)-(f) with dif-

ferent basic sets B comparing to non-sparse LS-

SVM(g).
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Figure 4.2 Linear classification experiments to show that the new

proposed sparse LS-SVM is the sparsest SVM learner.

In Figure 4.1, it clearly shows that all the classification functions are the same and any 2 linear
independent inputs, no matter within same class or not, can represent the solution of our sparse LS-SVM
(2.5), and the non-sparse LS-SVM use all input samples to represent its solution. This is consistent with
our theoretical results(Theroem 2.2, Theorem 3.2 and Theorem 3.3).

Another experiment is on an inseparable linear classification problem. 400 training inputs are randomly
sampled as Figure 4.2 shows. Here we compare our new LS-SVM model with traditional non-sparse LS-
SVM, Suykens et al.’s sparse approximation LS-SVM(Suykens et al., 2000) by pruning method and Jiao
et al.’s fast sparse approximation LS-SVM(FAS-LSSVM)(Jiao et al., 2007) as well as the standard SVM.

In Figure 4.2, it observes that our new models has only two support vectors and the no-sparse LS-SVM
model has all 400 training samples as support vectors and they meet the same classification hyperplane.
For approximation method with the similar accuracy, Suykens et. al.’s pruning LS-SVM has 130 support
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vectors while Jiao et. al.’s FSA-LS-SVM has 347 support vectors. The standard SVM achieves 67 support
vectors. It is clear that our new model is the sparsest SVM learner. Some other experiments reveal the
similar conclusion.
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APPROACHES FOR REAL- TIME TRACTOR

LOCALIZATION IN PORT CONTAINER TERMINALS
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Abstract: In order to effectively manage and deploy internal tractors in a port container marine terminal,
real-time information concerning the location of the tractors is required so that timely scheduling and plan-
ning of tractors control and dispatching can be derived. This paper propose a wireless sensor network-based
Truck Flow Management System (TFMS) to help tracking the real-time location of internal tractors in ter-
minal so as to streamline the management of the terminal operation. Focusing on the real-time localization,
the semi-definite programming (SDP) based approaches are employed by introducing the terminal context
information, including prior known road constraints and available time-serial data recorded in the network,
into the traditional SDP formulation. Experimental results are presented to show that the proposed formu-
lation and treatments to the problem can greatly decrease the estimated errors compared to the traditional
formulation.
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53 STATIONARY ANALYSIS OF A FLUID MODEL

DRIVEN BY AN M/M/C MULTIPLE VACATIONS QUEUE

Xiaoyan Liua,Xiuli Xu*a,Wuyi Yueb, Ning Meia
aCollege of Science

Yanshan University, Qinhuangdao, 066004, China
bFaculty of Intelligence and Informatics

Konan University, Kobe, 6588501, Japan

Abstract: A fluid queue is an input-output system where a continuous fluid enters and leaves a storage
device, called a buffer, according to a randomly varying rate influenced by an underling stochastic environ-
ment or background. This paper considers a fluid flow model driven by a multi-server M/M/c queue with
classical vacation. We obtain the sets of differential equations satisfied by the stationary joint distribution of
the buffer content, by which we gain the simple structure of the Laplace Transform (LT) for the stationary
distribution of the buffer content. Furthermore, we give the probability of an empty buffer and the mean
of the buffer content based on the relationship between the LT and the Laplace-Stieltjes Transform (LST)
of the stationary distribution.

Key words: Fluid model; Buffer content; Multiple vacation; LT; LST.

1 INTRODUCTION

Owing to the application of fluid queueing models in the field of wireless communications, transport,
storage and computer systems, or others fields, the model has recently attracted interest from probability
researchers as a research subject.

As is well known, the distribution function of any buffer content satisfies a set of differential equations.
Spectral analysis method has been the most traditional and commonly used method to find the solution
to these equations. Kulkarni (1997) presented the spectral method to deal with a fluid model driven
by a Markov process with finite state. Moreover, Doorn (1997) used orthogonal polynomials to express
the stationary distribution of the buffer content, which is driven by an infinite-state birth-death process.
Ramaswami (1999) advanced a matrix analytic method, Neuts (1981) extended a geometric solution
method into a multi-dimensional matrix geometric solution method. Lenin (2000) studied the fluid
model driven by an M/M/1/N queue, while Parthasarathy (2002) and many other researchers have
learned from indicators of fluid models driven by an M/M/1 queue with different methods. However,
fluid models driven by queues with different vacation policies, such as the fluid model driven by an
M/M/1/N queue with multiple exponential vacations (Mao (2010)) and the fluid model driven by an
M/G/1 queue with multiple exponential vacations (Mao (2011)), have just began to be studied.

In this paper, we have mainly studied some indices relating to fluids models driven by an M/M/c queue
with multiple vacations. Firstly, we discuss the drive system and the stationary distribution of the drive
system is obtained. Then, we introduce the Laplace Transform (LT) and Laplace-Stieltjes Transform
(LST) of the distribution functions. The LST of the stationary distribution of the buffer content is given
on the basis of the relationship between the LT and the LST. Furthermore, we obtain the brief expressions
of the mean of the buffer content, as well as the probability of the buffer being empty.
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2 AN M/M/C QUEUE WITH MULTIPLE VACATIONS

In this system, the inter-arrival times and service times follow an exponential distribution with parameters
λ and µ, respectively. When there is no customer in the system after a service completion, the server
will take a vacation of a random length which follows an exponential distribution with parameters θ. If
there are customers in the system when a vacation comes to an end, the servers enter a busy period.
Otherwise, the servers take another vacation. This model is identified as the M/M/c queue with multiple
vacations, abbreviated as the M/M/c/MV queue.

We assume that inter-arrival times, service times and vocation times are all independent, and the
service discipline is First-Come First-Served (FCFS).

Let L(t) be the number of customers in the system at time t, and J(t) = 0 or 1, decided ac-
cording to whether the system stays in a vacation period or a busy period at time t. Then, the
stochastic process {(L(t), J(t)), t ≥ 0} is a Quasi-Birth-and-Death(QBD) process with the state space
Ω = {(0, 0)}

⋃
{(k, j), k ≥ 1, j = 0, 1}.

Arranging the state space in lexicographic order, the infinitesimal generator for the process {(L(t), J(t)), t ≥
0} can be expressed as a block tridiagonal matrix form, that is

Q =



A0 C0

B1 A1 C
B

2
A

2
C

. . .
. . .

. . .

B
c−1

A
c−1

C
B A C

. . .
. . .

. . .


where

A0 = −λ, C0 = (λ, 0), B1 = (0, µ)T ,

Ak =

(
−(λ+ θ) θ

0 −(λ+ kµ)

)
, k = 1, 2, ..., c− 1, Bk =

(
0 0
0 kµ

)
, k = 2, 3, ..., c− 1,

B =

(
0 0
0 cµ

)
, A =

(
−(λ+ θ) θ

0 −(λ+ cµ)

)
, C =

(
λ 0
0 λ

)
.

It is easy to conclude that the M/M/c/MV system is stable if and only if the system workload ρc =
λ/(cµ) < 1. Let πkj = lim

t→+∞
P{L(t) = k, J(t) = j}, (k, j) ∈ Ω, then {πkj , (k, j) ∈ Ω} is the stationary

distribution of process {(L(t), J(t)), t ≥ 0}.
In order to get the expression of the stationary distribution of process {(L(t), J(t)), t ≥ 0}, it is

necessary to obtain the minimal non-negative solution of the matrix equation R2B +RA+ C = 0. This
solution R is called the rate matrix, which plays an important role in the analysis of QBD process.

Lemma 2.1 If ρc < 1, the quadratic matrix equation R2B +RA+ C = 0 has the minimal non-negative
solution

R =

(
λ
λ+θ ρc
0 ρc

)
. (2.1)

It is well known that the stationary distribution of {(L(t), J(t)), t ≥ 0} exists if and only if SP (R) < 1
and the homogeneous linear equation XB[R] = 0 has a positive solution, where SP (R) is the spectral
radius of R and

B[R] =



A
0

C
0

B1 A1 C
B2 A2 C

. . .
. . .

. . .

Bc−1 Ac−1 C
B RB +A


.

Theorem 2.1 If ρc < 1, the stationary distribution of {(L(t), J(t)), t ≥ 0} are as follows:

πk0 =

{
( λ
λ+θ )kπ00, 1 ≤ k ≤ c− 1

( λ
λ+θ )k−cπc0, k ≥ c,
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πk1 =



λ
µπ00, k = 1

1
k!π00

{
(λµ )k + λ+θ

µ ( λ
λ+θ )c

k−1∑
j=1

(λµ )j(k − j)! + θ
µ

c−1∑
v=k+1−j

( λ
λ+θ )v

k−1∑
j=1

(λµ )j(k − j)!

}
, 2 ≤ k ≤ c− 1

πc0
k−c∑
v=1

( λ
λ+θ )k−c−vρc

v + πc1ρc
k−c, k ≥ c

where πc1 = λ
cµ(c−1)!π00

[
(λµ )c−1 + λ+θ

µ ( λ
λ+θ )c

c−2∑
j=1

(λµ )j−1(c− 1− j)! + θ
µ

c−1∑
v=c−j

( λ
λ+θ )v

c−2∑
j=1

(λµ )j−1(c− 1− j)!

]
+

λc

cµ(λ+θ)c−1π00, πc0 = ( λ
λ+θ )

c
π00, π00 can be determined by the normalization condition as follows:

∞∑
k=0

πk0 +

∞∑
k=1

πk1 = 1.

3 DESCRIPTION AND ANALYSIS FOR THE FLUID MODEL

Let X(t) be the content of the buffer at time t, which is a non-negative random variable. Assume that
the net input rate of fluid (the input rate minus the output rate) to the buffer is the function of the
process {(X(t), L(t), J(t)), t ≥ 0}, we have

σ[X(t), L(t), J(t)] =
dX(t)

dt
=


0, (L(t), J(t)) = (0, 0), X(t) = 0
σ, (L(t), J(t)) = (0, 0), X(t) > 0
σ0, (L(t), J(t)) = (k, 0), k ≥ 1
σ1, (L(t), J(t)) = (k, 1), k ≥ 1.

Now, the fluid model driven by the M/M/c queue with multiple vacations is a three-dimensional
Markov process with state space Ω′ = Ω× [0,+∞). Let d = σπ00 + σ0

∑+∞
k=1 πk0 + σ1

∑+∞
k=1 πk1, then d

is called the average drift of the fluid model. It is not difficult to prove that the fluid model is stable if
and only if d < 0 and ρc < 1 when the buffer capacity is infinite (see Kulkarni (1997)).

Let Fk0(t, x) = P{L(t) = k, J(t) = 0, X(t) ≤ x}, k ≥ 0 and Fk1(t, x) = P{L(t) = k, J(t) =
1, X(t) ≤ x}, k ≥ 1, which are called the instantaneous joint probability distribution function of the three-
dimensional Markov process. When the process achieves balance, {(X(t), L(t), J(t)), t ≥ 0} converges to
the random vector (X,L, J). Here X is the stationary distribution of the buffer content. The joint distri-
bution of (X,L, J) is denoted by Fk0(x) = lim

t→+∞
Fk0(t, x), Fk1(x) = lim

t→+∞
Fk1(t, x). Then, the steady-

state inventory has a distribution function F (x) = P{X ≤ x} = F00(x)+
∑+∞
k=1 Fk0(x)+

∑+∞
k=1 Fk1(x), x ≥

0. F (x) = (F00(x), F1(x), F2(x), ...), where Fk(x) = (Fk0(x), Fk1(x)), k ≥ 1.
Using standard methods (see Mitra (1998), Parthasarathy (2002)), we can prove that F (x) satisfies

the matrix differential equation as follows:

d

dx
F (x)Λ = F (x)Q (3.1)

and the boundary condition
F (0) = (a, 0, 0, 0, ...) (3.2)

where Λ = diag(σ,Σ,Σ, ...), Σ = diag(σ0, σ1). The probability a = F00(0) = P{X = 0, L = 0, J = 0}
is called the stationary probability of the empty buffer content, which will be determined in the follow
analysis.

In order to solve the differential Eq. (3.1), we have to get help from the LT of the joint distribution,

denoted by F̂kj(s) =
∫ +∞

0
e−sxFkj(x)dx, s > 0, (k, j) ∈ Ω. Then F̂ (s) = (F̂00(s), F̂1(s), ...) and F̂k(s) =

(F̂k0(s), F̂k1(s)), k ≥ 1.
Taking the LT on both sides of Eq. (3.1) and combining the boundary conditions, we can found that

F̂ (s) satisfies the equation as in the following structure:

F̂ (s)(Q− sΛ) = −F (0)Λ = (−aσ, 0, 0, 0, ...). (3.3)

Next we introduce a crucial quadratic equation, whose roots play an important role in the following
analysis.

Lemma 3.1 For any s ≥ 0, cµz2 − (λ+ cµ+ sσ1)z + λ = 0 has two real roots γ0(s) and γ1(s), where

γ0(s)(γ1(s)) =
(λ+cµ+sσ1)−(+)

√
(λ+cµ+sσ1)2−4cλµ

2cµ .
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It is easy to verify 0 < γ0(s) < 1, γ1(s) > 1, γ0(0) = λ
cµ = ρc, γ1(0) = 1, cµγ′0(0) = λσ1

λ−cµ and

cµ(γ0(s) + γ1(s)) = λ+ cµ+ sσ1, cµγ0(s)γ1(s) = λ.

Lemma 3.2 If ρc < 1, the quadratic matrix equation R(s)2B +R(s)(A− sΣ) + C = 0 has the minimal
non-negative solution as follows:

R(s) =

(
λ

λ+θ+sσ0

γ0(s)θ
λ+θ+sσ0−cµγ0(s)

0 γ0(s)

)
.

Define a series of functions as
φ0(s) = 1

φk(s) = λ−cµγ0(s)
λ + (c−k)µ

λ φk−1(s) + sσ1

λ

k−1∑
v=0

φv(s), 1 ≤ k ≤ c− 1
(3.4)

and
ϕk(s) = λ+(k+1)µ+sσ1

λ ϕk+1(s)− (k+2)µ
λ ϕk+2(s) + θ

λ ( λ
λ+θ+sσ0

)k+1F̂00(s), 1 ≤ k ≤ c− 3

ϕc−2(s) = (λ+θ+sσ0)θK0(s)
λ(λ+θ+sσ0−cµγ0(s))

ϕc−1(s) = 0.

(3.5)

Using the above functions, matrix equation (3.3) can be rewritten as

−(λ+ sσ)F̂00(s) + µF̂11(s) = −aσ
θF̂10(s)− (λ+ µ+ sσ1)F̂11(s) + 2µF̂21(s) = 0

λF̂k−1,0(s)− (λ+ θ + sσ0)F̂k0(s) = 0, 1 ≤ k ≤ c− 1

λF̂k−1,1(s) + θF̂k0(s)− (λ+ kµ+ sσ1)F̂k1(s) + (k + 1)µF̂k+1,1(s) = 0, 2 ≤ k ≤ c− 1

F̂k−1(s)C + F̂k(s)(A− sΣ) + F̂k+1(s)B = 0, k ≥ c.

(3.6)

Then we get

Theorem 3.1 If d < 0, ρc < 1, F̂k0(s), F̂k1(s) and {F̂k(s), k ≥ 1} can be expressed as
F̂k0(s) = ( λ

λ+θ+sσ0
)
k
F̂00(s), 0 ≤ k ≤ c− 1

F̂k1(s) = K1(s)φc−1−k(s)− ϕk(s), 1 ≤ k ≤ c− 1

F̂k(s) = K(s)Rk−c+1(s), k ≥ c
(3.7)

where K(s) = (K0(s),K1(s)) = (F̂c−1,0(s), F̂c−1,1(s)), F̂00(s) = aσ
λ+sσ+ µ

λ+sσφc−2(s)K1(s)− µ
λ+sσϕ1(s),K0(s) =

( λ
λ+θ+sσ0(s) )c−1F̂00(s),K1(s) = [µλθ−(λ+µ+sσo)(λ+µ+sσ1)(λ+sσ)]ϕ1(s)+2µ(λ+sσ)(λ+θ+sσo)ϕ2(s)−aσλθ

[µλθ−(λ+µ+sσo)(λ+µ+sσ1)(λ+sσ)]φc−2(s)+2µ(λ+sσ)(λ+θ+sσo)φc−3(s) .

Theorem 3.2 If d < 0, ρc < 1, the stable buffer content X has the LST and the mean as

F ∗(s) = [λ(σ1−σ0)+(σ1−σ)(θ+sσ0)]sF̂00(s)
σ1(θ+sσ0) + cµγ0(s)−λ

σ1
K1(s) + aσ

σ1

− (θ+sσ1)λcF̂00(s)

σ1(θ+sσ0)(λ+θ+sσ0)c−1 + cµθγ0(s)K0(s)
σ1(λ+θ+sσ0−cµγ0(s))

+ sλK0(s)
θ+sσ0

+ sγ0(s)θ(λ−θ−sσ0)K0(s)
(λ+θ+sσ0−cµγ0(s))(θ+sσ0)(γ0(s)−1) + sγ0(s)K1(s)

1−γ0(s) ,

(3.8)

E(X) =
λc[(σ1−σ0)F̂00(0)+θF̂

′
00(0)]

σ1θ(λ+θ)c−1 − (c−1)σ0λ
cF̂00(0)

σ1(λ+θ)c − λ2(3σ1−σ0)K0(0)
σ1θ(λ−cµ)

− [λ(σ1−σ0)+θ(σ1−σ)]F̂00(0)
σ1θ

− λK′0(0)
σ1

+ λcµ(σ1−σ0)K0(0)
σ1θ(λ−cµ) .

(3.9)

Proof. Taking sum on both sides of the forth line of Eq. (3.6) from 2 to c-1, we have

θ

c−1∑
k=2

F̂k0(s)− sσ1

c−1∑
k=2

F̂k1(s) + λF̂11(s)− λF̂c−1,1(s)− 2µF̂21(s) + cµF̂c1(s) = 0. (3.10)

Summing up Eq. (3.10) and the second line of Eq. (3.6), we obtain

sσ1

c−1∑
k=1

F̂k1(s) = θ

c−1∑
k=1

F̂k0(s)− µF̂11(s)−λF̂c−1,1(s) + cµF̂c1(s). (3.11)
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Using the first line of Eq. (3.7), Eq. (3.11), the first line of Eq. (3.6) and the expressions of
F̂c1(s), F̂c−1,1(s), then

c−1∑
k=1

F̂k1(s) = F̂00(s)
sσ1

[
λθ(1−( λ

λ+θ+sσ0
)
c−1

)

θ+sσ0
− (λ+ sσ)] + cµθγ0(s)K0(s)

sσ1(λ+θ+sσ0−cµγ0(s))

+ aσ
sσ1

+ cµγ0(s)−λ
sσ1

K1(s).

Hence, the LT of the stationary distribution F (x) of the buffer content can be given by

F̂ (s) =
∫ +∞

0
e−sxF (x)dx =

c−1∑
k=0

F̂k0(s) +
c−1∑
k=1

F̂k1(s) +
+∞∑
k=c

F̂k(s)e

= F̂00(s)
θ+sσ0

[(λ+ θ + sσ0)− λc

(λ+θ+sσ0)c−1 ] + cµθγ0(s)K0(s)
sσ1(λ+θ+sσ0−cµγ0(s))

+ F̂00(s)
sσ1

[
λθ(1−( λ

λ+θ+sσ0
)
c−1

)

θ+sσ0
− (λ+ sσ)] + aσ

sσ1
+ cµγ0(s)−λ

sσ1
K1(s)

+K(s)R(s)(I −R(s))−1e

where e = (1, 1)T .
For the spectral radius SP [R(s)] = max(γ0(s), λ

λ+θ+sσ0
) < 1, so I −R(s) is invertible, and

(I −R(s))−1 =

(
λ+θ+sσ0

θ+sσ0

γ0(s)θ(λ+θ+sσ0)
(λ+θ+sσ0−cµγ0(s))(θ+sσ0)(γ0(s)−1)

0 1
1−γ0(s) .

)
.

After calculation, we have

F̂ (s) = [λ(σ1−σ0)+(σ1−σ)(θ+sσ0)]F̂00(s)
σ1(θ+sσ0) − (θ+sσ1)λcF̂00(s)

sσ1(θ+sσ0)(λ+θ+sσ0)c−1

+ cµθγ0(s)K0(s)
sσ1(λ+θ+sσ0−cµγ0(s)) + aσ

sσ1
+ cµγ0(s)−λ

sσ1
K1(s) + λK0(s)

θ+sσ0

+ γ0(s)θ(λ−θ−sσ0)K0(s)
(λ+θ+sσ0−cµγ0(s))(θ+sσ0)(γ0(s)−1) + γ0(s)K1(s)

1−γ0(s) .

Next, we define the LST of the stationary joint distribution for the fluid model and the stationary
distribution of the buffer content as

F ∗kj(s) =

∫ +∞

0

e−sxdFkj(x), F ∗(s) =

∫ +∞

0

e−sxdF (x), (k, j) ∈ Ω.

It is easy to prove F ∗0 (s) = −a + sF̂0(s), F ∗k (s) = sF̂k(s), k ≥ 1. Taking the expression of F̂ (s)

into F ∗k (s) = sF̂k(s) and after calculation and arrangement, we can obtain the LST of the stationary
distribution of the buffer content as in Eq. (3.8).

With the normalization condition of the LST lim
s→0

F ∗(s) = 1, we can acquire the expression of a as

a =
1

σ
[
λcF̂00(0)

(λ+ θ)
c−1 + σ1 − λK0(0)].

Now, taking the derivatives on both sides of Eq. (3.8) with respect to s, then letting s → 0, we get
the mean of the buffer content as in Eq. (3.9), and theorem 3.2 is proved.

4 CONCLUSION

In this paper we discussed the fluid model driven by the M/M/c multiple vocations queue, where the
input rate and output rate are determined by the drive system. That is the queue length of the M/M/c
multiple vacations queue. Using a QBD process and a matrix-geometric solution method, the steady
state distribution of the queue length was derived. Furthermore, we obtained the brief expressions for
the LST of the stationary distribution and the mean of the buffer content.
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Abstract: Using the supplementary variable and embedded Markov chain method, we consider a discrete
time batch arrival finite capacity queue with negative customers and single working vacation, where the RCH
killing policy and partial batch rejection policy are adopted. First, we obtain steady-state system length
distributions at pre-arrival, arbitrary and outside observers observation epochs. Based on the various system
length distributions, the blocking probability of the first, an arbitrary and the last customer in a batch,
the analysis of actual waiting time distributions measured in slots of the first, an arbitrary and the last
positive customer in an accepted batch have been investigated. Finally, we consider the influence of system
parameters on several performance measures to demonstrate the correctness of the theoretical analysis.
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Abstract: In this paper, we consider the balking behavior of customers in an M/G/1 queueing system with
a removable server under N-policy, where the server may be turned off when no customers are present, and
be turned on when the queue length reaches size N. Arriving customers decide whether to join the system
or balk, based on a linear reward-cost structure that incorporates their desire for service, as well as their
unwillingness for waiting. We study the balking behavior of customers in an unobservable case and derive
Nash equilibrium strategies and socially optimal strategies. We also compare the resulting equilibrium and
socially optimal strategies.

Key words: Queuing system; Optimization; Balking behavior; Nash equilibrium strategy; Socially optimal
strategy.

1 INTRODUCTION

In past decades, there is an emerging tendency in the literature to study queueing systems from an
economic viewpoint, where a reward-cost structure is imposed on the system that reflects the customers’
desire for service and their unwillingness for waiting. Customers are allowed to take their own decisions
and therefore the system can be modeled as a game among the customers. The basic problem is to find
equilibrium strategies and (or) socially optimal strategies.

Burnetas and Economou [1] study an Markovian single-server queueing system with setup times. They
derive equilibrium strategies for the customers under the various levels of information and analyze the
stationary behavior of system under these strategies. Economou and Kanta [2] consider the Markovian
single-server queue that alternates between on and off periods. They derive equilibrium threshold balking
strategies in two cases, according to the information for the server’s state. Guo and Hassin [3] study a
vacation queue with N-policy and exhaustive service. They present the equilibrium and socially optimal
strategies for unobservable and observable queues. This work is extended by Guo and Hassin [4] to
heterogenous customers. They study both unobservable and observable queues and consider two situa-
tions regarding customers’ delay sensitivity. However, in all aforementioned papers, the queueing models
are studied under Markovian assumptions. Recently, Economou et al. [5] analyze the optimal balking
strategies in single-sever queues with general service and vacation times.
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In this paper, we consider M/G/1 queueing model with a removable server under N-policy, where the
server may be turned off when no customers are present, and be turned on when the queue length reaches
size N. We study the balking behavior of customers in an unobservable case and derive Nash equilibrium
strategies and socially optimal strategies.

2 MODEL DESCRIPTION

Consider the N-policy M/G/1 queueing system with a single removable server. It is assumed that cus-
tomers arrive according to a Poisson process with parameter λ. Service times are assumed to be inde-
pendent and generally distributed according to a common probability distribution function H(t)(t ≥ 0)
of finite first and second moments, E(H) < ∞ and E(H2) < ∞. The server employs an N-policy, i.e.,
the server may be turned off when no customers are present, and be turned on when the queue length
reaches size N.

Arriving customers are assumed to be identical. Our interest is in the customers’ strategic response
as they can decide whether to join or balk upon arrival. Assume that a customers’ utility consists of
a reward for receiving service minus a waiting cost. Specifically, every customer receives a reward of R
units for completing service. There is a waiting cost of C units per time unit that the customer remains
in the system. Customers are risk neutral and maximize their expected net benefit.

We consider an unobservable queue, i.e., an arriving customer either joins the system or balks, but it
is not possible for him to observe the system state before making this decision. Also, the decisions are
irrevocable and, consequently, retrials of balking customers and reneging of entering customers are not
allowed.

3 EQUILIBRIUM BALKING STRATEGIES

Under the unobservable assumption, an arriving customer has two pure balking strategies: to balk or to
join. With a mixed strategy, an arriving customer joins the system with a certain probability q ∈ (0, 1).

If all arriving customers follow a strategy q, then the effective arrival rate is λq. Then, using the results
of Tian and Zhang (2006), the mean sojourn time W (q) of a customer who joins the system is given by

W (q) =
N − 1

2λq
+ E(H) +

λqE(H2)

2[1− λqE(H)]
. (3.1)

for λqE(H) < 1. So, the function W (q) is strictly convex in q, with minimum value

W (q̃) =
N + 1

2
E(H) +

√
(N − 1)E(H2) (3.2)

where

q̃ =

{
λE(H) + λ

√
E(H2)

N − 1

}−1

. (3.3)

Consider a tagged customer. If this tagged customer decides to balk, then his benefit equals 0. On
the contrary, if he joins the system, his expected utility is given by

U(q) = R− CW (q) = R− C
{
N − 1

2λq
+ E(H) +

λqE(H2)

2[1− λqE(H)]

}
, (3.4)

for q < 1/[λE(H)].
From Eq. (3.4), it is easy to see that U(q) = 0 may have two different roots if ∆ > 0, where

∆ =

[
R

C
− N + 1

2
E(H)

]2

− (N − 1)E(H2). (3.5)

The two roots are given by

q1 =
(N − 1)E(H) + y − 2

√
∆

2λ[E(H2) + yE(H)]
(3.6)

and

q2 =
(N − 1)E(H) + y + 2

√
∆

2λ[E(H2) + yE(H)]
(3.7)

where y = 2[R/C − E(H)].
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Theorem 3.1 (i) If ∆ < 0, there exists unique equilibrium strategy is qe = 0.
(ii) If ∆ = 0, there are two cases: (a) If q̃ > 1, there exists unique equilibrium strategy qe = 0; (b) If

q̃ ≤ 1, there exists unique equilibrium strategy is qe = q̃.
(iii) If ∆ > 0, there are three cases: (a) If q1 > 1, there exists unique equilibrium strategy qe = 0; (b)

If q1 ≤ 1 < q2, there exist two positive equilibrium strategies q1
e = q1 and q2

e = 1; (c) If q2 ≤ 1, there exist
two positive equilibrium strategies q1

e = q1 and q2
e = q2.

4 SOCIALLY OPTIMAL BALKING STRATEGIES

In this section, we analyze the problem of social profit optimization, where the decision problem for the
social planner is to obtain a socially optimal strategy q∗, which maximizes customers’ overall expected
net benefit pre unit time, defined by S(q) = λq[R−CW (q)]. For simplicity, we assume that λqE(H) < 1.

By Eq. (3.1), the objective function S(q) is given by

S(q) = λqR− C
{
N − 1

2
+ λqE(H) +

(λq)2E(H2)

2[1− λqE(H)]

}
. (4.1)

Then, this social objective function is concave and the unique optimal solution that maximize the objective
function S(q) is

q =
1

λE(H)

{
1−

√
E(H2)

yE(H) + E(H2)

}
. (4.2)

Therefore, the social net benefit at q is given by

S(q) = λqR− CN − 1

2
− C

{
λqE(H) +

(λq)2E(H2)

2[1− λqE(H)]

}
. (4.3)

It is interesting that q does not depend on N, but SW (q) does. The following theorem gives an upper
and a lower bounds on q.

Theorem 4.1 If ∆ > 0, then q̃ < q < q2.

The following theorem shows that there may exist unique optimal strategy or two optimal strategies
depending on the different conditions in parameters.

Theorem 4.2 (i) If ∆ < 0, there exists unique optimal strategy q∗ = 0.
(ii) If ∆ = 0, there exist two optimal strategies q∗ = 0 and q∗ = q̃.
(iii) If ∆ > 0, there exists unique optimal stragtey q∗ = min{q, 1}.

If ∆ > 0, by Theorem 4.1, we have q1 < q̃ < q < q2. Then, comparing Theorem 3.1 and Theorem 4.2,
It is easy to observe that: (i) q∗ > qe if q1 > 1, i.e, the optimal strategy is greater than the equilibrium
strategy qe, and (ii) q1

e < q∗ < q2
e if q1 ≤ 1, i.e., the optimal strategy is greater than the the equilibrium

strategy q1
e and smaller than the equilibrium strategy q2

e .

5 CONCLUSION

The balking behavior of customers has been considered in an N-policy M/G/1 queueing system with a
removable server. Upon arrival, the customers can not observe the system state and decide whether to
join or balk based on a linear reward-cost structure that incorporates their desire for service, as well
as their unwillingness for waiting. We have derived the equilibrium strategies and compared them to
socially optimal strategies. We have found that the equilibrium strategy may be smaller or greater than
the social optimal strategy for some cases.
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Abstract: In order to understand the phenomenon of delay-time balance at the users’ side which is
emerged in the spontaneous signaling networks, we propose a model to formalize the generation mechanism
of delay-time balance by a stochastic linear system in a nonsmooth space. The coefficient matrix of the
stochastic linear system is designated by the reverse matrix of a load-balanced Birkhoff-von Neumann (LB-
BvN) switch network. The model can explain the generation mechanism of delay-time balance occurred in
a spontaneous signaling network of networked control systems (NCS).
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1 INTRODUCTION

In networked control systems (NCS), the communication channels are embedded into the control systems.
When such distributed control systems are scaled up, the nonlinear dynamics of NCS in which the
stochastic characteristics of packet flow have great influence on its robustness, makes it difficult to be
controlled. In the case of the Internet, there is no central controller. But the dominant principle of the
Internet operations, which is the so-called end-to-end principle, allows the users to access the Internet
with a high degree of transparency provided by the network protocols. With the transparency, we can
analyze the dynamics mechanism of a communication network. In a networked control system, various
regulations for packet flow have been used in the network protocol. When the load (service) for multiple
users is heavy, e.g., in the case of the “big data” service provided by cloud computing, the balance of
multiple users is necessary with respect to quality of service (QoS). The requirement on the balance
in network architecture is reflected in the fairness of multiple routes, which is a required measure for
Internet architecture. The direct observation of such fairness at the users’ side is the delay time, which is
suppressed to be proportional to their packet flow under certain threshold. For instance, the fluctuation
of the delay time of multiple receivers will be constrained below certain threshold. With the flow control
(a generalized form of the packet control), we can use the model of stochastic linear systems to explain
the delay-time balance phenomenon of traffic flow among receivers by their delay time.
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2 MODELING A SPONTANEOUS SIGNALING NETWORK BY A NONSMOOTH

STOCHASTIC SYSTEM

2.1 Network abstraction

The framework of the network architecture of NCS is an abstract type of network architecture called
network abstraction extracted by comparing the window size control of TCP dynamics with the signal
control of networked control systems. Owing to the hierarchical structure of network protocol, we use the
flow dynamics of network abstraction for the theoretical analysis of the network architecture generating
the balance phenomenon in a spontaneous way. By observing the autonomic traffic flow of the Internet,
we can quantitatively analyze the intrinsic characteristics of the Internet. Because of the existence of
autonomy in the autonomic network architecture (Bouabene et al. (2010)), we can design a network
protocol for NCS with flexibility and test new ideas independent on physical configuration of the com-
munication systems. With the self-organization operations of NCS that regulates the traffic flow, the
network abstraction for a spontaneous signaling network can be a reference for the design of the network
architecture in a real world scenario, especially the sensor network whose switch structure is physically
applicable to optical devices.

2.2 Delay in network abstraction

The flow of network abstraction can be measured by the observed queue, which is used for network control
and supported by analysis tools in information theory. Among flow measures, the delay time is the major
factor for performance evaluation. The investigation on the realistic delay in Choi et al.’s research (Choi
et al. (2004)) emphasizes the significance of the delay time on the performance evaluation of resilient
network control even though the delay time is often hidden by the measurable signals from terminals.
Thus, the dynamical mechanism of adaptive switching in terms of an information flow network under
uncertainty of environment is crucial in improving the adaptation performance of the relay network, esp.,
the disturbance tolerant network, based on the simulated flow dynamics of network abstraction, whose
theoretical formulation is the store-and-forward principle in information theory. In switch networks, the
scheduler is designed in advance. But in adaptive routing (switching), the network configuration is ad
hoc. The empirical study can provide a test-bed to explore the new design principle for adaptive routing
(switching). Based on the empirical study of network abstraction of NCS, the delay time at users is used
as the measure for performance evaluation of the balance in a spontaneous signaling network.

2.3 Computational complexity of the adaptive routing processes reaching balance

To search the expected balance time is a NP problem because there is not any central control in spon-
taneous signaling networks. Assuming that n senders and m relay nodes are fully connected by the link
with the unitary capacity, in which it equals to the relay capacity, the flow per relay node will be n. Then,
the time to be used to find the configuration of the network architecture that causes the flow balance
(i.e., the network structure allows all the flow will pass through the relay nodes) can be transformed as
a m-CNF problem. According to Schöning’s result (Schöning (1999)), the sup of the fastest time is

[2(1− 1/m)]n. (2.1)

The quantity given above is exponential. But it can be reduced when we introduce the dynamical
constraint into the problem. In order to achieve the maximum balance efficiency of transmission, it is
necessary to avoid possible conflict on the relay nodes.

2.4 Delay-time balance

According to the Zipf’s law with one order, the delay-time balance is formulated as follows:

Delay Time =
∑
i

[a(i)/C(i)] + b[E(w1)− E(w2)] (2.2)

where i is the route index; a(i) is the constant; C(i) is relay capacity; w1 and w2 are the random variables
that refer to the chance of the flows falling into the underlying route and other routes, respectively.

The first item is given according to the formula in Choi et al.’s conclusion (Choi et al. (2004) obtained
from the delay measurement in the Internet. w1 and w2 are caused by the conflicts of the flows, where b
is an constant. w1 shows the increase of the delay by coming-in flows and w2 shows the decrease of the
delay by leaving-away flows. Because these two items can be expressed by a Bernoulli distribution, they
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will approach to the equal value when the time is sufficient long. The average values of w1 and w2 are
adopted by using the expectation E.

2.5 Filtering mechanism of networked control systems

From the viewpoint of the network abstraction, the state of network flow is a generalized term of the packet
number sent by the sender in TCP, e.g., cwnd (congestion window size in TCP control). The feedback
(acknowledgment signal of the receiver for the transmission) of the related communication channels is a
random variable. In order to reflect two factors (the packet number sent by the sender and the packet
number received by the receiver) in the network dynamics of NCS, we use Kalman filter to map the
flow signaling mechanism constrained by the network abstraction into a filtering mechanism from the
viewpoint of complex systems.

An abstract description of a model of NCS is defined as follows:{
Ẋ(t) = AX(t) +BU(t) +N(t)
Y (t) = CX(t) +N ′(t)

(2.3)

where X(t) is the state vector of the NCS system (the flow of the communication channel), U(t) is the
input vector of the NCS system, N(t) is noise, and Y (t) is the output of the NCS system, respectively.
N(t) and N ′(t) are noise in the communication channel. A, B and C are constant matrices.

In a spontaneous signaling network, input U is 0. We have that{
Ẋ(t) = AX(t) +N(t)
Y (t) = CX(t) +N ′(t)

(2.4)

where X(t) refers to the flow of the communication channel; Y (t) refers to the detectable signal for
performance evaluation. When we measure the delay time at the user side, X(t) is the flow controlled at
the sender; Y (t) is the flow measured at the receiver. A and C describe the characteristics of flow control
and channel, respectively.

The delay-time balance can be observed when the system is in the steady states. Two classes of the
steady states are taken into consideration in our study. One is the class that refers to the connected
areas of the stable steady states described by continuous functions. The stability of the underlying
dynamics defined by these steady states implies the network can still stay in a steady state under the
changes of the corresponding parameters of the network dynamics. The other is the class that refers
to the disconnected areas of unstable steady states whose transitions are defined in a nonsmooth space.
The channel parameters such as bandwidth, loss (channel loss), and delay are the crucial factors for
the network analysis. In order to systematically understand the complexity of the network flow control
processes, it is necessary to use a generic filtering method to formalize the effect of the channel parameters
on the performance of the flow control with respect to the complex behavior emerged from the autonomous
network architecture.

The above-mentioned state representation can be rewritten as follows:

X(k + 1) = AX(k) +Nx(t) (2.5)

where A(k) is a matrix, Nx is noise. X(k) is the state which is the same as the one defined for the NCS,
i.e., the flow controlled at the sender; the input is absent for a spontaneous network, k is the current
moment. This equation is consistent with the flow control in network protocol.

The value of observation for X(k) is given as follows:

Z(k) = HX(k) +Nz(k) (2.6)

where H is the matrix, Nz is noise, Z(k) is the observed value of the state X(k), i.e., the value of the
flow of the communication channel.

By using the Kalman filter, the estimated value of the state X(k) can be obtained and is denoted as
XF .

Corresponding to the linear representation of the system, a stochastic process that describes the
connection matrix of the system is used for the theoretical explanation of the generation mechanism of
the balance phenomenon in a spontaneous signaling network.

Under the condition of balanced flow, the filtering mechanism given above becomes a reverse Birkhoff-
von Neumann (BvN) switch (Chao and Liu (2007)) in which the connection is configured by a random
process. The BvN network architecture configured by constant matrix exists. In the case of stochastic
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linear systems, the configuration of the connection matrix becomes a parameter estimation process of
system identification. The load balance can be inferred from the BL-BvN switch structure, where the
values of the connection matrix needs to be identified by using the stochastic signal processing technology.

We write the time-variant representation of NCS as follows:{
X(k + 1) = A(k)X(k) +N(k)
Y (k) = C(k)X(k) +N ′(k)

(2.7)

where A(k) and C(k) are the matrices whose parameters are random variables. These matrices reflect
the stochastic characteristics of communication channels.

When the spontaneous signaling network reaches the balance of delay time, the matrix C(k) equals to
the reverse matrix of the connection matrix that is the multiplication of M1(k) and M2(k) of a LB-BvN
switch network given in the following equation:{

S1(k) = M1(k)V (k)
S2(k) = M2(k)S1(k)

(2.8)

where the V (k), S1(k), and S2(k) are the state vectors of the input of load-balance module of a LB-BvN
switch network, the queue of the intermediate node of a LB-BvN switch network, and the output of BvN
switch in a LB-BvN switch network.

Let G(k) be the reverse matrix of the connection matrix M1(k)M2(k), we can write that{
XF (k + 1) = A(k)XF (k) +N(k)
Y (k) = G(k)XF (k) +N ′(k).

(2.9)

After the value of A(k) is estimated by using the LMI method in control theory under the condition
of the robustness of XF (k) (defined in stochastic signal processing), we can design a NCS controller with
the balance of delay time corresponding to Y (k).

3 CONCLUSION

We select the balance phenomenon measured by delay time as an object to study the dynamics of the
communication processes in NCS and use a Kalman filter to formulate the basic signal transmission of
packet flow defined by network abstraction. The generation mechanism of the balance of delay time in a
spontaneous signaling network can be explained by the filter model through the stochastic modeling of
the flow dynamics, from which we expect to find a numerical calculation method for performance analysis
of communication networks (Liu (2010), Liu, Yue and Umehara (2011a), Liu, Yue and Umehara (2011a),
Yue and Matsumoto (2002), Walsh et al. (2011)) through the relation between delay time and channel
capacity.
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Abstract: In Cognitive Radio Networks (CRNs), the Primary Users (PUs) enjoy the preemptive priority on
using the spectrum, and the cognitive users are able to opportunistically access the spectrum, so the packet
transmission of the cognitive users may be interrupted. Considering the fairness of spectrum usage, a gated
polling strategy is introduced, and a novel centralized spectrum allocation mechanism is proposed in this
paper. Accordingly, a gated vacation queueing system with non-zero switchover procedure and interrupted
service is built. By applying the method of a regeneration cycle, the performance of the proposed spectrum
allocation mechanism is evaluated analytically, the formulas for the performance measures in terms of
the average response time of SU packets, the throughput for SUs and the spectrum utility are derived.
Numerical results with analysis and simulation are provided in order to investigate the dependence of the
system performance on different parameters in CRNs.

Key words: CRNs; spectrum allocation; gated polling strategy; preemptive priority; non-zero switchover
procedure; interrupted service.

1 INTRODUCTION

With the development of wireless technology and the proliferation of wireless applications, there has
been a dramatic increase in the demand for radio spectrum. As most spectrum has been assigned to
the Primary Users (PUs), for exclusive use, the spectrum has become a scare resource. However, most
of the already allocated radio bands are either not used, or are sporadically used. Existing spectrum
measurement reports indicate that up to 85% of the spectrum remains unoccupied at any given time and
location (Gao et al. (2011)). Therefore, developing an efficient spectrum allocation mechanism with high
utilization becomes a matter of great importance. Recently, many experts have probed related research
on spectrum allocation strategies and performance analysis in the context of Cognitive Radio Networks
(CRNs).

Do et al. (2012) considered a sensitive delay network, and proposed an algorithm to distribute the
packets of the Secondary Users (SUs) to the only group of channels which satisfy the delay constraint.
By applying an M/G/1 queueing model, the performance of SU was analyzed. Wu et al. (2012) offered a
channel hopping defense strategy through the interaction between SUs and stackers, and then proposed
two learning schemes. The Nash equilibrium for the Colonel Blotto game to minimize the worst-case
damage was derived accordingly. In order to guarantee the usage fairness of spectrum, by pre-selecting
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a set of SUs based on their interference to PUs, Li et al. (2012) offered a modified hybrid opportunistic
scheduling method, and optimized the throughput of SUs.

In this paper, for the purpose of guaranteeing every SU access to the unoccupied spectrum fairly, we
propose a novel spectrum allocation mechanism based on a gated polling strategy. By establishing a
gated vacation queueing model with non-zero switchover procedure and interrupted service, we evaluate
the system performance for SUs in the proposed spectrum allocation mechanism, and optimize the arrival
rate of PU packets in CRNs.

2 A GATED-POLLING BASED SPECTRUM ALLOCATION MECHANISM AND SYSTEM

MODEL

In CRNs with centralized spectrum allocation mechanisms, PUs enjoy preemptive priority at all times,
and a Central Scheduler (CS) allocates the spectrum band that is temporarily unused by PUs to SUs.
Due to the existence of the CS, the centralized spectrum allocation mechanism can satisfy diverse needs
of different users and restrain users from mutual interference as much as possible. In order to guarantee
fairness in the use of the spectrum bands and to capture the digital nature of modern communication, by
introducing a gated polling strategy, a novel centralized spectrum allocation mechanism with a slotted
structure is proposed.

In this system model, we consider that there is one spectrum band, one PU, and several SUs in the
CRNs. The time axis is divided into a sequence of fixed length intervals, called slots. Moreover, we
present the detailed system model for the performance analysis as follows:

(1) At the beginning instant of each slot, the SUs sense the spectrum bands for PU activity (idle or
busy) and send the sensing results to the CS. Each SU is polled in a fixed cyclic order with slotted
structure. If there are no packets ready for transmission in the tagged SU at the polling beginning
instant, the CS will experience a non-zero switchover procedure, and try to allocate the spectrum
band to the next SU. If the SU being polled has packets to be transmitted, these packets will be
transmitted following a gated polling strategy.

(2) For each SU, after all the packets present at the polling beginning instant finish their transmission,
the CS will allocate the spectrum band to the next SU with a non-zero switchover procedure, while
all the SU packets that arrived during the ongoing transmission procedure will be waiting in the
buffer of the SU. If there is no transmission interruption due to the arrival of PUs, the tagged
SU will occupy one spectrum band throughout its transmission period. Otherwise, the tagged SU
will drop the packet being transmitted at the interruption instant, and apply for another spectrum
band from the CS, then all the remaining SU packets will be transmitted following a gated polling
strategy. In this way, fairness for user Quality of Service (QoS) can be guaranteed.

Based on the mentioned description about the system model presented in this paper above, we can make
the following assumptions. The SU packet to be transmitted is regarded as a customer, the spectrum band
is regarded as a server, the transmission of an SU packet is regarded as a service, and the transmission
interruption is regarded as a service interruption. Moreover, the time period elapsed from the instant
that the tagged SU occupies the spectrum band to the instant that the tagged SU releases the spectrum
band is regarded as a service period, denoted as Sp. The time period elapsed from the instant that the
tagged SU releases the spectrum band, to the instant that the tagged SU occupies the spectrum band
again, is regarded as a vacation period, denoted as V . The time interval that begins at the end of a
vacation and terminates at the end of the next vacation is defined as a service cycle, denoted as R. A
service cycle consists of a service period and a vacation period.

Therefore, the proposed spectrum allocation mechanism can be modelled as a gated vacation queue
with non-zero switchover procedure and interrupted service.

3 PERFORMANCE ANALYSIS

Considering the slotted structure of the gated-polling based spectrum allocation mechanism, we assume
that the SU packets arrive at the end of a slot, the initiation and termination of the transmission for
an SU packet occurs at the beginning of a slot. We assume that SU packet arrivals follow a Bernoulli
process with arrival rate p, and the transmission time S of an SU packet follows a geometric distribution
with transmission rate µ. Furthermore, we also assume that the packets are transmitted according to a
First-In First-Out (FIFO) strategy in an SU.

In CRNs, PU packets are allowed to arrive at any slot, and has preemptive priority on using the
spectrum. Let α be the arrival rate of PU packets. This means the transmission of SU packets may be
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interrupted by PU packets, and the interruption probability in a slot can be considered as the arrival
rate α of PU packets.

When a PU accesses to a spectrum band during the transmission procedure of an SU packet, the
transmission of this SU packet will be interrupted, and the interrupted SU packet will be dropped from
the system immediately. Therefore, the actual transmission time T of an SU packet is shorter than the
transmission time S. The probability distribution and the Probability Generating Function (PGF) T (z)
of T can be represented as follows:

P{T = k} = µ̄k−1µᾱk−1 + µ̄kᾱk−1α, k ≥ 1, T (z) =

∞∑
k=1

zkP{T = k} =
(µ+ µ̄α)z

(1− µ̄ᾱz)
(3.1)

where µ̄ = 1− µ, ᾱ = 1− α.
Differentiating Eq. (3.1) with respect to z at z = 1, we can give the average value E[T ] of T as follows:

E[T ] = T ′(z)|z=1 =
1

1− µ̄ᾱ
. (3.2)

We can also obtain the secondary factorial moment E[T (T − 1)] of T from Eq. (3.1).
Let PI be the probability that the transmission of an SU packet is interrupted by the arrival of PU,

and let PNI be the probability that the transmission of an SU packet is transmitted successfully without
interruption. PI and PNI can be obtained as follows:

PI =

∞∑
k=1

∞∑
m=1

P{S = k +m}ᾱk−1α =
µ̄α

1− µ̄ᾱ
, PNI =

∞∑
k=1

P{S = k}ᾱk−1 =
µ

1− µ̄ᾱ
.

Let Qb be the number of SU packets which exist in the system at the end instant of a vacation V .
Namely, Qb is the number of the SU packets that have arrived during the previous service cycle. Let TSp
be the time length of a service period Sp, and TSp(z) be the PGF of TSp. Let TV be the time length of
vacation period V , and TV (z) be the PGF of TV . Then the PGF Qb(z) of Qb can be given as follows:

Qb(z) = TSp(λ(z))TV (λ(z)) (3.3)

where λ(z) = 1− p(1− z) is the PGF for the number of SU packets arrived within a single slot.
Suppose there are N SUs in the CRN discussed in this paper. Meanwhile, we define the traffic load ρ

for SUs as ρ = Np/µ. Considering the identical stochastic and symmetry characteristics of all the SUs,
TSp(z) and TV (z) can be given as follows:

TSp(z) = Qb(T (z)), TV (z) = zNwTN−1
Sp (z) (3.4)

where w is the non-zero switchover time as a system parameter.
Substituting Eq. (3.4) into Eq. (3.3), Qb(z) follows that

Qb(z) = QNb (T (λ(z)))λNw(z). (3.5)

Differentiating Eq. (3.5) with respect to z at z = 1 and combining with Eq. (3.2), we can give the
average value E[Qb] of Qb as follows:

E[Qb] = Q′b(z)|z=1 =
Npw

1−NpE[T ]
. (3.6)

In this gated vacation queueing model, the number Φ of SU packets transmitted during a service cycle
is identical to the number Qb of SU packets which exist in the system at the end of a vacation.

Differentiating Eq. (3.4) with respect to z at z = 1, combining with Eqs. (3.2) and (3.6), the average
value E[TSp] of TSp and the average value E[TV ] of TV can be given respectively as follows:

E[TSp] = T ′Sp(z)
∣∣
z=1

=
NwpE[T ]

1−NpE[T ]
, E[TV ] = T ′V (z)|z=1 =

Nw(1− pE[T ])

1−NpE[T ]
.

Therefore, the average value E[TR] of TR is E[TR] = E[TSp] + E[TV ] = (Nw)/(1−NpE[T ]).
Letting Ln be the number of SU packets in the system immediately after the transmission termination

of the nth SU packet, and letting Ai (i = 1, 2, ..., n) be the number of SU packets arrived during the
actual transmission time of the ith SU packet, Ln can be obtained as follows:

Ln = Qb − n+A1 +A2 + · · ·+An, n = 1, 2, ..., Qb. (3.7)
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Let L be the number of SU packets in steady state. By using the method of a regeneration cycle, the
PGF L(z) of L is given as follows:

L(z) =
1

E[Φ]
E

[
Φ∑
n=1

zLn

]
=

(1− pE[T ])(1− z)T (λ(z))

T (λ(z))− z
× 1− TV (λ(z))

pE[TV ](1− z)
×Qb(T (λ(z))). (3.8)

Differentiating Eq. (3.8) with respect to z at z = 1, we can give the average value E[L] of L as follows:

E[L] = L′(z)|z=1 = pE[T ] +
p2E[T (T − 1)]

2(1− pE[T ])
+
pE[TV (TV − 1)]

2E[TV ]
+
p2E[T ]E[TV ]

1− pE[T ]
. (3.9)

4 PERFORMANCE MEASURES

We define the average response time σ of SU packets as the time period in slots that has elapsed from the
arrival instant of an SU packet to the transmission termination instant for that SU packet. Combining
with Eq. (3.9), and applying Little’s Law (Jin et al. (2011) and Xu et al. (2008)), σ can be given as
follows:

σ =
E[L]

p
=
pE[T (T − 1)]

2(1− pE[T ])
+
E[TV (TV − 1)]

2E[TV ]
+

NwpE[T ]

1−NpE[T ]
+ E[T ]. (4.1)

The throughput η for SUs is defined as the average number of SU packets transmitted successfully per
slot, excluding the SU packets interrupted by PUs. The throughput η for SUs is given as follows:

η = NpPNI =
Npµ

1− µ̄ᾱ
. (4.2)

We define the spectrum utility γ as the fraction of the time spent on transmitting SU packets normally
without being interrupted to the time length TR of a service cycle R. γ can be given as follows:

γ =
E[Φ]PNIE[T ]

E[TR]
=

Npµ

(1− µ̄ᾱ)2
. (4.3)

5 NUMERICAL RESULTS AND DISCUSSIONS

We set the system parameters as follows: the number N of SUs in the system is N = 8, the transmission
rate µ of an SU packet is µ = 5/6, the time length w of the switchover procedure between SUs is w = 4
in slots.

Figure 5.1 depicts the average response time σ of SU packets as a function of the offered traffic load
ρ for SUs with different arrival rates α of PU packets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

Traffic load  for SUs

A
v
er

ag
e 

re
sp

o
n
se

 t
im

e 
 o

f 
S

U
 p

ac
k
et

s

Analysis

Simulation

 = 0.7

 = 0.4

 = 0.1

Figure 5.1 Average response time σ of SU packets vs. traffic load ρ for SUs.

It is interesting to observe that for the same traffic load ρ for SUs, the higher the arrival rate α of PU
packets is, the less the average response time σ of SU packets will be. On the other hand, for the same
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arrival rates α of PU packets, the larger the traffic load ρ for SUs is, the greater the average response
time σ of SU packets will be.

In Fig. 5.2, we show the throughput η for SUs versus the traffic load ρ for SUs with different arrival
rates α of PU packets.
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Figure 5.2 Throughput η for SUs vs. traffic load ρ for SUs.

From Fig. 5.2, we can find that for a certain traffic load ρ for SUs, the throughput η for SUs will
decrease along with an increase in the arrival rate α of PU packets. On the other hand, for the same
arrival rates α of PU packets, the throughput η for SUs will increase as the traffic load ρ for SUs increases.

In Fig. 5.3, we plot the function of the spectrum utility γ versus the traffic load ρ for SUs with respect
to different arrival rates α of PU packets.
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Figure 5.3 Spectrum utility γ vs. traffic load ρ for SUs.

It is demonstrated that when the traffic load ρ for SUs takes the same value, the spectrum utility γ
will decrease as the arrival rate α of PU packets increases. On the other hand, for the same arrival rates
α of PU packets, the spectrum utility γ will increase as the traffic load ρ for SUs increases.

6 CONCLUSION

How to improve the spectrum utilization in cognitive radio networks is currently one of the most important
issues in wireless communication systems. In this paper, to improve the spectrum utilization as well as to
guarantee the usage fairness of spectrum bands, we proposed a gated-polling based spectrum allocation
mechanism in Cognitive Radio Networks (CRNs), and built a gated vacation queueing model accordingly.
By using the method of regeneration cycle, we gave the formulas of the average response time of SU
packets, the throughput for SUs and the spectrum utility. Moreover, we provided numerical results and
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demonstrated how the traffic load for SUs impacts the system performance for different arrival rates of
PU packets. The numerical results show that there is a tradeoff among different performance measures
when setting the arrival rate of PU packets.
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Abstract: In conventional cognitive radio networks with primary users and secondary users, all the
channels will be active even when there are no packets to be transmitted, obviously, this will lead to a
waste of network resources. In order to conserve the network resources and to guarantee the Quality of
Service (QoS) for secondary users, we propose a dynamic channel bonding strategy, in which channels
are bonded dynamically based on the traffic in cognitive radio networks. We consider the digital nature
of modern communication and the preemptive priority of the primary users in cognitive radio networks.
Based on the working principle of a dynamic channel bonding strategy, we build a discrete-time preemptive
priority queueing model by regarding the time period when part channels are bonded as a working vacation
period. To get the steady state distribution of the queueing model, we construct a three-dimensional Markov
chain, and give the state transition probability matrix of the Markov chain. Correspondingly, we derive the
performance measures in terms of the blocking ratio, the throughput, the average latency of the secondary
users, and the channel closed ratio. Moreover, numerical results are provided to shown the influence of the
proportion of the closed channels during the Part Bonding Period on the system performance.

Key words: Cognitive radio networks; channel bonding; discrete-time priority queue; working vacation.

1 INTRODUCTION

Nowadays, the increasing demand for radio spectrum stimulated the study for the efficient use of the
spectrum recourses. However, a great number of research studies have indicated that the utilization of
the spectrum is very low in practical networks (Marinho (2012)). For example, most of the spectrum
utilization was no more than 6% (Zhao (2007)). As a promising technology for improving the spectrum
utilization, cognitive radio networks have emerged (Jha (2011)).

There are two types of users in cognitive radio networks, namely, primary users (PUs) and secondary
users (SUs) (Wang (2011)). The network spectrum is licensed to the PUs while the SUs access to the
spectrum opportunistically when the spectrum is not occupied by any PUs.

In research of cognitive radio networks, a channel bonding strategy is one spectrum enhancement
technology with which the available channels are aggregated into one channel (Ren (2012)). There have
been several researches focused on the study of cognitive radio networks with channel bonding strategy.

Lee et al. (Lee (2010)) considered a kind of channel bonding scheme in which an SU can utilize the
bandwidth consisting of multiple available channels. The loss probability and throughput were obtained
with a continuous-time Markov chain. Jiao et al. (Jiao (2010)) assumed the channel occupancy time of an
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SU is inversely proportional to the number of bonded channels, and investigated the loss probability and
throughput of SUs. Su et al. (Su (2008)) developed a Markov chain model and an M/G/1 queueing model
to analyze the cognitive radio networks with two channel sensing policies, and obtained the aggregate
throughput.

As shown above, most of the researches about cognitive radio networks with channel bonding strategy
was performed under the condition that all the channels are active even when there is no packet to
be transmitted. Obviously, this will lead to the waste of network resources. For this, by introducing
a Part Bonding Period in this paper, we propose a dynamic channel bonding strategy, in which only
part channels are bonded to be active for a time period when there is no packet to be transmitted. In
this paper, taking into account the working principle of the dynamic channel bonding strategy and the
digital nature of modern networks, we build a discrete-time queueing model with preemptive priority and
working vacation. Accordingly, we derive the performance measures of the system such as the blocking
ratio, the throughput, the average latency of SUs and the channel closed ratio are obtained. To the best
of our knowledge, this is the first paper related to the channel bonding strategy with dynamic channel
closed scheme in cognitive radio networks.

2 A DYNAMIC CHANNEL BONDING STRATEGY IN COGNITIVE RADIO NETWORKS

We consider a cognitive radio network with a licensed spectrum that is equally divided into N channels.
Normally, all the N channels will be aggregated into one bonding channel. When there is no packet to be
transmitted, a part of the channels will be closed, and the unclosed channels will be aggregated into one
bonding channel for a random period. We call the time period that the part of the channels are closed as
a “Part Bonding Period”. During the Part Bonding Period, the packets will be transmitted with a lower
transmission rate. On the other hand, the time period when all channels are bonded so as to become
active is called a “Full Bonding Period”. During the Full Bonding Period, the packets can be transmitted
with a higher transmission rate.

If there has been no any packet arrival during a Part Bonding Period, another Part Bonding Period
will be continued. If a PU packet arrives at the system during a Part Bonding Period, due to the priority
of the PUs, the Part Bonding Period will terminate immediately, and a Full Bonding Period will begin.
Then this PU packet will be transmitted with higher transmission rate. During a Part Bonding Period,
SU packets will be transmitted with a lower transmission rate. If the transmission of an SU packet is
not finished before the end instant of a Part Bonding Period, a Full Bonding Period will begin after
this Part Bonding Period is over, and the SU packet will be transmitted with a higher transmission rate
sequentially. If there is no SU packet to be transmitted when a Part Bonding Period is over, another
Part Bonding Period will begin.

3 SYSTEM MODEL AND PERFORMANCE ANALYSIS

We assume the arriving intervals and transmission times of the packets are independent and identically
distributed (i.i.d) random variables. The arriving intervals of PU packets and SU packets are supposed
to follow geometrical distributions with parameters λ1 (λ1 = 1− λ1) and λ2 (λ2 = 1− λ2), respectively.
The transmission time of a PU packet is assumed to follow a geometrical distribution with parameter
µ1 (µ1 = 1 − µ1). The transmission times of an SU packet during a Part Bonding Period and a Full
Bonding Period are supposed to follow geometrical distributions with rates µ2v (µ2v = 1− µ2v) and µ2b

(µ2b = 1 − µ2b), respectively. Additionally, the time length TV of a Part Bonding Period is assumed to
follow a geometrical distribution with parameter θ. θ is called “Part Bonding Rate” in this paper. During
a Part Bonding Period, the proportion of the closed channels is defined as α. The buffer capacity of the
SUs is defined to be finite with size H (H > 0), and the PUs are supposed to have no buffer. Moreover,
the transmissions of the SU packets are supposed to follow a First-Come First-Served (FCFS) strategy.

We suppose the time axis is divided into slots with equal length. The slot boundaries are marked by
t = 1, 2, . . .. The packets are supposed to arrive immediately after the beginning instant of a slot, and
depart just prior to the end of a slot. We consider the instant t = n (n = 1, 2, . . .) and suppose the
arrivals of packets can only occur in (n, n+), and the departures of packets can only occur in (n−, n).

Let Ln and L
(1)
n be the number of all packets and the number of PU packets in the system at the instant

t = n+, respectively. Let Kn indicate the system stage. Kn can be described as follows:

Kn =

{
0, the system is in the Part Bonding Period at the time t = n+

1, the system is in the Full Bonding Period at the time t = n+.
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Therefore, {Ln, L(1)
n ,Kn} constitutes a three-dimensional Markov chain. The state space of this three-

dimensional Markov chain can be given as follows:

Ω = {(i, j, k) : 0 ≤ i ≤ H + 1, j = 0, k = 0} ∪ {(i, j, k) : 1 ≤ i ≤ H + 1, j = 0, 1, k = 1}.

Using the lexicographical sequence for the states, the state transition probability matrix of the three-
dimensional Markov chain can be written as follows:

P =



A0 B0 C0

D0 A B C
D A B C
. . .

. . .
. . .

. . .

D A B + C
D A + B + C


(H+1)×(H+1)

where A0 = λ1λ2, B0 = (λ1λ2θ, λ1λ2θ, λ1λ2), C0 = (0, 0, λ1λ2), D0 = (λ1λ2µ2v, λ1λ2µ2b, λ1λ2µ1)
T

,

A =

 λ1(λ2µ2v + λ2µ2v)θ λ1(λ2µ2v + λ2µ2v)θ λ1λ2µ2v

0 λ1(λ2µ2b + λ2µ2b) λ1λ2µ2b

0 λ1λ2µ1 λ2(λ1µ1 + µ1)

 ,

B =

 λ1λ2µ2vθ λ1λ2µ2vθ λ1(λ2µ2v + λ2µ2v)

0 λ1λ2µ2b λ1(λ2µ2b + λ2µ2b)
0 0 λ2(λ1µ1 + µ1)

 ,

C =

 0 0 λ1λ2µ2v

0 0 λ1λ2µ2b

0 0 0

 ,

D =

 λ1λ2µ2vθ λ1λ2µ2vθ 0

0 λ1λ2µ2b 0

0 λ1λ2µ1 0

 .

The structure of the transition probability matrix P indicates that the three-dimensional Markov chain

{(Ln, L(1)
n ,Kn)} is non-periodic, irreducible and positive recurrent. The steady-state distribution πi,j,k

of the three-dimensional Markov chain is defined as follows:

πi,j,k = lim
n→∞

P{Ln = i, L(1)
n = j,Kn = k}. (3.1)

Let Πi be the steady-state probability vector for the system being at level i. Πi can be given as
follows:

Πi =

{
π0,0,0, i = 0

(πi,0,0, πi,0,1, πi,1,1), 1 ≤ i ≤ H + 1.
(3.2)

Πi can be calculated by solving the following equilibrium equations with the normalization condition:{
(Π0,Π1, . . . ,ΠH ,ΠH+1)P = (Π0,Π1, . . . ,ΠH ,ΠH+1)

(Π0,Π1, . . . ,ΠH ,ΠH+1)e = 1
(3.3)

where e is a column vector with H + 1 elements, all of which equal 1.
By substituting Eq. (3.2) to Eq. (2.2) and using a Gaussian elimination method, we can obtain the

steady-state distribution πi,j,k of Eq. (3.1).

Let Ln
(2) be the number of SU packets in the system at the instant t = n+ and let L(2) = limn→∞ L

(2)
n

be the steady-state distribution of L
(2)
n . The average number E[L(2)] of SU packets in steady state can

be given by

E[L(2)] =

H+1∑
j=0

jP{L(2) = j} =

H+1∑
j=1

j(πj,0,0 + πj,0,1) +

H∑
j=0

jπj+1,1,1. (3.4)
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4 PERFORMANCE MEASURES

The blocking ratio PB of SUs is defined as the probability that a new arrival SU packet is blocked by the
system. PB can be given as follows:

PB = λ2((µ2v+µ2vλ1)πH+1,0,0 +(µ2b+µ2bλ1)πH+1,0,1 +(µ1 +µ1λ1)πH+1,1,1 +µ2vλ1πH,0,0 +µ2bλ1πH,0,1).
(4.1)

The throughput S of SUs is defined as the number of SU packets transmitted successfully per slot by
the licensed spectrum. S can be given as follows:

S = λ2 − PB − λ1(µ2vπH+1,0,0 + µ2bπH+1,0,1). (4.2)

The latency of an SU packet is the sojourn time of that SU packet. By using Little’s formula, the
average latency E[T ] of SUs can be given as follows:

E[T ] =
E[L(2)]

S
. (4.3)

The channel closed ratio β of the system is defined as the probability that one channel is closed during
a Part Bonding Period. β can be given as follows:

β = α

H+1∑
i=0

πi,0,0. (4.4)

5 NUMERICAL RESULTS

In the numerical results, the parameters of the system are set as follows: The Part Bonding Rate is
assumed to be θ = 0.05, 0.10, 0.15. The data set for the proportion of the closed channels is supposed to
be α = {0, 0.05, 0.1, . . . , 0.95, 1}, and the buffer capacity of SUs is set to be H = 5.

In Fig. 5.1, we show how the throughput S of SUs changes as a function of the proportion α of the
closed channels for different Part Bonding Rates θ.
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Figure 5.1 Throughput S of SUs vs. proportion α of the closed channels.

From Fig. 5.1, we observe that, for the same Part Bonding Rate θ, the throughput S of SUs will
decrease as the proportion α of the closed channels increases. On the other hand, for the same proportion
α of the closed channels, the larger the Part Bonding Rate θ is, the greater the throughput S of SUs will
be.

We examine the effect for the proportion α of the closed channels on the average latency E[T ] of SUs
for different Part Bonding Rates θ in Fig. 5.2.

In Fig. 5.2, we can conclude that for the same Part Bonding Rate θ, the average latency E[T ] of
SUs will increase as the proportion α of the closed channels increases. On the other hand, for the same
proportion α of the closed channels, the larger the Part Bonding Rate θ is, the shorter the average latency
E[T ] of SUs will be.

In Fig. 5.3, we show how the channel closed ratio β changes versus the proportion α of the closed
channels for different Part Bonding Rates θ.

As illustrated in Fig. 5.3, for the same Part Bonding Rate θ, the channel closed ratio β will increase
as the proportion α of closed channel increases. On the other hand, for the same proportion α of the
closed channels, the higher the Part Bonding Rate θ is, the smaller the channel closed ratio β will be.
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Figure 5.2 Average latency E[T ] of SUs vs. proportion α of the closed channels.
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6 CONCLUSIONS

In this paper, when considering the conservation of network resources and the guarantee of QoS for
the secondary users (SUs), we proposed a novel dynamic channel bonding strategy in cognitive radio
networks. Based on the working principle of the dynamic channel bonding strategy and the priority of
the primary users (PUs) in cognitive radio networks, a discrete-time preemptive priority queueing model
with a working vacation was built. The steady-state distribution of the system model was analyzed with a
three-dimensional Markov chain. The formulas for the blocking ratio, the throughput, the average latency
of the secondary users, and the channel closed ratio were derived to evaluate the system performance. The
numerical results show that the dynamic channel bonding strategy proposed in this paper can effectively
improve the system performance.
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Abstract: New product development is an important role in enterprises. Today, firms competition
becomes chains competition. Then, how to cooperate in a supply chain for the new product development?
In this paper, we study three main R & D cooperation modes for new product development: that is
dominated by the upstream, by the downstream, and collaborated by both members, in a supply chain
with one upstream (supplier) and one downstream (manufacturer). We present a mathematical model and
derive equilibrium for each of them. Numerical analysis further compares the three modes. We find that
the new product will have the highest quality level and then the highest customers total welfare in the mode
that is dominated by the downstream. While the mode dominated by the upstream has the smallest ones.
Moreover, the firm will obtain the highest profit among the three modes if it is the dominator of the R &
D activities.
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Abstract: In this study, we investigate the selection of environmentally friendly products (EFPs) with
the consideration of the tradeoff between risk and return of players in two cases of supply chain structures:
vertical integration and a decentralized setting. The objectives are to maximize the utilities of players,
subject to particular constraints. A numerical example of a green supply chain on household electrical
appliance in China is presented to illustrate related issues. The results suggest that both supply chain
structure and risk attitude have significant impacts on environmental performance.
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Abstract: In process industry, warehouse management decouples the rhythm among each production
process. In a planning horizon, a set of coils is required to be retrieved from the warehouse due to downstream
production process. Coils are usually stored in two levels in the warehouse. Retrieval of the lower level coil
will lead to shuffling. As a result of the similarity of coils, substitution decisions between required coils and
candidate coils will be considered. We formulate the problem as a mixed integer linear program and solve
it based on some analysis results.

Key words: Warehouse; Coil retrieval; Substitution; Shuffle; Properties.

1 INTRODUCTION

Warehouse management in steel industry decouples the rhythm among each production process. Fig. 1.1
shows a main production process of steel production. Products in each warehouse are produced from
the upstream process and will be raw materials of the downstream process. One of the operations in
the warehouse that highly affect the efficiency of production and transportation is the retrieval request
performed by crane. If required coils cannot be retrieved in time, downstream production will be inter-
mitted which will bring a large cost. On the other hand, the warehouse may be lack of enough space for
incoming products which will obstruct the upstream production progress.����������	
��	��
�	��	���������	
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In the warehouse, coils are arranged in rows. According to technological requirements, coils are stored
in at most two levels for an upper level coil is on top of two lower level coils, and a lower level coil may be
blocked by two upper level coils which seem like triangles. A retrieval request can be performed directly
if the target coil is stored at the upper level or stored at the lower level and not being blocked by coils
at the upper level. If the coil is stored at the lower level and there are one or two coils at the upper
level blocking it, the retrieval request can be performed after the blocking coils shuffled to other empty
positions.

The collision between large-scale production of steel enterprises and multi-variety with small batch
of customer demand results in the surplus products. They also storage in the warehouse, but there is
no requirement for them. Some of them are same or similar with a required coil in steel grade and
other technical specifications. Downstream production will be satisfied with such a substitution, while
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sometimes the manufacturers may pay a cost for the substitution which will decease the shuffling times
for retrieve the substitute coil. For a given set of required coils and candidate set of each required coil, we
make decisions on which required coil will be substituted and by which candidate coil. The objective of
our problem is minimize the total shuffling times and substitution cost. Good solutions of this problem
will accelerate the retrieval operations and reduce abrasions of the coils so that provide better logistics
support for the steel production process and better qualities for steel products.

There is little attention on scheduling for steel coils. K. Koh. (2007) investigate a single crane
scheduling problem in a distribution centre of steel coils to store incoming coils and retrieve coils required
by customers. The problem is viewed as a job shop scheduling problem and formulated as a nonlinear
integer programming model which is hard to solve. A local search based heuristic is proposed and tested
through computation. A. Gholami. (2010) study the plate and coil shuffling problems in the logistics
system of steel production. They formulate the two problems respectively and construct several valid
inequalities for them. They also derive some properties of optimal solutions. Algorithmic studies are
performed on both special cases and general problem. Numerical experiments show the effectiveness of
the proposed algorithms.

Among warehousing operation management problems, the one most relevant to our problem is the order
picking problem. There are a great deal of research on order picking problem, e.g. Ratliff and Rosenthal
(1983), P.Tseng. (2001), Z.Q.Luo and P. Tseng. (1992), P. Tseng and S. Yun. (2009). However, the
general order picking problems do not involve substitution decision and shuffling operations which will
be main considerations in our problem.

Research involving shuffling operations usually appears in container terminals. Many researchers
focus on the handling of containers. Interested readers are provided to see an overview by Steenken et al.
(2004). The difference with our problem is that substitution is not permitted for containers. So research
in container terminals doesnt consider the substitution decision.

The remaining part of the paper is organized as follows. A detailed problem description and a math-
ematical formulation of the problem are provided in Section 2. In Section 3 we give some properties of
the problem and reduce the dimension. Experimental results based on practical data are presented in
Section 4. We conclude this paper in Section 5.

2 FORMULATION OF THE PROBLEM

In this section, we provide a detailed description of the problem and formulate it as an integer linear
program which will be solved conveniently by optimization software.

In the warehouse, steel coils are stored in R rows for each can stack at most two levels. We use l to
represent the level number such that l = 1 denotes the lower level and l = 2 denotes the upper level.
There are Pl storage positions at level l in each row. Since any coil stored at the upper level must be
supported by two coils at the lower level, P1 must be larger than P2 by 1. Each position in the warehouse
can be identified uniquely by its row-level-position coordinates (r, l, p). Fig.2.1 shows a top view of a
warehouse where a dotted inclined coil indicates an empty position. The number in the coil center is the
number for that position at that level in that row.� � � � � �� � ��� � ���� � � � � �� � ��� � ����	
����	
����	
��� ��
�
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�
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In a planning horizon, a set of coils is required to be retrieved from the warehouse due to downstream
production process or delivery demand. Let Ω denote the set of all the coils in the warehouse. The set
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of coils required to be retrieved is marked as Ωr and set of other coils in the warehouse is marked as Ωo,
i.e. Ω = Ωr + Ωo. For one required coil, there may be one or more candidate coils in the warehouse. For
each pair of a required coil and a candidate coil, there is a matching degree which is characterized with
substitution cost. The higher matching degree indicates the lower substitution cost. We define Fik as
the substitution cost if a required coil i is substituted by a non-required coil k. If coil i is forbidden to
be substituted by coil k, Fik =∞. Let C denote the cost for shuffling one blocking coil. We use a binary
parameter Xirlp to denote the initial position of coil i, such that Xirlp = 1 represent the initial position
of coil i is (r, l, p), otherwise Xirlp = 0.

As mentioned above, the aim of our problem is to decide substitution of required coils. Next, we define
the decision variables of the problem as follows:

Eik =

{
1, if coil i is substituted by coil k
0, otherwise

, for i ∈ Ωr and k ∈ Ωo

As a result of the substitution decision, some coils will be retrieved as the required coils, regardless
of their original status. To distinguish with the former one, we call the required coils determined by
substitution target coils. Some auxiliary variables determined by substitution decision are defined as
follows:

T ti =

{
1, if coil i is a target coil
0, otherwise

, for i ∈ Ω

T bi =

{
1, if coil i blocks a target coil
0, otherwise

, for i ∈ Ω

T bik =

{
1, if coil i blocks target coil k
0, otherwise

, for i ∈ Ω and k ∈ Ω

Tni =

{
1, if coil i is not a target coil nor a blocking coil
0, otherwise

, for i ∈ Ω

Based on the parameters and variables defined above, the problem can be formulated as the following
model.

min
∑
i∈Ω

CT bi +
∑
i∈Ωr

∑
k∈Ωo

FikEik (2.1)

s.t. ∑
k∈Ωo

Eik ≤ 1, i ∈ Ωr (2.2)

∑
i∈Ωr

Eik ≤ 1, k ∈ Ωo (2.3)

T ti = 1−
∑
k∈Ωo

Eik, i ∈ Ωr (2.4)

T tk =
∑
i∈Ωr

Eik, k ∈ Ωo (2.5)

T bik = T tk(1− T ti )

R∑
r=1

P2∑
p=1

Xir2p(Xir1p +Xir1(p+1)), i ∈ Ω, k ∈ Ω (2.6)

T bi =
∑
k∈Ω

T bik, i ∈ Ω (2.7)

T ti + T bi + Tni = 1, i ∈ Ω (2.8)

The objective function (2.1) in the model is to minimize the sum of shuffling cost and substitution
cost. Constraints (2.2) guarantee that each required coil can be substituted by at most one candidate coil.
Constraints (2.3) guarantee that each candidate coil can substitute at most one required coil. Constraints
(2.4) and (2.5) express the set of target coils gained from substitution. Constraints (2.6) express the set of
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coils blocking target coil k gained from substitution. Constraints (2.7) express the set of all the blocking
coils gained from substitution. Constraints (2.8) show that there is only one status for each coil in the
warehouse.

Since constraints (2.6) are non-liner, transformations are made as follows:

T bik ≥ 1− T ti −M(1−AikT tk), i ∈ Ω, k ∈ Ω (2.9)

T bik ≤ 1− T ti +M(1−AikT tk), i ∈ Ω, k ∈ Ω (2.10)

T bik ≥ −MAikT
t
k, i ∈ Ω, k ∈ Ω (2.11)

T bik ≤MAikT
t
k, i ∈ Ω, k ∈ Ω (2.12)

where Aik =
∑R
r=1

∑P2

p=1Xir2p(Xir1p +Xir1(p+1)) for writing convenience, and M is a large number.

3 PROPERTY OF THE PROBLEM

Benefited from the special stacking structure of the coils, we can gain some properties of the problem.
Generally, the required coils can be categorized into two classes.

(1) The required coils not blocked by non-required coils. We denote this class as Ω1 which implies
three cases: a) the required coil is located on the upper level; b) the required coil is located on the lower
level and there is no coil on top of it; c) the required coil is located on the lower level and there are one
or two required coils on top of it.

For this class of required coils, no shuffling is needed with retrieving them from the warehouse. There-
fore, there is no need to substitute them with any candidate coil. Based on this consideration, we can
add the following equations to the model.∑

k∈Ωo

Eik = 0, i ∈ Ω1 (3.1)

(2) The required coils located on the lower level and blocked by one or two non-required coils. We
denote this class as Ω2. Similarly with the notations in Section 2, we define the set of coils blocking
required coils as Ωb. Define the set of coils blocking required coil i as Ωbi. Define the set of non-blocking
coils as Ωn.

In order to retrieve a coil in Ω2, the coils blocking it need to be shuffled first to other positions. To avoid
shuffling, substitution can be made between required coils in Ω2 and other coils. When the substitution
is happened, the initial required coil will turn to be a non-blocking coil. We can observe the effects of
substitution in the following situations.

(1) If a required coil i in Ω2 is substituted by a blocking coil j, shuffling times will be reduced.
a. if coil j belongs to Ωbi, shuffling times will be reduced by 1 at least;
b. if coil j doesn’t belong to Ωbi, tt must be in Ωbk for some other required coil k. If there is a coil

blocking both coil i and another required coil i′, shuffling times will be reduced by 1 at least; Otherwise,
shuffling times will be reduced by 2 at least.

(2) If a required coil i in Ω2 is substituted by a non-blocking coil j, we can see the effect in the following
cases.

a. If coil j has same number of blocking coils with coil i, there is no need to substitute;
b. If coil j has less number of blocking coils than coil i and each blocking coil in Ωbi also blocks another

required coil, there is no need to substitute; Otherwise, shuffling times will be reduced by 1 at least.
From the above argument we can fix some decision variables based on the situation ”no need to

substitute” as follows.

Eij = 0, i ∈ Ω2, j ∈ Ωn, |Ωbi| = |Ωbj | (3.2)

Eij = 0, i ∈ Ω2, j ∈ Ωn, |Ωbi| > |Ωbj |, k ∈ Ωbi ∩ Ωbi′ (3.3)

The situations which can reduce shuffling times may be contributed to construct effective heuristics
to solve the problem.
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4 EXPERIMENTAL RESULTS

In this section, computational experiments are conducted with practical data in order to check the
performance of the proposed model and problem properties. 100 instances within 10 problem settings
are collected from an advanced iron and steel enterprise in China. The model proposed in Section 2 and
that with equations (3.1) to (3.3) are solved by ILOG CPLEX 12.4 respectively. Comparison between
the objective from models and the original shuffling cost is presented in Table 4.1. Computing time
comparison between the two models is presented in Table 4.2.

Table 4.1 Comparison between the objective from models and the original shuffling cost

Problem Objective from models Original shuffling cost

|Ωr| = 200, |Ωo| = 400 47 330
|Ωr| = 150, |Ωo| = 250 29 195
|Ωr| = 70, |Ωo| = 150 15 114
|Ωr| = 50, |Ωo| = 90 10 60
|Ωr| = 30, |Ωo| = 60 9 54

Table 4.2 Computing time comparison between the two models

Problem General model(s) Add equation (3.1)-(3.3)(s)

|Ωr| = 200, |Ωo| = 400 463 417
|Ωr| = 150, |Ωo| = 250 154 126
|Ωr| = 70, |Ωo| = 150 30 14
|Ωr| = 50, |Ωo| = 90 8 5
|Ωr| = 30, |Ωo| = 60 4 3

We present 5 different problem settings in which 10 instances are tested. Results in the tables are
average of the 10 instances for each problem setting. Results in Table 4.1 show the formulation of our
problem can reduce the shuffling cost for coil retrieval effectively. Results in Table 4.2 show the equations
constructed based on properties can reduce the dimension of the problem efficiently.

5 CONCLUSION

We considered a retrieval scheduling problem with substitution in coil warehouse. We modeled this
problem with an integer linear program to minimize the shuffling cost and substitution cost. We got some
properties of the problem and then reduce the dimension of the problem based on them. Experimental
results based on practical data show that the model is reasonable and the properties are very effective
for solving the problem.
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Abstract: In applications using a linear regression model with a balanced two-fold nested error structure,
interest focuses on inferences concerning the regression coefficient. This article derives exact and approx-
imate confidence intervals on the regression coefficient in the simple regression model with a balanced
two-fold nested error structure. Several methods are considered for constructing the confidence intervals.
The methods are compared using computer simulation and recommendations are provided for selecting an
appropriate method.

Key words: Inference; Mixed model; Regression coefficient.

1 INTRODUCTION

This article considers the simple linear regression model with a balanced two-fold nested error structure.
This model is appropriate to use when there is subsampling within secondary sampling units within
primary sampling units. The model therefore includes one error term associated with the first-stage
sampling unit, a second error term associated with the second-stage sampling unit, and a third error
term associated with the last-stage sampling unit. These three error terms are assumed independent
and normally distributed with zero means and constant variances. This model extends the simple linear
regression model with a balanced on-fold nested error structure that Park and Burdick (1994) studied.

2 A REGRESSION MODEL WITH A BALANCED TWO-FOLD NESTED ERROR STRUCTURE

The regression model with a balanced two-fold nested error structure is written as

Yijk = µ+ βXijk + Pi +Oij + Eijk (2.1)

i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , r

where Yijk is the kth random observation within the jth secondary level within the ith primary level,
µ and β are unknown constants, Xijk is a fixed predictor variable, Pi, Oij , and Eijk are respectively
error terms associated with the first-stage, second-stage, and last-stage sampling unit, and Pi, Oij , and
Eijk are jointly independent normal random variables with zero means and variances σ2

P , σ2
O, and σ2

E ,
respectively.

Model (2.1) is written in matrix notation as

y = Xα+ B1p + B2o + B3e (2.2)

189
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Table 2.1 A Partition for Source of Variability of Model (2.1)

SV DF SS

Among Primaries n1 + 1 Syy1

Among Primaries Regression 1 β̂2
1Sxx1

Among Primaries Residual n1 R1

Among Secondaries n2 + 1 Syy2

Among Secondaries Regression 1 β̂2
2Sxx2

Among Secondaries Residual n2 R2

Within Secondaries n3 + 1 Syy3

Within Secondaries Regression 1 β̂2
3Sxx3

Within Secondaries Residual n3 R3

Adjusted Total n123 + 3 Syy123

where y is an abr × 1 random vector of observations, X is an abr × 2 matrix with a column of 1’s in
the first column and a column of known Xijk’s in the second column, α is a 2× 1 vector with elements µ

and β, B1 =
a
⊕
i=1

1br, B2 =
a
⊕
i=1

b
⊕
j=1

1r, and B3 =
a
⊕
i=1

b
⊕
j=1

r
⊕
k=1

1 = Iabr are design matrices, ⊕ is the direct

sum operator, 1br and 1r are respectively br × 1 and r × 1 column vectors of 1’s, Iabr is an abr × abr
identity matrix, p is an a× 1 vector of random Pi effects, o is an ab× 1 vector of random Oij effects, and
e is an abr × 1 vector of random error terms, Eijk. Under the distributional assumptions of (2.1), y has
a multivariate normal distribution with mean Xα and covariance matrix σ2

PB1B
′
1 + σ2

OB2B
′
2 + σ2

EIabr.
A partition for source of variability of model (2.1) that is useful for subsampling is shown in Table

2.1. The notation for the sums of squares and the estimators of β in Table 2.1 is defined as follows:
n1 = a − 2, n2 = a(b − 1) − 1, n3 = ab(r − 1) − 1, n123 = n1 + n2 + n3, Ȳij. = ΣkYijk/r, Ȳi.. =
ΣjΣkYijk/br, Ȳ... = ΣiΣjΣkYijk/abr, X̄ij. = ΣkXijk/r, X̄i.. = ΣjΣkXijk/br, X̄... = ΣiΣjΣkXijk/abr,
Syy1 = brΣi(Ȳi..−Ȳ...)2, Syy2 = rΣiΣj(Ȳij.−Ȳi..)2, Syy3 = ΣiΣjΣk(Yijk−Ȳij.)2, Sxx1 = brΣi(X̄i..−X̄...)

2,
Sxx2 = rΣiΣj(X̄ij. − X̄i..)

2, Sxx3 = ΣiΣjΣk (Xijk − X̄ij.)
2, Sxy1 = brΣi(X̄i.. − X̄...)(Ȳi.. − Ȳ...), Sxy2 =

rΣiΣj(X̄ij. − X̄i..)(Ȳij. − Ȳi..), Sxy3 = ΣiΣjΣk(Xijk − X̄ij.)(Yijk − Ȳij.), Syy12 = Syy1 + Syy2, Syy123 =
Syy12 + Syy3, Sxx12 = Sxx1 + Sxx2, Sxx123 = Sxx12 + Sxx3, Sxy12 = Sxy1 + Sxy2, Sxy123 = Sxy12 + Sxy3,

β̂1 = Sxy1/Sxx1, β̂2 = Sxy2/Sxx2, β̂3 = Sxy3/Sxx3, R1 = Syy1 − β̂2
1Sxx1, R2 = Syy2 − β̂2

2Sxx2, and

R3 = Syy3 − β̂2
3Sxx3.

The estimators of β and the sums of squares in Table 2.1 are now described in the context of a standard
linear regression model. The estimator β̂1 = Sxy1/Sxx1 is obtained from the least squares regression of

Ȳi.. on X̄i... The sum of squares R1 is written in a quadratic form as R1 = Syy1− β̂2
1Sxx1. The estimator

β̂2 = Sxy2/Sxx2 is obtained from the least squares regression of Ȳij. on X̄ij. and grouping variables that

represent i primary levels. The sum of squares R2 is written as R2 = Syy2 − β̂2
2Sxx2. The estimator

β̂3 = Sxy3/Sxx3 is obtained from the least squares regression of Yijk on Xijk and grouping variables that

represent i primary and j secondary levels. The sum of squares R3 is written as R3 = Syy3 − β̂2
3Sxx3.

The estimator β̂S = Sxy12/Sxx12 is obtained from the least squares regression of Ȳij. on X̄ij.. The sum of

squares RS is written as RS = β̂2
1Sxx1 + β̂2

2Sxx2 − β̂2
SSxx12 where R12 = Syy12 − β̂2

SSxx12. The estimator

β̂T = Sxy123/Sxx123 is obtained from the least squares regression of Yijk on Xijk. The sum of squares RT
is written as RT = β̂2

SSxx12 + β̂2
3Sxx3 − β̂2

TSxx123 where R123 = Syy123 − β̂2
TSxx123.

3 DISTRIBUTIONAL RESULTS AND CONFIDENCE INTERVALS FOR β

In order to construct confidence intervals on the regression coefficient, the ordinary least square(OLS)
estimators of β are examined.

Theorem 3.1 Under the assumptions in (2.1), five OLS estimators have following properties: β̂1 ∼
N(β, (brσ2

P +rσ2
O+σ2

E)/Sxx1), β̂2 ∼ N(β, (rσ2
O+σ2

E)/Sxx2), β̂3 ∼ N(β, σ2
E/Sxx3), β̂S ∼ N(β, (k12brσ

2
P +
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rσ2
O + σ2

E)/Sxx12), β̂T ∼ N(β, (k13brσ
2
P + k23rσ

2
O + σ2

E)/Sxx123), where β̂S = k12β̂1 + (1 − k12)β̂2,

β̂T = k13β̂1 + (k23− k13)β̂2 + (1− k23)β̂3, k12 = Sxx1/Sxx12, k13 = Sxx1/Sxx123, and k23 = Sxx12/Sxx123.

Park (2012) showed that the sums of squares R1, R2, and R3 are independently chi-squared distributed
using Searle (1987). It can be shown that linear functions of the sums of squares are also chi-squared
random variables and Theorem 3.2 hold.

Theorem 3.2 Under the assumptions in (2.1), linear functions of the sums of squares have following
properties: R12/(k12brσ

2
P + rσ2

O + σ2
E) ∼ χ2

n12
, and R123/(k13brσ

2
P + k23rσ

2
O + σ2

E) ∼ χ2
n123

, where
R12 = κ1R1 + κ2R2, R123 = τR1 + τ2R2 + τ3R3, κ1 = (k12brσ

2
P + rσ2

O + σ2
E)/(brσ2

P + rσ2
O + σ2

E),
κ2 = (k12brσ

2
P +rσ2

O+σ2
E)/(rσ2

O+σ2
E), τ1 = (k13brσ

2
P +k23rσ

2
O+σ2

E)/(brσ2
P +rσ2

O+σ2
E), τ2 = (k13brσ

2
P +

k23rσ
2
O + σ2

E)/(rσ2
O + σ2

E), τ3 = (k13brσ
2
P + k23rσ

2
O + σ2

E)/σ2
E, n12 = n1 + n2, and n123 = n1 + n2 + n3.

Based on standard results of linear model theory, it can be shown that the OLS estimators and the
sums of squares presented in Section 2 are independent.

Theorem 3.3 Under the assumptions in (2.1), OLS estimators and sums of squares are independent as

follows: β̂1 and R1 are independent, β̂2 and R2 are independent, β̂3 and R3 are independent, β̂S and R12

are independent, and β̂T and R123 are independent.

The confidence intervals for β are constructed using basic mathematical statistics theory. Since β̂1 and
R1 are independent, it follows that an exact 100(1− α)% confidence interval on β is

β̂1 ± t(α/2 : n1)

√
S2

1

Sxx1
(3.1)

where S2
1 = R1/n1, and t(δ:ν) is the t-value for ν degrees fo freedom with δ area to the right. This interval

is referred to as EX1. Using independence of β̂2 and R2, it follows that an exact 100(1−α)% confidence
interval on β is

β̂2 ± t(α/2 : n2)

√
S2

2

Sxx2
(3.2)

where S2
2 = R2/n2. This interval is referred to as EX2. Using independence of β̂3 and R3, it follows that

an exact 100(1− α)% confidence interval on β is

β̂3 ± t(α/2 : n3)

√
S2

3

Sxx3
(3.3)

where S2
3 = R3/n3. This interval is referred to as EX3. Using independence of β̂S and R12, it follows

that an exact 100(1− α)% confidence interval on β is

β̂S ± t(α/2 : n12)

√
S2

12

Sxx12
(3.4)

where S2
12 = R12/n12. This interval is referred to as EXS. Using independence of β̂T and R123, it follows

that an exact 100(1− α)% confidence interval on β is

β̂T ± t(α/2 : n123)

√
S2

123

Sxx123
(3.5)

where S2
123 = R123/n123. This interval is referred to as EXT. By substituting (S2

1 − S2
2)/br, (S2

2 − S2
3)/r,

and S2
3 for σ2

P , σ2
O, and σ2

E and using independence of β̂S and R12, it follows that an approximate
100(1− α)% confidence interval on β is

β̂S ± Zα/2

√
k12S2

1 + (1− k12)S2
2

Sxx12
(3.6)
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where Zδ/2 is the z-value with δ area to the right. This interval is referred to as LSS. By substituting

(S2
1 −S2

2)/br, (S2
2 −S2

3)/r, and S2
3 for σ2

P , σ2
O, and σ2

E and using independence of β̂T and R123, it follows
that an approximate 100(1− α)% confidence interval on β is

β̂T ± Zα/2

√
k13S2

1 + (k23 − k13)S2
2 + (1− k23)S2

3

Sxx12
(3.7)

This interval is referred to as LST.

4 SIMULATION STUDY

The performance of confidence intervals proposed in Section 3 is examined using a simulation study. Sixty
four designs are formed by taking all combinations of a = 3, 5, 10, 15, b = 2, 5, 10, 15, and r = 2, 5, 10, 15.
The values of σ2

P are selected from the set of values (0.01, 0.2, 0.4, 0.6, 0.8, 0.98) and the values of
σ2
O and σ2

E are determined to set σ2
P + σ2

O + σ2
E = 1. Recall that the mean squares in Section 3 are

chi-squared random variables. In particular, S2
1 ∼ [(brσ2

P + rσ2
O +σ2

E)/n1]χ2
n1

, S2
2 ∼ [(rσ2

O +σ2
E)/n2]χ2

n2
,

S2
3 ∼ [σ2

E/n3]χ2
n3

, S2
S ∼ [br(1−k12)σ2

P + rσ2
O +σ2

E ]χ2
1, and S2

T ∼ [br(k12−k13)σ2
P + r(1−k23)σ2

O +σ2
E ]χ2

1.
These mean squares are generated by the RANGAM function of the SAS by substituting the specific
values in Table 4.1 for each design. Simulated values for S2

1 , S2
2 , S2

3 , S2
S , and S2

T are substituted into
the appropriate formula and the confidence intervals are computed. The values of Sxx1 are selected from
the set of values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and the values of Sxx2 and Sxx3 are determined
to set Sxx1 + Sxx2 + Sxx3 = 1. The values of the sums of squares are used to calculate the constants
k12, k13, and k23. For each design 2000 iterations are simulated and two-sided confidence intervals on
variance components are computed for each proposed method. Confidence coefficients are determined
by counting the number of the intervals that contain variance components. The average lengths of the
two-sided confidence intervals are computed.

Tables 4.1 reports the results of the simulation for stated 90% confidence intervals on β for a = 3, b = 2
and a = 3, b = 15. The EX1, EX2, EX3, EXS, EXT, LSS, and LST methods refer to the intervals in (3.1),
(3.2), (3.3), (3.4), (3.5), (3.6), and (3.7), respectively. Using the normal approximation to the binomial,
if the true confidence coefficient is 0.90, there is less than a 2.5% chance that a simulated confidence
coefficient based on 2000 replications will be less than 0.88685. The comparison criteria are: i) the ability
to maintain the stated confidence coefficient and ii) the average length of two-sided confidence intervals.
Although shorter average lengths are preferable, it is necessary that an interval first maintain the stated
confidence level.

The EX1, EX2, EX3, EXS, and EXT methods generally maintain the stated confidence level in Table
4.1. The LSS and LST methods are too liberal for a = 3, b = 2 since the simulated confidence coefficients
of two methods fall below the 0.88685. However, the simulated confidence coefficients of LST method
become close to 0.9 when a = 3, b = 2, and r = 5. This is because LST method combines the information
of the sums of squares R1, R2, and R3 that are based on n1 = a−2, n2 = a(b−1)−1, and n3 = ab(r−1)−1
degrees of freedom. However, LSS and LST methods start to maintain the stated confidence level when
b becomes 15.

Table 4.1 Ranges of Simulated Confidence Coefficients for 90 % Two-sided Intervals on β

a b r EX1 EX2 EX3 EXS EXT LSS LST

3 2 2 max 0.9175 0.9190 0.9180 0.9175 0.9210 0.8380 0.8825
min 0.8825 0.8810 0.8780 0.8830 0.8790 0.7770 0.8395

3 2 5 max 0.9210 0.9205 0.9160 0.9180 0.9150 0.8350 0.9040
min 0.8770 0.8810 0.8750 0.8830 0.8770 0.7735 0.8685

3 15 2 max 0.9180 0.9185 0.9220 0.9195 0.9195 0.9160 0.9165
min 0.8800 0.8830 0.8835 0.8795 0.8810 0.8715 0.8775

3 15 5 max 0.9210 0.9180 0.9190 0.9160 0.9150 0.9100 0.9135
min 0.8825 0.8740 0.8780 0.8825 0.8810 0.8750 0.8810
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5 NUMERICAL EXAMPLE

Belsley et al. (1980) analyzed the relationship of house prices on quality of the environment using 506
observations on census tracts belonging to 92 towns in the Boston Standard Metropolitan Statistical
Area(SMSA) in 1970. The response variable used in the study is logarithm of the median value of
owner-occupied homes(Y ) and one of the predictor variables is the per capita crime rate(X).

A subset of these data was selected to conform to the design with a = 3, b = 2, and r = 5 of
our simulation. We selected six towns(Salem, Woburn, Natick, Winchester, Belmont, and Arlington)
and 5 observations from each town. We assume that Salem and Woburn, Natick and Winchester, and
Belmont and Arlington belong to the same district, respectively, and that observations are nested within
towns(secondary units) that are nested within districts(primary units) in order to correspond with a
balanced two-fold nested error structure. The data are shown in Table 5.1.

Table 5.1 Selected Data Set from Boston SMSA in 1970

Salem Woburn Natick

Y X Y X Y X

10.0389 0.08829 10.3735 0.07875 10.0732 0.08244
10.2073 0.14455 10.3023 0.12579 10.0562 0.09252
9.71112 0.21124 10.4602 0.08370 9.99880 0.11329
9.84692 0.17004 10.5187 0.09068 9.90848 0.10612
9.61581 0.22489 10.3255 0.06911 10.0078 0.10290

Winchester Belmont Arlington

Y X Y X Y X

10.2541 0.12204 10.5241 0.05780 10.0732 0.13914
9.97115 0.11504 10.5914 0.06588 10.0690 0.09178
10.5636 0.12083 10.4968 0.06888 10.0257 0.08447
10.6874 0.08187 10.5427 0.09103 10.2888 0.06664
10.4103 0.06860 10.3890 0.10008 10.0519 0.07022

Using the data in Table 5.1 we computed S2
1 = 0.0163, S2

2 = 0.3068, S2
3 = 0.0199, S2

S = 0.0820,
S2
T = 0.0796, k12 = 0.3970, k13 = 0.2174, and k23 = 0.5477. The resulting 90% two-sided confidence

intervals on β are shown in Table 5.2. LSS method is not recommended because it did not maintain
stated confidence level when a = 3, b = 2, and r = 5 in the simulation study.

EX3, EXT, and LST methods are recommended to construct 90% two sided confidence interval for β
in this example since EX3 and EXT methods use n3 = 23 or n123 = 26 degrees of freedom, respectively,
and LST can also be applied for this example. The the confidence intervals for three methods contain
negative values for lower and upper limits. Therefore the null hypothesis H0 : β = 0 is rejected using
α = 10%

6 CONCLUSIONS

This paper presents an approach for constructing confidence intervals for regression coefficient in a simple
linear regression model with a balanced two-fold nested error structure. When a = 3 and b = 2, LSS
method is not recommended to compute confidence intervals on regression coefficient. When a = 3, b = 2,
and r = 2, LST method is not recommended. Except these cases, LSS and LST methods can be applied
to construct confidence interval regression coefficient. Other methods can be used across all combinations
of a, b, and r.
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Table 5.2 Confidence Intervals on β for Example Data

Lower Upper Interval
Method Estimates bound bound length

EX1 β̂1 = −3.484 -11.40 4.43 15.83

EX2 β̂2 = −7.103 -19.98 5.78 25.76

EX3 β̂3 = −3.072 -4.72 -1.43 3.29

EXS β̂S = −5.666 -12.03 0.70 12.73

EXT β̂T = −4.493 -7.13 -1.86 5.27

LSS β̂S = −5.666 -10.12 -1.22 8.90

LST β̂T = −4.493 -7.03 -1.95 5.08
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Abstract: This paper presents relation between the response time of DVR (Dynamic Voltage Restorer)
and the possible compensation range of voltage dip by the DVR system which protects the 3-phase phase-
controlled rectifier from voltage dip. The permissible range of voltage dip is presented in the 3-phase
phase-controlled rectifier. Using the proposed method, the DVR’s response time can be determined from
the parameters of 3-phase phase-controlled rectifier and the possible compensation range of voltage dip. It
showed good stability of overall system.

Key words: DVR; Response speed; Voltage dip; 3-phase phase-controlled rectifier.

1 INTRODUCTION

The voltage dip primarily causes malfunction of control unit, and it also causes commutation failure
on switching element kept at large plants that use inverter, resulting in overall system failure (Arora
A. (1998)). The problems caused by voltage dip are especially severe on locations that consist of SCR
converter and inverter (Chellali B. (2008)). Recently, DVR (Dynamic Voltage Restorer) has been utilized
as a solution for voltage dip that causes severe damages to rolling process at iron mill, and semi-conductor
factories.

Choi (Choi S. S. (2000)) suggested a method to minimize compensation energy by setting the effective
power supply provided by DVR at 0, and Zhan (Zhan C. (2001)) designed phase-lock loop to detect the
optimal phase angle from unbalanced power source. Although many researches have conducted on DVR,
no researches have done to find out the range of voltage dip that can be compensated by the DVR at
specific system.

In this paper, we presents optimization study on the response time of DVR (Dynamic Voltage Restorer)
and the possible compensation range of voltage dip by the DVR system. It also researches the magnitude
and phase range of voltage dip that can be compensated according to the response time of DVR.

2 CIRCUIT AND MODELING

Phase-controlled rectifier is a power converter that uses SCR to convert AC power into variable DC power,
and the switching-ON time of SCR can be changed to adjust the level of DC output. Fig. 1 shows the
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Table 2.1 The parameters of phase-controlled rectifier in A steelworks B facility

AC input power 460[V] Frequency 60[Hz]

Rectifier rating
Voltage 300[V] Overload ratio 150 %
Current 360[A] Power Source Inductance 60[µH]

main component of 3-phase phase-controlled rectifier. Since phase-controlled rectifier can operate in both
rectification mode and inverter mode, it is possible to restore the regeneration power that is produced
during deceleration of electric motor connected to the loading side. In Fig. 1, Ls represents inductance
of power line due to the effect of transformer. Since this inductance limits sudden changes in the current
passing through line voltage, current overlapping phenomenon occurs.

Figure 2.1 3-phase phase-controlled rectifier

Table 1 shows the parameters of phase-controlled rectifier in facility B of A steelworks, and Fig. 2
shows the relationship between voltage dip and commutation failure following the conditions of Table 1.

Fig. 2 shows possible occurrence of commutation failure depending on phase shifts, and the intensity
of input voltage when firing angle is 70◦, 100◦, 130◦, and 160◦. Horizontal axis is the voltage dip rate
where the amount of voltage reduction by voltage dip is compared to the normal voltage, and then it is
converted into percentile value, while vertical axis is phase shift of input voltage. The graph in Fig. 2
shows each area where commutation failure is observed as a result of 3 phase parallel voltage dip and
single phase voltage dip. Normal state of input voltage shows 0% of voltage dip and 0 phase shift, and
the right side of the graph is the region which causes commutation failure. From Fig. 2, we observe the
range of voltage dip for various firing angles of phase-controlled rectifier that does not cause commutation
failure, and we also observe that as firing angle and phase shift of input voltage increase, even though
minor changes in input power can cause commutation failure.

Figure 2.2 The permissible range of voltage dip according to the firing angle
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3 RESULTS

Fig. 3 shows occurrence of voltage dip on line voltage of 3-phases. The setting was done for cases where
normal voltage on phase A drops by 80% from 460V to 92V. The phase changes were not considered.
Fig. 4 shows commutation failure due to voltage dip. The firing angle is 140◦. In Fig. 4(a) and 4(b),
phase current and output voltage of rectifier are depicted respectively. The output voltage decreases to
0[V] because of commutation failure in SCR T1 and T2. As shown in Fig. 4, the proposed rectifier showed
good stability as compared to conventional rectifier.

Figure 3.1 The 3-phase line voltage occurred 80% voltage dip in the A phase

Figure 3.2 Waveform of phase-controlled rectifier when firing angle is 155◦

Fig. 5 shows waveform of the phase-controlled rectifier when DVR response time is set at 366µs. Fig.
5(a) represents waveform of the line voltage that is compensated by DVR, which shows the reduction
of line voltage at phase A by the voltage dip, and its restoration state by the DVR after 366µs. Fig.
5(b) shows phase current of the rectifier. It was set to cause voltage dip after trigger signal is sent to
SCR T3, thus commutation does not conduct between phase A and phase B when the voltage dip occurs,
but commutation successfully performs after line voltage is compensated for DVR response time. Output
waveform of phase-controlled rectifier is presented on Fig. 5(c), which shows that DVR effectively restores
voltage dip for normal operation of rectifier.

4 CONCLUSION

This paper proposed a solution to set the optimum response time of DVR, which is an important factor
to consider when designing DVR suitable to promote 3-phase phase-controlled rectifier from voltage dip.
The proposed method suggested to calculate optimum DVR response time required for certain intensity
of voltage dips that may protect the characteristics of 3-phase phase-controlled rectifier. It showed good
stability and reliability.
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Figure 3.3 Waveform of phase-controlled rectifier when the response time of DVR is 366µs, (a) compensated line

voltage, (b) phase current, (c) output voltage
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Abstract: Generally, a standard life cycle of sewer drainpipe is 50 years, and most of sewerage systems
in Japan have been deteriorating. Moreover, more than 5000 traffic accidents occur due to deteriorated
sewerage systems. In this paper, we suggest a method to evaluate sewerage systems using data envelopment
analysis (DEA). DEA is a method to measure relative efficiencies of decision making units performing similar
tasks in a production system that consumes multiple inputs to produce multiple outputs. Distinctive features
of DEA are that it can measure a relative distance of each alternative to so-called DEA-efficient frontier and
give information on reference points which an alternative is dominated by. To begin with, we survey DEA
and discuss on several DEA models. Next, we apply DEA to evaluation of sewerage systems for preventive
maintenance and investigate the effectiveness of using DEA.

Key words: Data envelopment analysis; Deteriorated degree; Preventive maintenance.

1 INTRODUCTION

Data envelopment analysis (DEA) was suggested by Charnes, Cooper and Rhodes (1978, 1979) as a
method for measuring relative efficiencies of decision making units (DMUs) performing similar tasks in
a production system that consumes multiple inputs to produce multiple outputs. CCR model is the first
model in DEA, and main characteristics of DEA are that

it can be applied to analyze efficiency for multiple outputs and multiple inputs without preas-
signed weights
it can be used for measuring a relative efficiency based on the observed data without knowing
information on the production function with respect to inputs and outputs
decision makers’ preferences (value judgments) can be incorporated in DEA model

Utilizing the above characteristics of DEA, we elicit relevant attributes (factors) to collapse of roads
from basic data and inspection for the sewerage systems in which road subsidence has occurred due to
damaged sewer pipes. Calculating latent risk degree of each sewerage system, we decide a priority for
maintaining preventively, properly and efficiently.

2 DATA ENVELOPMENT ANALYSIS

To begin with, we give an overview of DEA models, and summarize the following notations used com-
monly:

• q, m, p : the number of DMUs, input and output, respectively
• o : an index of DMU to be evaluated
• xij : i-th input of DMUj , j = 1, . . . , q; i = 1, . . . ,m

199



200

CCR-efficient  frontier

A

B

E

D

F

C

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

y

x

(a) CCR model

BCC-efficient  frontier

A

B

E

D

F

C

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

y

x

(b) BCC model

A

B

E

D

F

C

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

y

x

FDH-efficient  frontier

(c) FDH model

Figure 2.1 DEA-efficient frontiers (solid line : efficient frontier and shadowed area : production possibility set)

• ykj : k-th output of DMUj , j = 1, . . . , q; k = 1, . . . , p

• ε : sufficiently small positive number (e.g., 10−7), 1 = (1, . . . , 1)T

We assume that xij > 0 for each i = 1, . . . ,m and ykj > 0 for each k = 1, . . . , p, and there are no
duplicated units in the observed data. The m × q input matrix for the q DMUs is denoted by X, and
the p× q output matrix for the q DMUs is denoted by Y .

For better understanding, we explain DEA models along a simple example of one input and one output
as shown in Table 2.1.

Table 2.1 Case of a Single Input and a Single Output

DMU A B C D E F

x (input) 2 4 9 5 7 8

y (output) 2 5 7 3 5.5 4

Figure 2.1 shows the production possibility set generated by the given data in Table 2.1 of CCR model
(Charnes et al., 1978), BCC model (Baker et al., 1984) and FDH model (Tulkens, 1993), which are
representative DEA models. Pareto frontier1 on the production possibility set is called DEA-efficient
frontier, and DEA measures a relative distance to DEA-efficient frontier from each point. For example,
the efficient value θD of DMUD is given by the ratio of OD′ to OD. As seen from Figure 2.1, clearly
a DMU on DEA-efficient frontier has its efficient value θ = 1, and if a DMU is far from DEA-efficient
frontier, DEA-efficient value is closely to 0. Table 2.2 shows DEA-efficient values for the data in Table 2.1
by DEA models.

Table 2.2 DEA-Efficiencies for the Data in Table 2.1

DMU A B C D E F

CCR 0.8 1.0 0.62 0.48 0.63 0.4

BCC 1.0 1.0 1.0 0.53 0.75 0.42

FDH 1.0 1.0 1.0 0.8 1.0 0.5

Extending to the case of multiple inputs and multiple outputs, an efficiency can be evaluated by
maximizing the following ratio for non-negative input weights νi, i = 1, . . . ,m and output weights
µj , j = 1, . . . , p: ∑p

j=1 µjyjo∑m
i=1 νixio

−→ max (2.1)
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Imposing the normality condition that the ratio (2.1) is not larger than one for all DMUs, CCR model
determines optimal weights µ = (µi, . . . , µp)

T , ν = (νi, . . . , νm)T and an efficient value θ by solving the
following linear programming problem (CCR)

maximize
µ, ν

p∑
j=1

µjyjo (CCR)

subject to

m∑
i=1

νixio = 1,

p∑
j=1

µjyjk −
m∑
i=1

νixik 5 0, k = 1, . . . , q,

µj = ε, j = 1, . . . , p; νi = ε, i = 1, . . . ,m,

and its dual problem (CCRD)

minimize
θ, λ, sx, sy

θ − ε
(
1Tsx + 1Tsy

)
(CCRD)

subject to Xλ− θxo + sx = 0,

Y λ− yo − sy = 0,

λ = 0, sx = 0, sy = 0,

θ ∈ R, λ ∈ Rq, sx ∈ Rm, sy ∈ Rp.

Elementary and detailed description of DEA can be referred to the book (Cooper et al., 2007). Nor-
mally, we give the definition of DEA-efficiency as follows:

Definition 2.1 (DEA-efficiency) For the optimal solution θ∗, s∗x and s∗y in CCRD problem, a DMU
is said to be DEA-efficient if and only if θ∗ = 1, s∗x = 0 and s∗y = 0.

3 EVALUATION OF SEWERAGE SYSTEMS USING DEA

From the results of Table 2.2, DEA-efficiency means relative inefficiency for each DMU, while we cannot
know how efficient a DMU is. To this end, CCR model can be reformulated as follows:

maximize
µ, ν

θ :=

p∑
j=1

µjyjo (E-CCR)

subject to

m∑
i=1

νixio = 1,

p∑
j=1

µjyjk −
m∑
i=1

νixik 5 0, k = 1, . . . , q; k 6= o

µj = ε, j = 1, . . . , p; νi = ε, i = 1, . . . ,m.

The above E-CCR model evaluates a relative distance to the CCR-frontier which is generated by the
data set {(x1,y1), . . . , (xq,yq)} \ (xo,yo).

DEA-inefficient DMUs do not contribute to the generation of CCR-efficient frontier. Conversely, CCR-
efficient frontier is determined by only CCR-efficient DMUs, and thus may be altered by excluding (xo,yo)
of DMUo from the data set. Figure 3.1 shows CCR-efficient frontier except for the DMUB from the data
of Table 2.1. And, its efficient value for CCR-efficient DMUB changes into

θ∗B = 1.25.

The above efficient value with larger than 1 means the degree how far (xo,yo) is outward from CCR-
efficient frontier generated without the DMU to be evaluated, and it can be regarded that DMUs with
larger values of θ are more efficient among CCR-efficient DMUs in CCR model. Therefore, CCR-efficient
value by E-CCR model can constitute a measure of degree how CCR-efficient DMUs are with respect to
the current efficient frontier. In this paper, an optimal value θ by DEA (CCR and E-CCR) models is called
a ratio value. From the analysis of using DEA, we obtain also optimal weights µ and ν corresponding to
outputs and inputs, respectively.

In this research, we utilize the information of a ratio value θ, and optimal weights µ and ν in evaluating
sewerage systems.



202

A

B
E

D

F

C

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

y

x

CCR-efficient  frontier

Figure 3.1 Extended CCR-efficient frontier for Table 2.1 (points : DMUs, solid line : CCR-efficient frontier generated

by the data except for B)

3.1 Use of Optimal Weights µ and ν

Here, we describe our idea using DEA with the case for two outputs (attribute1 and attribute2), as shown
in Table 3.1. In this example, furthermore, we assume that points with larger values are more dangerous.
Figure 3.2 shows the frontier generated by CCR model for the given data set, and the frontier is regarded
as the boundary of safety area.

attribute1

5

5 10

10

0

safety dangerous

attribute2

frontier

dangerous A

B

C
D

E

Figure 3.2 Frontier for case with two outputs

A, B and C with a ratio value 1 are on the frontier (solid line in Figure 3.2), and are relatively more
dangerous than D and E. As seen from Table 3.1 of DEA results, we can know which attribute is effective
from the optimal weights µ1 and µ2. For example, A has the first weight 0.0 and the second weight
1.0, which means attribute2 is more effective than attribute1 for A that has a relatively large value for
attribute2. Conversely, attribute1 is more effective than attribute2 for C, and both attributes are effective
for B.

Table 3.1 Ratio Values and Weights for the Data in Figure 3.2 by CCR

ID attribute1 attribute2 θ µ1 µ2

A 3 10 1 0.00 1.00
B 10 8 1 0.50 0.50
C 12 3 1 1.00 0.00
D 5 5 0.56 0.22 0.78
E 9 4 0.80 0.71 0.29

Therefore, we can think that the attributes with a large weight are more effective than small ones,
and it is interpreted as that a large weight has a strong influence on evaluation. So, we utilize weight
information on eliciting relevant attributes to collapse of roads from basic and inspection data.
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3.2 Use of a Ratio Value θ

In this subsection, we give an explanation for the use of a ratio value θ. We consider two test data F and
G, as shown in Figure 3.3. As can be seen from the figure, a ratio value for F is larger than 1, and F is
further than G from the frontier. This means that F is more dangerous than G from the viewpoint of
collapse of roads.

Therefore, we can think that the points with a large ratio value are more dangerous than small ones.
Also, we utilize a ratio value on deciding a priority for preventive maintenance of sewerage systems.

5

5 10

10

F

0

safety dangerous

frontier

G

dangerous

F’

G’

attribute1

attribute2

Figure 3.3 Evaluation for Test Data F and G by E-CCR

4 CONCLUSION

Significant benefits of DEA are that it can measure a relative distance of each alternative to the so-
called DEA-efficient frontier and give information on the optimal weight corresponding to each attribute.
From these facts, one may see how efficient or inefficient each alternative is, and also which attribute is
important or relevant to the evaluation. This is important in supporting decision making with multiple
criteria. Therefore, DEA models can be regarded to be helpful in problems with multiple criteria, and
also applicable to a wide range of real problems.

It can be expected that DEA for evaluation of sewerage systems is useful and especially, in this
research, we applied DEA to the evaluation of sewerage systems based on inspection data. Due to the
page limitation, the details for experimental results are ommited, and will be described at the presentation.
Through the data for Chuo-ward in Osaka City, DEA can find important and relevant factors to collapse of
roads due to deteriorated sewerage systems, and calculating latent risk degree of each sewerage system, we
can decide a priority for maintaining preventively, properly and effectively deteriorated sewerage systems.
As the future works, we are going to investigate the effectiveness of using DEA for the other area of Osaka
City.
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Notes

1. In multi-objecctive optimization, a point x̂ ∈ X is is said to be a Pareto optimal solution if there exists no x ∈ X
such that f(x) ≤ f(x̂), where f is a vector of objective functions and X is a set of feasible solutions. And the set of Pareto
optimal solutions in objective function space is called as Pareto frontier (Pareto, 1906).
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Abstract: Some properties of α-weakly preinvex and pseudoinvex functions via Clarke-Rockafellar and
limiting subdifferentials are obtained. Furthermore, the equivalence between vector variational-like inequal-
ities and vector optimization problems are studied under pseudoinvexity condition. We also consider two
generalized Minty vector variational-like inequalities and investigate the relations between their solutions
and vector optimization problems for non-differentiable α-invex functions.

Key words: Nonsmooth functions; Limiting subdifferential; Pseudoinvex functions; Vector variational-like
inequalities; Vector optimization problems.

1 INTRODUCTION

The study of vector variational inequalities has become an important research direction of vector opti-
mization problems. In particular, various relationship between vector variational inequalities and vector
optimization problems have been established ((Giannessi (1980)), ( Ward (2002) , ( Yang-Teo (2004)), (
Giannessi (1997)), (Jabarootian (2007)),( Ansari (2010)). In (Giannessi (1980)) introduced and studied
the concept of vector variational inequality in finite dimensional spaces. (Giannessi (1997)) gave a direct
application of Minty vector variational inequalities to establish the necessary and sufficient conditions for
a point to be a solution of vector optimization problems for differentiable and convex functions are that
the point to be a solution of Minty vector variational inequalities.The vector variational-like inequalities
(VVLI), a generalization of (VVI) was studied in ( ( Lin (1976)), ( Chiang (2005)), ( Yang (2006)), (
Fang (2003)), (Jabarootian (2008)), ( Chinaie (2008)), (Rezaie (2009)), ( Al-Homidan (2010))). ( Yang
(2006)) gave some relationships between Minty vector variational-like inequalities and vector optimiza-
tion problems for differentiable pseudoinvex vector-valued functions. After these works, ( Fang (2003))
obtained similar results for pseudoconvex functions with lower Dini directional derivative and Rezaie and
Zafarani (Rezaie (2009)) obtained some of the above results for non-differentiable pseudoinvex functions.
Very recently, ( Al-Homidan (2010)) obtained these results for invex functions with Clarke’s generalized
directional derivative and then, ( Ansari (2010)) showed that for pseudoconvex functions with upper Dini
directional derivative, similar results hold.

In recent years, characterizations and applications for generalized preinvexity and generalized invexity
were studied by many authors, see ((Yang-Teo (2003), (Garzon (2003) ), (Yang-Teo (2005)), (Jabarootian
(2006))) and references therein.((Yang-Teo (2003)) and (Yang-Teo (2005)) studied the relations between
generalized invexity of a differentiable function and generalized monotonicity of its gradient mapping.
For nondifferentiable locally Lipschitz functions similar results are obtained in terms of monotonicity
of their Clarke subdifferentials in (Jabarootian (2006)). The concept of generalized differentials plays
a fundamental role in modern variational analysis ( Mordukhovich (2006)). In ( Mordukhovich (1976))
presented and introduced a new subdifferential that it is defined by the limit of the other subdifferentials
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which is called the limiting subdifferential.
Here, the equivalence between vector variational-like inequalities and vector optimization problems for
non-differentiable functions under pseudoinvexity condition, are established. Furthermore, we consider
two generalized Minty vector variational-like inequalities and compare their solutions with solutions of
vector optimization problems. We also give some properties of the solution sets of non-differentiable
vector optimization

2 PRELIMINARIES

This section deals with some known definitions and results which will be used in the sequel. Let X be a
Banach space endowed with a norm ||.|| and X∗ its dual space with a norm ||.||∗. We denote 〈., .〉, [x, y]
and ]x, y[ the dual pair between X and X∗, the line segment for x, y ∈ X, and the interior of [x, y],
respectively. Let K be a nonempty subset of X and f : K ⊂ X → R be a non-differentiable real valued
function. Now, we recall some concepts of subdifferentials that we need in the next sections.

Definition 2.1 Let X be a normed vector space, Ω be a nonempty subset of X, x ∈ Ω and ε ≥ 0. The
set of ε-normals to Ω at x is

N̂ε(x; Ω) := {x∗ ∈ X∗| lim sup
u→Ωx

〈x∗, u− x〉
||u− x||

≤ ε}.

Let x ∈ Ω, the limiting normal cone to Ω at x is

N(x̄; Ω) := lim sup
x→x̄,ε↓0

N̂ε(x; Ω).

Let f : X → R̄ be finite at x̄ ∈ X; the limiting subdifferential of f at x̄ is defined as follows

∂Mf(x̄) := {x∗ ∈ X∗|(x∗,−1) ∈ N((x̄, f(x̄)); epif)}.

Remark 2.1 One can see easily that the set-valued mapping x 7→ ∂Mf(x) has closed graph for locally
Lipschitz functions.

Definition 2.2 Let η : X × X → X. A subset K of X is said to be invex with respect to η if for any
x, y ∈ K and λ ∈ [0, 1], y + λη(x, y) ∈ K.

Definition 2.3 Let K be an invex set with respect to η and f : K → R.
(i) f is said to be α-preinvex with respect to η on K, if there exists a constant α such that for any x, y ∈ K
and λ ∈ [0, 1], one has

f(y + λη(x, y)) ≤ λf(x) + (1− λ)f(y)− αλ(1− λ)||η(x, y)||2;

(ii) f is said to be α-invex with respect to η on K, if there exists a constant α such that for any x, y ∈ K
and ζ ∈ ∂Mf(y), one has

〈ζ, η(x, y)〉+ α||η(x, y)||2 ≤ f(x)− f(y);

(iii) f is said to be α-weakly invex with respect to η on K, if there exists a constant α such that for any
x, y ∈ K there exist ζ ∈ ∂Mf(y) such that

〈ζ, η(x, y)〉+ α||η(x, y)||2 ≤ f(x)− f(y).

Remark 2.2 If α > 0, then case(i) reduces to strong preinvexity and case(ii) to strong invexity. If α = 0,
then case(i) reduces to preinvexity, case(ii) to invexity and case(iii) to weak invexity.

Definition 2.4 Let K ⊂ X, T : K → 2X
∗

be a set-valued mapping. T is said to be invariant α-monotone
on K with respect to η if there exists a constant α such that for any x, y ∈ K and any u ∈ T (x), v ∈ T (y),
one has

〈v, η(x, y)〉+ 〈u, η(y, x)〉 ≤ −α(||η(x, y)||2 + ||η(y, x)||2).

The following conditions are useful in the sequel.

Condition A. Let K be an invex set with respect to η and f : K → R. Then,

f(y + η(x, y)) ≤ f(x) for any x, y ∈ K.

Condition C . Let η: X ×X → X. Then for any x, y ∈ X,λ ∈ [0, 1]

η(y, y + λη(x, y)) = −λη(x, y), η(x, y + λη(x, y)) = (1− λ)η(x, y).

For undefined terminologies, we refer to ( Mordukhovich (2006)).
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3 MAIN RESULTS

In this section, we consider Minty vector variational-like inequality (MVLI) and its weak version (MWVLI)
and compare their solutions with vector optimization problems’s solutions (VOP) for pseudoinvex func-
tions. Furthermore, we also consider two generalizations of (MVLI) and (MWVLI) and we obtain rela-
tionship between of their solutions and (VOP) solutions for the α-weaky invex fuctions.
Suppose fi : K → R, the components of f : K → Rn are non-differentiable functions, C := Rn+\{0} and
int C := int Rn+. In the sequel we have the following ordering relation:

x ≥C y ⇔ x− y ∈ C; x �C y ⇔ x− y /∈ C, ∀x, y ∈ K.

The definition of generalized subdifferential can be extended to vector-valued functions. Generalized
limiting subdifferential of f at x ∈ X is the set

∂Mf(x) = ∂Mf1(x)× ∂Mf2(x)× · · · × ∂Mfn(x).

Definition 3.1 Let K be an invex set with respect to η and f : K → Rn.
(1) Minty vector variational-like inequality (MVLI) consists of finding a vector x ∈ K such that

〈∂Lf(y), η(x, y)〉 * C \ {0}, ∀y ∈ K;

(2) Minty weak vector variational-like inequality (MWVLI) consists of finding a vector x ∈ K such that

〈∂Lf(y), η(x, y)〉 * int C, ∀y ∈ K.

(3) Stampacchia weak vector variational-like inequality (SWVLI) consists of finding a vector x ∈ K such
that

〈∂Lf(x), η(y, x)〉 * −int C, ∀y ∈ K.

We consider now the following vector-minimization problem (VOP):

min
y∈K C

f(y).

Solving a (VOP) means finding all the (weakly) efficient solutions, which are defined as follows.

Definition 3.2 (1) x ∈ K is said to be an efficient solution (Pareto solution) of (VOP) iff

f(x)− f(y) /∈ C \ {0}, ∀y ∈ K;

(2) x ∈ K is said to be a weak efficient solution (weak Pareto solution) of (VOP) iff

f(x)− f(y) /∈ int C, ∀y ∈ K.

We denote by S̄ the set of all weak efficient solutions of (VOP).

Theorem 3.1 Let X be an Asplund space and f : K → Rn be locally Lipschitz on K and C = Rn+.
Assume that fi : K → R for 1 ≤ i ≤ n are pseudoinvex with respect to function η, η is continuous with
respect to the second argument and satisfies Condition C. Then x0 ∈ K is a solution of (MVLI) if and
only if it is a efficient solution of (VOP).

By a similar way, we can establish the weak version of Theorem 3.1

Theorem 3.2 Let X be an Asplund space and f : K → Rn be locally Lipschitz on K and C = Rn+.
Assume that fi : K → R for 1 ≤ i ≤ n, are pseudoinvex with respect to function η, η is continuous with
respect to the second argument and satisfies Condition C. Then x0 ∈ K is a solution of (WMVLI) if and
only if it is a weak efficient solution of (VOP).

Remark 3.1 Theorems 3.1, 3.2 also hold for the Clarke subdifferential in any Banach space.

We introduce now two types of generalized Minty vector variational-like inequalities. Let K be an invex
set with respect to η and f : K → Rn.
Problem (I): Generalized Minty vector variational-like inequality consists of finding a vector x ∈ K
and a real constant β such that

〈∂Mf(y), η(x, y)〉+ β||η(x, y)||2e * C;
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Problem (II): Generalized weak Minty vector variational-like inequality consists of finding a vector
x ∈ K and a real constant β such that

〈∂Mf(y), η(x, y)〉+ β||η(x, y)||2e * int C;

where, e = (1, 1, · · · , 1︸ ︷︷ ︸
n

).

Remark 3.2 (1) In Problem (I) (resp. (II)) if β = 0, then it reduces to Minty (resp. weak) vector
variational-like inequality (MVLI) (2) Notice that, if x0 is a solution of Problem (I), then it is also a
solution of Problem (II); furthermore, if x0 is either a solution of Problem (I) or (II) with constant β,
then x0 is also their solution for all parameters β′ ≤ β. Hence, we have

There are many examples of vector optimization problems that their solutions are not a solution of
Minty vector variational-like inequality. Hence, by a minor modification in Minty vector variational-like
inequalities, we get Problems (I) and (II). Notice that the role of term β||η(x, y)||2 in Problems (I) and
(II) is similar to a kind of perturbation in Minty vector variational-like inequalities. Because β can be
chosen in R, the solution set of Problems (I) and (II) are larger than the solution set of Minty vector
variational-like inequalities.

We present now a necessary and sufficient condition for being an efficient solution of (VOP) a solution
of Problem (I).

Theorem 3.3 Let X be an Asplund space, K ⊂ X be invex with respect to η and f = (f1, . . . , fn) : K →
Rn be l.s.c. on K. If each fi, 1 ≤ i ≤ n is α-weakly invex and x0 ∈ K is an efficient solution of (VOP),
then it is also a solution of Problem (I). Conversely, suppose that η satisfies Condition C, f is locally
Lipschitz on K, each fi satisfies Condition A and is α-invex with constant αi > 0 and x0 is a solution of
Problem (I), then x0 is a solution of (VOP).

By a similar way of Theorem 3.3, we can deduce the relation between solutions of Problem (II) and weak
efficient solutions of (VOP).

Theorem 3.4 Let X be an Asplund space, K ⊂ X be invex with respect to η and f = (f1, . . . , fn) : K →
Rn be l.s.c. on K. If each fi, 1 ≤ i ≤ n is α-weakly invex and x0 ∈ K is a weak efficient solution of
(VOP), then it is also a solution of Problem (II). Conversely, suppose that η satisfies Condition C, f is
locally Lipschitz on K, each fi satisfies Condition A and is α-invex with constant αi > 0 and x0 is a
solution of Problem (II), then x0 is a weak efficient solution of (VOP).

Remark 3.3 Theorems 3.1 and 3.4 also hold for the Clarke’s subdifferential in any Banach space.

Now, we obtain an existence result for the solution of Problem (II) and therefore a weak efficient solution
of (VOP).

Theorem 3.5 Let X be an Asplund space and f = (f1, . . . , fn) : X → Rn be locally Lipschitz such that
each fi, 1 ≤ i ≤ n be α-invex with constant αi. Assume that the following conditions are satisfied:
(1) η is affine and continuous in the first argument and skew,
(2) there are a nonempty compact set M ⊂ X and a nonempty compact convex set B ⊂ X such that for
each x ∈ X \M , there exists y ∈ B such that

〈∂Mf(y), η(x, y)〉+ β||η(x, y)||2 ⊆ int C,

where β = 2 min{α1, . . . , αn}. Then Problem (II) has a solution and the set of solutions is compact.

Here, we obtain a relation between solutions of (VOP) and solutions of (SWVLI) for an arbitrary locally
Lipschitz function without any convexity.

Theorem 3.6 Let X be an Asplund space, K ⊂ X be invex with respect to η and f = (f1, . . . , fn) :
K → Rn be locally Lipschitz on K. Suppose that η satisfies Condition C and continuous in the second
argument. Then any point in S̄ is a solution of (SWVLI).
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Abstract: Using differential-algebraic equations, finite automata, stochastic process, queuing theory, this
paper proposes a steady-state and a dynamic model for quantitatively analyzing the information trans-
mission performance in different communication networks. Based on the proposed model, this paper also
proposes a mathematical model for real-time vehicle route optimization considering the information system.
The information system design for logistics vehicle dispatching is also given based on numerical simulations
on different communication networks.

Key words: Logistics distribution; Information system; Vehicle route; Real-time optimization.

1 INTRODUCTION

Vehicle route problem has been attracting continuous research attention in the operations research field.
In (A. Serdar Tasan, (2010)) established a mixed integer programming model for vehicle route opti-
mization and applied genetic algorithm (GA) to solve the model. In (Cao Erbao, (2009)), proposed a
chance constrained programming model under the fuzzy demand conditions for the vehicle routing, and a
stochastic simulation-based hybrid differential evolution (DE) was used to effectively solve the problem.
In (Jean-Yves Potvin, (2006)), proposed the dynamic vehicle route problem considering real-time cus-
tomer demand and dynamic travel time, and compared the effects of different kinds of planning strategies.
However, they did not consider the impact and limitation of the information system and only assumed
that the required information is accurate and timely. With the continuous development of the logistics
system, bringing a variety of challenges to the information transmission, such as information loss, and
delay, etc. So, the research on the modeling of the information system and its impact on the logistics
optimization can be of great importance.

2 MODELING OF THE LOGISTICS INFORMATION SYSTEM

Logistics information system consists of the real-time collection, transmission, and processing of the
customer demand, vehicle status, and traffic status information. It can provide the basic data for the
vehicle route optimization. The communication network is the core of the whole information system, and
its model is presented below.
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2.1 STEADY-STATE MODEL OF THE COMMUNICATION NETWORK

The steady-state model of the communication network can be formulated as a network flow model as
follows:

1. Node information balance equation

For any node v ∈ V , its information inflow and outflow should be equal, i.e.

∑
(i,v)∈E

Si,v +

Nv∑
k=1

Sv (k) =
∑

(v,j)∈E

Sv,j +

Mv∑
k=1

Ov (k) (1)

where (i, v) ∈ E and (v, j) ∈ E indicate that nodes i and j are connected with node v directly. Si,v
and Sv,j represent respectively the data rate of the information flow from node i to node v, and
from node v to node j. Nv denotes the number of information sources located at node v. Sv(k) is
the data rate of the information flow injected by source k at node v. Mv represents the information
flow ended at node v. Ov(k) is the data rate of the information flow k which is ended at node v.

2. Node information flow limit constraint

For any node v ∈ V , its information inflow should not exceed its information exchange ability as
described by

0 ≤
∑

(i,v)∈E

Si,v +

Nv∑
k=1

Sv (k) ≤ Cv (2)

3. Link information flow limit constraint

For any link(i, j) ∈ E, its information flow should not exceed its bandwidth

0 ≤ Si,j ≤ Bi,j (3)

where Bi,j indicate the bandwidth of link (i, j).

The feasible working state can be obtained by solving the model denoted by Eqns. (1)-(3) directly.

2.2 DYNAMIC MODEL OF THE COMMUNICATION NETWORK

The dynamic model of the communication network can be formulated based on the network layer and
the transport layer in the open system interconnection (OSI) model.

In the network layer and transport layer, we will mainly model routers, communication links, and
the congestion control protocol acting as a key control mechanism for handling communication network
congestion. Routers and communication links usually have memory buffers, the memory buffer can
usually be modeled as a queue. The size of the memory buffer is called the maximum queue size. Take the
TCP/IP network as an example, the congestion control protocol can mitigate the congestion in two ways.
First, the information volume injected into the network can be decreased, and this can be implemented
by reducing the congestion window size of some nodes. Second, some data packets with a lower priority
can be deleted proactively from the memory buffer to avoid the memory buffer overflow, and further the
data loss. Because of the congestion control protocol, the congestion window size and queue size will
vary dynamically when network congestion occurs; thus they can be selected as the state variables of the
dynamic model. The outputs of the cyber system can usually be set as the communication delays and
data loss rates of information flows. Denote X (t) as the state variable vector, Y (t) as system output
vector and u (t) as the control signal vector, then the dynamic model of the communication network can
be expressed as

Ẋ (t) = f (X,u) (4)

Ẏ (t) = g (X,u) (5)

For different working states of the communication network, the dynamic model will be different. Still
take the TCP/IP network as an example, a queue can transit between three different states: empty,
non-empty, and full. Also, corresponding to different congestion conditions, the TCP protocol has three
different working states: slow start, congestion avoidance, fast recovery. For all these working states,
the differential equations should be different. Therefore, in order to handle the state transition of the
communication network, we can introduce the finite automaton, and combine it with differential equations
to form the mathematical model of the communication network.
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Abstract: The vehicle routing problem (VRP) is a well-known operations research model for a class of
transportation and logistics management. A typical vehicle routing problem (VRP) aims to find the optimal
tours for several homogeneous vehicles from a depot to a lot of customers with known demands and return
to the depot. All vehicles must visit all customers exactly once and cant exceed the capacity constraints.
The classical VRP and its variants assume that the weight loaded in the vehicle keep unchanged through
the visiting route, which results minimum cost measure equivalent to minimum distance one. That is to
say, the costs associated with the amount of the loads in the vehicle are neglected in the objective function
of the most VRP models; as a result, the optimal routes may not be the minimum cost one.

In real-world cargo transportation practice, the charge is not only on the traveling distance, but also on
the loading weight. For example, a toll-by-weight measure for China Expressway is proposed, by which the
cargo-truck are charged based on its loading quantity (sum of truck weight and cargo quantity) and traveling
distance, rather than on distance only. As a result, a truck is charged different when it is empty, normally
loaded or overloaded. In practical delivery of perishable/fruit food, a dedicated container/vehicle is equipped
to monitor its status towards minimum delivery loss rather than traveling distance when optimizing routes.
The delivery loss brought by the risk of perished, during the routing, is measured not only on traversing
distance, but also on the quantity of the perished or hazardous products. As an instance, for some perishable
food, even 70% of the price is used for loss compensation during transport. When delivering perishable food,
one need to pay not only the distance cost, but also the extra loading cost caused by the cooling devices to
keep food fresh during transport. To this end, people tend to delivery customers with large quantities and
close location first to balance the cost of distance and loading, towards minimum loss caused or the total
costs. as possible. Typically, for another example, large trucks such as gasoline tankers and containers, their
fuel consumption are related to the weight of the cargo. Oil consumption is not the same for a truck with
full loaded and unloaded. Trucks with full loads produce carbon emissions significantly more than empty
trucks do. On lower carbon emission obligation policy, it is better to serve customers with large demand
firstly to decrease the load on the truck and bring the economic benefits and environmental protection when
the two customers have the same distance.

To modeling the above problems precisely occurred in general logistics management, the weight loaded
in the vehicle should be considered as a variable part of the objective when optimizing the vehicle routine,
rather than as a constant from a customer to another in a routine. For this purpose, this paper considers a
new type of VRP with consideration of cargo weight, which we call weighted VRP, short for WVRP. The
weight here is a terminology in general means, and may be extended to represent the number or values of
objects (cargo/goods/passenger) to be delivered, importance/priority of customers (or points); and, corre-

213



214

spondingly, the terminology cost to measure the objective here has as well broad meaning. Apart from the
costs itself, it may represent the minimum emission/petrol consumption when transporting general goods,
minimum risk of loss brought by transporting perishable foods, livestock or dangerous goods, maximum util-
ity, satisfaction degree, values or benefits of delivering customers, etc. In this aspect, the WVRP represent
a new modeling approach to solving practical vehicle routing problem (VRP).

There are large volumes of models and algorithm for CVRP and its variants, such as capacitated vehicle
routing problem (CVRP) requires the load on one vehicle cannot exceed the capacity, vehicle routing
problem with time windows (VRPTW) adds the service time constraints of every customer on CVRP;
multi-depot vehicle routing problem (MDVRP) has multiple depots instead of a single depot; periodic
vehicle routing problem (PVRP) considers the service time as a period instead of a day; VRP with pickup
and delivery(VRPPD) has both delivery and pickup; split delivery vehicle routing problem (SDVRP) allows
each customer can be served more than once and so on.

This paper aims to consider weighted VRP (short for WVRP) by generalizing the VRP with loading costs
in two aspects. One is that the weight may represent not only quantity in absolute way, but also priority
of the customers in relative way. The other is the formulation of objective function and its interpretation.
To demonstrate the effectiveness of the WVRP, computational experiments were carried out on benchmark
problems of capacitated VRP with seven types of distribution. For this purpose and effectively solving
WVRP, a beam search combined with ant colony optimization algorithm (short for BEAM-MMAS) is
developed as a means to show how effectiveness of WVRP more than VRP and for which types of VRP
instances WVRP has more cost-saving than classical VRP. The effectiveness of the BEAM-MMAS algorithm
is tested on large sizes of benchmarking instances in comparison with general ACO and MMAS. Full factorial
experiments are conducted to suggest a set of better parameters for implementing the algorithm.

Key words: Optimization; Regression models; Mining process.
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Abstract: Based on the traveling salesman problem (TSP), this paper proposes an optimal EV route model
considering the rapid-charging and the depot charging in the context of the time-of-use (TOU) electricity
price. The proposed model considers the impact of the vehicle load on the electricity consumption per mile,
and aims to minimize the total distribution costs of the EV route while satisfying the EV battery capacity
limits. The immune algorithm (IA) is employed to solve the proposed model.

Key words: Electric vehicle (EV); Vehicle route optimization; Time-of-use electricity price; Immune
algorithm (IA).

1 INTRODUCTION

The route optimization of the EVs is a relatively new research topic. In (Sevgi Erdogan. (2012)), a route
optimization model of the alternative energy-fueled vehicles is reported. In (Michael Schneider. (2012)),
the EV charging station is introduced and some constraints such as battery capacity is considered in
addition to the conventional VRP constraints. However, this model does not consider the EV charging
costs. In (Owen Worley. (2012), Ryan G. Conrad. (2011)), the EV charging cost is reflected, but it is
based on the assumption that the charging price is constant, which is however not realistic. It can be seen
that the different charging modes are not considered and the cost function of the problem is relatively
rude. In particular, the time-of-use (TOU) electricity price in the power system is not considered. In
practical logistics distribution system, although the reported model can provide a reasonable vehicle rout,
it is difficult to minimize the distribution costs.

2 PROPOSED MODEL

2.1 PROBLEM DESCRIPTIONS

The routing optimization of EV can be described as: an EV with the battery capacity of Q starts from
the depot v0. then deliver goods to n customers and finally return back to v0. The customer vertex is
denoted as I = {v1, v2, · · · , vn}, customer demand is denoted as µi (i ∈ I), the loading at vertex j is lj ,
and the initial loading is the sum of all the individual customer demand.

Assume there are k rapid-charging stations in one area, {vn+1, vn+2, · · · , vn+k}, each station can
accommodate s fast charging service. When the EV returns back to the depot, the regular charging
is then applied. It is also assumed that after each charging, either fast or regular, the battery is fully
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charged. The TOU electricity price is considered for the charging stations and the depot. M (t) denotes
the electricity price of the rapid-charging at time t, m (t) denotes the electricity price of the regular
charging in the depot at time t, and M (t) > m (t).

In the proposed model, the charging stations can be visited many times or never be visited, while
the customer vertex must and only be visited once. For a revisited charging station, the battery level,
loading level, and the visiting time can be different, in such case, dummy vertices are used to distinguish
a revisited station. If a charging station vn+i is revisited s times, the dummy vertices are denoted as

F (i) =
{
v

(0)
n+i, v

(1)
n+i, · · · , v

(s)
n+i

}
, i = 1, 2, · · · , k. The full set of the dummy vertices of all the charging

stations is F = F (1) ∪ F (2) ∪ · · · ∪ F (k). The collection of the system vertices is V = I ∪ F ∪ {v0},
|V | = n+ k × s+ 1.

The state-of-health (SOH) is an important parameter of the EV battery. Let C denotes the battery
replacement cost and N denotes the maximum cycle life of a battery, the SOH cost of each rapid-charging
is C/N .

2.2 OBJECTIVE FUNCTION

The objective function in the proposed model is as follows:

min Pfast ·
∑

i∈V,j∈F,i6=j

(∫ tj+Tj

tj

M (t) dt

)
· xij + Pslow ·

∫ tv0+Tv0

tv0

m (t) dt+Gtotal ·
C

N
(1)

where the first and second terms respectively correspond to the charging cost of rapid-charging and
regular charging, and the third term represents the SOH cost by the rapid-charging. Note that the
rapid-charging power Pfast and regular charging power Pslow are constants; T j denotes the duration
time of rapid-charging at dummy vertices j; Tv0

represents the duration time of regular charging at the
depot; Gtotal denotes the total number of rapid-charging, i.e., the total number of the visit to the dummy
vertices; tj denotes the visiting time to vertices j; qj denotes the battery level when the EV arrives at
vertices j.

2.3 CONSTRAINTS

The objective function is subject to the following constraints:∑
j∈V,i6=j

xij = 1 ∀i ∈ I ∪ {v0} (2)

∑
j∈V,i 6=j

xij ≤ 1 ∀i ∈ F (3)

∑
i,j∈F (h),i6=j

xij = 0 h = 1, 2, · · · , k (4)

∑
i∈V,i 6=j

xji −
∑

i∈V,i 6=j

xij = 0 ∀j ∈ V (5)

∑
i∈Z,j∈Z

xij ≥ 1 (6)

0 ≤ qj ∀j ∈ V (7)

xij ∈ {0, 1} ∀i ∈ V, j ∈ V, i 6= j (8)

where Eq. (2) restricts that each customer vertex has exactly one successor; Eq. (3) means that each
dummy vertex can only be visited once at most; Eq. (4) denotes that the dummy vertices of the same
charging station are not connected; Eq. (5) means the EV arrives at and leaves from each vertex is the
same one; Eq. (6) is the subtour breaking constraint, which ensures that the EV route is a circuit; Eq.
(7) means the EV battery level is positive when the EV arrives at a vertex. Eq. (8) denotes the binary
decision variable, 0 or 1.
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Abstract: In reality, route choice is one of the daily decisions made by travelers in an uncertain environ-
ment. This study formulates the route choice as a process of decision among alternative routes, on which
the travel time is uncertain (or ambiguous). We also analyze the boundedly rational route choice problem
based on the non-expect utility theory. Numerical example is presented to illustrate the key concepts and
results of the model.

Key words: Route choice; Bounded rationality; Travel time uncertainty; Decision theory; Non-expected
utility.

1 INTRODUCTION

The route choice problem refers to the selection of a route for a particular origin-destination pair given
a set of alternative routes by the motorists. The question of interest is how these motorists will be
distributed among the possible routes. For the past several decades, travelers decision making has been
studied within the framework of expected utility theory (Von Neumann and Morgenstern, 1944). In
reality, travel time is uncertain and it is not always reasonable to assume that travel times are deterministic
and exactly known by all travelers because travel times are unknown to users at the time when they make
their routing decisions. In this paper, we analyze the boundedly rational route choice problem under travel
time uncertainty based on the non-expect utility theory.

2 DECISION THEORY UNDER UNCERTAINTY

Uncertainty usually takes two forms: risk or ambiguity (Knight, 1921). An uncertain environment is
referred as risky if the set of outcomes and probability distribution of the outcomes is known, while it is
called ambiguous if uncertainties cannot be reduced to simple probabilities or when the true probability
distribution of outcomes is unknown. Hsu et al. (2005) extend the study of the neural basis of decision
under risk to encompass ambiguity using functional brain imaging. Bernoulli(1738) present the expected
value (e.g. travel time, money) theory to account for Petersburg paradox. von Neumann and Morgen-
stern(1944) provide a sound theoretical foundation for using expected utility (EU) as a guide to decision
making under risk.

3 ROUTE CHOICE MODEL BASED ON α-MAXMIN EXPECTED UTILITY(α-MEU)

In De Palma and Picard (2005) empirical study, they conclude that the exponential function, which ap-
peals to travelers with Constant Absolute Risk Aversion (CARA), aptly characterizes travelers preference
for travel time under uncertainty. Followed by Ahn et al. (2011), we assume the utility function u(x)
with constant absolute risk aversion (CARA):u(x) = −e−ρx. The ambiguity-aware CARA utility is given
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by:
U = α−MEU = αe−ρt0 + (1− α)e−ρ(t0+t)

4 NUMERICAL EXAMPLE

This section presents some numerical examples to demonstrate the above route choice model.

5 CONCLUDING REMARKS

This paper analyzed the boundedly rational route choice problem under travel time uncertainty based
on the non-expect utility theory. Numerical example is given to illustrate the key concepts and results of
the model. In the future, we can study the departure time choice or mode choice or the integral model
under uncertainty. Dynamical process of route choice problem is also our one of future research topics.
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Abstract: We firstly describe the customer demand as specific bounded uncertainty sets with expected
demand value and nominal value, and propose the model of robust optimization counterpart. Then we
present an improved differential evolution algorithm to solve the robust model, and analyze the performance
by considering the extra costs and unmet demand. Finally, the computational experiments indicate that
the trade-offs between the extra cost related to robust solution and unmet demand related to deterministic
best solution when the customer demand is uncertain.

Key words: Logistics distribution; Open vehicle routing problem; Fuzzy credibility; Monte Carlo simula-
tion; Genetic algorithm.

1 INTRODUCTION

The OVRP differs from the well-known vehicle routing problem (VRP) in that the vehicles do not
necessarily return to their original locations after delivering goods to customer (Sariklis and Powell,2000).
The major difference in theory between the OVRP and the VRP is that the routes in the OVRP consist
of Hamiltonian paths while the routes in the VRP are Hamiltonian cycles (Fu et al., 2005). Brandão
(2004) and Fu et al. (2005) implemented a tabu search (TS) heuristic to solve the OVRP. Li et al. (2007)
proposed a record-to-record travel heuristic and a deterministic variant of simulated annealing to solve
the OVRP. However, traditional studies of the OVRP assumed that the demands of all customers visited
on its route by any vehicle were deterministic. To the best of our knowledge, no research has considered
uncertain customer demand in an OVRP framework.
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1 INTRODUCTION

The fresh agricultural products are the necessities in our daily life, which is essential for our healthy
life. With the development of our economy, more fresh food is in largely demand. Besides, we require
more in the freshness. Furthermore, developing fresh agricultural products is also an important method
to improve the income of the peasants. As one kind of special products, fresh agriculture products are
featured with deteriorated and perished. Some may be wasted when circulating. In order to speed up
the circulation of them and reduce wastage, some scholars research them in the point of supply chain.
Nowadays the wholesalers and retailers are more and more powerful than before, the dominance of the
market has changed to some extent. However, some scholars model designs lack rationality. Furthermore,
former studies are based on the assumption of rational people, ignoring their behavioral characteristics
and other irrational factors, such as overconfidence and so on. In actual transactions, the participants
tend to be over-confident and more optimistic of their own abilities, knowledge, and predictions about
the future performance. Based on the above considerations, this paper attempts to establish a more
reasonable model to analyze the optimal ordering policy of fresh agricultural product in the view of
wholesalers.

2 HYPOTHESES

1. The initial inventory is zero, and the fresh agricultural products are not returnable, which is deter-
mined by their characteristics, and the remaining residual value is so little that it can be considered
to be zero.

2. When the retailer is in the dominant position, shortage cost is transferred to the supplier by virtue
of its strong negotiation skills.
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3 FRESH AGRICULTURE SUPPLY CHAIN MODEL ANALYSIS

3.1 The suppliers outcome policies

As the follower, the supplier determines its own production according to the retailer’s order quantity.
Due to the uncertainty of market demand, when the options market and the spot market exist at the
same time, the supplier first meets the retailer’s stock Order.

Proposition 1: when the supplier supports the shortage cost, its optimal outcome of fresh
agricultural product is

Q∗s =
(θµ+ θσR)

1− β
, Φ(R) =

(g + ce − c0)(1− β)− c
(ce + g)(1− β)

3.2 The retailers optimal centralized decision with the supply chain dominated by itself

Centralized decision is designed to study the performance of the supply chain as a whole. At this time,
the retailer decides variable c0 , variable ce , variable Qs . To maximize the overall profit of the supply
chain, the retailer tries to make optimal order quantity and the outcome of the supplier.

Proposition 2: with the centralized decision, the optimal outcome of the supplier which
could maximize the profit of whole supply chain is written as

Q∗∗ =
1

1− β
(kθµ+ θσA), Φ(A) = 1− c

(p+ g)(1− β)

Proposition 3: when the retailer decides the option premium and option executive price,
in order to maximize its profit, there will be

Q∗1 =
1

1− β
(kθµ+ θσB), Φ(B) =

c1 + c0 − w0

ce

4 CONTROL AND ADJUSTMENT OF RETAILERS OVERCONFIDENCE LEVEL

When the retailer is overconfident about the market demand of fresh agriculture product, the interests
of both sides will change with the level of retailer’s overconfidence. At this time, the supply chain as a
whole does not reach the best situation. What’s more, the fluctuation in the level of overconfidence is not
conducive to the cooperation between the two sides. It is necessary to find a suitable way to eliminate
the impact of retailer’s overconfidence. Croson [12] designed a buy-back contract and wholesale-price
contract to eliminate the retailer’s overconfidence in general supply chain. Due to the higher require-
ments of fresh agriculture product, the perishable feature determines the products cannot be returned.
As a flexible tool, options can be used to achieve the coordination of the supply chain. In this article, we
attempt to use the option contract to control the retailer’s overconfidence, so as to coordinate the fresh
agriculture supply chain at last.

Proposition 4: when c0 and ce satisfy

c0 =
c− [1− Φ(A− µ(k−1)

σ )](g + ce)(1− β)

1− β

the outcome is optimal.

5 CONCLUSION

Generally speaking, this paper changes the mode of the traditional supply chain that the seller develops
options and the buyer purchases options, and introduces this new mode into the research about the
ordering strategy of fresh agricultural product. Furthermore, based on the influence of the retailers
overconfidence on the prediction of market demand, we analyzed the case of the wholesaler setting
options, how the overconfident coefficient affects the optimal quantities and the profits as well as how the
optimal ordering quantity varies. Finally, we could draw the conclusion that the optimal order quantities
are related to the level of overconfidence. When the prospect of market is good, overconfidence of the
retailer has a positive effect, and vise versa.
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1 INTRODUCTION

With the gradual application of Internet of Things technology in the service industry, the pricing of
information services will be inevitably involved when it provides information. Therefore, an appropriate
pricing scheme service providers, intermediaries and consumers are willing to accept through consumer
overconfidence has gained a significant amount of scholars attention. For the characteristics of information
service of Internet of Things is different from traditional service, this makes marginal cost pricing in
traditional service is not suitable for the pricing of information service in the Internet of Things, the
existing study mainly concentrated on why and how to pricing level, the studies that consider how
consumer overconfidence has an effect on the pricing of information service are rare, while consumer
overconfidence behavior is a kind of common phenomenon. Based on this, this article put overconfidence
theory of behavioral economics into information service pricing model. We consider the operators have
the ubiquity of network coverage, the strong network infrastructure as well as reliable public service
provider status, the ability to develop on the whole Internet of Things is operators, so we focus on the
information service pricing strategy between operators and consumers. First of all, using the method
of mathematical modeling, we construct the pricing model of information service of Internet of Things
based on the consumer overconfidence, under the condition of the monopoly and the duopoly, it then
discuss consumer overconfidence to the influence of operator returns and pricing strategy between connect-
time-based pricing and search-based pricing and between the combination of connect-time-based and
search-based pricing and subscription pricing. The results show that whether operators adopt connect-
time-based pricing depends on the cost under the monopoly condition, when the cost is less than a
certain value, the search-based strategy dominates the connect-time-based pricing strategy, if the cost
is greater than a certain value, the connect-time strategy dominates. If the distribution of consumer
overconfidence is the same across both the high- and the low-demand consumer, then the operators
does not make any additional profits by offering a subscription plan, and we deduce that the degree of
overconfidence of high demand of consumers is lower than the low demand of consumers. the distribution
of consumer overconfidence for the low-demand consumers stochastically dominates (in the first-order
sense) the distribution of consumer overconfidence for the high-demand consumers, and the valuation
of a unit of information service lie in a certain range, the ratio between high demand and low demand
is large enough, the operator is strictly better off by offering a subscription plan, it deduced that If all
the low demand of consumer buy the information service, then all the high demand of consumers will
buy. Then it consider how the operator make a price when the operator faces the two different degree
of overconfidence of consumers, using only a pricing strategy, operator should use a connect-time-based
pricing strategy for the high degree overconfidence for consumers, and adopt the a search-based strategy
for the low degree overconfidence for consumers. Using two different strategies, the operator should
consider the difference of consumer overconfidence and adopt different pricing strategy, and it also can
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provide operators with the following reference: with the number of using service of IoT increase, the
consumer know more about the service of IoT and the relevant services of time will be less and less,
then the degree of overconfidence will tends to be more and more rational, the operator should adjust
the corresponding pricing strategy and makes its profit increase, In more advanced search facility or
faster access speed cases, the time consumer spend on the search correlative services will be reduced, the
degree of overconfidence will tend to rational, the operator needs to change the pricing strategy to adapt
to consumer overconfidence degree change. It mainly discuss the operator pricing strategy under the
monopoly condition, but in reality, there are many operators coexist, the competition between operators
will make the price changes, thus consumer strategy will change, and prompted operators and other
participant’s income change. So we need to discuss the competition pricing for the several operators,
therefore this part mainly take about how the duopoly competition among operators affect their pricing
strategy. We assume the following decision structure. In Stage 1, operators choose a pricing scheme.
We will restrict the types of pricing schemes to pure connect-time-based pricing or a pure search-based
pricing. In Stage 2, after observing each other’s pricing strategy, each server decides on the specific prices.
This decision structure is reasonable since operators find it much easier to change specific prices than
changing the pricing strategy. In Stage 3, consumers make their purchase decisions. Under the condition
of Duopoly, Assume that operators choose pricing policy and then choose specific prices, and consumers
are differentiated only in terms of the degree of overconfidence. When operators make a choice between the
connect-time-based pricing and search-based pricing, there exists an equilibrium in which both operators
offer different pricing policies. Further, there exist parameters such that both operators make positive
profits by choosing different pricing strategies, and consequently in equilibrium, both operators choose
different pricing policies. It indicates that once we consider the degree of consumer overconfidence, the
oligarchs will choose asymmetric pricing strategy and will get different benefits. This is because the same
type of operators can differentiate themselves by using different pricing schemes. This argument will also
hold if we allow operators to offer subscriptions. As long as the information services are undifferentiated,
operators will select different pricing mechanism so that the pricing mechanism can be used as a way to
differentiate their services. At the same time, operators promote information service of IoT, they should
integrate the advantage resources, develop different service, and pay attention to different development
strategy. Except for the differentiation service in the same field, operators also adopt differentiated
industry positioning in different fields, and select key industries and applications, make efforts to expand
the market, exercise differentiated operation. So it can form rival differentiation services, and ultimately
improve the quality of service. When operators choose between the combination of connect-time-based
and search-based pricing and subscription pricing, there must be exist pure strategy equilibrium that
two operators adopt the combination pricing strategy, here there are also asymmetric game equilibrium
that one operators use the subscription strategy, the another operator adopt the combination pricing
strategy, the equilibrium condition is that the consumer overconfidence need to meet certain conditions.
Use Matlab7.0 program, under the condition of the monopoly and the duopoly, this article analysis that
the consumer overconfidence has an effect on the operators information service pricing strategy and profit
and implement the inspection of pricing model, through the application of intelligent traffic information
service. Finally this article summarizes the conclusion also points out further research direction.
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Abstract: This Paper will analyze the equilibrium properties of the morning peak-period commuting
pattern on a multiple origins and single destination transit system with in-vehicle crowding effect, the value
of travel time and schedule delay cost. In this paper the total generalized travel cost equals to sum of
fare, crowding effect , value of travel time and schedule delay cost. Commuters are assumed to choose
their optimal time-of-use decision from home locations to a single destination by trading off the travel time
and the crowding cost against the schedule delay cost. An equivalent mathematical programming model
proposed is formulated from the commuters point of view, based on minimizing their own travel costs.
The model is proposed to characterize the equilibrium state, in which no commuter can reduce his/her
total commuting cost by unilaterally changing his/her departure time or train service. Assuming that all
commuters are homogeneous with the same crowding effect function, travel time value function and schedule
delay cost function. In this assumption, the insight of model solution includes the following: (1) the farther
a station is from the workplace, the longer is the peak-period departure duration from that station; (2) the
peak-period exists for each station during which the departure rate of commuters is identical and maximal.
When commuters are assumed heterogeneous, which means different commuters have different crowding
effect function, travel time value function and schedule delay cost function, we can receive some different
conclusions against homogeneous Assumption. For example, the peak-period exists for each station during
which the departure rate of commuters is bell distribution, but not identical and maximal. This paper
analyzes the equilibrium properties of three factors that influence commuters selection. At last this paper
applies statistics of Beijing metro to verify effectiveness of the model. Thereby it offers useful information
for optimal transit service planning and operations.

Key words: Public transport; Congestion cost function; Wardrop UE equilibrium; Equilibrium properties.
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Abstract: A learnable genetic algorithm is proposed to the resource optimization problem. The learnable
genetic algorithm extracts some knowledge from obtained solutions, and applies the knowledge to guide the
subsequent optimization process. Experimental results suggest that this approach is efficient to the resource
optimization problem.
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1 INTRODUCTION

Recently, more and more scholars have studied applications of the interaction between evolution and
learning (Xing et al., 2008a, 2008b and 2010a). Normally, these approaches keep useful features of
previous individuals to improve the performance of current individuals (Xing et al., 2006a, 2007, 2009).
In fact, such approaches outperform traditional evolutionary algorithms on several benchmarks (e.g.,
flexible job shop scheduling problem, traveling salesman problem, capacitated arc routing problem) (Xing
et al., 2006b, 2010b; Ho et al., 2007; Louis & McDonnell, 2004). In the similar fashion, an Learnable
Genetic Algorithm (LGA) is proposed in this work.

2 PROBLEM FORMULATION

Activity is the fundamental element in the practical engineering, suppose there are totally N activates
and M persons. Suppose that Tdi, T

c
di and Tndi denote the period of activities, the time remainder of

activities and the actual completion time of activities Respectively. Rolei,j means the ith activity can be
done by the jth person. RoleNumi is the completion person number of activities. TD and TN are the
planned completion time and the actual completion time of projects. CD and CN denote the planned
cost and the actual cost of projects. fT (EM) and fC(EM) denote the completion date function and the
cost function of projects.

The cost of software process contains: management fee and development fee. The former is daily
cost C1 which maintaining software development and cost of administrators C2. The latter points at
cost of device resources C3 and development cost C4 of different developers with various abilities and
labor-hours.


CN = C1 + C2 + C3 + C4

C4 =
M∑
i=1

ciTi
(2.1)
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Figure 3.1 The basic framework of LGA.

Figure 3.2 The computational flow of LGA.

Here, ci and Ti denote the development cost and labor-hour of developers respectively. Cost and
construction period is the main attributes of software process. Assume the sum weight of cost and period
as optimized objective function, the definition of which is as shown in the following equation. In which,
C means cost, T signifies the weight value of construction period x1, x2determined by demand of decision
makers, EM is the executive matrix.

max Fitness (C, T ) = x1 ∗ C + x2 ∗ T

s.t.


C = fC (EM)
T = fT (EM)
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
x1 + x2 = 1

(2.2)

3 LEARNABLE GENETIC ALGORITHM

The Learnable genetic algorithm is characterized by the extraction and application of knowledge in the
whole evolution process. In this paper, the near-optimal solutions obtained throughout the search are
analyzed to extract the knowledge, and then the obtained knowledge is used to guide the subsequent
search. The basic framework of LGA is displayed as Fig. 1. The computational flow of LGA is shown in
Fig. 2.

3.1 Definition of knowledge

The first kind of knowledge is called the activity assignment position which is applied to establish a
beneficial order for the given activity. A matrix HF1 with size N×N is defined for the activity assignment
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position, HF1(i, j) denotes the total number of times of assigning the activity i to the jth position among
the near-optimal solutions obtained throughout the search. The second kind of knowledge is called the
activity assignment person which is applied to establish the beneficial person for one given activity. A
matrix HF2 with size N ×M is defined for the activity assignment person, HF2(i, j) denotes the total
number of times of assigning the activity i to the jth person among the near-optimal solutions obtained
throughout the search.

3.2 Application of Knowledge

In LGA, the activity assignment position is applied to guide the crossover operation. The activity
assignment position is employed to determine one beneficial position for the given activity. To the
activity assignment position matrix displayed in Table 1, if we want to determine the beneficial position
for activity 3, then we can obtain the following probabilities, and the beneficial position to activity 3 is
decided by a random way with the following probability distribution.

In LGA, the activity assignment person is applied to guide the mutation operation. The activity
assignment person is employed to determine one beneficial person for the given activity. To the activity
assignment person matrix displayed in Table 2, if we want to determine the beneficial person for activity
6, then we can obtain the following probabilities, and the beneficial person to activity 6 is decided by a
random way with the following probability distribution.
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3.3 Knowledge Updating

After each generation, if the global optimal solution (the best solution from the start) was obtained at
this iterative, then the knowledge level will be updated by the following rule, which is based on the
optimal solution to accomplish knowledge updating. If the activity i to the jth position among the best
solution, then

HF1 (i, j) = HF1 (i, j) + 1 (3.1)

If the activity i to the jth person among the best solution, then

HF2 (i, j) = HF2 (i, j) + 1 (3.2)

4 EXPERIMENTAL RESULTS

The LGA was implemented using Visual C++ language, and executed on a personal computer with the
2 GHz processor and 2 GB memory. In this paper, the final experimental results were averaged over 30
trials, and 10 testing instances were randomly produced to validate the performance of our approach.
The optimal objectives obtained by the IGA are summarized in Table 3. From the experimental results of
Table 3, we can see that, there exists the small gap among different trials. Experimental results suggest
that it is efficient to the given problem.
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Abstract: In this paper, we try to design a system include a serial of indexes to evaluate the service of
third party logistics collaborative corporations in long-term. And find a method to optimize it.

Key words: Logistics service; Collaborative; Evaluate system; Rough set

1 INTRODUCTION

The third party logistics is an important form of professional logistics, there are also many theory about
evaluating its service quality. The NDSERV quality table (by Spiros Gounaris) is among the top of them,
which could evaluate the service quality of the corporations that in B2B environment effectively. Acker-
man and some other people have also designed some systems about it, but they all focus on evaluating
an independent firm. Considering the cooperative environment, the majority of research is about the
supply chain. Gunnar Stefansson derives and verify a collaborative framework that specifies the role of
different parties in contemporary logistics setups. There are also some researches about evaluate the
collaborative ability of firms in the environment of collaborative business, but they didnfocus on logistics
service. Collaborative logistics is an effective way to improve the logistics efficiency and reduce the cost,
it is the future of modern logistics. But studies are less involved in the third party logistics collaborative
service evaluation system temporarily.

2 DYNAMIC SYSTEM

The cooperation of logistics corporations involves not only the cooperation of internal departments of
an individual enterprise but also the the cooperation among several enterprise. There are many collabo-
rative models among enterprises. Enterprises with complementary resources or techniques can promote
competitiveness through cooperation. Those with similar core competitiveness can expand scale or raise
funds. To view the collaborative firms as a whole, the development of each partner may have significant
influence on it and their positions are also variable. That means the collaborative state among these
enterprises is always in a dynamic progress. In order to achieve good overall benefit, the quality of
collaborative service is a very important index. As the collaborative state isnstatic, we need a dynamic
index system which could adjust the core indexes base on the changes of the collaborative state. So we
can always catch the most important elements that the collaborative enterprises should care if they want
to maintain or improve the collaborative state. Based on the above considerations, we design the third
party logistics collaborative service dynamic evaluation system.
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3 EVALUATION SYSTEM

Principles: In selecting the indexes, we mainly take basic service quality customer perception collabora-
tive level and sustainability of collaborative state into consideration. In Basic service quality we select the
indexes that could reflect the service quality of logistics enterprises directly, it is the basic level of evalu-
ation and reflect the utility that cooperative state brings to enterprises objectively. Customer perception
evaluates it from the aspect of consumers feeling, Modern logistics is a buyer’s market, Logistics service is
a typical experience goods, so customers feeling could reflect the service quality of enterprises sufficiently.
Then determine the performance of the enterprises and the competitiveness of collaborative enterprises.
Collaborative level reflects the communication, coordination and sharing level among collaborative en-
terprises. High standard of collaboration will bring the enterprises good benefit as well as high level of
collaborative service. Sustainability of collaborative state means the stability of the collaborative state,
it has a strong influence on the quality of service. For a system that evaluate the service of collaborative
enterprises in long-term, if it canevaluate the sustainability of its target, it would be meaningless. When
we choose the specific indexes, we grasp the following principles emphatically. Those are,

Purpose: our purpose is to design a system that could evaluate the logistics service effectively.

Scientificity: there must be theories to support the indexes, and the indexes should reflect the
quality of service from certain aspect.

Systematicness: the system must be perfected, could reflect the service quality comprehensively.

prospect: the system should be able to evaluate its target in long-term and reflect the dynamic
process.

4 SYSTEM OPTIMIZATION

We use the method of rough set to optimize the indexes. Rough set is proposed by a Polish scholar z. Paw
Lak in 1982. It could deal with vague and uncertain problems, with the advantage that it doesn’t need
a priori knowledge. And have been applied in many fields. Consider the service of collaborative logistics
enterprises in a certain stage. If we processing the indexes of evaluation system by the rough set, we can
eliminate redundant indexes and then sort the rest of indexes by their importance by calculating their
weight. After that we can find the important indexes for the collaborative enterprises in this stage. So we
can improve the quality of collaborative service pertinently and guarantee the sustainable development
of the collaborative state.

5 SUMMARY AND CONCLUSION

Based on the existing researches, we design the third party logistics cooperative service dynamic evalu-
ation system, and optimize it by the method of rough set. Then we make a numerical analysis with 5
collaborative logistics enterprises. Evaluating the quality of their service and give some advices.
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76 AN INEXACT COORDINATE DESCENT

METHOD FOR THE WEIGHTED L1-REGULARIZED

CONVEX OPTIMIZATION PROBLEM

Xiaoqin Hua*a, Nobuo Yamashitaa
aDepartment of Applied Mathematics and Physics
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Abstract: For solving the weighted l1-regularized convex optimization problem with a box constraint,
we propose an inexact coordinate descent (ICD) method. The proposed algorithm solves a subproblem
inexactly at each iteration. We give criteria of the inexactness under which the sequence generated by the
proposed method converges to an optimal solution and its convergence rate is at least R-linear without
assuming the uniqueness of the solution.

Key words: l1-regularized convex optimization; Inexact coordinate descent method; Linear convergence;
Error bound.

1 INTRODUCTION

We consider the following weighted l1-regularized convex optimization problem:

minimize F (x) := g(Ax) + 〈b, x〉+

n∑
i=1

τi|xi|

subject to l ≤ x ≤ u,
(1.1)

where g : Rm → (−∞,∞] is a strictly convex function on domg, A ∈ Rm×n and b ∈ Rn. Moreover,
τ, l and u are n-dimensional vectors such that li ∈ [−∞,∞), ui ∈ (−∞,∞], τi ∈ [0,∞) and li < ui for

each i = 1, · · · , n. The nonnegative scalar constant τi is called weight and the term

n∑
i=1

τi|xi| is called the

l1-regularization function.
This kind of optimization problems arise usually as an approximation of intractable problems in real

life such as the compressed sensing (W. Yin. (2008)), the feature selection in the data classification (K.
Koh. (2007)), the data mining (M. Y. Park.(2007)), geophysics (A. Gholami. (2010)) and so on. It is
nondifferentiable and large scale. Moreover, the optimal solutions are possibly not unique.

To solve this kind of problem, recently, some methods have been presented, such as the block-coordinate
gradient (BCG) method (P. Tseng and S. Yun. (2009)), the block coordinate descent (BCD) method (
P.Tseng. (2001)), the interior-point (IP) method (K. Koh. (2007)). However, the convergence rate of
the BCG method with the almost cycle rule has not been shown. In fact, the BCD method is difficult
to implement when the problem is not a lasso. In this paper, we propose an inexact coordinate descent
(ICD) method which is an extension upon the results of (Z.Q.Luo and P. Tseng. (1992)). Roughly, we
extend in the following three respects:

The smooth convex problem is extended to that with the l1-regularized function.
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We extend the exact CD method to the inexact solution.

The convergence and convergence rate is extended to the almost cycle rule.

2 PRELIMINARIES

Throughout the paper, we make the following basic assumptions for the problem (1.1).

Assumption 2.1 For the problem (1.1),

(a) Aj is a nonzero vector for all j ∈ {1, 2, · · · , n}.

(b) li < 0 < ui for all i ∈ {1, 2, · · · , n}.

(c) The set of the optimal solutions, denoted by X∗, is nonempty.

(d) The effective domain of g, denoted by domg, is nonempty.

(e) domg is open. g is twice continuously differentiable on domg.

(f) ∇2g(Ax∗) is positive definite for every optimal solution x∗ ∈ X∗.

In Part (a), if Aj is zero, then xj of the optimal solution can be easily determined. Thus we can
remove xj from the problem (1.1). Part (b) is just for simplification. If both li and ui are positive for
some i ∈ {1, 2, · · · , n}, then we may replace xi, li and ui by x̄i + li+ui

2 , li−ui2 and ui−li
2 . Part (c) and (d)

are standard. If g is strongly convex and twice differentiable on domg, then Part (e) and (f) are satisfied
automatically. For example, a quadratic function, an exponential function, and even some complicate
functions in the l1-regularized logistic regression problem satisfy (e) and (f).

Note that under this assumption, X∗ may be not bounded.

We define the following two mappings:

(Tτ (x))i := (|xi| − τi)+sgn(xi), (2.1)

and

Pτ,l,u(x) := [Tτ (x−∇f(x))]+[l,u], (2.2)

where (a)+ := max(0, a), sgn(a) is a sign function, [x]+[l,u] denote the orthogonal projection of vector x

onto the box [l, u]. Then optimal solution can be described as a fixed point of the mapping Pτ,l,u.

Theorem 2.2 For the problem (1.1), x belongs to the optimal solution set X∗ if and only if x = Pτ,l,u(x),
i.e., X∗ = {x : x ∈ domg, x = Pτ,l,u(x)}.

For convenience, we let f(x) := g(Ax) + 〈b, x〉. The following definition will be used in establishing
the ICD method.

Definition 2.1 We say that the ε-optimality conditions for the problem (1.1) hold at x if one of the
following statements holds for each i.

(i) ∇if(x)− τi ≥ −ε and |xi − li| ≤ ε.

(ii) |∇if(x)− τi| ≤ ε and li − ε ≤ xi ≤ ε.

(iii) |∇if(x)| ≤ τi + ε and |xi| ≤ ε.

(iv) |∇if(x) + τi| ≤ ε and −ε ≤ xi ≤ ui + ε.

(v) ∇if(x) + τi ≤ ε and |xi − ui| ≤ ε.

Theorem 2.3 The ε-optimality conditions hold at x if and only if |xi − (Pτ,l,u(x))i| ≤ ε holds for each
i.
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3 INEXACT COORDINATE DESCENT (ICD) METHOD

A general framework of the ICD method can be described as follows:

Inexact coordinate descent (ICD) method
Step 0: Initial setting. Choose an initial point x0 ∈ [l, u] and let r := 0.
Step 1: Check the termination condition.
Step 2: Choose an index i ∈ {1, · · · , n}, get an inexact solution xr+1

i of the following subproblem:

minimizexi∈{li≤xi≤ui}F (xr1, x
r
2, · · · , xri−1, xi, x

r
i+1, · · · , xrn). (3.1)

Step 3: Set xr+1
j := xrj for all j ∈ {1, · · · , n} such that j 6= i and let r := r + 1. Go to Step 1.

For the global convergence of the ICD method, it is important to define the inexactness of the sub-
problem (3.1) and to chose the index i in Step 2.

We call a solution of the subproblem (3.1) is an inexact solution if it satisfies the following assumptions.

Assumption 3.1 (i) xr+1
i ∈ [li, ui].

(ii) F (xr1, x
r
2, · · · , xri−1, x

r+1
i , xri+1, · · · , xrn) ≤ min

xi∈{li,0,ui,xri }
F (xr1, x

r
2, · · · , xri−1, xi, x

r
i+1, · · · , xrn);

(iii) |xr+1
i − (Pτ,l,u(xr+1))i| ≤ εr+1 where εr+1 ≤ min{δr, α|xr+1

i − xri |, εr}, 0 < α <
σmin

j
‖Aj‖2

Lmax
j
‖Aj‖2 + 1

,

σ > 0, L is the Lipschitz constant of ∇g. δr monotonically decreases as r increases and lim
r→∞

δr = 0.

Part (ii) enforces not only that {F (xr)} is decreasing but also is less than F (xr1, x
r
2, · · · , xri−1, xi, x

r
i+1, · · · , xrn)

at a point where F is nonsmooth. It plays a key role for the convergence of {xr}. In Part (iii) implies
that xr+1

i is an εr+1-approximate solution.
For the choice of the index i, we adopt the following almost cycle rule.

Almost cyclic rule
There exists an integer B ≥ n, such that every coordinate is iterated upon at least once every B

successive iterations.

4 GLOBAL AND LINEAR CONVERGENCE

Theorem 4.1 Suppose that {xr} is generated by the ICD method with the almost cycle rule. Let F ∗

denote the optimal value of the problem (1.1). Then {F (xr)} converges to F ∗ at least B-step Q-linearly.
Moreover, there exists an optimal solution x∗ of the problem (1.1) such that {xr} converges to x∗ at least
R-linearly.

Note that this theorem shows that the global and linear convergence of the sequence {xr} holds even
if A is not full column rank.

5 CONCLUSION

In this paper, we have presented a general framework of the ICD method for solving l1-regularized
convex optimization (1.1). We also have established the R-linear convergence rate of this method under
the almost cycle rule. On each iteration step, we only need to find an approximate solution of the
subproblem, that raises the possibility in theory to solve general l1-regularized convex problem with the
idea of the CD method.
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77 SENSITIVITY ANALYSIS OF GAP FUNCTIONS

FOR VECTOR VARIATIONAL INEQUALITY VIA

CODERIVATIVES
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Abstract: The aim of this article is to investigate codifferential properties of a class of set-valued maps and
gap function involving vector variational inequality. Relationships between their coderivatives are discussed.
Formulae for computing coderivatives of the gap function are established. Optimality conditions of solutions
for vector variational inequalities are obtained. The finite-dimensional cases are also discussed.
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Abstract: In this paper, by using the finite intersection property, we first obtain two types of minimax
inequalities for set-valued mappings are obtained, which improve and generalize the corresponding results
in the literatures. Then, by using the Ky Fan lemma and the Kakutani-Fan-Glicksberg fixed point theorem,
we also investigate some Ky Fan minimax inequalities for set-valued mappings.
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Abstract: Automation has been seen as a promising solution to increase the productivity of modern
sea port container terminals. The potential of increase in throughput, work efficiency and reduction of
labor cost have lured stick holders to strive for the introduction of automation in the overall terminal
operation. A specific container handling process that is readily amenable to automation is the deployment
and control of gantry cranes in the container yard of a container terminal where typical operations of truck
identification, loading and unloading containers, and job management are primarily performed manually
in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an
approach for the real-time identification of tractors through the recognition of the corresponding number
plates that are located on top of the tractor cabin. With this crucial piece of information, remote or
automated yard operations can then be performed. A machine vision-based system is introduced whereby
these number plates are read and identified in real-time while the tractors are operating in the terminal.
In this paper, we present the design and implementation of the system and highlight the major difficulties
encountered including the recognition of character information printed on the number plates due to poor
image integrity. Working solutions are proposed to address these problems which are incorporated in the
overall identification system.
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80 AN ALGORITHM FOR THE LARGEST

EIGENVALUE OF NONHOMOGENEOUS NONNEGATIVE

POLYNOMIALS
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Abstract: Eigenvalue has applications in many fields from locating oil reserve in the ground, car design
(in order to damp out the noise so that the ride is quiet) to checking for cracks or deformities in solid
by constructors. In this paper, we propose an iterative method for calculating the largest eigenvalue of
nonhomogeneous nonnegative polynomials. Perron-Frobenius Theorem plays an important part in this
method.

Key words: Eigenvalue; Nonhomogeneous; Polynomial; Iterative method.
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Abstract: In this paper, the design of broadband beamforming system is studied. The performances are
to select the coefficients of the FIR filters such that the errors between the actual responses and the desired
responses are minimized. When there are a large number of microphones deployed, the performance limit
is studied and sought as a lower bound for all possible designs. An efficient algorithm is proposed to take
advantages of the derived lower bound to design for the filter coefficients for the beamformers. In addition,
using the performance limit of very long filters, the locality of the microphones is also optimized. We show
that much better beamformers can be designed and we illustrate the proposed method by several designs.
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Abstract: Beamforming techniques have demonstrated their ability to greatly enhance the speech from
background inter- ference, while in the reverberant environments, the signal of in- terest is both corrupted
by interference noise and distorted by room acoustics. In this paper, we will study to design an indoor
beamformer for noise reduction and reverbera- tion suppression based on room simulation, and the post-
filter technique is introduced to further enhance the output of the beamformer, which can improve the
performance of the speech in some heavier reverberant cases. The numerical experiments will be provided
to illustrate our proposed method.
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Abstract: The job shop scheduling is complex due to the dynamic environment. When the information
of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However,
the real scheduling environment is always dynamic due to the constantly changing information and different
uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS
theory and switching strategy that changes the sequencing approach to the dispatching approach by taking
into account the system status to solve this problem. AIS is a biological inspired computational paradigm
that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features
of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning,
long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong
adaptability to the environment. These features of AIS are successfully used in this study to solve the
job shop scheduling problem. When the job shop environment is static, sequencing approach based on
the clonal selection theory and immune network theory of AIS is applied. This approach achieves great
performance, especially for small size problems in terms of computation time. The feature of long-lasting
memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the
computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static
environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is
proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the
disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to
the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory
of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various
dispatching rules. The experiments show that the proposed network model presents strong adaptability to
the dynamic job shop scheduling environment.
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Abstract: In this work, we consider the raw material inventories of a manufacture as a part of investment.
Then the inventory control problem can be treated as an optimal portfolio problem. A portfolio consisting
of the risky raw material inventory and the risk free bank account is studied and the VaR of the portfolio is
analyzed and imposed as a risk control constraint. The objective function is to maximize the utility of total
portfolio value. In this model, the ordering cost is assumed to be fixed and the selling cost is proportional
to the value. The optimality conditions and transaction regions are derived by using stochastic optimal
control theory and the method of Lagrange multiplier. Under this formulation, the optimal inventory level
is reviewed and adjusted continuously. A numerical method is proposed and the results illustrate how the
material price, inventory level and VaR are interrelated.
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VARIATIONAL INEQUALITIES

Xing Wang*
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Abstract: In this paper, an existence of Caratheodory weak solution for a differential mixed variational in-
equality is presented under some suitable conditions. Furthermore, an upper semicontinuity of Caratheodory
weak solution sets for the differential mixed variational inequality is established when both the mapping
and the constraint set are perturbed by two different parameters. Finally, the continuity of Caratheodory
weak solution sets of the differential mixed variational inequality is also established when both the mapping
and the constraint set are perturbed by two different parameters.
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1 INTRODUCTION

Consider the problem:  J(u) = ϕ(x(t1)) +
∫ t1
t0
F (x, u, t)dt→ min

ẋ = f(x, u, t)
x(t0) = x0

(1.1)

where t ∈ T = [t0, t1], ϕ : Rn → R is a differentiable function.The functional F : Rn ×Rr × R→ R
is continuous in all arguments and continuously differentiable in x and u. Also, assume that

u(t) ∈ Cr1([t0, t1]), u(t) 6= Const, ‖u̇(t)‖ ≤M < +∞, t ∈ T

Introduce the set as:
S = {δ ∈ C1([t0, t1]) | δ(t0) = δ(t1) = 0}

Consider derivative variations of u(t) ∈ Cr1([t0, t1]) as

ũ = u(t) + εδ(t)u̇(t),

for all δ ∈ S, ε ∈ R and t ∈ [t0, t1].
After introducing a notion of weak optimal process in problem (1.1), we prove the following:

Theorem 1.1 Assume that an admissible process (x∗, u∗) is weak optimal to problem (1.1). Then the
following conditions

〈∂H(ψ∗, x∗, u∗, t)

∂u
, u̇∗(t)〉 = 0,

are satisfied for all t ∈ [t0, , t1], where H(ψ, x, u, t) =< ψ(t), f(x, u, t) > −F (x, u, t) and the function
ψ∗ = ψ∗(t) is the solution of the conjugate system

ψ̇ = −∂H(ψ, x∗, u∗, t)

∂x
, ψ(t1) = −∂ϕ(x∗(t1))

∂x
.
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Abstract: We consider the problem of maximizing a quasiconvex function over a convex set. Based on
the global optimality conditions [1], we develop an algorithm for solving the problem which generates a
relaxation sequence. Some numerical results are presented

Key words: Global optimality conditions; Quasiconvex function; Algorithm.

1 INTRODUCTION

Problem Formulation and Optimality Conditions

Consider a problem:
max
x∈D

f(x), (1)

D = {x ∈ Rn | Ax ≤ b}, (2)

where f : D −→ R is a differetiable quasiconvex function, A is a matrix of (m x n) , b ∈ Rn.
Problem (1)-(2) is nonconvex and belonds to a class of global optimization problems.
Introduce the level set of the function f as follows

Lc(f) = {y ∈ Rn | f(y) = c}, c ∈ R.

Global optimality conditions for problem (1)- (2) were given in [1] by the following proposition.

Theorem 1 ([1]) If z ∈ D is a global solution to problem (1)-(2) then

〈f ′(y), x− y〉 ≤ 0,∀y ∈ Ef(z)(f). (3)

If in addition,
f ′(y) 6= 0,∀y ∈ Ef(z)(f)

then condition (3) is sufficient for z to be global.

2 APPROXIMATION SET

We introduce an approximation set of the level set of the function f at a point z ∈ D for a given number
m ∈ N.

Amz = {y1, y2, ..., ym | f(yi) = f(z), i = 1, 2, ...,m}.
257
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Define θm as follows
θm = max

1≤i≤m
〈f ′(yi), ui − yi〉,

where ui = argmaxx∈D〈f ′(yi), x〉.

Lemma 1 If θm > 0 then there exit a j ∈ {1, 2, ...,m} such that f ′(uj) > f(z).

3 ALGORITHM

Based on global optimality conditions and lemma 1, we develop the following algorithm which provides
an approximate global solution .

Algorithm QMAX

step 1. xk ∈ D, k = 0 is an initial feasible point.
step 2. Find a local maximizer zk by the conditional gradient method starting with xk.
step 3. Construct an approximation set Akzk at the point zk :

Amzk = {y1, y2, ..., ym | f ′(yi) = f(zk), i = 1, 2, ..,m}.

step 4. Solve linear programming problems

ui = argmaxx∈D〈f ′(yi), x〉, i = 1, 2, ...,m

step 5.Compute θm as
θm = max

1≤i≤m
〈f ′(yi), ui〉 = 〈f ′(yj), uj〉

step 6. If θm > 0 then set k := k + 1 and xk = uj . Goto step 2
step 7. Terminate. zk is an approximate global solution

4 NUMERICAL EXPERIMENT

Algorithm QMAX was examined on some test problems of the following type

max
x∈D

{
f(x) =

〈Ax, x〉+ 〈B, x〉
〈Cx, x〉+ 〈D,x〉+M

}
,

where Anxn and Bnxn are positive and and negative defined martrices, respectively.
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MATRIX LIBRARY FOR AN ARRAY PROCESSOR

Kiet Toa, Cheng-Chew Lim*
School of Electrical and Electronic Engineering

The University of Adelaide, SA 5005, Australia

?

Abstract: Machine learning with SVM involves solving a large dense Hassian matrix in the QP problem.
The barrier-projection with quadratic transformation and relaxation is an effective solver. The array proces-
sor that is optimized for matrix computations can provide the computationally intensive machine learning
results in real time. Currently a gap exists between the barrier-projection QP algorithm and the low-level
computing machine code. This paper presents a matrix library methodology that expresses general matrix
operations into array processor operations for implementing the BP-QP algorithm.
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Abstract: The paper studies the supply chain coordination with trade credit under symmetric and
asymmetric information. Both the centralized and decentralized scenarios are studied, and the analytical
results are provided. In the decentralized setting, we propose a new credit contract to coordinate the supply
chain under symmetric and asymmetric information. We show that the win-win outcome is achieved by
redistributing the profit in an appropriate way. Numerical examples are given to illustrate our results.
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Abstract: In this paper, by using the image space analysis, a gap function for weak vector variational
inequalities is obtained. Its lower semicontinuity is also discussed. Then, these results are applied to obtain
the error bounds for weak vector variational inequalities. These bounds provide effective estimated distances
between a feasible point and the solution set of the weak vector variational inequalities.
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UNDER MOMENT UNCERTAINTY OF ELECTRICITY

PRICES
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Abstract: This paper studies a worst-case profit self-schedules of price-taker generators in pool-based
electricity markets. A distributionally robust self-scheduling optimization model describes uncertainty of
prices in both distribution form and moments (mean and covariance matrix), where the knowledge of the
prices is solely derived from historical data. It is proved that the proposed robust self-scheduling model can
be solved to any precision in polynomial time. These arguments are confirmed in a practical example on
the IEEE 30 bus test system. Numerical results validate the efficiency of our proposed model and method.

Key words: Robust optimization; Generation self-scheduling; Moment uncertainty; Data-driven.

1 INTRODUCTION

Generation self-scheduling in a pool-based electricity market has been recently studied in the power sys-
tems literature (Yamin H.Y. (2004); Jabr R.A. (2010); Jabr R.A. (2005)). The self-schedules are required
in developing successful bidding strategies and constructing hourly bidding curves for consideration by
the independent system operator . In order to obtain successful generation bids, the generation compa-
nies have to self-schedule their unit by maximizing the expected profit based on the forecasted location
marginal prices and accounting for the network security constraints.

The issue of interest for this work is that, since the electricity prices are of stochastic nature, the
generation company cannot be certain about the revenue. Measuring the underlying risk due to this
uncertainty is crucial not only for assessing profitability but also for generation self-scheduling. Stochastic
programming can effectively describe self-scheduling problems in uncertain environments. Unfortunately,
although the self-scheduling problem is a convex optimization problem, to solve it one must often resort
to Monte Carlo approximations, which can be computationally challenging. A more challenging difficulty
that arises in practice is the need to commit to a distribution given only limited information about the
stochastic parameters (Delage E. (2010)).

In an effort to address these issue, robust formulations for self-scheduling problems were proposed,
see (Jabr R.A. (2010); Jabr R.A. (2005)). Jabr R.A. (2010) considers a generation self-scheduling model
based on a worst-case conditional robust profit with partial information on the probability distribution
of prices. It is assumed that the nominal distribution and a set of possible distribution were given.
Uncertainty of prices is represented by box and ellipsoidal uncertainty sets. However, in practice, true
probability distribution of prices can not be known exactly. Their solution can be misleading when there
is ambiguity in the choice of a distribution for the random prices.

Recently, Delage and Ye (Delage E. (2010)) proposed a distributionally robust optimization model
that describes uncertainty in both the distribution form and moments (mean and covariance matrix). By
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deriving a new form of confidence region for the mean and the covariance matrix of a random vector, it
was showed how the proposed distribution set can be well justified when addressing data-driven problems
(i.e., problems where the knowledge of the random parameters is solely derived from historical data).

Motivated by the work of Delage and Ye (Delage E. (2010)), in this paper, we propose a distributionally
robust self-scheduling optimization model under moment uncertainty of the prices, where the knowledge
of the prices is solely derived from historical data. Then we prove that the proposed robust self-scheduling
model can be solved to any precision in polynomial time. These arguments are confirmed in a practical
example on the IEEE 30 bus test system.

2 ROBUST SELF-SCHEDULING PROBLEM WITH MOMENT UNCERTAINTY

It is often the case in practice that one has limited information about the locational marginal prices ξ
driving the uncertain parameters that are involved in the decision making process. In such situations,
it might instead be safer to rely on estimates of the mean µ0 and covariance matrix Σ0 of the random
vector-e.g., using empirical estimates. However, we believe that in such problems, it is also rarely the case
that one is entirely confident in these estimates. For this reason, following the work in Delage E. (2010),
we propose representing this uncertainty using two constraints parameterized by γ1 ≥ 0 and γ2 ≥ 1:

(E[ξ]− µ0)TΣ−1
0 (E[ξ]− µ0) ≤ γ1, (2.1)

E[(ξ − µ0)(ξ − µ0)T ] � γ2Σ0, (2.2)

where constraint (2.1) assumes that the mean of price ξ lies in an ellipsoid of size γ1 centered at the
estimate µ0, constraint (2.2) forces the centered second-moment matrix of ξ to lie in a positive semidefinite
cone defined with a matrix inequality. In other words, it describes how likely ξ is to be close to µ0 in
terms of the correlations expressed in Σ0. Finally, the parameters γ1 and γ2 provide natural means of
quantifying ones’s confidence in µ0 and Σ0, respectively.

Denote the distributional set as

D1(F , µ0,Σ0, γ1, γ2) =

 F ∈ U
P(ξ ∈ F ) = 1,
(E[ξ]− µ0)TΣ−1

0 (E[ξ]− µ0) ≤ γ1,
E[(ξ − µ0)(ξ − µ0)T ] � γ2Σ0

 , (2.3)

where U is the set of all probability measures on the measurable space(Rm,B), with B the Borel
σ-algebra on Rm, and F ∈ Rm is any closed convex set known to contain the support of F. The
set D1(F , µ0,Σ0, γ1, γ2) which will also be referred to in shorthand notation as D1, can be seen as a
generalization of many previously proposed sets.

In what follows, we will study a worst-case expected results over the choice of a distribution in the
distributional set D1. This leads to solving the distributionally robust self-scheduling optimization with
moment uncertainty of prices (DRSSO):

max
x∈X

min
F∈D1

EF [ξTx−
m∑
i=1

Ci(xi)]. (2.4)

which is equivalent to

−min
x∈X

max
F∈D1

EF [−ξTx+

m∑
i=1

Ci(xi)]. (2.5)

First, we consider the question of solving the inner maximization problem of a DRSSO that uses the
set D1.

Definition 2.1 Given any fixed x ∈ X, let Φ(x; γ1, γ2) be the optimal value of the moment problem:

max
F∈D1

EF [−ξTx+

m∑
i=1

Ci(xi)] (2.6)

where EF [·] is the expectation taken with respect to the random vector ξ given that it follows the probability
distribution F ∈ D1.

Applying duality theory and robust optimization method (Bertsimas D. (2011); Ben-tal A. (2001)), we
can circumvent the difficulty of finding the optimal value of the problem (2.6).
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Lemma 2.1 For a fixed x ∈ Rn, suppose that γ1 ≥ 0, γ2 ≥ 1,Σ0 � 0. Then Φ(x; γ1, γ2) must be equal to
the optimal value of the problem (2.7):

min
Q.q.r.t

r + t

s.t. t ≥ (γ2Σ0 + µ0µ
T
0 ) •Q+ µT0 q +

√
γ1 ‖ Σ

1/2
0 (q + 2Qµ0) ‖

r ≥ −ξTx+

m∑
i=1

Ci(xi)− ξTQξ − ξT q, ∀ξ ∈ F (2.7)

Q � 0

where A • B refers to the Frobenius inner product between matrices, Q ∈ Rm×m is a symmetric matrix,
the vector q ∈ Rm and r, t ∈ R. In addition, if Φ(x; γ1, γ2) is finite, then the set of optimal solutions to
problem (2.7) must be nonempty.

Since f(x, ξ) = −ξTx+
∑n
i=1 Ci(xi) is convex in x and concave in ξ, X is convex and compact, satisfies the

Assumption 1 and Assumption 2 in Delage E. (2010), a straightforward application of (Delage E. (2010),
Proposition2) shows that the DRSSO model presented in problem (2.4) can be solved in polynomial time.
To show that the DRSSO problem (2.4) is a tractable problem, one needs to take a closer look at the
dual formulation presented in lemma 3.1.

Theorem 2.1 The DRSSO problem (2.4) is equivalent to the quadratic cone program:

− min
x.Q.q.r.t.η

r + t

s.t. t ≥ (γ2Σ0 + µ0µ
T
0 ) •Q+ µT0 q +

√
γ1 ‖ Σ

1/2
0 (q + 2Qµ0) ‖[

Q q/2 + x/2
qT /2 + xT /2 r − η

]
� 0

Q � 0 (2.8)

η ≥
m∑
i=1

bixi + y for i = 1, . . . ,m

y ≥
m∑
i=1

ω2
i

ωi =
√
cixi

x ∈ X

In addition, the DRSSO problem (2.4) can be solved to any precision ε in time polynomial in log(1/ε)
and the size of x and ξ.

We can use the optimization software of SeDuMi 1.21 (Sturm J.F. (1999)) to solve this quadratic cone
program.

3 NUMERICAL RESULT

We present our simulation results on the IEEE 30 bus test system, and get the results by using the
SeDuMi conic optimization software running on an IntelrCore(TM) i3-2350M (2.30GHz) PC with 2
GB RAM. Alsac O. (1974) gives the network and load data for this system. The generator data and a
historical data set of 100 prices vector ξ is shown in (Jabr R.A. (2010)). There are 6 power generations
with coal as their fuel in this system. And we assume that the generating units are belong to the same
generation company.

In implementing our method, the distributional set is formulated as D1(R6, µ0,Σ0, γ1, γ2), where µ0 and
Σ0 are the empirical estimates of the mean µ0 = m−1

∑m
i=1 ξi and covariance matrix Σ0 = m−1

∑m
i=1(ξi−

µ0)(ξi − µ0)T of ξ.
We fix the γ1 to 0.5, and let γ2 range from 1 to 11. The simulation results show that the objective

profit function is almost invariable when γ2 is taken from 1 to 11. However, if we fix the γ2 = 1.2, and
let γ1 vary from 0 to 2, it can be shown that the object decreases when γ1 increases, and the object is
almost invariable after γ1 > 1.2.

The following Table 1 illustrates the generation self-scheduling result for γ1 from 0 to 1 and γ2 = 1.2.
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γ1 Bus no.1 Bus no.2 Bus no.5 Bus no.8 Bus no.11 Bus no.13 profit

0 135.00 35.37 16.45 35.00 30.00 38.67 229.52

0.1 112.27 34.07 16.27 35.00 30.00 37.34 199.89

0.2 103.36 33.44 16.20 35.00 30.00 36.77 188.78

0.3 96.78 32.92 16.13 35.00 30.00 36.33 180.68

0.4 91.42 32.45 16.08 35.00 30.00 35.94 174.14

0.5 86.86 32.02 16.02 35.00 30.00 35.60 168.58

0.6 82.87 31.62 15.98 35.00 30.00 35.29 163.71

0.7 79.32 31.24 15.94 35.00 30.00 35.00 159.35

0.8 76.13 30.88 15.90 35.00 30.00 34.73 155.41

0.9 73.23 30.54 15.86 35.00 30.00 34.48 151.79

1 70.55 30.20 15.82 35.00 30.00 34.23 148.44

Table 1: Generation self-scheduling result for γ1 from 0 to 2 (γ2 = 1.2)

4 CONCLUSION

This paper studies a worst-case profit self-schedules of price-taker generators in pool-based electricity
markets. A distributionally robust self-scheduling optimization model describes uncertainty of prices in
both distribution form and moments (mean and covariance matrix), where the knowledge of the prices
is solely derived from historical data. It is proved that the proposed robust self-scheduling model can
be solved to any precision in polynomial time. These arguments are confirmed in a practical example
on the IEEE 30 bus test system, where our framework leads to good-performing policies on the “true”
distribution underlying locational marginal prices. Numerical results show that parameter γ1 of mean is
sensitive to the solution and parameter γ2 of covariance is not sensitive to the solution.
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Abstract: This study assesses the profitability of a private entity going into partnership with a public
entity for the construction and management of highways. The study derives the conditions under which
such an arrangement can be viable incorporating the damage to the highway caused by a vehicular class.
A mathematical model that can be used by any businessman or an organization (or a concessionaire) to
determine the risk exposure to optimal profit, the optimal number of different vehicle sizes, and the optimal
toll rates for a given concessionary period are developed. Using data from the Ghana Highway Authority, we
demonstrate that public private partnership financing can work for a number of highways through the right
mix of two variables, the concession period and the road toll rate. Our findings can assist investors interested
in partnering with government in highway financing on the type of highway to choose and its accompanying
cost. Furthermore, this study will provide the government with better insight when partnering with the
private sector in highway financing.

Key words: Asset replacement cost; Concessionary period; Damage weight; Mathematical model; Opti-
mization; Reconstruction; Toll rate.
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Abstract: We propose a continuously differentiable exact penalty function for non- linear second-order
cone programs (SOCPs). To construct the penalty func- tion, we incorporate a Lagrange multipliers es-
timate in the augmented La- grangian for SOCPs. Under the nondegeneracy assumption and the strong
second-order sufficient condition, we show that a generalized Newton method has global and superlinear (or
quadratic) convergence. We conclude with some numerical experiments.
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Abstract: n this talk, the speaker will present a detailed study on a general nonconvex global optimization
problemwith a log-sum-exp function, which arises in many research regions, such as minimax problems,
combinatorial network optimisation and geometric programming. Based on the canonical duality theory,
the perfect dual problem without duality gap is constructed. The triality theory shows that calculating the
global solution for the primal problem is equivalent to solving a convex optimisation problem in the dual
space. Some examples are given to illustrate the efficiency of our approach.
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Abstract: In this talk, we discuss the solution of linear and quadratic eigenvalue complementarity
problems (LEiCP and QEiCP). It is shown that the LEiCP always has a solution while the existence
of a solution for the QEiCP is only guaranteed under some sufficient conditions. The symmetric and
asymmetric cases are considered, which differ on the matrices of these problems to be all symmetric or
not. For the sym- metric case, it is shown that both problems can be solved by finding a stationary
point of an appropriate merit function. A projected-gradient algorithm is introduced for processing the
symmetric LEiCP and QEiCP by exploiting these formulations. Interior-point, path-following methods and
semi-smooth algorithms can be recommended for the asymmetric LEiCP and QEiCP. Both the problems
can also be reduced to Finite-Dimensional Variational Inequal- ity Problems and solved by using these
formulations. However, these approaches are not always able to find a solution for the LEiCP and QEiCP.
An enumerative algorithm is introduced for solving the LEiCP and QEiCP by finding a global minimum of
special nonlinear programs (NLP). It is shown that the algorithm always converges to a solution of the cor-
responding eigenvalue problem when it exists. The algorithm requires procedures for the computation of an
interval containing all the eigen- values and a local solver for finding stationary points of the NLP. These
techniques are introduced together with necessary and sufficient condi- tions for stationary points of each
one of these NLPs to be solutions of the corresponding EiCPs. Some computational experience is reported
to highlight the efficiency and efficacy of the projected-gradient and enumerative algorithms for solv- ing
the symmetric and asymmetric LEiCP and QEiCP respectively.
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1 ABSTRACT

Due to the difference between the scaled model and real aircraft, and the difference between wind tunnel
blowing and real wind, the blowing data is different from the real data. The design data can be modified
for the aircraft with traditional configuration by engineering experience, since there is rich experience in
engineering. However, for these novel flight vehicles [Y. J. Shi (2011)], there is insufficiency of engineering
experience to follow. An efficient method is developed for such problem to modify the error between
the blowing data and real data by virtue of identification the real flight data and compensating the
blowing data. In recent years there has been increasing research interest in the identification problem of
aircrafts, for example, see Y. L. Nong (2011); J. Suk (2003); Z. K. Shi (2012); S. A. Salman (2006); M.
K. Samal (2008); H. J. Lin (2011). However, much of the published works focus on the identification
of the system models. Few work has carried out for identification of aircraft focus according to flight
qualities, although the the focus is an important variable for the performance analysis of the aircraft
since the aerodynamic moment of focus does not change with the variation of the angle of attack. In this
paper, we will study how to identify the focus of the aircraft according to the real flight date, by which
the real flight pneumonia can be reproduced and design basis of control law can be given for the further
improvement of flight qualities.

Considering the longitudinal flight, and when the stability and maneuverability is measured, the fol-
lowing formulation is always used:

Cm = Cm0 + CCLm CL + Cδem δe (1.1)

where, Cm is the pitching moment coefficient; Cm0 is the Zero lift pitching force moment coefficient; CL is
lift coefficient; δe is the deflection angle of the elevator; CCLm the partial derivative of the pitching moment
with respect with lift; Cδem is the partial derivative of the pitching moment with respect with elevator
deflection angle. By analysis, we know that when we reproduce the real flight qualities, identification
can be carried out for parameter CCLm , by which the original blowing data is compensated. According to
theoretical mechanics, the aerodynamic moment M around aircraft centroid is:

M = Fz(xc,g − xpc).
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If aerodynamic coefficient method is applied, we have

Cm = Cz

(
xc,g − xpc

c

)
= Cz (xc,g − xpc)

where Cm is pitching moment coefficient; Cz is normal moment coefficient; c is average aerodynamic
chord. Usually, both normal force coefficient Cz and location of pressure center xpc will change with the
variation of angle of attack α, which is inconvenient for study of the variation character of longitudinal
moment. Thus, the concept of focus is introduced. Focus is represented by ◦, the characteristic of which
is: when the angle of attack α changes during a certain range, aerodynamic moment of focus keeps as a
constant. Thus, focus can be viewed as the action point of lift increment produced by the change of the
angle of attack.

By analysis of a flight curve, we know that the effect of aerodynamic focus brought by undercarriage
cabin and undercarriage door is insufficient of consideration, resulting the large difference between the
blowing focus data and real focus data. In the following, we will show how to identify the static stability
degree deviation factor K. In this paper, the attitude angle is considered as an investigated vector.
Due to the uncertainty of the model, we first approximate expression θ = f(k) by using cubic spline
interpolation. During the identification course, norm of longitudinal altitude angle deflection is taken as
the optimization index, i.e.,

J = ‖θ − θ∗‖ =

(
n∑
i=1

(θi − θ∗i )
2

) 1
2

where, θ is the function value of the altitude angle about deviation factor K, and θi is corresponding
to the i component; θ∗ is the investigated vector taken from the real flight data recorded by FTI, θ∗i is
corresponding to the i component. For clarification, the length of investigated vector θ∗i cannot be too
long, otherwise the optimization course will be long. Then the SSDD factor K is obtained as 5.5SA.
After identification, pitching angle rate feedback is applied to achieve augmentation, since the aircraft
flies with low speed. The transfer function between pitching angle rate and elevator deflection angle is
[Y. J. Shi (2011)]

q(s)

δe(s)
=

Kα(TθS + 1)

T 2
nspS

2 + 2ζspTnspS + 1

where Kα is static gain; Tθ is time constant; Tnsp is pitching short period motion cycle of aircraft,
satisfying Tnsp = 1/ωnsp, ωnsp is undamped natural frequency of pitching short period motion of the
aircraft; ζsp is the damping ratio of pitching short period motion of the aircraft. Introduce pitching angle
rate feedback and suppose that the feedback gain is Kq, then we have

q(s)

δe(s)
=

Kα(TθS + 1)

T 2
nspS

2 + (2ζspTnsp +KqKαTθ)S + (1 +KqKα)
.
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Abstract: A Zermelo’s navigation problem with moving obstacles is studied is this paper. We formulate
this problem as an optimal control problem subject to equality terminal state constraints and continuous
inequality constraints. By applying the control parametrization technique together with a time scaling
transformation, the formulated problem is approximated by a sequence of optimal parameter selection
problems with equality terminal state constraints and continuous inequality constraints. Then, a new exact
penalty function method is used to append the continuous inequality constraints to the cost function,
yielding a sequence of unconstrained optimal parameter selection problems. These problems can then
be solved as nonlinear optimization problems by using the gradient based methods, such as Sequential
Quadratic Programming (SQP) method. For this, the gradient formulas for the objective function and the
terminal state equality constraints are derived.

Key words: Zermelo; time optimal control; control parametrization; time scaling transform; exact penalty
function

1 STATEMENT OF THE PROBLEM

Given three agents in a 2D flow field, two of the slower agents follow navigated trajectories and third
one is faster and can be autonomously controllable. We denote the trajectories of slower agents as
~zi(t) = [xi(t), yi(t)]

T
, i = 1, 2, and t ≥ 0. We assume that the velocity components at any point

(x, y) in the 2D flow field can be denoted by G(x, y, t) and H(x, y, t), respectively. The flow dynamics

[G(x, y, t), H(x, y, t)]
T

can be modeled by the famous Navier-Stokes equation.
The motion of the controlled agent can be modeled by

dx(t)

dt
= V cos [u(t)] +G [x(t), y(t), t] ,

dy(t)

dt
= V sin [u(t)] +H [x(t), y(t), t] ,

(1.1)

where V is assumed to be a unit propulsion velocity (V = 1) of the controlled agent and u(t) the steering
angle which is considered the control variable, subject to a magnitude constraint

|u(t)| ≤ U, ∀t ≥ 0. (1.2)
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By defining ~z(t) = [x(t), y(t)]
T

and introducing the following vector

~f :=

(
f1

f2

)
=

(
cos [u(t)] +G [x(t), y(t), u]
sin [u(t)] +H [x(t), y(t), t]

)
, (1.3)

we can use the following abstract dynamical system to represent the fast agent motion
d~z(t)

dt
= ~f(~z(t), u(t), t), t ≥ 0,

~z(0) = ~z0,
(1.4)

where ~z0 is the initial position of the fast agent.
We now use Fig. 1.1 to state the so-called Zermelo’s navigation problem of the fast agent. A1 and A2

represent the slower agents and A3 represents the fast agent in Fig. 1.1. The harbor is the target area
that all agents are supposed to arrive at within finite time horizon. The Zermelo’s problem of the fast
agent A3 is to find an optimal trajectory (e.g., shortest route, fastest route, least fuel consumption, or
etc.) to arrive at the harbor region without colliding with the other slower agents.

x

y

O

Figure 1.1 Schematic of planar agent navigation problem.

In this work, we only consider the minimum time problem, which can be stated mathematically as

min
|u|≤U

T

d~z(t)

dt
= ~f(~z(t), u(t), t), 0 ≤ t ≤ T, ~z(0) = ~z0,√

[x(t)− xi(t)]2 + [y(t)− yi(t)]2 ≥ max{R,Ri}, 0 ≤ t ≤ T, i = 1, 2,

~z(T ) ∈ N = {x− ≤ x ≤ x+, y = 2h} ,

(1.5)

where T represents the time instant that the fast agent arrive at the harbor region. Noting that the
terminal time T depends implicitly on the control function which is defined as the first time when the
agent enters the target set N . Ri is the safety radius of each slow agent and R is the safety radius of the
fast agent. The safety region of each agent is marked by a green dash circle in Fig. 1.1.

2 COMPUTATIONAL METHOD

2.1 Parameterization and time scaling

The time horizon [0, T ] is partitioned by a monotonically increasing sequence {τ0, τ1, . . . , τp}, where τ0 = 0
and τp = T . The control function is then approximated by a piecewise constant function

up(t) =

p∑
k=1

σkχ[τk−1,τk)(t), (2.1)

where τk−1 ≤ τk, k = 1, 2, . . . , p and the characteristic function χI(t) is defined as

χI(t) =

{
1, if t ∈ I,
0, otherwise.

(2.2)
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The switching times τi, 1 ≤ i ≤ p− 1, are also regarded as decision variables. We shall employ the time
scaling transform introduced in Teo K.L. (1997) to map these switching times into fixed time points k

p ,

k = 1, . . . , p−1, on a new time horizon [0, 1]. This is easily achieved by the following differential equation

dt(s)

ds
= υp(s), s ∈ [0, 1], (2.3a)

with initial condition
t(0) = 0, (2.3b)

where

υp(s) =

p∑
k=1

θkχ[ k−1
p , kp )(s). (2.4)

Here, θk ≥ 0, k = 1, . . . , p.
Let θ = [θ1, . . . , θp]

> and let Θ be the set containing all such θ.

Taking integration of (2.3a) with initial condition (2.3b), it is easy to see that, for s ∈
[
k−1
p , kp

)
, k =

1, . . . , p,

t(s) =

k−1∑
i=1

θi
p

+
θk
p

(ps− k + 1), (2.5)

where k = 1, . . . , p. Clearly, for k = 1, . . . , p− 1,

τk =
k∑
i=1

θi
p
, (2.6)

and

t(1) =

p∑
i=1

θi
p

= T. (2.7)

Now we can rewrite the dynamical system using the new time scale via the chain’s law

d~z(t)

dt

dt(s)

ds
=
dt(s)

ds
~f(~z(t(s)), u(t(s)), t(s)) = v(s)~f(~z(t(s)), u(t(s)), t(s)). (2.8)

Similarly, we apply the time scaling transform to the continuous state inequality constraints

‖~z(t(s)))− ~zi(t(s))‖2 ≥ max{R2, R2
i }, i = 1, 2, (2.9)

~z(t(1)) ∈ N = {x− ≤ x(t(1)) ≤ x+, y(t(1)) = 2h} , (2.10)

We let ~X (s) = ~z(t(s)), then we obtain the optimization control problem as the following form:

min
{σk,θk}pk=1

p∑
k=1

θk
p

(2.11)

subject to:

d ~X (s)

ds
= θk ~f( ~X (s), σk, t(s)), s ∈

[
k − 1

p
,
k

p

)
, k = 1, 2, . . . , p,

dt(s)

ds
= θk, s ∈

[
k − 1

p
,
k

p

)
, k = 1, 2, . . . , p,∥∥∥ ~X (s)− ~Xi(s)

∥∥∥2

≥ max{R2, R2
i }, i = 1, 2; s ∈

[
k − 1

p
,
k

p

)
, k = 1, 2, . . . , p,

~X (1) ∈ N =
{
x− ≤ ~X1(1) ≤ x+, ~X2(1) = 2h

}
,

t(1) = T

(2.12)

where
~X (s) =

[
~X1(s), ~X2(s)

]T
= [x(t(s)), y(t(s))]

T

~X (0) =
[
~X1(0), ~X2(0)

]T
= [x(0), y(0)]

T

t(0) = 0

This Problem is referred to as Problem (P(p)).
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2.2 A new exact penalty function method

Problem (P(p)) is an optimization problem subject to both the terminal equality constraints and the
continuous inequality constraints. To solve this problem, a new exact penalty function method introduced
in Lin Q. (2012) is used.

By introducing this exact penalty function, the new cost function can be written as follows:

Jδ(σ, θ, ε) =

p∑
k=1

θk
p , if ε = 0, G( ~X (s)) = 0

p∑
k=1

θk
p + ε−α(G( ~X (s))) + δεβ , if ε > 0,

+∞, if ε = 0, G( ~X (s)) 6= 0.

(2.13)

where

G( ~X (s)) =

2∑
i=1

p∑
k=1

∫ k
p

k−1
p

θk max

{
max{R2, R2

i } −
∥∥∥ ~X (s)− ~Xi(s)

∥∥∥2

, 0

}2

ds

+ max
{
x− − ~X1(1), 0

}2

+ max
{
~X1(1)− x+, 0

}2

+

{
p∑
i=1

θi
p
− T

}2

This yields a sequence of unconstrained optimal parameter selection problems as follows, which are
referred to as Problem Pδ(p): Given a δ and the following system

d ~X (s)

ds
= θk ~f( ~X (s), σk, t(s)), s ∈

[
k − 1

p
,
k

p

)
, k = 1, 2, . . . , p,

dt(s)

ds
= θk, s ∈

[
k − 1

p
,
k

p

)
, k = 1, 2, . . . , p,

~X (0) = [x(0), y(0)]
T

t(0) = 0

(2.14)

find a (σ, θ, ε) such that Jδ(σ, θ, ε) is minimized. Problem Pδ(p) is an unconstrained optimal control
problem in canonical form. To solve it as a nonlinear optimization problem by using the optimal control
software MISER 3.3 (Jennings L.S. (2004)), we need the gradient formula of the objective function. The
gradient formula is given below. It’s proof is similar to that given for Theorem 5.2.1 reported in Teo K.L.
(1991).
Theorem 2.1
For each δ > 0, the gradients of the cost function Jδ(σ, θ, ε) with respect to σ and θ are:

∂Jδ(σ, θ, ε)

∂σ
=
∂Φ0

(
θ, ε, ~X (s)

)
∂σ

+

∫ 1

0

∂H0

(
s, ~X (s), σ, θ, λ(s)

)
∂σ

ds, (2.15)

∂Jε(σ, θ, ε)

∂θ
=
∂Φ0

(
θ, ε, ~X (s)

)
∂θ

+

∫ 1

0

∂H0

(
s, ~X (s), σ, θ, λ(s)

)
∂θ

ds, (2.16)

where H0

(
s, ~X (s), σ, θ, λ(s)

)
is the Hamiltonian function for the cost function given by

H0

(
s, ~X (s), σ, θ, λ(s)

)
=

2∑
i=1

p∑
k=1

L0,ik

(
~X (s), θ

)
+ λ0(s)υp(s)~f

(
~X (s), σ, t(s)

)
, (2.17)

Φ0

(
θ, ε, ~X (s)

)
and L0,ik

(
~X (s), θ

)
are defined as

Φ0

(
θ, ε, ~X (s)

)
=

p∑
k=1

θk
p

+ δεβ + ε−α
{

max
{
x− − ~X1(1), 0

}2

+ max
{
~X1(1)− x+, 0

}2

+

{
p∑
i=1

θi
p
− T

}2

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L0,ik

(
~X (s), θ

)
= θk max

{
max{R2, R2

i } −
∥∥∥ ~X (s)− ~Xi(s)

∥∥∥2

, 0

}2

and λ0(s) is the solution of the following co-state differential equation

·
(λ0(s))T = −

∂H0

(
s, ~X (s), σ, θ, λ(s)

)
∂ ~X (s)

(2.18a)

with the boundary condition

(λ0(1))T =
∂Φ0

(
θ, ε, ~X (s)

)
∂ ~X (s)

. (2.18b)

2.3 Algorithm

With the results in the previous sections, we provide the following algorithm for solving Problem (P).
Algorithm 2.1
Step 1 Set δ(1) = 10, ε(1) = 0.1, ε∗ = 10−9, β > 2, choose an initial point (σ0, θ0, ε0), the iteration index
k = 0. The values of γ and α are chosen depending on the specific structure of Problem (P ) concerned.
Step 2 Solve Problem (Pδk), and let

(
σ(k),∗, θ(k),∗, ε(k),∗) be the minimizer obtained.

Step 3 If ε(k),∗ > ε∗, δ(k) < 108,
set δ(k+1) = 10× σ(k), k := k+ 1. Go to Step 2 with

(
σ(k),∗, θ(k),∗, ε(k),∗) as the new initial point in the

new optimization process
Else set ε(k),∗ := ε∗, then go to Step 4
Step 4 Check the feasibility of

(
σ(k),∗, θ(k),∗) (i.e., check whether or not

max
1≤i≤N

max
s∈[0,1]

ḡi
(
s, ỹ

(
s|σ(k),∗, θ(k),∗) , σ(k),∗) ≤ 0.

If
(
σ(k),∗, θ(k),∗) is feasible, then it is a local minimizer of Problem (P(p)). Exit.

Else go to Step 5
Step 5: Adjust the parameters α, β and γ such that the conditions of Lemma ?? are satisfied. Set
δ(k+1) = 10δ(k), ε(k+1) = 0.1ε(k), k := k + 1. Go to Step 2.

References

Teo, K.L., Jennings, L.S., Lee, H.W.J., Rehbock (1997), V.L., The control parameterization enhencing
transformation for constrained optimal control problems, J. Austral. Math. Soc. Ser. B, Vol. 40, pp.
314-335.

Lin Q., Loxton R., Teo K. L., Wu Y. H. (2012), A New Exact Penalty Method for Semi-infinite Program-
ming Problems, submitted to Journal of Computational and Applied Mathematics.

Jennings, L.S., Fisher, M.E., Teo, K.L., Goh, C.J. (2004), MISER3, Version 3: Optimal control software,
Theory and User Manual.

Teo, K.L., Goh, C.J., Wong K.H. (1991), A Unified Computational Approach for Optimal Control Prob-
lems, Longman Scientific and Technical, New York.





Proceedings of the 5th International Conference on Optimization and Control with Applications
(OCA2012), Beijing, China, December 4-8, 2012

98 PDE APPROACH FOR SENSOR DEPLOYMENTS

FOR LEAKAGE DETECTION

Y. Donga, Z. Rena, C. Xu*a,b
aDepartment of Control Sciences & Engineering

Zhejiang University, Hangzhou, Zhejiang 310027, PRC
bThe State Key Laboratory of Industrial Control Technology,

Institute of Cyber-Systems & Control

Zhejiang University, Hangzhou, Zhejiang 310027, PRC

* Corresponding author: cxu@zju.edu.cn

Abstract: We consider a multi-agent control problem using PDE techniques for a novel sensing problem
arising in the leakage detection and localization of offshore pipelines. A continuous protocol is proposed
using parabolic PDEs and then a boundary control law is design using the maximum principle.

Key words: Pipeline leakage; Leakage detection; Floating sensors; Parabolic PDEs; Optimal control.

1 INTRODUCTION

Pipeline transport is the transportation of mass from one place to another through a pipeline network.
Generally, any chemically stable substance can be sent through a pipeline. Pipelines are probably the
most economical way to transport large quantities of oil, refined oil products or natural gas over land.
In the offshore oil industry, pipeline is also an important choice to transport oil from the platform to the
tanker ships or directly to the land refinery factories. Till the end of 2008, there exist more than 6000
kilometers of pipelines in China and more than 2000 kilometers of them are offshore pipelines.

Since oil and gas pipelines are an important asset of the economic development of almost any country,
the enhancement of asset safety and security is highly required by government regulations and policies.
For example, it is a mandatory rule for pipeline operators in the State of Washington to be able to detect
and locate leaks of 8 percent of maximum flow within no more than 15 mins. Any failure in identifying
pipeline leakage and delivering appropriate repairs in time may lead to serious environmental pollution
and economical loss.

In this work, we propose using floating sensors to detect leakage inside the pipeline. In order to make
cooperative sensing, it is necessary to consider the coordination control of large number of autonomous
sensors. A continuous method using PDE control is applied to design the protocols for autonomous
sensors.

285



286

2 FORMULATION OF THE PROBLEM

∂x(θ, t)

∂t
=

∂

∂θ

[
α
∂x(θ, t)

∂θ

]
+ β

∂x(θ, t)

∂θ
+ γx(θ, t), θ ∈ (0, 2π),

∂x(ξ, t)

∂t

∣∣∣∣
θ=0

= ul(t),
∂x(ξ, t)

∂t

∣∣∣∣
θ=2π

= ur(t),

x(θ, 0) = x0(θ),

(2.1)

If we integrate the boundary condition of (2.1) over [0, t), then the boundary condition becomes

x(0, t) = x(0, 0) +

∫ t

0

ul(τ)dτ = vl(t), (2.2)

x(2π, t) = x(2π, 0) +

∫ t

0

ur(τ)dτ = vr(t), (2.3)

where vl(t) and vr(t) are auxilliary control functions. We consider a standard Dirichlet boundary control
problem 

∂x(θ, t)

∂t
= α

∂2x(θ, t)

∂θ2
+ β

∂x(θ, t)

∂θ
+ γx(θ, t), θ ∈ (0, 2π),

x(0, t) = vl(t), x(2π, t) = vr(t),

x(θ, 0) = x0(θ).

(2.4)

where vl(t) and vr(t) represent the boundary control variables. We consider the following cost functional

Jc =
1

2

∫ T

0

[
〈x(θ, t), Q [[x(θ, t)]]〉+Rlv

2
l (t) +Rrv

2
r(t)

]
dt

+
1

2
〈x(θ, T ), S [[x(θ, T )]]〉,

(2.5)

where the inner product and linear operator are defined as

〈x1(θ), x2(θ)〉L2
:=

∫ 2π

0

x1(θ)x2(θ)dθ, (2.6)

A [[x(θ, t)]] :=

∫ 2π

0

A(θ, η)x(η, t)dη. (2.7)

3 OPTIMALITY CONDITIONS

Let x∗(θ, t) ,v∗l,r(t) and λ(θ, t) denote the optimal state, control and co-state that minimize the quadratic
cost functional, then we assume the following perturbed representation with respect to the optimal
trajectories,

x(θ, t) = x∗(θ, t) + εδx(θ, t), (3.1)

vl(t) = v∗l (t) + εδvl(t), (3.2)

vr(t) = v∗r (t) + εδvr(t), (3.3)

where δx(θ, 0) = 0 and δ represents the perturbation operator and ε is an arbitrary constant. Then, the
perturbed cost functional is

Jc [x∗(θ, t) + εδx(θ, t), v∗l (t) + εδvl(t), v
∗
r (t) + εδvr(t)]

=
1

2

∫ T

0

〈x∗(θ, t) + εδx(θ, t), Q [[x∗(θ, t) + εδx(θ, t)]]〉 dt

+
1

2

∫ T

0

{
Rl [v

∗
l (t) + εδvl(t)]

2
+Rr [v∗r (t) + εδvr(t)]

2
}
dt

+
1

2
〈x∗(T ) + εδx(T ), S [[x∗(T ) + εδx(T )]]〉 .

(3.4)
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We introduce a function of ε based on the perturbed cost functional by incorporating the PDE system
using the Lagrangian multiplier λ(θ, t),

g(ε) := Jc [x∗(θ, t) + εδx(θ, t), v∗l (t) + εδvl(t), v
∗
r (t) + εδvr(t)]

+

∫ T

0

〈
λ(θ, t), α

[
∂2x∗(θ, t)

∂θ2
+ εδ

∂2x(θ, t)

∂θ2

]〉
dt

+

∫ T

0

〈
λ(θ, t), β

[
∂x∗(θ, t)

∂θ
+ εδ

∂x(θ, t)

∂θ

]
+ γ [x∗(θ, t) + εδx(θ, t)]

〉
dt

−
∫ T

0

〈
λ(θ, t),

∂

∂t
[x∗(θ, t) + εδx(θ, t)]

〉
.

(3.5)

Then, the necessary condition for optimality is

dg(ε)

dε

∣∣∣∣
ε=0

= 0, (3.6)

i.e.,
dg

dε
(ε)

=
1

2

∫ T

0

〈δx(θ, t), Q [[x∗(θ, t) + εδx(θ, t)]]〉 dt

+
1

2

∫ T

0

〈x∗(θ, t) + εδx(θ, t), Q [[δx(θ, t)]]〉 dt

+

∫ T

0

Rl [v
∗
l (t) + εδvl(t)] δvl(t)dt

+

∫ T

0

Rr [v∗r (t) + εδvr(t)] δvr(t)dt

+
1

2
〈δx(θ, T ), S [[x∗(θ, T ) + εδx(θ, T )]]〉

+
1

2
〈x∗(θ, T ) + εδx(θ, T ), S [[δx(θ, T )]]〉

+

∫ T

0

〈
λ(θ, t), α

∂2δx(θ, t)

∂θ2
+ β

∂δx(θ, t)

∂θ
+ γδx(θ, t)− ∂δx(θ, t)

∂t

〉
dt.

(3.7)

Using integration by parts, we can obtain the following simplification〈
λ(θ, t), α

∂2δx(θ, t)

∂θ2

〉
=

∫ 2π

0

λ(θ, t)α
∂2δx(θ, t)

∂θ2
dθ

=

∫ 2π

0

αλ(θ, t)d

[
∂δx(θ, t)

∂θ

]
= αλ(θ, t)

∂δx(θ, t)

∂θ

∣∣∣∣2π
0

−
∫ 2π

0

α
∂λ(θ, t)

∂θ

∂δx(θ, t)

∂θ
dθ

= αλ(θ, t)
∂δx(θ, t)

∂θ

∣∣∣∣θ=2π

θ=0

− α
∂λ(θ, t)

∂θ
δx(θ, t)

∣∣∣∣θ=2π

θ=0

+

∫ 2π

0

α
∂2λ(θ, t)

∂θ2
δx(θ, t)dθ

= αλ(2π, t)
∂δx(θ, t)

∂θ

∣∣∣∣
θ=2π

− αλ(0, t)
∂δx(θ, t)

∂θ

∣∣∣∣
θ=0

+ α
∂λ(θ, t)

∂θ

∣∣∣∣
θ=2π

δx(2π, t)− α ∂λ(θ, t)

∂θ

∣∣∣∣
θ=0

δx(0, t) + α

〈
∂2λ(θ, t)

∂θ2
, δx(θ, t)

〉
.

(3.8)

We choose the multiplier to satisfy λ(0, t) = λ(2π, t) = 0 and note that

δx(0, t) = δvl(t), δx(2π, t) = δvr(t), (3.9)
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then we have 〈
λ(θ, t), α

∂2δx(θ, t)

∂θ2

〉
= α

∂λ(θ, t)

∂θ

∣∣∣∣
θ=2π

δvr(t)− α
∂λ(θ, t)

∂θ

∣∣∣∣
θ=0

δvl(t) + α

〈
∂2λ(θ, t)

∂θ2
, δx(θ, t)

〉
.

(3.10)

Similarly, we can have 〈
λ(θ, t), β

∂δx(θ, t)

∂θ

〉
=βλ(2π, t)δvr(t)− βλ(0, t)δvl(t)− β

〈
∂λ(θ, t)

∂θ
, δx(θ, t)

〉
,

(3.11)

and ∫ T

0

〈
λ(θ, t),

∂δx(θ, t)

∂t

〉
dt

= 〈λ(θ, T ), δx(θ, T )〉 − 〈λ(θ, 0), δx(θ, 0)〉 −
∫ T

0

〈
∂λ(θ, t)

∂t
, δx(θ, t)

〉
dt

= 〈λ(θ, T ), δx(θ, T )〉 −
∫ T

0

〈
∂λ(θ, t)

∂t
, δx(θ, t)

〉
dt,

(3.12)

where we have noted that δx(θ, 0) = 0. Now we are ready to compute

dg(ε)

dε

∣∣∣∣
ε=0

= 0. (3.13)

Thus, we obtain the co-state equation

− ∂λ(θ, t)

∂t
= α

∂2λ(θ, t)

∂θ2
− β ∂λ(θ, t)

∂θ
+ γλ(θ, t) +Q [[x∗(θ, t)]] ,

λ(0, t) = λ(2π, t) = 0,

λ(θ, T ) = S [[x∗(θ, T )]] =

∫ 2π

0

S(θ, η)x(η, t)dη,

v∗l (t) = −R−1
l α

∂λ(θ, t)

∂θ

∣∣∣∣
θ=0

,

v∗r (t) = R−1
r α

∂λ(θ, t)

∂θ

∣∣∣∣
θ=2π

.

(3.14)
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Abstract: The Economic Lot Scheduling Problem (ELSP) is concerned with the lot sizing and scheduling
decision of n items. The focus of this study is to employ the extended basic period (EBP) approach for
solving the ELSP with deteriorating items. In order to propose our solution approach, we first conduct
full analysis on the mathematical model. By utilizing our theoretical results, we propose an efficient search
algorithm to obtain (feasible) candidate solutions. Finally, among those candidate solutions, we pick the
‘best’ solution with the minimum average total costs. Based on our numerical experiments, we show that
the proposed search algorithm is a more efficient and reliable solution approach than the existing approach
in the literature.

Key words: Lot size; Scheduling; Deterioration; Extended basic period; Search algorithm.

1 INTRODUCTION

The Economic Lot Scheduling Problem (ELSP) is concerned with the lot sizing, production cycle adjust-
ments and scheduling decision of n items to derive feasible solutions that satisfy the customer demand
and minimize the average total cost.

The conventional ELSP models did not consider deterioration of inventory. However, it is common that
inventory of finished product deteriorates before meeting customers’ demand. For instances, packaged
food-products such as vegetable, fruits, seafood, and chemical products such as gasoline, might become
rotten, evaporating, deteriorating and spoiling. Since the deteriorating inventory will cause extra cost,
the mathematical model could mislead the decision-maker if it does not take into account deteriorating
inventory. Therefore, we are motivated to study the ESLP with deteriorating items and to propose a
solution approach for solving the problem.

One may refer to Elmaghraby(1978) and Lopez & Kingsman(1991) for the reviews of the studies on
the ELSP. Heuristics (e.g, Park & Yun(1984), Boctor(1987), Geng & Vickson(1988)) are more popular
solution approaches for solving the ELSP in the literature.

On the deterioration of inventory, we consider the ELSP refer to the time value category of
Raafat(1991) with the characteristic of utilization decline and the lifetime category of Nahmias(1978)
with random decreasing lifetime in this study. We further assume that the decreasing of lifetime follows
the exponential distribution.

Most of the inventory control models with deterioration considered single product in their decision-
making scenario. Recently, some researchers studied lot-sizing problem with deteriorating items. For
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instance, Yang & Wee(2001) discuss a two-stage supply chain system with single supplier and multiple
retailers. Huang & Yao(2005) further modified their model, presented theoretical analysis and proposed
an effective searching algorithm for solving the problem.

Furthermore, only the study of Yao & Huang(2005) assume that the multiple products are deteriorating
and use the derived base period method to find the optimal solution of ELSP with deteriorating items.
They search for the possible optimal solutions of ELSP with deteriorating items by using genetic algorithm
(GA). The Feasibility Testing Procedure for the ELSP (Proc. FT) is further applied to judge whether
the solutions derived from genetic algorithm are feasible or not. However, the method in Yao & Huang’s
study requires longer time to derive the optimal solution. In this study, we refer to some studies with
similar issues such as Huang & Yao(2005), Huang & Yao(2006) and apply the ELSP with deteriorating
items and the feasibility testing procedure for the ELSP to solve the problem effectively.

We introduce the mathematical model for the ELSP with deteriorating items in Section 2. Section
3 presents our theoretical analysis for the optimal cost function curve. In Section 4, we propose a
searching algorithm for obtaining candidate solutions. Our numerical experiments in Section 5 compare
the effectiveness of the proposed search algorithm and GA in Yao & Huang(2005). Finally, Section 6
gives concluding remarks.

2 THE MATHEMATICAL MODEL

In this section, we introduce the model of the economic lot scheduling problem (ELSP) with deteriorating
items. Our assumptions for the concerned problem are presented as follows. We assume that all items
are produced by a facility. In each given time, the demand rate, production rate, setup time, setup costs
and inventory holding costs are known and will not change through the passage of time. The production
facility can only produce one product at a single given time. The product demand is continuous. The
setup cost and setup time are independent of the production sequence. The production cost of the unit
product is not related to the lot size.

In the ELSP with deteriorating items, we consider the following cost terms. They are, namely, (1)
setup cost; (2) inventory holding costs; (3) the deteriorating costs of items. We define the notation that
is used for the formulation of the model as follows.
n: the number of products
di: demand rate for product i in each unit period.
pi: production rate for product i in each unit period (pi > di).
ai: setup cost for product i in each lot.
hi: inventory holding cost for product i in each unit period.
θi: the deteriorating coefficient of product i. (It is assumed as a constant.)
si: setup time for product i in each lot.
B: basic period.
ki: the time multiplier of product i.

ρi: ρi = di/pi

(
n∑
i=1

ρi < 1

)
Our mathematical model for the ELSP with deteriorating items is as follows.

min
ki∈N+,∀i,B>0

TC (k1, ..., kn, B) =

n∑
i=1

{
ai
kiB

+
1

2
HikiB

}
(2.1)

subject to

n∑
i=1

[
(si + ρi

(
1 +

θikiB

2

)
kiB)

]
wiϕ(i,t) ≤ B, for t = 1, ...,K (2.2)

ki∑
t=1

wit = 1, fori = 1, ..., n (2.3)

{
wit = 1, if product i is produced in the tth basic period,
wit = 0, otherwise,

}
(2.4)

K = lcm {k1, ..., kn} (2.5)

ϕ(i, t) =

{
t mod ki, if t 6= γki, γ ∈ N
ki, if t = γki, γ ∈ N

}
(2.6)
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where Hi = di (θiξi + hi) .
Equation (2.2) denotes the capacity constrains that the total capacity must less than the length of

basic period in each basic period t. Equation (2.3) indicates that product i would be produced once in
each ki basic period. When product i is produced in the tth basic period wit = 1 as indicated in equation
(2.4). In equation (2.5), the total number of basic period in the whole planning horizon is denoted by K
which is the least common multiple of all k′is. Equation (2.6) presents that the cyclic scheduling of the
production lots after the first production lot is determined.

3 THEORETICAL ANALYSIS

In this section, we first conduct theoretical analysis on the unconstrained optimal total cost function. Our
theoretical results shall establish important foundation for the design of the proposed search algorithm.

We define the cost function of individual product i, Γi(ki, B), as:

Γi(ki, B) =
ai
kiB

+
1

2
HikiB. (3.1)

For each B, we have the optimal cost function Γi (B) = minki∈N

{
ai
kiB

+ 1
2HikiB

}
by taking the

optimal ki. We assert that Γi (B) has an interesting property in Lemma 1.

Lemma 3.1 Γi(B) function is piece-wise convex with respect to B.

We define Γ (B) as the unconstrained optimal total cost function of TC (k1, ..., kn, B), namely,

Γ (B) = inf

n∑
i=1

{Γi (B)} (3.2)

Then, we confirm an important property in Theorem 1.
The function Γ(B) is piece-wise convex with respect to B.

Theorem 3.1 The function Γ(B) is piece-wise convex with respect to B.

Next, we define a “junction point” as a particular point where two consecutive convex curves intersect.
For individual product i, the junction point of function Γ (B) can be derived by

δi(ki) =

√
2ai

Hi(ki + 1)ki
(3.3)

Note that δi(ki) represents the kthi junction point of Γi (B). Lemma 2 indicates the relationship
between the optimal multipliers and a junction point w.

Suppose that k∗L and k∗R, respectively, are the set of optimal multipliers for the left-side and right-side
convex curves with regard to a junction point w in the plot of the Γi (B) function. Then, k∗L = k∗R + 1.

Lemma 3.2 Suppose that k∗L and k∗R, respectively, are the set of optimal multipliers for the left-side
and right-side convex curves with regard to a junction point w in the plot of the Γi (B) function. Then,
k∗L = k∗R + 1.

Since Γ (B) is a sum of Γi (B) function, the following corollary is also a by-product of Lemma 2.

Corollary 3.1 For any given B, the optimal multiplier of function is given by

ki(B) =

{
1, B > δi(1)
m, B ∈ [δi(m), δi(m− 1))

}
(3.4)

Next, we discuss the structure of optimal total cost curve. First, to simply the symbols, we define the
multiplier vector k ≡ (k1, ..., kn).

The following theorem results from Theorem 1 and Lemma 2.

Theorem 3.2 Suppose k(L) and k(R) are the set of optimal multiplier vectors for the left-side and right-

side convex curves, thus, k(L) can be obtained from k(R) by k
(L)
i = k

(R)
i + 1 for some product i.
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4 THE PROPOSED ALGORITHM

We consider four key issues in the design of the proposed search algorithm, namely, (1) finding the local
minimum for a set of multipliers, (2) setting the range of the search, (3) proceeding with the search, and
(4) generating a feasible production schedule, in this section.

We define B̆(k) as the local minimum with respect to a set of multipliers k in the function TC (k1, ..., kn, B).
If (k, B̆(k)) is able to generate a feasible production schedule, it serves as a candidate solution. By taking
the first-order derivative of eq. (1), we have the closed form of B̆(k) by

B̆(k) =

√√√√( n∑
i=1

ai
kiB

)
/

(
n∑
i=1

1

2
Hiki

)
(4.1)

Then, we would settle the upper bound and lower bound of the search range. We would like to apply
the Rotational Cycle (RC) approach for obtaining the upper bound. In the RC approach, it assumes that
the cycle times of all products are equal. Thus, the objective function of the RC approach is as follows.

TCRC =

n∑
i=1

{
ai
TRC

+
1

2
HiTRC

}
(4.2)

One may refer to Yao & Huang(2005) for the approach of solving the optimal cycle time (T ∗RC) of the
RC approach. On the other hand, we consider the value of maxi {(1 + ρi) si} as the lower bound since
there exists no feasible solution as B < maxi {(1 + ρi) si}.

Next, the searching algorithm proceeds as follows. First, we obtain T ∗RC and maxi {(1 + ρi) si} as an
upper bound as a lower bound of the search range. We find the first junction point w and the closest
(largest) point wp+1. Then, we obtain the set of optimal multiplier k(wp) and its (unconstrained) mini-

mum B̆(k(wp)). When B̆(k(wp) > maxi {(1 + ρi) si} and wp+1 < B̆(k(wp) < wp, we test the feasibility

of (B̆(k(wp)),k(wp)). When (B̆(k(wp)),k(wp)) is feasible, it serves as a candidate solution. When it is

not feasible, test whether B̆(k(wp)) and the prior k(wp−1) are feasible. When (B̆(k(wp)),k(wp−1)) is still
not feasible, we need to adjust one multiplier by changing ki+1 to ki to seek for the lowest cost increment
while meeting all the constraints. We shall repeat the search process is until it reaches the lower bound,
and we pick the candidate solution with the lowest objective function value as the optimal solution.

Note that it is an important issue of trying to generate a feasible production schedule for a candidate
solution. Here, the proposed search algorithm simply applied the procedure in Yao & Huang(2005),
namely, Proc. FT, that determines the basic period where of the first production lot starts for each
product. The major concern is that the total capacity must less than the length of basic period in each
basic period t, as indicated in eq. (2). Actually, Proc. FT, keeps “shuffling” the starting time of the first
production lot of all the products until meeting all the capacity constraints in the planning horizon.

5 NUMERICAL EXPERIMENTS

Here, we use the six benchmark problems in Fujita(1978) for numerical experiments. We would compare
the computation results of the proposed search algorithm with the genetic algorithm (GA) in Yao &
Huang(2005).

To verify the solution quality, we define an Error Measure Index (EMI) as EMI =
(
TC (k∗, B∗)− TCIS

)
/TCIS

where TCIS is the Independent Solution (IS) from the sum of the optimal EPQ with deteriorating item
of all the products, which is a well-known lower bound of the ELSP with deteriorating items.

Since there exists some random mechanism in Prof. FT and GA, we solve each benchmark problem us-
ing both solution approaches for 30 times and collect its solutions and run time data. Table 1 summarizes
our numerical experiments on the six benchmark problems.

We may refer to the values of Best EMI and Average (Avg) EMI for the solution quality and the
average run time (AvgRT) for computational efficiency in Table 1. For most of the (Best or Average)
cases, the proposed search algorithm is better than the GA in its solution quality. But, the solution
quality of the proposed search algorithm is insignificantly inferior (by less than 0.2%) to the GA for the
benchmark problems 2 (in Best EMI), 4 (in Best EMI) and 5 (in Best and Avg EMI). The proposed
search algorithm extensively outperforms the GA in the run-time aspect for all the cases.

We conclude that the proposed search algorithm is a more efficient and reliable solution approach for
solving the ELSP with deteriorating items following our numerical experiments on the six benchmark
problems
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The proposed search algorithm GA in Yao & Huang(2005)

Benchmark problem Best EMI(%) Avg EMI(%) Avg RT(s) Best EMI(%) Avg EMI(%) Avg RT(s)

1 0.33 0.38 1.06 1.83 1.94 26.66
2 0.81 0.81 1.21 0.70 0.94 105.89
3 1.00 1.00 2.51 1.93 2.96 27.45
4 0.48 0.48 13.02 0.46 0.68 79.17
5 0.43 0.43 2.58 0.08 0.36 26.92
6 0.06 0.07 1.32 0.26 0.56 50.58

Table 5.1 A summary of our numerical experiments

6 CONCLUSION

In this study, we first conduct theoretical analysis on the ELSP with deteriorating items using the
extended basic period approach. Our theoretical results provide us more insights into the structure of
the optimal objective function curve. Utilizing our theoretical results as foundation, we propose a new
solution approach, which is an efficient search algorithm. We compare the proposed search algorithm with
the GA in Yao & Huang(2005). Our numerical experiments show that the proposed search algorithm is
a more efficient and reliable solution approach than GA for solving the ELSP with deteriorating items.
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Abstract: In order to stimulate the ordered quantity, the suppliers often provide the strategy: the permis-
sible delay in payments, to their retailer. That is, before of the permissible delay period, the retailer can
accumulate revenue and deposit it into an account for more profit. However, for suppliers, it is better to
obtain the payments from their retailers as soon as possible. So the suppliers also provide another strategy:
the cash discount. When a retailer choose this strategy and settle the payments before the end of a given
period, the retailer can get cash discount. But the retailers can choose exact one from these two policies. In
this paper, we propose a new EPQ model which simultaneously considers both conditions of cash discount
and permissible delay in payment. In this new model, the retailers are allowed to divide the payments into
two parts: one part is settled in the end of period of cash discount, the other part is settled in the end of
permissible delay period. This policy is called two-stage payments and first discussed in Li(2012). Besides
providing this new model, we also discuss some properties of its objective functions.

Key words: EPQ; Cash discount; Permissible delay in payments.

1 INTRODUCTION

In practical, supplier often offer two kinds of trade credit for the goods to his retailer. If the retailer
settle the payment within a permissible delay period, then no penalty will be charged by his supplier.
On the other side, in order to encourage the retailer to settle the payment as soon as possible, supplier
often offer cash discount if the retailer can settle the payment within the period of cash discount(which
is smaller than permissible delay period). The retailer can accumulate the money obtained from selling
goods and depot it in a bank for earning the interest before he settle the payment. But if the retailer
settles the payment after the permissible delay period, then he will be charged some interest. Hence the
cost function of retailer not only considers the setup cost and holding cost but also cash discount, charged
interest or earned interest. There are more details in Chung & Huang(2003), Huang & Lin(2005), Huang
& Chung(2003), Huang & Hsu(2007), Huang & Lai(2007).

Although supplier provides two kinds of trade credit, retailer can only choose one, that is, if retailer
wants to choose the cash discount, he must settle the full payment before the period of cash discount.
Otherwise, he only can settle the full payment between the period of cash discount and permissible delay
period. In this paper, we divide the payment into two parts. Retailer can settle partial payment within
the period of cash discount and unpaid payment between the period of cash discount and permissible
delay period. This is a new strategy. Based on different strategies, some cost functions are given and
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compared in this paper. We also provide a numerical example which show that dividing the payment
into two parts can reduced more cost.

2 BEST PAYMENT POLICY AND OPTIMAL REPLENISHMENT CYCLE OF EPQ MODELS

UNDER CONDITIONS OF PERMISSIBLE DELAY IN PAYMENTS AND CASH DISCOUNT

3 NUMERICAL EXAMPLE
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Abstract: This paper investigates a single-machine scheduling problem with a set of supportive tasks and
a set of jobs. A job cannot start its processing until all of its supportive tasks are finished. The objective
functions studied involve job completion times, but not task completion times. For the two objective
functions of the total weighted completion time and the number of late jobs, we classify the complexity of
several special cases. Our study adds new complexity results to the two standard objective functions under
precedence constraints.
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1 INTRODUCTION

This paper studies a new scheduling model: single-machine scheduling with supportive tasks. Two disjoint
sets of activities A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} are to be processed on a single machine.
The elements of set A are called supportive tasks, and the elements of set B are called regular jobs. The
processing times of task ai and job bj are denoted by αi and βj , respectively. A supportive relation
R : A → B is a mapping from set A to set B such that for ai ∈ A and bj ∈ B, if (ai, bj) belongs to R
then job bj cannot start unless task ai is completed. Each job bj is associated with a weight wj and a due
date dj specifying the time at which it is expected to be completed. Denote the completion times of job
bj ∈ B in a particular schedule by Cj . If job bj is late, that is, Cj − dj > 0, then we set binary variable
Uj = 1; 0, otherwise. While all supportive tasks are required to be processed, they are not included in the
objective functions because their roles are simply preparatory operations for the jobs they support. This
paper discusses two min-sum objective functions: the total weighted completion time (

∑
j wjCj) and

the number of late jobs (
∑
j Uj). Our studied model can be reduce to regular one by setting the weight

of all supportive tasks to 0 for the problem of minimizing total weighted completion time, and setting
the due dates of all supportive tasks to infinity for the problem of minimizing the number of late jobs.
The problem is denoted by the three-field notation 1|s−prec|γ, where s−prec dictates the supportive
precedence and γ is

∑
wjCj or

∑
Uj .

The proposed model is motivated by real-world applications where preparatory operations are required
before jobs can be processed. In multi-media scheduling, a playback is comprised of several media objects,
including for example, audio, video, and text objects. Once a media object is prepared, either downloaded
from a digital archive or created at the local site, it can be embedded in several playbacks. In this
context, media objects and playbacks are referred to as supportive tasks and regular jobs, respectively,
in the defined scheduling setting. Another scenario describing the setting is tool or material preparation
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in a manufacturing environment. A job may require a set of tools installed before processing. On the
other hand, a tool, once installed, may be required by several jobs. In summary, the scheduling setting is
applicable to scheduling contexts where preparatory operations occupy a limited resource (the machine)
but are not taken into account in the objective functions.

2 PRELIMINARY PROPERTIES

This section presents several structural properties of the scheduling setting studied. An objective function
is called regular if it is non-decreasing in the job completion times. The objectives considered in this paper
are all regular. Although there are only n regular jobs in the problem setting, we have to sequence m+n
operations abiding by the supportive precedence. Since no idle time is assumed, a schedule is uniquely
implied by a given sequence. Hereafter, we use the terms sequence and schedule interchangeably if no
confusion results. The following property reduces the number of candidate sequences considered for
producing an optimal schedule. For each task ai ∈ A, denote µi = {bj ∈ B|(i, j) ∈ R} as the set of jobs
supported by ai. Similarly, for each job bj ∈ B, denote νj = {ai ∈ A|(i, j) ∈ R} the set of tasks that
support bj .

Lemma 2.1 For any regular objective, there exists an optimal schedule such that if there are supportive
tasks scheduled between two consecutive jobs bj1 and bj2 , then these supportive tasks all belong to νj2 .

Proof: If this is not the case for some optimal sequence, then we consider the supportive tasks scheduled
between bj1 and bj2 but do not belong to νj2 . Since all jobs supported by these tasks are scheduled after
job bj2 we move these tasks to the right at the positions immediately following bj2 . Such a schedule
is still feasible. Moreover, the move will not increase the completion time of any job. The lemma thus
follows.

Hereafter we consider only sequences of the form specified in Lemma 2.1. Next, we investigate a special
case where the job sequence is known or fixed a priori. Let S = (S1, S2, . . . , Sn) be a given job sequence.
The following algorithm produces an optimal sequence σ = (σ1, σ2, . . . , σm+n) for 1|s−prec|γ subject to
job sequence S.

Algorithm Fixed Job Sequence(S)
Step 1: Let t = 1.
Step 2: For j = 1 to n do

Arrange the tasks of νSj in arbitrary order as σt, . . . , σt+|νSj |−1.

Let σt+|νSj | := bSj ; t := t+ |νSj |+ 1.

For each ` 6= Sj let ν` := ν` − ν` ∩ νSj .
Step 3: Return sequence σ.

Theorem 2.1 Given a job sequence S, the 1|s−prec|γ problem can be solved in O(|R|) time, where
γ =

∑
j wjCj or

∑
j Uj.

Proof: The correctness of Algorithm Fixed Job Sequence(S) directly follows from Lemma 2.1. As
for the running time, we note that each task is scheduled once. When task ai is scheduled, it is removed
from each νj for j ∈ µi. Deletion of an element from a set can be carried out in constant time. Therefore,
after scheduling task ai, O(µi) = O(n) time is required to adjust the sets νj for j ∈ µi. The overall
running time of Algorithm Fixed Job Sequence(S) is thus O(mn). In fact, the upper bound of the
running time is |R| ≤ mn since each ordered pair is removed only once.

3 TOTAL WEIGHTED COMPLETION TIME (
∑

JWJCJ)

This section discusses the minimization of the total weighted completion time. Existing relevant results
and our results are summarized in Table 3.1. Single-machine scheduling to minimize the total weighted
completion time (1||

∑
wjCj) can be tackled using the weighted shortest processing time (WSPT) rule (

Smith. W.E. (1956)). When precedence constraints are introduced, the problem becomes hard to solve.
Lawler proved the strong NP-hardness of cases with pj = 1 and wj ∈ {k, k + 1, k + 2} for any integer k,
see (Lawler, E.L. (1978)). The proof was adapted for the case with wj = 1 and pj ∈ {1, 2, 3}. Lawler
(Lawler, E.L. (1978)) and Lenstra and Rinnooy Kan (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1978))
also showed the case with wj = 1 and pj ∈ {0, 1} to be strongly NP-hard. The problem is polynomially
solvable if the precedence graph is a forest, see (Horn, W.A. (1972)), or a generalized series-parallel graph,
see (Adolphson, D.L. (1977)) and (Lawler, E.L. (1978)).
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Table 3.1 Complexity Results of
∑
wjCj .

Conditions Complexity

series-parallel graph O(n log n) (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1978))
prec, pj = 1, wj ∈ {k + 1, k + 2, k + 3} snp-h (Lawler, E.L. (1978))
prec, pj ∈ {1, 2, 3}, wj = 1 snp-h (Lawler, E.L. (1978))
prec, pj ∈ {0, 1}, wj = 1 snp-h (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1978))

s−prec, αi = 1, βj = 0, wj = 1 snp-h (Hassin, R. and Levin, A. (2005))
s−prec, task sequence is fixed O((m+ n) log(m+ n)) (Theorem 3.1)

snp-h: Strongly NP-hard; np-h: NP-hard

The supportive model can be considered a scheduling problem with precedence constraints where all
supportive tasks have zero weight.In the proofs presented by Lawler (Lawler, E.L. (1978)) and Lenstra
and Rinnooy Kan (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1978)), the constructed precedence graphs
have long chains of unit execution time (or unit-weight) jobs. The precedence graph defined in our
problem is however in the form of bipartite precedence, where the edges are all oriented from the nodes
of the one part into the nodes of the other. Therefore, not all known complexity results can be applied
to our studied problem.

The minimum latency set cover problem investigated by Hassin and Levin, see (Hassin, R. and Levin,
A. (2005)), is relevant to our problem with αi = 1 for all ai ∈ A and βj = 0 for all bj ∈ B. Therefore, the
1|s−prec, αi = 1, βj = 0|

∑
Cj problem is strongly NP-hard, as Hassin and Levin (Hassin, R. and Levin,

A. (2005)) obtained a reduction from 1|prec, pj=1|
∑
wjCj to show the strong NP-hardnes.

We address a special case in which the sequence of all supportive tasks is given and fixed, in contrast
to the results of Algorithm Fixed Job Sequence(S). Let s = (s1, s2, . . . , sm) be a task sequence.
For any job bj , let asi1 , asi2 , . . . , asi|νj |

be its supportive tasks as they appear in sequence s. We can

eliminate the ordered pairs (asi1 , bj), . . . , (asi|νj |−1
, bj) from the instance without altering the precedence

constraints.
We thus come up with a new instance, in which |νj | = 1 for all bj . Next, we consider the jobs supported

by each task in the new instance. For the 1|s−prec|
∑
wjCj problem, if a task sequence is given, then

the problem is reduced to 1||
∑
wjCj with out-trees, which can be solved in O((m+n) log(m+n)) time.

Theorem 3.1 The 1|s− prec|
∑
wjCj problem with a fixed task sequence can be solved in O((m +

n) log(m+ n)) time.

4 NUMBER OF LATE JOBS (
∑

J UJ)

This section discusses the objective function of minimizing the number of late jobs. See Table 2 for a
summary of the results.

Karp (Karp, R.M. (1972)) showed that the single-machine problem of minimizing the weighted num-
ber of late jobs (1||

∑
wjUj) is NP-hard and proposed a pseudo-polynomial dynamic programming algo-

rithm. The case where all jobs are equally weighted can be solved in polynomial time by Moore-Hodgson
algorithm, see (Moore, J.M (1968)). The problem with precedence constraints is strongly NP-hard,
even if all jobs are equally weighted and have a unit processing time (Garey, M.R. and Johnson, D.S.
(1979)). Lenstra and Rinnooy Kan further proved the strong NP-hardness of the much restricted case
1|chains, pj = 1|

∑
Uj , see (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1980)). Note that chains are not

more restricted than bipartite precedence. In the proof of Lenstra and Rinnooy Kan (Lenstra, J.K. and
Rinnooy Kan, A.H.G. (1980)), long chains were created. The problem studied in this paper has bipartite
precedences. We start with the earliest due date (EDD) arrangement of the early jobs, see (Jackson, J.R.
(1955)). A job is called ’early’ if it is completed before its due date.

Lemma 4.1 There is an optimal schedule to 1|s−prec|
∑
Uj in which the early jobs are sequenced by

the EDD rule.

Proof: The proof is similar to the argument deployed in the proof of Theorem 2.1.
By a reduction similar to that from Maximum Clique to the 1|pj = 1, prec|

∑
Uj problem, see (Garey,

M.R. and Johnson, D.S. (1979), pp. 73-74), we can prove the strong NP-hardness of the case with
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Table 4.1 Complexity Results of
∑
Uj .

Conditions Complexity

chains, pj=1 snp-h (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1980))

s−prec, |νj | = 2, αi = βj = 1 snp-h (Observation 1)
s−prec, |νj | = 2, αi = 1, βj = 0 snp-h (Observation 1)
s−prec, |µi| = 3, |νj | = 1, αi = 1, βj = 1 snp-h (Theorem 4.1)
s−prec, |µi| = 2, |νj | = 1 np-h (Theorem 4.2)

snp-h: Strongly NP-hard; np-h: NP-hard

αi = βj = 1 for all ai and all bj . The case with αi = 1 for all ai and βj = 0 for all bj can be proved to
be strongly NP-hard as well. Indeed, the latter case corresponds to the well-known Dense-K-Subgraph
problem, see (Feige, U., Peleg, D. and Kortsarz, G. (2001)), when each job requires exactly two supportive
tasks.

The Observation 1 Problems 1|s−prec, αi = βj = 1|
∑
Uj and 1|s−prec, αi = 1, βj = 0|

∑
Uj are

strongly NP-hard.

In the following, we consider the case with out-tree precedences. We show that the 1|s−prec|
∑
Uj

problem remains strongly NP-hard even when the precedence relation consists of out-trees with |µi| = 3
for all tasks ai and |νj | = 1 for all jobs bj . Under the specified conditions, each job is preceded by exactly
one task and the out-trees are disjoint. Our proof is based on a reduction from the ”Exact Cover by
3-Sets” problem (Garey, M.R. and Johnson, D.S. (1979)). It will in the mean time strengthen the results
of Lenstra and Rinnooy Kan (Lenstra, J.K. and Rinnooy Kan, A.H.G. (1980)).

Exact Cover by 3-Sets: Given a set T = {1, . . . , 3t} and a family T = {T1, T2, . . . , Tr} of three-
element subsets of T . Does there exist a subfamily T′ ⊂ T such that |T′| = t and each element of T is
involved in exactly one of the subset of T′?

Theorem 4.1 Problem 1|s−prec|
∑
Uj is NP-hard in the strong sense even if |µi| = 3, |νj | = 1, and

αi = βj = 1 for all tasks ai ∈ A and all jobs bj ∈ B.

Proof: Given instance I of Exact Cover by 3-Sets, we construct instance I ′ of 1|s−prec|
∑
Uj with r sup-

portive tasks and N =
∑r
i=1

∑
j∈Ti t(3t − j + 1) jobs as follows. For each subset Ti = {j1, j2, j3} ∈

T with 1 ≤ j1 < j2 < j3 ≤ 3t, define a task ai that supports (1) t(3t − j1 + 1) jobs, denoted by
subset Bi,j1 = {bi,j1,1, bi,j1,2, . . . , bi,j1,t(3t−j1+1)}, (2) t(3t − j2 + 1) jobs, denoted by subset Bi,j2 =
{bi,j2,1, bi,j2,2, . . . , bi,j2,t(3t−j2+1)} and (3) t(3t−j3+1) jobs, denoted by subsetBi,j3 = {bi,j3,1, bi,j3,2, . . . , bi,j3,t(3t−j3+1)}.
All tasks and all jobs require a unit time for processing. Define due dates dj = t+

∑j
l=1 t(3t− l+ 1) for

all 1 ≤ j ≤ 3t. For any i and any j ∈ Ti, the jobs of Bi,j = {bi,j,1, bi,j,2, . . . , bi,j,t(3t−j+1)} are associated
with due date dj . To facilitate the following discussion, define an auxiliary due date d0 = t. For different
subsets Ti and Ti′ , Bi,j = Bi′,j . In the following discussion, if no confusion would arise, we call subset
Bi,j a Bj-type job set.

With the two instances I and I ′, we claim that the answer to instance I of Exact Cover by 3-Sets
is affirmative if and only if there is a feasible schedule of instance I ′ with exactly N −

∑3t
j=1 t(3t− j + 1)

late jobs.
Assume sets T1, T2, . . . , Tt constitute a partition of Exact Cover by 3-Sets. We obtain a feasible

schedule with exactly N −
∑3t
j=1 t(3t − j + 1) late jobs as follows. Tasks a1, . . . , at are arranged in the

interval [0, t). After the execution of the t supportive tasks, the available jobs defined by element j ∈ T
are scheduled in the interval [dj−1, dj). The remaining r − t tasks start at time d3t and the remaining
jobs follow. It is easy to see that the derived schedule is feasible and the jobs that start before d3t are
early. (N −

∑3t
j=1 t(3t− j + 1) = N − (d3t − t))

Assume that there exists a feasible schedule with exactly N −
∑3t
j=1 t(3t − j + 1) late jobs. Two

basic properties can be easily established: (1) All early jobs precede all late jobs. (2) The early jobs are
sequenced in the EDD order.

If, for 0 ≤ k < t, t − k tasks are scheduled within [0, d3t], then
∑3t
j=1 t(3t − j + 1) early jobs and k

late jobs are scheduled within [0, d3t). We analyze the case with k = 0. Other cases with k > 0 can be
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similarly discussed. Now, we have exactly t tasks scheduled before d3t. So, every time slot in [0, d3t) is
occupied by either a task or an early job.

The t tasks allow the processing of exactly 3t subsets of jobs, among which some may be defined by
the same j ∈ T . Let xj(≥ 0) denote the number of Bj-type subsets scheduled within [0, d3t). We have∑3t
j=1 xj = 3t. If x1 = x2 = · · · = x3t = 1, then a partition is found.
Assume x1 = x2 = · · · = x3t = 1 is not satisfied in the schedule. We want to show that under this

assumption, some slots before d3t will not be occupied, implying that the number of early jobs is less
than d3t− t. Let `, 1 ≤ ` ≤ 3t be the largest integer such that x` = 0. It is clear that

∑3t
j=`+1 xj ≥ 3t− `,

which further implies
∑`−1
j=1 xj =

∑`
j=1 xj ≤ `.

Note that |B1| > |B2| > · · · > |B3t| by the definition of instance I ′. Assume
∑`−1
j=1 xj = ` − 1 − k

for k > 1. Within interval [0, d`), the number of slots not occupied by the t tasks and the jobs of

B1 ∩B2 ∩ · · · ∩B`−1 is no less than k× |B`|. The fact that
∑3t
j=`+1 xj = 3t− `+ k implies that no more

than k×|B`+1| jobs of B`+1 ∩B`+2 ∩ · · · ∩B3t can be allocated to fill up the empty slots before d`. Since
|B`| > |B`+1|, some slots must be empty. Therefore, x1 = x2 = · · · = x3t = 1 must hold and a partition
is found.

The following theorem gives the complexity result of another case where each task supports two jobs.

Theorem 4.2 The 1|s−prec|
∑
Uj remains NP-hard even when |µi| = 2 for all tasks ai and |νj | = 1 for

all jobs bj.

Proof : We give the proof by a polynomial-time reduction from the NP-hard Equal-Size-Partition prob-
lem.

Equal-Size-Partition: Given a set of 2t integers X = {1, 2, . . . , 2t} and, for each i, a size of xi such
that

∑
i∈X xi = 2M , does there exist a partition of X into X1 and X2 such that

∑
i∈X1

xi =
∑
i∈X2

xi
and |X1| = |X2| = t?

Given an instance I of Equal-Size-Partition, we create an instance I ′ of problem 1||
∑
Uj that consists

of 2t tasks and 4t jobs. For each element i ∈ X, define two jobs bi,1 and bi,2 and their common supportive
task ai. The associated parameters are given as processing time αi = θ3; processing time βi,1 = θ + xi
and due date di,1 = tθ3 + tθ+M ; processing time βi,2 = θ2− 2xi and due date di,2 = tθ3 + tθ2 + tθ−M ,
where θ is an appropriate large positive number.

Denote B1 = {bi,1|1 ≤ i ≤ 2t} and B2 = {bi,2|1 ≤ i ≤ 2t}. To prove the theorem, it suffices to show
that if the answer to instance I is affirmative, then there is a feasible solution to instance I ′ with at most
2t late jobs, and vice versa.

Let X1 and X2 be a partition of instance I. We schedule the tasks and jobs of instance I ′ as follows.
The sequence starts with t tasks ai defined by the elements of X1. The t jobs bi,1 released by the t
scheduled tasks follow. We then schedule the corresponding t jobs bi,2. The remaining tasks and jobs
are scheduled late. The t jobs bi,1 are completed at time tθ3 + tθ +

∑
i∈X1

xi = tθ3 + tθ + M = di,1.

The completion time of the t jobs bi,2 is (tθ3 + tθ +M) + tθ2 − 2
∑t
i∈X1

xi = tθ3 + tθ2 + tθ −M = di,2.
Therefore, we obtain a feasible schedule with exactly 2t early jobs.

We now consider a schedule of instance I ′ with no more than 2t late jobs. Because of the large number
θ3 in the processing times of tasks {ai} and the due date di,2, no more than t tasks ai can be completed
before di,2. This implies that at most t jobs of B1 and at most t jobs of B2 are eligible to be processed
as early. Combining the observations with the fact that at least 2t jobs are scheduled early in schedule
σ(I ′), we conclude that exactly t jobs of B1 and t jobs of B2 are early.

By Lemma 4.1, we assume that the jobs of B1 precede the jobs of B2. In other words, the schedule starts
with t tasks ai, followed by a block of t jobs of B1 and a block of t jobs of B2. We examine the completion
times of the 2t jobs. The t jobs of B1 are completed at time tθ3 + tθ+

∑
i∈X1

xi, where X1 ⊂ X contains

the elements defining the t tasks. To ensure the early status of the first t jobs, tθ3 + tθ+
∑
i∈X1

xi must
be smaller than or equal to the due date di,1. Thus, we have

∑
i∈X1

xi ≤ M . Similarly, the completion

time of the t early {bi,2} jobs is (tθ3 + tθ +
∑
i∈X1

xi) + tθ2 − 2
∑
i∈X1

xi = tθ3 + tθ2 + tθ −
∑
i∈X1

xi,
which must be smaller than or equal to the due date di,2. Inequality

∑
i∈X1

xi ≥ M follows. The two
inequalities lead to

∑
i∈X1

xi = M . A desired partition is found.

5 CONCLUSION

This paper proposes a new scheduling problem by introducing supportive tasks, whose completion times
are not considered in the objective functions. Two standard min-sum objectives, namely, the total
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weighted completion time and the number of late jobs, are investigated. We analyzed the complex-
ity status of these objectives under various restrictions. The study extends the relevant results in the
literature.
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Abstract: Newsvendor Problem has been attracting extensive research interest in the field of inventory
man- agement, and found a wide application in the other fields such as production planning and finance
management. As an important extension of the newsvendor problem, the model of multi-product newsven-
dor problem plays an important role on reducing the investment risk of enterprise by providing a suitable
product portfolio.

In the existent results on the problem of multi-product newsvendor problem, it is often that the market
demands of products are assumed to be mutually independent random variables with identical distributions.
With this assumption, it is easy to get the joint distribution function for the random demands in the model
of multi-product newsvendor. However, in the many real-world problems, this assumption may not hold
since there exists a kind of correlation amongst the productss demands.

In this paper, the theory of Copulas is employed to describe the correlation among the random market
demands, and a new optimization model is constructed to formulate the classical multi-product newsvendor
problem to find an optimal ordering decision. Because the objective function in this model is in the form
of integral, we will first study the differential properties of the objective functions, especially the evaluation
of the objective function, the calculation of the derivative. On the basis of this theoretical analysis, an
efficient numerical algorithm is developed to solve the original model. Finally, the constructed model and
the proposed solution method are applied to solve a multi-product newsvendor problem from the real-world
management engineering, the obtained results shows that both the model and the solution method are
promising.
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Songhai Deng*a, Zhong Wanb
a,bSchool of Mathematics and Statistics
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Abstract: In this paper, a diagonal quasi Newton spectral conjugate gradient algorithm is developed
for solving nonconvex unconstrained optimization problems. Different from the existent similar methods,
the spectral parameter in the new method is a specific diagonal matrix chosen such that it owns the
features of quasi-Newton method. The obtained search direction is then a sum of a spectral direction and
a conjugate gradient direction, which is proved to be descent. With a modified Armijo-type line search, the
global convergence of the algorithm is established. Numerical experiments are employed to demonstrate the
efficiency of the algorithm for solving large-scale benchmark test problems.

Key words: Unconstrained optimization; Spectral conjugate gradient method; Quasi Newton method;
Global convergence; Inexact line search; Descent algorithm.

1 INTRODUCTION

Consider the following unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable such that its gradient is available. Let g : Rn → Rn
denote the gradient function of f , and let gk denote the value of g at xk.

Recently, as an improvement of conjugate gradient method, spectral conjugate gradient methods have
been attracting extensive research interest, where the features of the well known spectral methods such
as the Newton method are incorporated into the determination of search direction with the following
form:

dk =

{
−gk, if k = 0,
−θkgk + βkdk−1, if k > 0.

(1.2)

In this paper, we study how to replace θk by a suitable diagonal matrix Bk = diag(b1k, ..., b
n
k ) such that

dk owns the features of the quasi-Newton direction.
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2 NEW DIAGONAL QUASI-NEWTON SPECTRAL CONJUGATE GRADIENT ALGORITHM

Similar to the idea in (Shi Z. J. (2006)) to design a modified quasi-Newton method, we obtain such a
matrix Bk by solving a subproblem as follows:

min
Lk≤bik≤Uk

1

2
‖Bkyk−1 − sk−1‖2,

where ‖ · ‖ is Euclidean norm, Lk and Uk ( Lk < Uk) are given the upper and the lower bounds of bik for
i = 1, 2, · · · , n. To ensure the descent property of dk = −Bkgk for the objective function f at xk, it is
required that 0 < Lk ≤ bik ≤ Uk. Thus, a suitable Bk is a solution of the following problem:

(SP ) min ‖Bkyk−1 − sk−1‖2 = min
Lk≤bik≤Uk

n∑
i=1

(biky
i
k−1 − sik−1)2.

We present a method to determine a search direction as follows:

dk = −Bkgk + βkdk−1, (2.1)

where

Bk =

{
diag(b1k, ..., b

n
k ), k > 0,

I, k = 0
(2.2)

is a diagonal matrix, whose components are computed by

bik =



sik−1

yik−1

, if yik−1 6= 0 and Lk ≤
sik−1

yik−1

≤ Uk

Lk, if yik−1 6= 0 and
sik−1

yik−1

< Lk

Uk, if yik−1 6= 0 and
sik−1

yik−1

> Uk

Lk + Uk
2

, if yik−1 = 0

i = 1, ..., n. (2.3)

Lk = c1‖gk‖, (2.4)

Uk = Lk + c2, (2.5)

and the conjugate parameter

βk =

{
βPRPk , if βPRPk gTk dk−1 < 0,
0, if k = 0 or βPRPk gTk dk−1 ≥ 0.

(2.6)

To ensure the global convergence of the presented algorithm, the following line search rule is employed:

f(xk + αkdk) ≤ f(xk) + δ1αkg
T
k dk − δ2α2

k‖dk‖2. (2.7)

With above preparation, a new diagonal quasi-Newton spectral PRP conjugate gradient algorithm
(DQNSCG) is presented as follows.

Algorithm 2.1 (DQNSCG):

Step 0. Given constants 0 < δ1 < 1, δ2 > 0, c1 > 0, c2 > 0 and ε > 0. Choose an initial
point x0 ∈ Rn. Set k := 0.

Step 1. If ‖gk‖∞ ≤ ε, then the algorithm stops. Otherwise, compute dk by (2.1), (2.2),
(2.3), (2.4), (2.5) and (2.6). Go to Step 2.

Step 2. Determine a step length αk = max{αl|αl = ρl, l = 0, 1, · · · , } such that αk satisfies
the following inequality (2.7).

Step 3. Set xk+1 := xk + αkdk, and k := k + 1. Return to Step 1.

In Algorithm 2.1, ‖ · ‖∞ denotes the infinity norm of a vector, defined by ‖x‖∞ = max
1≤k≤n

|xk|.
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3 GLOBAL CONVERGENCE

In this section, we are going to study the global convergence of Algorithm 2.1.
We first state the following mild assumptions.

Assumption 1 The level set Ω = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.
Assumption 2 In some neighborhood N of Ω, f is continuously differentiable and its gradient is Lip-

schitz continuous, namely, there exists a constant L > 0 such that ‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N.

Since f(xk) is decreasing, it is clear that the sequence {xk} generated by Algorithm 2.1 is contained in
a bounded region from Assumption 1. So, there exists a convergent subsequence of {xk}. Without loss
of generality, it is supposed that {xk} is convergent. On the other hand, from Assumptions 1 and 2, it is
easy to see that there is a constant γ1 > 0 such that ‖g(x)‖ ≤ γ1, ∀x ∈ Ω. Hence, the sequence { gk } is
bounded.

Proposition 3.1 Let f : Rn → R be a continuously differentiable function. Suppose that d is a descent
direction of f at x. Then, there exists a nonnegative integer number j0 such that

f(x+ αd) ≤ f(x) + δ1αg
T d− δ2α2‖d‖2, (3.1)

where α = ρj0 , g is the gradient vector of f at x, δ1, ρ ∈ (0, 1), and δ2 > 0 are given constant scalars.

Proof Actually, we only need to prove that a step length α is obtained in finitely many steps. If it is
not true, then for all sufficient large positive integer m, we have

f(x+ ρmd)− f(x) > δ1ρ
mgT d− δ2ρ2m‖d‖2. (3.2)

Thus, by the mean value theorem, there is a θ ∈ (0, 1) such that

ρmg(x+ θρmd)T d > δ1ρ
mgT d− δ2ρ2m‖d‖2. (3.3)

It reads (g(x+ θρmd)− g)T d > (δ1 − 1)gT d− δ2ρm‖d‖2.
When m → ∞, it is obtained that (δ1 − 1)gT d < 0. From δ1 ∈ (0, 1), it follows that gT d > 0. This

contradicts the condition that d is a descent direction.2

Remark 3.1 From Proposition 3.1, if dk is a descent direction, Step 2 of Algorithm 2.1 is well-defined.
In addition, by the modified Armjio-type line search (2.7), it is clear that more descent magnitude is
required for the obtained step length at each iteration than that by the standard Armjio line search .

Next, we will prove that dk generated by (2.1) is actually descent.

Lemma 3.1 Let dk be given by (2.1). Then, the following result gTk dk < 0 holds for any k ≥ 0.

Proof Actually, if k = 0, then gTk dk = −gT0 d0 = −‖g0‖2 < 0.
If k > 0 and βPRPk gTk dk−1 < 0, then gTk dk = gTk (−Bkgk +βPRPk dk−1) = −gTk Bkgk +βPRPk gTk dk−1 < 0.
Otherwise, gTk dk = gTk (−Bkgk) = −gTk Bkgk < 0 since Bk is positive definite and gk 6= 0. 2

Lemma 3.2 Let {αk } and { dk } be the sequences of the step length and the search direction generated
by Algorithm 2.1, respectively. Then, lim

k→∞
α2
k‖dk‖2 = 0.

Proof Firstly, from Assumption 1, there exists M > 0 such that |f(x)| < M on the level set Ω.
By (2.7), we know −δ1αkgTk dk + δ2α

2
k‖dk‖2 ≤ f(xk)− f(xk+1). It is obtained that

δ1
n∑
k=1

αk|gTk dk|+ δ2
n∑
k=1

α2
k‖dk‖2 ≤

n∑
k=1

(f(xk)− f(xk+1)) = f(x1)− f(xn+1) ≤ 2M.

It follows that the series
∞∑
k=1

α2
k‖dk‖2 is convergent. It yields lim

k→∞
α2
k‖dk‖2 = 0. The desired result is

proved.2

Lemma 3.3 Let dk be defined by (2.1). If ‖gk‖ > ε for every k, then ‖dk‖ is bounded.
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Proof From (2.1), we have

‖dk‖ ≤ ‖Bkgk‖+ |βPRPk |‖dk−1‖

≤ Uk‖gk‖+
|gTk (gk − gk−1)|
‖gk−1‖2

‖dk−1‖

< Uk‖gk‖+
‖gk‖Lαk−1‖dk−1‖

‖gk−1‖2
‖dk−1‖

< (c1γ1 + c2)γ1 +
γ1Lαk−1‖dk−1‖

ε2
‖dk−1‖.

For 0 < r < 1, from Lemma 3.2, it follows that lim
k→∞

αk−1‖dk−1‖ = 0,

hence there exists K > 0, as k ≥ K, such that αk−1‖dk−1‖ <
rε2

γ1L
.

Consequently,
‖dk‖ < M1 + r‖dk−1‖

< M1 + r(M1 + r‖dk−2‖
= M1(1 + r) + r2‖dk−2‖
< ...
< M1(1 + r + ...+ rk−K−1) + rk−K‖dK‖

<
M1

1− r
+ ‖dK‖,

where M1 = (c1γ1 + c2)γ1. Let M2 = max{‖d0‖, ‖d1‖, ..., ‖dK‖,
M1

1− r
+ ‖dK‖}, then we have ‖dk‖ < M2.

2

Lemma 3.4 With Assumption 2, there exists a constant m > 0 such that the following inequality

αk ≥ m
|gTk dk|
‖dk‖2

(3.4)

holds for all k sufficiently large.

Proof From the line search rule (2.7), we know that 0 < αk ≤ 1.
From the line search rule, it follows that ρ−1αk does not satisfy the inequality (2.7). So, we have

f(xk + ρ−1αkdk)− f(xk) > δ1αkρ
−1gTk dk − δ2ρ−2α2

k‖dk‖2. (3.5)

On the other hand,

f(xk + ρ−1αkdk)− f(xk) = ρ−1αkg(xk + tkρ
−1αkdk)T dk

= ρ−1αkg
T
k dk + ρ−1αk(g(xk + tkρ

−1αkdk)− gk)T dk
≤ ρ−1αkg

T
k dk + Lρ−2α2

k‖dk‖2,
(3.6)

where tk ∈ (0, 1) satisfies xk + tkρ
−1αkdk ∈ N .

Combined with (3.5) and (3.6), it is obtained that δ1αkρ
−1gTk dk − δ2ρ

−2α2
k‖dk‖2 < ρ−1αkg

T
k dk +

Lρ−2α2
k‖dk‖2.

It reads (1− δ1)αkρ
−1gTk dk + (L+ δ2)ρ−2α2

k‖dk‖2 > 0,
i.e. (L+ δ2)ρ−1αk‖dk‖2 > (δ1 − 1)gTk dk.

Therefore, αk >
(δ1 − 1)ρgTk dk
(L+ δ2)‖dk‖2

. From Lemma 3.1, it follows that αk >
(1− δ1)ρ|gTk dk|
(L+ δ2)‖dk‖2

.

Let m =
ρ(1− δ1)

L+ δ2
. Then the desired inequality (3.4) holds. 2

Next, we are going to prove the Zoutendijk condition, originally given in (Zoutendijk G.(1970)), also
holds for Algorithm 2.1.

Lemma 3.5 Under Assumptions 1 and 2, it holds that
∞∑
k=0

|gTk dk|2

‖dk‖2
<∞.

Proof From the line search rule (2.7) and assumption 1, there exists a constant M such that

n−1∑
k=0

(−δ1αkgTk dk + δ2α
2
k‖dk‖2) ≤

n−1∑
k=0

(f(xk)− f(xk+1)) = f(x0)− f(xn) < 2M.
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Then, from Lemmas 3.1 and 3.4, we have

2M ≥
n−1∑
k=0

(−δ1αkgTk dk + δ2α
2
k‖dk‖2)

=
n−1∑
k=0

(δ1αk|gTk dk|+ δ2α
2
k‖dk‖2)

≥
n−1∑
k=0

(δ1m
|gTk dk|
‖dk‖2

|gTk dk|+ δ2 ·m2 · |g
T
k dk|2

‖dk‖4
· ‖dk‖2)

= (δ1 + δ2m)m
n−1∑
k=0

|gTk dk|2

‖dk‖2
.

Thus, the desired conclusion is proved.2
With the above preparation, we are in a position to state the main result in this paper.

Theorem 3.1 Let { gk } be the sequence of the gradient values at the iterate points generated by Algorithm
2.1. Under Assumptions 1 and 2, the following result lim inf

k→∞
‖gk‖ = 0 holds.

Proof For arbitrary ε > 0, suppose that ‖gk‖ > ε for each k. From Lemma 3.3, it is obtained that

gTk dk = gTk (−Bkgk + βkdk−1)
= −gTk Bkgk + βkg

T
k dk−1

≤ −‖gk‖‖Bk‖‖gk‖+
‖gk‖‖gk − gk−1‖‖gk‖

‖gk−1‖2
‖dk−1‖

< −Uk‖gk‖2 +
‖gk‖2Lαk−1‖dk−1‖

ε2
‖dk−1‖

< −Uk‖gk‖2 +
‖gk‖2Lαk−1‖dk−1‖

ε2
M2

< −(c1γ1 + c2)‖gk‖2 +
Lαk−1‖dk−1‖

ε2
M2‖gk‖2

= −M3‖gk‖2 +
Lαk−1‖dk−1‖

ε2
M2‖gk‖2,

where M3 = c1γ1 + c2 > 0.

By Lemma 3.2, lim
k→∞

αk−1‖dk−1‖ = 0,for k large enough, we have
Lαk−1‖dk−1‖

ε2
M2 <

M3

2

It follows that gTk dk < −c‖gk‖2 where c =
M3

2
> 0. i.e. |gTk dk| > c‖gk‖2.

By Lemma 3.5 and 3.3, we have
c2‖gk‖4

M2
2

<
|gTk dk|2

‖dk‖2
→ 0,

Hence lim
k→∞

‖gk‖ = 0, which means there exists k1 > 0, as k > k1, ‖gk‖ < ε. This contradicts to the

assumption ‖gk‖ > ε,∀ε > 0. It says that lim inf
k→∞

‖gk‖ = 0. 2
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Abstract: In this paper, a modified nonmonotone BFGS algorithm is developed for solving a smooth
system of nonlinear equations. Different from the existent techniques of nonmonotone line search, the value
of an algorithmic parameter controlling the magnitude of nonmonotonicity is updated at each iteration by
the known information of the system of nonlinear equations such that the numerical performance of the
developed algorithm is improved. Under some suitable assumptions, the global convergence of the algorithm
is established for solving a generic nonlinear system of equations. Implementing the algorithm to solve some
benchmark test problems, the obtained numerical results demonstrate that it is more effective than some
similar algorithms available in the literature.

Key words: smooth nonlinear equations; nonmonotone technique; modified BFGS algorithm; global
convergence

1 INTRODUCTION

Consider a system of smooth nonlinear equations:

F (x) = 0, (1.1)

where F : Rn → Rn is assumed to be a continuously differentiable function.
Theoretically and algorithmically, it is shown that the quasi-Newton method is a fundamental and

efficient method to compute a solution of Equation (1.1). For recent advances in this research field, one
can see, for example, (Gu G.Z. (2003), Li D.H. (2001), Li D.H. (1999), Li D.H. (2007), Liu J.G. (2004),
Zhou W.J. (2009)) and the references therein.

In (Gu G.Z. (2003)), a modified BFGS formula is proposed for solving a system of symmetric nonlinear
equations. Different from the standard BFGS method, Bk constructed by this method can inherit the
positive definiteness of Bk−1 for all k ≥ 1. In (Zhang H.C. (2004)), a nonmonotone line search technique
is firstly proposed for solving unconstrained optimization problems, where ηk(See (2.7)) takes a fixed
value at each iteration.

In this paper, taking the fundamental role of ηk in controlling the magnitude of nonmonotonicity into
account, we are going to update the value of ηk at each iteration by the known information of the system
function such that the efficiency of algorithm is improved. In this paper, we shall extend a modified BFGS
formula (Gu G.Z. (2003)) to solve a generic smooth system of nonlinear equations by incorporating this
new nonmonotone line search method.
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The rest of this paper is organized as follows. In the next section, we will present a new modified
BFGS method for solving a system of nonlinear equations. By incorporating an improved line search
technique, a new BFGS algorithm will be developed. In Section 3, the global convergence of the proposed
method is proved. The results of numerical experiment will be reported in Section 4. Final remarks will
be given in the last section.

2 MODIFIED NONMONOTONE BFGS ALGORITHM

In this section, a modified nonmonotone BFGS algorithm for solving nonlinear system of equations is
developed in detail. We first address how to determine the search direction at each step of the algorithm.

Recall that a standard BFGS formula reads

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.

It is shown that Bk+1 is positive definite with a positive definite matrix Bk in the case that yTk sk > 0.
If we use BFGS method to solve an unconstrained optimization problem, the condition yTk sk > 0 is
guaranteed by employing the Wolfe line search rule. However, for a nonlinear system equations, the
Wolfe line search is no longer popular since it needs to compute the gradient of F , i.e., its Jacobian
matrix. In (Gu G.Z. (2003)), a modified BFGS formula is proposed where yk is replaced by ȳk, which is
defined by

ȳk = yk +

(
max

{
0,− y

T
k sk
‖sk‖2

}
+ φ(‖F (xk)‖)

)
sk, (2.1)

where sk = xk+1 − xk, yk = F (xk+1)− F (xk), and φ : R→ R is a function given by

φ(t) =

{
10−5t2 if t ≤ 1,
10−5t0.1 otherwise.

(2.2)

It is not difficult to show that ȳk satisfies

ȳTk sk ≥ φ(‖F (xk)‖)‖sk‖2 > 0.

Consequently, if Bk+1 is taken as:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
ȳkȳ

T
k

ȳTk sk
, (2.3)

then it is clear that the obtained Bk+1 inherits the positive definiteness of Bk. Thus, a descent search
direction d at xk is obtained by solving a linear system equations

Bkd = −F (xk). (2.4)

Define a merit function f : Rn → R given by

f(x) =
1

2
‖F (x)‖2 (2.5)

then the linear equations (1.1) is equivalent to the following global optimization problem (2.5).
Next, we come to state a new nonmonotone line search strategy. Different from the method proposed

in (Zhang H.C. (2004)), we shall update the parameter ηk, which plays fundamental role in controlling
the magnitude of nonmonotonicity, by employing the known information of nonlinear system.

Let C0 = f(x0), Q0 = 1, α0 = 1, 0 < ρ < 1, σ ∈ (0, 1). Our nonmonotone line search is to find a
stepsize αk satisfying

f(xk + αkdk) ≤ Ck + σαkd
T
kBkF (xk), (2.6)

where
αk = α0ρ

hk ,

Ck =
ηk−1Qk−1Ck−1 + f(xk)

Qk
,

Qk = ηk−1Qk−1 + 1,

(2.7)

hk is the smallest integer such that α = αk satisfies (2.6), and

ηk =
‖F (xk+1)‖

‖F (xk+1)− F (xk)‖+ ‖F (xk)‖
. (2.8)
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Remark 2.1 In (Zhang H.C. (2004)), ηk takes a fixed value at each iteration. However, in this paper,
with the adjustable parameter ηk in (2.8), it is possible to improve the efficiency of Algorithm 2.1.

It is easy to see that ηk in (2.8) satisfies 0 ≤ ηk ≤ 1.

Remark 2.2 From (2.7), it follows that Ck+1 is a convex combination of the known values of Ck and
f(xk+1). If ηk = 0 for some k, then xk+1 is a solution of Problem (1.1). If ηk = 1 for some k, then

Ck = Ak =
1

k + 1

k∑
i=0

f(xi)

is the average function value. Thus, the line search is similar to that in (Zhang H.C. (2004)).

Now, we are in a position to present an overall framework of our algorithm.
Algorithm 2.1 (New Modified Nonmonotone BFGS Algorithm): Step 0. Choose an

initial point x0 ∈ Rn. Take the values of the parameters ε > 0, 0 < σ < 1, 0 < ρ < 1. Set k := 0.

Step 1. If ‖F (xk)‖ ≤ ε, the algorithm stops. Otherwise, go to Step 2.

Step 2. Find dk which solves the following linear equations Bkd = −F (xk) in the unknown
vector d ∈ Rn.

Step 3. Determine a step length αk by (2.6)-(2.8).

Step 4. Set xk+1 := xk + αkdk. Update Bk as Bk+1 by (2.3).

Step 5. Set k := k + 1. Return to Step 1.

3 GLOBAL CONVERGENCE

In this section, we analyze the global convergence of Algorithm 2.1. We first make the following as-
sumptions, which are also used to establish the global convergence of BFGS algorithm in many relevant
literatures.

Assumption 3.1 The level set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is bounded

Assumption 3.2 F : Rn → Rn is continuously differentiable on an open convex set Ω1 containing Ω,
and there exists x∗ ∈ Rn such that F (x∗) = 0.

Assumption 3.3 There exists a positive constant scalar msuch that λmink > m, where λmink is the
minimal eigenvalue of Bk.

Assumption 3.4 Bk is a good approximation to F ′(xk),i.e. ‖[F ′(xk)− Bk]dk‖ ≤ ε‖F (xk)‖, where ε is
a positive constant scalar and ε ∈ (0, 1).

Lemma 3.1 Let {xk}, {Bk}, {dk} be sequences generated by Algorithm 2.1. Then

dTkBkF (xk) = −‖F (xk)‖2 < 0. (3.1)

Lemma 3.2 Let {xk}, {f(xk)}, {Ck}, {Ak} be sequences generated by Algorithm 2.1. Then,

f(xk) ≤ Ck ≤ Ak. (3.2)

Lemma 3.3 Let {xk} be a sequence generated by Algorithm 2.1. Then

xk ∈ Ω, ∀k ∈ {1, 2, · · · }.

Lemma 3.4 Let {xk} be a sequence generated by Algorithm 2.1 and F (xk) 6= 0. If Assumption 4 holds,
then,

F (xk)TF
′
(xk)dk ≤ −(1− ε)‖F (xk)‖2. (3.3)

Lemma 3.5 Let Assumptions 1,2 and 4 hold. Then Algorithm 2.1 produces an iterate xk+1 = xk +αkdk
in a finite number of backtracking steps for a suitable σ.
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Theorem 3.5 Let {αk } be the steplength sequence generated by Algorithm 2.1. With Assumptions 3.1,
3.2 and 3.3, the following inequality

αk ≥ min

{
α0ρ,

2(1− ε− σ)ρm2

M2

}
(3.4)

holds for k sufficiently large.

Corollary 3.1 Let {xk}, {Ck} and {F (xk)} be sequences generated by Algorithm 2.1. Under Assump-
tions 3.1, 3.2 and 3.3, the inequality

f(xk+1) ≤ Ck − c‖F (xk)‖2 (3.5)

holds, where

c = min

{
σνρ,

2(1− ε− σ)σρm2

M2

}
is a constant scalar.

Theorem 3.6 Let {xk}, {F (xk)} be sequences generated by Algorithm 2.1. Under Assumptions 3.1, 3.2
and 3.3, the result

lim
k→∞

inf ‖F (xk)‖ = 0 (3.6)

is true.

4 NUMERICAL EXPERIMENTS

In this section, we test Algorithm 2.1 by solving five benchmark problems, four of them are nonsymmetric
equations and one is symmetrical.

Take ε = 10−5, σ = 0.25 and ρ = 0.01. For given initial values, we obtain the solutions of these
problems. For the following problems 6-4, which are nonsymmetric system of nonlinear equations, the
numerical performance of Algorithm is reported in Table 1. For a symmetric problem 5 that has been
solved in Gu G.Z. (2003), the numerical performance of Algorithm 2.1 is reported in Table 2.

Problem 1 Generalized function of Rosenbrock (Luksan L. (1994)).

Problem 2 Five-diagonal system Luksan L. (1994).

Problem 3 Trigonometric-Exponential System Luksan L. (1994).

Problem 4 Tridiagonal System Luksan L. (1994).

Problem 5 The discretized two-point boundary value problem (Gu G.Z. (2003),Li D.H. (1999)).

In the above table, the following notations are used.
Pro: the problem;
Dim: the dimension of the problem;
x0
i : the initial point, i = 1, 2, · · · , n;
x∗i : the optimal solutions, i = 1, 2, · · · , n;
k/N : the number of the iterations/the number of function evaluations;
Algo: the algorithms
Fnorm: the final value of‖F (xk)‖
NEW : the new algorithm;
−: unsuccessfully obtaining the optimal solution;
ηk = 0.2, ηk = 0.25, . . ., ηk = 0.85: the numerical performance of the nonmonotone line search strategy

for fixed value of ηk;
DBFGS and CBFGS: the algorithm of Gu G.Z. (2003).
The results in Table 1 indicate that the computational efficiency of the developed algorithm is better

than that of the existing method.

5 FINAL REMARKS

We have presented a new nonmonotone modified BFGS algorithm for solving smooth nonlinear equations
by incorporating a new nonmonotone line search technique. We have established the theory of global
convergence for the proposed method. Numerical experiments demonstrated that the developed algorithm
is more effective than the similar algorithms available in the literature.
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Table 4.1 Comparison with different strategies of ηk

Pro Dim ηk = 0.2 ηk = 0.25 ηk = 0.5 ηk = 0.75 ηk = 0.85 NEW x0
i x∗i

10 20/33 20/33 20/33 21/32 22/34 20/32
50 76/145 76/145 76/145 76/143 76/142 76/142

Problem 1 100 139/273 139/272 139/271 139/270 139/270 139/270 1.2 1
150 207/408 207/408 207/405 210/402 204/393 204/398
200 268/530 268/530 268/528 268/526 268/526 268/528

10 86/154 85/149 − − − 69/116
50 191/358 190/354 180/329 − − 157/275

Problem 2 100 312/621 312/618 301/582 290/559 275/520 262/488 -2 1
150 371/734 371/734 370/739 337/654 339/655 323/617
200 439/889 439/887 439/876 410/815 401/789 394/767

10 36/56 36/56 35/54 36/53 36/53 36/53
50 104/194 104/194 104/194 104/194 104/194 103/190

Problem 3 100 187/362 187/362 187/362 187/362 187/362 189/359 0 1
150 270/531 270/531 270/531 270/531 270/531 270/520
200 353/697 353/697 353/697 353/697 352/691 354/684

10 − − 548/1048 85/103 85/103 389/722
50 648/1277 653/1285 588/1108 564/1025 225/300 506/900

Problem 4 100 775/1548 736/1456 728/1397 704/1311 334/479 561/990 8 1
150 863/1719 856/1703 1165/2367 959/1834 949/1811 698/1267
200 958/2140 − 1398/ 2930 920/1764 839/1604 622/1106

Table 4.2 Comparison between DBFGS and CBFGS

Dim Algo k N Fnorm Dim k N Fnorm x0
i

DBFGS 128 144 9.83e-05 2131 2177 9.96e-05
CBFGS 127 159 9.69e-05 2416 2450 9.98e-05 10
NEW 11 14 1.87e-05 104 186 6.23e-05

DBFGS - - - 2121 2164 9.99e-05
CBFGS 138 170 9.42-05 1984 2062 9.96e-05 -10
NEW 11 14 2.04e-05 98 173 7.99e-05

DBFGS 155 179 9.54e-05 2742 2798 9.99e-05
CBFGS 145 219 9.64e-05 2534 2622 9.98e-05 100
NEW 12 15 7.63e-05 112 200 3.88e-05

10 DBFGS 157 173 9.53e-05 50 2735 2791 9.96e-05
CBFGS 164 222 9.31e-05 2677 2772 1.00e-04 -100

NEW 12 15 7.17e-05 120 217 7.54e-05
DBFGS 179 200 9.55e-05 3410 3461 9.97e-05
CBFGS 171 252 9.90e-05 3021 3067 9.97e-05 1000
NEW 13 16 4.63e-06 120 215 5.28e-05

DBFGS 184 212 9.88e-05 3337 3420 9.98e-05
CBFGS 165 202 9.36e-05 3382 3419 1.00e-05 -1000
NEW 13 16 1.39e-05 121 217 4.36e-05
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Abstract: In this research, we consider a class of optimal control problems involving inequality continuous-
state constraints in which the control is smooth. The requirement for this type of control is more stringent
than that for the control considered in standard optimal control problems in which the controls are usually
taken as bounded measurable function. In this research, we give control parametrization by using quadratic
B-spline functions. We shall then use it to devise a computational algorithm for solving this equivalent
dynamic optmization problem. Furthermore, convergence analysis is will be given to support this numerical
approach. For illustration, two nontrivial optimal control problems, involving transferring cargo via a
container crane will be solved using the proposed approach.

Key words: Optimal control; Smooth control, Spline function, Optimal parameter selection problem,
Safety requirement.

1 PROBLEM STATEMENT

Consider a system described by the following state differential equations defined on the fixed time interval
(0, T]:

ẋ(t) = f(t, x(t), u(t)) (1.1a)

where
x = [x1, . . . , xn]T ∈ Rn, u = [u1, . . . , ur]

T ∈ Rr

are, respectively, the state and control vectors; and f = [f1, ..., fn]T ∈ Rn is a given real-valued function.
The initial condition for the difierential equation (1.1) is:

x(0) = x0 (1.1b)

where x0 = [x0
1, . . . , x

0
n] is a given vector. Define

U = {v = [v1, . . . , vr]
T ∈ Rr : αi ≤ vi ≤ βi, i = 1, . . . , r} (1.2)

where αi, i = l, . . . , r, and βi, i = l, . . . , r, are given real numbers. Note that U is a compact and convex
subset of Rr.
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Definition 1.1 A function u : [0, T ] → Rr is said to be smooth if it is continuously differentiable on
[0, T ].

Let u be a smooth function defined on [0, T ] with values in U , and let u̇ denote the derivative of u. If

ci ≤ u̇i(t) ≤ di, ∀t ∈ [0, T ], i = 1, . . . , r, (1.3)

where ci, i = l, . . . , r, and di, i = 1, . . . , r, are given real numbers, then the u is called an admissible
control. Let U be the class of all such admissible controls. Furthermore, let Ů be a subset of the set U
defined by

Ů = {u ∈ U : αi < ui(t) < βi, ∀t ∈ [0, T ], i = 1 . . . , r} (1.4)

Note that the derivative u̇ of u is, in fact, only defined almost everywhere in [0, T ]. However, we may
assign appropriate values for the function u̇ at those points in [0, T ] at which the functional is not defined
so that the extended function satisfies the condition (1.3). Throughout remainder of this research, the
function u̇ is to be understood that it is in its extended form. Note also that the class U of admissible
controls considered in this section is more restrictive than that considered in [K.L. Teo and L.S. Jennings],
where bounded measurable functions are taken as admissible controls. For each u ∈ U , let x(·|u) be
the corresponding solution of the system (1.1). The inequality terminal state constraints and inequality
continuous state constraints are specified as follows:

Φi(x(T |u)) ≥ 0, i = 1, . . . , NT (1.5)

where Φi, i = 1, . . . , NT , are given real-valued functions defined on Rn, and

hi(t, x(t|u), u(t)) ≥ 0, ∀t ∈ [0, T ], i = 1, . . . , NS (1.6)

where hi, i = 1, ..., NS , are given real valued functions defined on [0, T ] × Rn × Rr. Note that the
admissible control is required to be smooth. Thus, it is allowed to appear in the inequality continuous
state constraints (1.6). This is a slight generalization of that considered in [K.L. Teo and L.S. Jennings].
Define

Θ = {u ∈ U : Φi(x(T |u)) ≥ 0, i = 1, . . . , NT } (1.7)

and
F = {u ∈ Θ : hi(t, x(t|u), u(t)) ≥ 0, ∀ ∈ [0, T ], i = 1, . . . , NS} (1.8)

Elements from F are called feasible controls, and F is called the class of feasible controls. We may now
state the optimal control problem as follows:

Problem (P). Given the system (1.1), find control u ∈ F such that the cost functional

g0(u) = Φ0(x(T |u)) +

T∫
0

L0(t, x(t|u), u(t))dt (1.9)

is minimized over F , where Φ0 and L0 are given real valued functions, and T is the terminal time of the
problem. The following conditions are assumed throughout:

(A1) f : [0, T ]×Rn×Rr → Rn is piecewise continuous on [0, T ] for each (x, u) ∈ R×Rr, and continuously
differentiable with respect to each of the components of x and u for each t ∈ [0, T ]; and furthermore,
for any given compact subset C ⊂ Rr, there exists a constant K > 0 such that

|f(t, x, u)| ≤ K(1 + |x|)

fopr all (t, x, u) ∈ [0, T ]× C × Rn, where | · | denotes the usual Euclidean norm;

(A2) For each i = 1, . . . , NT , Φi : Rn → R is continuously differentiable;

(A3) For each i = 1, . . . , N , hi : [0, T ]× Rn × Rr → R is continuously differentiable;

(A4) Φ0 : Rn → R is continuously differentiable;

(A5) L0 : [0, T ] × Rn × Rr → R is piecewise continuous on [0, T ] for each (x, u) ∈ Rn × Rr, and
continuously differentiable with respect to each of the components of x and u for each t ∈ [0, T ].
Define

Θ = {u ∈ U : Φi(x(T |u)) ≥ 0, i = 1, . . . , NT } (1.10)
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and
F = {u ∈ Θ : hi(t, x(t|u), u) ≥ 0, ∀t ∈ [0, T ], i = 1, . . . , N}. (1.11)

Let Θ̊ and F̊ be, respectively, subsets of the set Θ and F defined by

Θ̊ = {u ∈ Ů : Φi(x(T |u)) > 0, i = 1, . . . , N} (1.12)

To continue, we assume that the following condition is satisfied.

(A6) For any u ∈ F , there exists a ū ∈ F̊ such that

αū+ (1− α)u ∈ F̊ ∀α ∈ (0, 1].

2 SPLINE FUNCTIONS

Definition 2.1 Let m be integer satisfying m ≥ 0 and let S = {tk}k∈Z be sequence of nondecreasing real
numbers tk of length at least m+2. The k-th basis B-spline of degree m with knots S is defined recursively
by

Ωk,m(t) =
t− tk

tk+m − tk
Ωk,m−1(t) +

tk+m+1 − t
tk+m+1 − tk+1

Ωk+1,m−1(t)

for all m ≥ 1 and

Ωk,0(t) =

{
1, if tk ≤ t < tk+1

0, otherwise

for m = 0. Here, for convenience it is assumed that 0/0 = 0.

Definition 2.2 Let {tk}N+m+1
k=1 be a nondecreasing sequence of real numbers and let w be a linear com-

bination of B-splines Ω1,m, ...,ΩN,m, i.e.

w(σ, t) =

N∑
k=1

σkΩk,m(t), (2.1)

where σ ∈ RN and σ = (σ1, . . . , σN ). Then it is called as a spline function, or spline of degree m with
knots {tk}N+m+1

k=1 and {σk}Nk=1 are called the B-spline coefficients of it.

Bounds on spline function and its derivative

Consider spline function w with knots {tk}N+m+1
k=1 defined by the following

w(σ, t) =

N∑
k=1

σkΩk,2(t). (2.2)

Lemma 2.1 T.Lyche et al Spline function w given by (2.2) is bounded by its smallest and largest B-spline
coefficients, i.e. it holds

min
1≤k≤N

σk ≤ w(σ, t) ≤ max
1≤k≤N

σk ∀t ∈ [0, T ]. (2.3)

Corollary 1 Let α and β be real numbers satisfying α ≤ β. For spline function w given by (2.2) if
inequalities

α ≤ σk ≤ β (2.4)

are true for all k = 1, . . . , N, then it holds

α ≤ w(σ, t) ≤ β ∀t ∈ [0, T ]. (2.5)

Lemma 2.2 Let c and d be real numbers satisfying c ≤ d. For spline function w given by (2.2) if
inequalities

c

m
(tk+m − tk) ≤ σk − σk−1 ≤ d

m
(tk+m − tk) (2.6)

are true for all k = 2, . . . , N , then it holds

c ≤ w′(σ, t) ≤ d ∀t ∈ [0, T ]. (2.7)
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3 CONTROL PARAMETRIZATION

In this section, our aim is to convert the problem (P) into a form solvable by the optimal control software
MISER. We look for smooth optimal control. Let Sp denote set of np + 5 knot points defining partition
on interval [0, T ] and satisfying the following conditions

tp−1 < tp0 < . . . < tpnp+3 (3.1)

t1 = 0, tnp = T

for all p ∈ N. Notice that, a quadratic spline function is continuously differentiable, when knots points
are strictly increasing and we assume it in (3.1). Then each control is approximated by quadratic spline
function with knots Sp as it follows:

u(t) = w(σp, t) =

np∑
k=−1

σp,kΩk,2(t) ∀t ∈ [0, T ], (3.2)

where σp,k ∈ Rr are parameters to be determined optimally and their expansion is given by

(σp,k)> = [σp,k1 , . . . , σp,kr ]

for all k = 1, . . . , np. Moreover, σp denotes a matrix composed of these parameters, i.e.

σp = [(σp,1)>, . . . , (σp,np)>]>.

In view of the definition of U , the following constraints must be satisfied

αi ≤ ui(t) ≤ βi, i = 1, . . . , r, (3.3)

and
ci ≤ u̇i(t) ≤ di, ∀t ∈ [0, T ], i = 1, . . . , r. (3.4)

Control approximation (3.2) gives relaxation to these conditions. From Corrollary 1 it implies that
inequality (3.3) is true, if it holds

αi ≤ σp,ki ≤ βi

for all k = −2, . . . , np and i = 1, . . . r. Due to Lemma 2.2, the inequality (3.4) is relaxed in terms of knot
points Sp as it follows

ci
3

(
tpk+3 − t

p
k

)
≤ σp,ki − σp,k−1

i ≤ di
3

(
tpk+3 − t

p
k

)
(3.5)

for all i = 1, . . . , r and k = 2, . . . , np. Parametrization given by (3.2) implies that

ẋ(t) = f(t, x(t), w(σp, t)) (3.6a)

where

x = [x1, . . . , xn]T ∈ Rn, w(σp, t) =

 w1(σp1 , t)
...

wr(σ
p
r , t)

 , (3.6b)

where σpi denotes i-th row of the matrix σp for all i = 1, . . . , r.
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LAGRANGIAN FUNCTION FOR IMAGE MODELS
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Abstract: Motivated by proximity method and Lagrangian function, we investigate a novel framework
for study of the total-variation model for image denoising and obtain a scheme with close form for each
iteration. Under some stronger assumptions, we can prove the global convergence of the proposed methods.
We also give the connection of the algorithms with other proximity methods. Our numerical experience
indicates that the proposed methods perform favourably.
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Abstract: We investigate an optimal zero-forcing beamforming design problem in multiple antenna chan-
nels with restrictions on the total power or per-antenna element power constraints. Additional sidelobe
constraints aimed at controlling the sensitivity to the interference from unknown but non-user directions
will be introduced. These constraints also reduce the level of radiation from the base station array in
non-user directions. The design problem is formulated as an optimization problem, which will be solved
by using a recent developed exact penalty function method. Numerical results are given to illustrate the
efficiency of the optimization method and the effect of the additional constraints on the user information
rate that can be achieved. The numerical results are for two circular array geometries.

Key words: Zero-forcing beamformer; Total power constraints; Per-element power constraints; Exact
penalty function method.

1 INTRODUCTION

The challenges of providing broadband services in rural areas can be tackled through the utilization of a
range of communication techniques, which include advanced adaptive multicarrier modulation and coding;
QOS based on cross-layer scheduling; and multi-user multiple-input multiple-output (MU-MIMO) systems
to increase spectral efficiency. There has been much research on MU-MIMO in multipath environments
that naturally provide the channel diversity exploited by MU-MIMO. In rural areas, in order to maximize
range and coverage, the base-station/user channels will be dominated by line-of-sight (LOS) components
resulting from direct and ground reflections. Thus, we adopt a deterministic LOS channel model in this
research.

Zero-forcing beamforming (ZFBF) is a reduced complexity linear pre-coding strategy to serve multiple
users. Each user stream is coded independently and multiplied by a beamforming weight vector for
transmission through multiple BS antennas. ZFBF has been shown to achieve a large fraction of Dirty
Paper Coding (DPC) capacity when the base station has multiple antennas and each user has a single
antenna. DPC achieves a sum rate capacity that is linear in the number of transmit antennas.

In this paper, we investigate the optimal zero-forcing beamforming design problem with restrictions on
the total power or per-antenna element power constraints in addition to the sidelobe constraints. A recent
developed exact penalty function method is employed for solving the resulting optimization problems.
The effect of additional sidelobe constraints on the power and the user rate will also be investigated.
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2 OPTIMIZATION PROBLEM AND SOLUTION METHOD

Consider a system equipped with M antenna array elements transmitting information to N mobile users.
For 1 ≤ n ≤ N , the received signal yn for the nth mobile user is yn = hHn x + wn where hn is the nth

mobile’s complex channel vector, x denotes the antenna outputs and wn is the complex Gaussian noise
with mean 0 and variance σ2. By using the linear precoding method, the transmitted vectors x are
coded by precoding vectors. For 1 ≤ n ≤ N , denote by wn = [wn1, . . . , wnM ]T the weight vector that
maps the nth mobile data symbol bn to the M antenna outputs. Assume that the channel vector hn can
be estimated. The problem of optimizing the weight vectors {w1, . . . ,wN} to maximize the minimum
mobile achievable rate subject to per-element power and zero-forcing constraints can be formulated as

max
w1,··· ,wN

r

s. t. log2

(
1 +

|hHn wn|2
σ2

)
≥ r, ∀ 1 ≤ n ≤ N

N∑
n=1
|eTmwn|2 ≤ Pmax, ∀ 1 ≤ m ≤M

hHj wn = 0, ∀ j 6= n, 1 ≤ j, n ≤ N

(2.1)

where Pmax is a maximum per-element power and em the mth standard unit-basis vector in RN , which
has 1 for the mth component and 0 for other components. The problem of optimizing the weight vectors
to maximize the minimum mobile achievable rate subject to the total power and zero-forcing constraints
can be formulated as

max
w1,··· ,wN

r

s. t. log2

(
1 +

|hHn wn|2
σ2

)
≥ r, ∀ 1 ≤ n ≤ N

M∑
m=1

N∑
n=1
|eTmwk|2 ≤ P,

hHj wn = 0, ∀ j 6= n, 1 ≤ j, n ≤ N

(2.2)

where P is the maximum allowable total power.
We now consider the introduction of additional constraints aimed at controlling the sensitivity to in-

terference from unknown but non-user directions. These constraints will also reduce the level of radiation
from the base station array in no-nuser directions. We consider sidelobe constraints in K directions of
the form

|wH
n Skn| ≤ γkn, 1 ≤ k ≤ K, 1 ≤ n ≤ N

where wH
n Skn is the array response for a specific kth direction and γmk is a small sidelobe level. The

optimization problem (2.1) with sidelobe constraints can be expressed as

max
w1,··· ,wN

r

s. t. log2

(
1 +

|hHn wn|2
σ2

)
≥ r, ∀ 1 ≤ n ≤M

N∑
n=1
|eTmwn|2 ≤ Pmax, ∀ 1 ≤ m ≤M

hHj wn = 0, ∀ j 6= n, 1 ≤ j, n ≤M
|wH

n Skn| ≤ γkn, 1 ≤ k ≤ K, 1 ≤ n ≤ N.

(2.3)

The optimization problem (2.2) with additional sidelobe constraints can be formulated similarly. The
problems (2.1)–(2.3) are not convex optimization problems. However, by using the fact that the opti-
mum beamforming vectors are invariant to phase-shifts, i.e. if w∗n is an optimum solution, then the vector
ejθw∗n is also an optimum solution, it is possible to find an equivalent optimal solution so that hHn wn is
a real number by rotating the optimum solution. Consequently, the above optimization problems can be
transformed into convex optimization problems by restricting hHn wn to real numbers. A recently devel-
oped exact penalty function method is then employed to solve the resulting convex problems. Simulation
results show the effect of the sidelobe constraints on the per-element power constraints and the total
power constraints; and the trade-off between mobile user rate and the sidelobe levels.
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Abstract: As a special kind of hybrid system, Markov jump systems (MJSs) are appropriate and
reasonable to describe systems subject to abrupt and random variation in structures or parameters. In
recent years, MJSs have been studied extensively due to their comprehensive application in many areas,
such as in manufacturing systems, economic systems, electrical systems and communication systems, and
the existing results cover a large variety of problems such as stochastic stabilization, robust control and
filtering. In spite of these developments, there is little work done on nonlinear Markov jump systems (NMJS).
Actually, random changes or sudden variations in structures or parameters are commonly encountered in
many practical dynamic nonlinear systems, so the investigation of control problems on nonlinear Markov
jump systems is a topic worthy of investigation. This paper concerns the problem of stochastic optimal
control for a class of nonlinear systems subject to Markov jump parameters. Gradient linearization procedure
is employed and the nonlinear system is described by several linear Markov jump systems. Next, a mode-
dependent Lyapunov function is constructed for these linear systems, and a sufficient condition is derived
to make them stochastically stable. Then, a continuous gain-scheduled approach is applied to design a
continuous nonlinear optimal controller on the entire extended nonlinear jump system. A simulation example
is given to illustrate the effectiveness of the developed techniques.

Key words: Markov jump system; Stochastically stable; Optimal control; Gain scheduling.
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Abstract: The discrete filled function method is a global optimization tool for searching for the best
solution amongst multiple local optima. This method has proven useful for solving large-scale discrete
optimization problems. In this paper, we consider a standard discrete filled function algorithm in the
literature and then propose a modification to increase its efficiency.
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1 BACKGROUND

The discrete filled function method is one of the more recently developed global optimization tools for
discrete optimization problems. Once a local minimum has been determined by an ordinary descent
method, the discrete filled function approach involves the introduction of an auxiliary function, called a
filled function, to avoid entrapment in the basin associated with this minimum. The local minimizer of
the original function becomes a local maximizer of the filled function. By minimizing the filled function,
the search moves away from the current local minimizer in the hope of escaping the basin associated with
this minimizer and finding an improved solution.

The first filled function was introduced by Ge in the late 1980s Ge R. (1990) in the context of solving
continuous global optimization problems. Zhu Zhu W. (1998) is believed to be the first researcher to
introduce a discrete equivalent of the continuous filled function method in the late 1990s. This discrete
filled function method overcomes the difficulties encountered in using a continuous approximation of the
discrete optimization problem. However, the filled function proposed by Zhu contains an exponential
term, which consequently makes it difficult to determine a point in a lower basin Ng C.K. (2007). Since
the introduction of the original discrete filled function by Zhu, several new types of discrete filled functions
with improved theoretical properties have been proposed, such as in Ng C.K. (2007); Yang Y. (2008);
Shang Y. (2008), to enhance computational efficiency. A comprehensive survey of several discrete filled
functions in the literature has been given in Woon S.F. (2010). The study showed that the discrete filled
function developed in Ng C.K. (2007) seems to be the most reliable one since it guarantees that a local
minimizer of the filled function is also a local minimizer of the original function, whereas other filled
functions do not share this property. The goal of this paper is to propose an improved filled function
algorithm based on the work in Ng C.K. (2007).
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2 CONCEPTS & APPROACH

Consider the following nonlinear discrete optimization problem:

min f(x), s.t. x ∈ X, (2.1)

where X = {x ∈ Zn : xi,min ≤ xi ≤ xi,max, i = 1, . . . , n, }, Zn is the set of integer points in Rn, and
xi,min, xi,max, i = 1, . . . , n, are given bounds. Let x1 and x2 be any two distinct points in the box
constrained set X. Since X is bounded, there exists a constant K such that

1 ≤ max
x1,x2∈X
x1 6=x2

‖ x1 − x2 ‖≤ K <∞, (2.2)

where ‖ · ‖ is the Euclidean norm. We make the following assumption.

Assumption 2.1 There exists a constant L, 0 < L <∞, such that

|f(x1)− f(x2)| ≤ L ‖ x1 − x2 ‖, (x1,x2) ∈ X ×X.

We now recall some familiar definitions and concepts used in the discrete optimization area.

Definition 2.1 A sequence {x(i)}k+1
i=0 in X is a discrete path between two distinct points x∗ and x∗∗ in

X if x(0) = x∗, x(k+1) = x∗∗, x(i) ∈ X for all i, x(i) 6= x(j) for i 6= j, and ‖ x(i+1) − x(i) ‖= 1 for all i.
Let A be a subset of X. If, for all x∗,x∗∗ ∈ A, x∗ and x∗∗ are connected by a discrete path, then A is
called a pathwise connected set.

Definition 2.2 For any x ∈ X, the neighbourhood of x is defined by

N(x) = {w ∈ X : w = x± ei, i = 1, . . . , n},

where ei denotes the i-th standard unit basis vector of Rn with the i-th component equal to one and all
other components equal to zero.

Definition 2.3 The set of feasible directions at x ∈ X is defined by

D(x) = {d ∈ Rn : x + d ∈ N(x)} ⊂ E = {±e1, . . . ,±en}.

Definition 2.4 d ∈ D(x) is a descent direction of f at x if f(x + d) < f(x).

Definition 2.5 d∗ ∈ D(x) is a steepest descent direction of f at x if it is a descent direction and
f(x + d∗) ≤ f(x + d) for any d ∈ D(x).

Definition 2.6 x∗ ∈ X is a local minimizer of X if f(x∗) ≤ f(x) for all x ∈ N(x∗). If f(x∗) < f(x)
for all x ∈ N(x∗) \ x∗, then x∗ is a strict local minimizer of f .

Definition 2.7 x∗ is a global minimizer of f if f(x∗) ≤ f(x) for all x ∈ X. If f(x∗) < f(x) for all
x ∈ X \ x∗, then x∗ is a strict global minimizer of f .

Definition 2.8 x is a vertex of X if for each d ∈ D(x), x + d ∈ X and x − d /∈ X. Let X̃ denote the
set of vertices of X.

Definition 2.9 B∗ ⊂ X is a discrete basin of f corresponding to the local minimizer x∗ if it satisfies the
following conditions:

B∗ is pathwise connected.

B∗ contains x∗.

For each x ∈ B∗, any connected path starting at x and consisting of descent steps converges to x∗.

Definition 2.10 Let x∗ and x∗∗ be two distinct local minimizers of f . If f(x∗∗) < f(x∗), then the
discrete basin B∗∗ of f associated with x∗∗ is said to be lower than the discrete basin B∗ of f associated
with x∗.



A MODIFIED DISCRETE FILLED FUNCTION ALGORITHM FOR SOLVING NONLINEAR DISCRETE OPTIMIZATION PROBLEMS 329

Definition 2.11 Let x∗ be a local minimizer of −f . The discrete basin of −f at x∗ is called a discrete
hill of f at x∗.

Definition 2.12 For a given local minimizer x∗, define the discrete sets SL(x∗) = {x ∈ X : f(x) <
f(x∗)} and SU (x∗) = {x ∈ X : f(x) ≥ f(x∗)}. Note that SL(x∗) contains the points lower than x∗,
while SU (x∗) contains the points higher than x∗.

Let x∗ be a local minimizer of f . In Ng C.K. (2007), the discrete filled function Gµ,ρ,x∗ at x∗ is defined
as follows:

Gµ,ρ,x∗(x) = Aµ(f(x)− f(x∗))− ρ ‖ x− x∗ ‖, (2.3)

Aµ(y) = µy

[
(1− c)

(
1− cµ
µ− cµ

)−y/ω
+ c

]
,

where ω > 0 is a sufficiently small number, c ∈ (0, 1) is a constant, ρ > 0, and 0 < µ < 1. It can be
shown that the function Gµ,ρ,x∗(x) is a discrete filled function when certain conditions on the parameters
µ and ρ are satisfied, as detailed by the following properties proved in Ng C.K. (2007):

� x∗ is a strict local maximizer of Gµ,ρ,x∗ if ρ > 0 and 0 < µ < min{1, ρ/L}.

� If x∗ is a global minimizer of f , then Gµ,ρ,x∗(x) < 0 for all x ∈ X \ x∗.

� Let d̄ ∈ D(x̄) be a feasible direction at x̄ ∈ SU (x∗) such that ‖ x̄ + d̄ − x∗ ‖>‖ x̄ − x∗ ‖. If
ρ > 0 and 0 < µ < min{1, ρ

2K2L}, then

Gµ,ρ,x∗(x̄ + d̄) < Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x
∗).

� Let x∗∗ be a strict local minimizer of f with f(x∗∗) < f(x∗). If ρ > 0 is sufficiently small and
0 < µ < 1, then x∗∗ is a strict local minimizer of Gµ,ρ,x∗ .

� Let x́ be a local minimizer of Gµ,ρ,x∗ and suppose that there exists a feasible direction d̄ ∈ D(x́)
such that ‖ x́ + d̄− x∗ ‖>‖ x́− x∗ ‖. If ρ > 0 is sufficiently small and 0 < µ < min{1, ρ

2K2L},
then x́ is a local minimizer of f .

� Assume that every local minimizer of f is strict. Suppose that ρ > 0 is sufficiently small and
0 < µ < min{1, ρ

2K2L}. Then, x∗∗ ∈ X \ X̃ is a local minimizer of f with f(x∗∗) < f(x∗) if
and only if x∗∗ is a local minimizer of Gµ,ρ,x∗ .

3 THE STANDARD ALGORITHM

The discrete filled function approach can be described as follows. First, an initial point is chosen and a
local search is applied to find an initial discrete local minimizer. Then, the filled function is constructed
at this local minimizer. By minimizing the filled function, either an improved discrete local minimizer
is found or the boundary of the feasible region is reached. The discrete local minimizer of the filled
function usually becomes a new starting point for minimizing the original objective with the hope of
finding an improved point compared to the first local minimizer. A new filled function is constructed
at this improved point. The process is repeated until no improved local minimizer of the original filled
function can be found. The final discrete local minimizer is then taken as an approximation of the global
minimizer. If a local minimizer of the filled function cannot be found after repeated searches terminate on
the boundary of the box constrained feasible region, then the parameters defining the filled function are
adjusted and the search is repeated. This adjustment of the parameters continues until the parameters
reach their predetermined bounds; the best solution obtained so far is then taken as the global minimizer.
The parameter µ is reduced if x́ is neither a vertex nor an improved point and we return to Step 4(b).
When all searches terminate at vertices (` > q), ρ is adjusted. The algorithm for minimizing Gµ,ρ,x∗

exits prematurely when an improved point xk with f(xk) < f(x∗) is found in Step 4 of Algorithm ??.
The algorithm sets x0 := xk and returns to Step 2 to minimize the original function f . Note that a
direction yielding the greatest improvement of f +Gµ,ρ,x∗ is chosen when minimizing Gµ,ρ,x∗ , assuming
that a direction for improving f and Gµ,ρ,x∗ simultaneously exists. If such a direction does not exist, the
algorithm chooses the steepest descent direction for Gµ,ρ,x∗ alone.
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Table 4.1 Comparison of Algorithms - Colville’s Function.

Types Ef,avg EG,avg RE,avg

Standard Algorithm 1679.5 5247.2 0.008635805

Modified Algorithm 1143.2 2954.7 0.005878038

4 A MODIFIED APPROACH

We replace the neighbourhood N(x∗) in Step 3 of the standard Algorithm with a set of randomly chosen
points from X. Then, an additional step is added to test whether any one of these random points
happens to be an improved point. The motivation for this modification is to search for improved points
more efficiently by choosing points which give a broader coverage of X, similar to the approaches proposed
in Shang Y. (2005); Shang Y. (2008); Yang Y. (2007). In the standard approach, the initial points are
chosen as the neighbouring points of the current local solution.

We tested both the original algorithm and our modified version on Colville’s function. This function
has 1.94481 × 105 feasible points and a global minimum x∗global = [1, 1, 1, 1]> with f(x∗global) = 0. We
initialized both parameters µ and ρ as 0.1 and set ρL = 0.001. The parameter µ is reduced if x́ is neither
a vertex nor an improved point by setting µ := µ/10.

Computational results are shown in Table 4.1, where Ef is the total number of original function eval-
uations, EG represents the total number of discrete filled function evaluations, and RE denotes the ratio
of the average number of original function evaluations to the total number of feasible points.

Problem 1: Colville’s Function Schittkowski K. (1987)

min f(x) = 100
(
x2 − x2

1

)2
+
(
1− x1

)2
+ 90

(
x4 − x2

3

)2
+
(
1− x3

)2
+ 10.1

[(
x2 − 1

)2
+
(
x4 − 1

)2]
+ 19.8

(
x2 − 1

)(
x4 − 1

)
,

s.t. − 10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.

Six starting points are considered, namely [1, 1, 0, 0]>, [1, 1, 1, 1]>, [−10, 10,−10, 10]>, [−10,−5, 0, 5]>,
[−10, 0, 0,−10]>, and [0, 0, 0, 0]>. From Table 4.1, both algorithms succeeded in finding the global min-
imum from all starting points. Our algorithm succeeds in determining the global solution of Colville’s
function much more efficiently with an average Ef = 1143.2, compared with Ef = 1679.5 for the standard
algorithm, which is a reduction of 31.9% in the average number of original function evaluations. How-
ever, the gain in efficiency for our Algorithm is offset somewhat by reduced reliability, since we sometimes
needed to repeat the algorithm several times for each starting point before a global solution was attained.
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Università di Padova, via Gradenigo, 6/B – I-35131 Padova, Italy.
bDepartment of Mathematics and Statistics

Curtin University, Perth WA, Australia.
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1 INTRODUCTION

This paper introduces new results on the singular linear quadratic optimal control problem for continuous-
time systems. It is a well known fact that when the matrix penalising the control in the performance
index to be minimised – traditionally denoted by R – is positive definite, the optimal control can be
expressed as a static state-feedback, whose gain depends on the solution of a standard algebraic Riccati
equation. This equation involves the inverse of matrix R. When this matrix is singular, the optimal
control is guaranteed to exist for any initial condition only if the set of allowed inputs is extended to
include distributions (Dirac delta and its derivatives in the sense of distributions). In this case, the
standard Riccati equation is not defined, and the problem has been solved in the literature mainly by
resorting to a geometric approach, see e.g. Willems at al. (1986); Hautus and Silverman (1983); Saberi
and Sannuti (1987).

A different perspective was established in Prattichizzo et al. (2008), where the main focus of the geo-
metric analysis was the Hamiltonian system. Indeed, the cornerstone of that paper was the interpretation
of the LQ regulator as an output nulling problem referred to the Hamiltonian system. In particular, by
writing the conditions for optimality in the form of the Hamiltonian system, whose output has to be
maintained identically equal to zero, the singular LQ problem reduces to finding a state feedback such
that the state-costate trajectory entirely lies on the largest stabilisability subspace of the Hamiltonian
system. The analysis carried out in that paper was restricted to the cheap LQ problem, i.e., the one in
which the matrices weighting the control in the objective function are zero.

In recent years, another important tool aimed at characterising the solutions of the so-called gener-
alised continuous algebraic Riccati equation has been introduced in the literature: the Hamiltonian matrix
pencil (sometimes also referred to as “extended Hamiltonian pencil” in analogy with the extended sym-
plectic pencil of the discrete time counterpart), see van Dooren (1983); Weiss (1994); Ionescu and Oarǎ
(1996); Ionescu et al. (1996). The aim of this paper is to establish a link between the approach taken in
Prattichizzo et al. (2008) based on the Hamiltonian system with that based on the Hamiltonian pencil.
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Indeed, the latter is nothing more than the Rosenbrock matrix pencil associated with the Hamiltonian
system, see Ionescu et al. (1996), p. 86. In this paper, we show that there exists a simple correspondence
between the proper right deflating subspaces of the Hamiltonian matrix pencil with the output-nulling
subspaces of the Hamiltonian system and that a dual correspondence exists between the proper left deflat-
ing subspaces of the Hamiltonian matrix pencil with the input-containing subspaces of the Hamiltonian
system. This very simple observation is crucial as it can immediately lead to the derivation of simple
conditions under which the singular LQ problem admits an impulse-free solution expressed in terms of
a stabilising state feedback for any initial condition. To that end, the approach taken in Weiss (1994),
which provides conditions under which an n-dimensional stable and proper right deflating subspace of
the Hamiltonian matrix pencil exists, is exploited in this paper to show that under the same conditions
the projection of the largest stabilisability subspace of the Hamiltonian system on the state space of the
original system coincides with the state space itself. Therefore for any initial condition we can find an
optimal stabilising state feedback optimal control by suitably manipulating the friend associated with
such stabilisability subspace.

2 SINGULAR LQ PROBLEM

Consider the linear time-invariant (LTI) state differential equation with initial condition

ẋ(t) = Ax(t) +B u(t), x(0) = x0 ∈ Rn, (2.1)

where, for all t≥ 0, the vectors x(t)∈Rn and u(t)∈Rm represent the state and the control input, respec-
tively, and A, B are real constant matrices of proper sizes, i.e., A ∈ Rn×n and B ∈ Rn×m. Let Q ∈ Rn×n,
S ∈ Rn×m and R ∈ Rm×m be such that

Π
def
=

[
Q S
S> R

]
= Π> ≥ 0. (2.2)

In view of (2.2), matrix Π can be factored as

Π =
[
C> D>

] [ C
D

]
where Q = C> C, S = C>D and R = D>D. (2.3)

Using the nomenclature of Ionescu et al. (1996), matrix Π is referred to as Popov matrix. Notice that
here we do not require R to be positive definite. We denote by Σ a quadruple (A,B,C,D) where C and
D are such that (2.3) holds.

The singular LQ problem we consider in this paper can be stated as follows.

Problem 6 Determine under which conditions for all x0 ∈ Rn the input u(t) that minimises the perfor-
mance index

J(x, u) =

∫ ∞
0

[
x>(t) u>(t)

] [ Q S
S> R

] [
x(t)
u(t)

]
dt

is impulse-free and can be expressed as a static state feedback u(t) = F x(t), with the additional require-
ment that A+B F be asymptotically stable.

In general, it is well known that Problem 6 is guaranteed to be solvable for any initial condition x0 ∈ Rn
only if the set of allowed inputs is extended to include distributions (Dirac delta and its distributional
derivatives). In this case, the standard continuous algebraic Riccati equation is not defined, and the
problem has been solved in the literature mainly by resorting to a geometric approach, see e.g. Willems
at al. (1986); Hautus and Silverman (1983); Saberi and Sannuti (1987). Here we are interested in the
impulse-free solutions, with the requirement of asymptotic stability of the closed loop. The approach
based on the Hamiltonian system hinges on the fact that if u(t) and x(t) are optimal for Problem 6, then
a costate function λ(t)∈Rn, exists such that x(t), λ(t) and u(t) satisfy for all t ≥ 0 the equations

ẋ(t) = Ax(t) +B u(t), (2.4)

λ̇(t) = −Qx(t)− S u(t)−A> λ(t), (2.5)

Ru(t) + S> x(t) +B> λ(t) = 0, (2.6)

x(0) = x0. (2.7)

We now introduce some fundamental objects associated with the classical LQ optimal control problem.
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3 THE HAMILTONIAN SYSTEM AND THE HAMILTONIAN MATRIX PENCIL

Recall that the Hamiltonian system associated with the Popov triple Σ is an LTI system defined by the
equations [

ẋ(t)

λ̇(t)

]
=

[
A 0
−Q −A>

] [
x(t)
λ(t)

]
+

[
B
−S

]
u(t),

y(t) =
[
S> B>

] [ x(t)
λ(t)

]
+Ru(t),

(3.1)

where the variable λ(t) is the costate. We define Â
def
=
[
A 0

−Q −A>

]
, B̂

def
=
[
B

−S

]
, Ĉ

def
= [ S> B> ]

and D̂
def
= R. The Hamiltonian system (3.1) is identified with the quadruple Σ̂

def
= (Â, B̂, Ĉ, D̂). The

Hamiltonian system is a fundamental tool in the solution of continuous-time differential and algebraic
Riccati equations, and it has strong relations with the corresponding optimal control problem. Indeed,
comparing (3.1) with (2.4)-(2.6), it emerges that the optimal control and state trajectory satisfy the
Hamiltonian system with an identically zero output for a suitable costate function λ. This consideration
is crucial, and recasts the optimal control problem into an output-nulling problem for the Hamiltonian
system (3.1). On the other hand, the trajectories of Σ̂ that yield an identically zero output are those

and only those for which the state-costate vector
[
x(t)

λ(t)

]
lies entirely on an output-nulling subspace1 of

Σ̂. Since in addition we have a stability requirement on the closed-loop system,
[
x0

λ0

]
must belong to the

largest stabilisability subspace2 of the Hamiltonian system, herein denoted by V̂?g , see also Prattichizzo
et al. (2008). Thus, we have the following result.

Theorem 3.1 Let
[
V1

V2

]
be a basis matrix of V̂?g . Given x0 ∈ Rn, a state and input functions x(t) and

u(t) exist satisfying (2.4-2.7) if and only if x0 ∈ imV1.

Corollary 3.1 A state and input functions x(t) and u(t) satisfy (2.4-2.6) for any x0 ∈ Rn if and only
if imV1 = Rn.

Another important tool that is often introduced in the theory of continuous-time Riccati equations is
the so-called Hamiltonian matrix pencil, which coincides with the Rosenbrock matrix pencil associated
with the Hamiltonian system (3.1). More explicitly, the Hamiltonian matrix pencil is N − sM , where
the matrices N and M are defined as

M ,

 In 0 0
0 In 0
0 0 0

 , and N ,

 A 0 B
−Q −A> −S
S> B> R

 .
It follows that the invariant zeros of the Hamiltonian system are the generalised eigenvalues of the Hamil-
tonian pencil. The Hamiltonian pencil has been used by several authors to characterise the stabilising
solution of the generalised algebraic Riccati equation, see van Dooren (1983); Weiss (1994); Ionescu and
Oarǎ (1996).

Theorem 3.2 Given a proper right deflating subspace of the Hamiltonian matrix pencil N−sM spanned

by the matrix V =
[
V >1 V >2 V >3

]>
partitioned conformably with M and N , the columns of V =[

V >1 V >2
]>

are a basis of an output-nulling subspace of (3.1). Conversely, given an output-nulling

subspace of the Hamiltonian system (3.1) spanned by the basis matrix V =
[
V >1 V >2

]>
partitioned con-

formably with (3.1), and given two matrices Ξ and Ω such that (3.5) holds, the matrix V =
[
V >1 V >2 Ω>

]>
spans a proper right deflating subspace of N − sM .

Proof: Consider the basis matrix V =
[
V >1 V >2 V >3

]>
of a proper right deflating subspace of the

Hamiltonian matrix pencil N − sM . By definition, a matrix Φ exists such that M V Φ = N V where
MV is injective, so that In 0 0

0 In 0
0 0 0

 V1

V2

V3

Φ =

 A 0 B
−Q −A> −S
S> B> R

 V1

V2

V3

 . (3.2)
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We now notice that equation (3.2) can be equivalently written as A 0
−Q −A>

S> B>

[ V1

V2

]
=

 V1

V2

0

Φ−

 B
−S

R

V3, (3.3)

which says that im
[
V1

V2

]
is output-nulling for the Hamiltonian system by virtue of the equivalence of

(3.4) and (3.5), see the Notes at the end of the paper. Conversely, if im
[
V1

V2

]
is output-nulling for the

Hamiltonian system, two matrices Ξ and Ω exist such that (3.5) holds with Â, B̂, Ĉ and D̂ in place of
A, B, C, D, which means that (3.2) holds with Φ = Ξ and V3 = Ω. Hence, (3.2) holds under the same

substitutions, which means that V =
[
V >1 V >2 Ω>

]>
is a right deflating subspace of the Hamiltonian

matrix pencil N − sM . It is proper since
[
V1

V2

]
is of full column rank.

The dual of Theorem 3.2 is as follows.

Theorem 3.3 Given a proper left deflating subspace kerW of the Hamiltonian matrix pencil N − sM ,
where W is partitioned as

[
W1 W2 W3

]
conformably with M and N , then ker

[
W1 W2

]
is an

input-containing3 subspace of (3.1). Conversely, given an input-containing subspace of (3.1) equal to

kerW where W =
[
W>1 W>2

]>
is full row-rank and partitioned conformably with (3.1), and given

two matrices Γ and Λ such that (3.7) holds, the null-space of the matrix W =
[
W1 W2 Λ

]
is a

proper left deflating subspace of the Hamiltonian matrix pencil N − sM .

Proof: By definition, a left deflating subspace kerW is such that there exists Ψ for which ΨW M = W N
with W M full row-rank. The proof follows by dualising the proof of Theorem 3.2, by noticing the
equivalence of[

W1 W2

] [ A 0 B
−Q −A> −S

]
= Γ

[
W1 W2 0

]
+ Λ

[
S> B> R

]
with

[
W1 W2 W3

]
N = Ψ

[
W1 W2 W3

]
diag{In, In, 0} under the substitutions Γ = Ψ and

Λ = −W3.
The following result, which relates the fundamental subspaces of the Hamiltonian system Σ̂ with those

of the original system Σ, generalises Lemma 4.3 in Prattichizzo et al. (2008) in two directions. First, we
are not assuming that D is zero (i.e., that the LQ problem is cheap). Second, Σ is not necessarily left
invertible.

Theorem 3.4 Let R?, V? and S? denote the largest controllability subspace, the largest output-nulling
and the smallest input containing subspaces of Σ, respectively. Moreover, let R̂?, V̂? and Ŝ? denote the
same subspaces referred to the Hamiltonian system Σ̂. The following identities hold:

dim R̂? = dimR?

dim Ŝ? = 2 dimS? − dimR?

dim V̂? = 2n− 2 dimS? + dimR?

The following result can be found in Weiss (1994).

Theorem 3.5 Let the pair (A,B) be stabilisable and let the Hamiltonian system (3.1) be devoid of
invariant zeros on the imaginary axis. Then, the Hamiltonian pencil N−sM has an n-dimensional stable

proper deflating subspace. Let this deflating subspace be spanned by the matrix V =
[
V >1 V >2 V >3

]>
partitioned conformably with M and N . Then, V1 is invertible.

Proof: This statement follows from Weiss (1994), p. 679, by observing that the absence of generalised
eigenvalues on the imaginary axis of the Hamiltonian pencil is equivalent to the absence of invariant zeros
on the imaginary axis of the Hamiltonian system. This, in view of the stabilisability of the pair (A,B),
in turn corresponds to the absence of unobservable eigenvalues of the pair (A,C), where C is any matrix
which, together with a matrix D, factorises the Popov matrix as in (2.3).

Corollary 3.2 Consider the factorisation (2.3), and let rankG(jω) = rankD for every ω ∈ R. Let
the pair (A,B) be stabilisable and let the Hamiltonian system (3.1) be devoid of invariant zeros on the

imaginary axis. Then, the largest stabilisability subspace V̂?g of the Hamiltonian system has dimension n.
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Proof: This result follows directly from Theorem 3.5 and Theorem 3.2.

Theorem 3.6 Let rankG(jω) = rankD for every ω ∈ R. Let the pair (A,B) be stabilisable and let the
Hamiltonian system (3.1) be devoid of invariant zeros on the imaginary axis. For all x0 ∈ Rn, a control
exists such that (2.4-2.7) hold and the state converges to zero, and such control can be expressed as a
static state feedback.

Proof: Under the assumptions considered, the state-costate trajectory lies on V̂?g , whose dimension is

equal to n. Since from Theorem 3.5 a basis matrix for V̂?g is given by the columns of
[
V >1 V >2

]>
with

V1 square and invertible, it follows that the projection of V̂?g on the state space Rn coincides with Rn.

For any x0 ∈ Rn, there exists λ0 ∈ Rn such that
[
x0

λ0

]
∈ V̂?g . The corresponding control can be expressed

as a feedback of the sole state x(t). Let F̂ =
[
Fx Fλ

]
be a friend of V̂?g that assigns stable closed-loop

eigenvalues of Â + B̂ F̂ restricted to V̂?g . The control can therefore be expressed as a static feedback of

the state-costate vector using F̂ , i.e, u(t) =
[
Fx Fλ

] [ x(t)

λ(t)

]
, where for all t ≥ 0 we have

[
x(t)

λ(t)

]
∈ V̂?g ,

so that we can write
[
x(t)

λ(t)

]
=
[
V1

V2

]
α(t) for a suitable function α(t). Thus, the state x(t) identically lies

on the projection of V̂?g on the state space, which is spanned by V1. Hence

u(t) =
[
Fx Fλ

] [ V1

V2

]
α(t) =

[
Fx Fλ

] [ In
V2 V

−1
1

]
V1 α(t) = (Fx + Fλ V2 V

−1
1 )x(t),

i.e., we have expressed the control as a state feedback of the sole state x(t). Moreover, since F̂ drives
the state-costate trajectory to the origin as t→∞, then Fx +Fλ V2 V

−1
1 drives the state to the origin as

t→∞.

Example 3.1 Consider the Popov triple characterised by the matrices

A =

[
−9 0
0 0

]
, B =

[
0
9

]
, Q =

[
18 0
0 0

]
, S =

[
0
0

]
, R = 0.

This system is stabilisable (the uncontrollable eigenvalue is equal to −9). Moreover, from the factorisation

Π =
[
C>

D>

]
[C D ] with C =

[
3
√

2 0
]

and D = 0, since G(s) = C (s I − A)−1B +D ≡ 0, we find that

indeed rankG(jω) = rankD = 0 for all ω ∈ R. A direct check shows that the zeros of the Hamiltonian

system are {9,−9}. The largest stabilisability subspace of the Hamiltonian system is V̂?g = im

[
1 0
0 1
1 0
0 0

]
.

A friend F̂ of V̂?g that assigns the eigenvalue −9 with double multiplicity to the spectrum of Â + B̂ F̂

restricted to V̂?g is F̂ =
[

0 −1 0 0
]
. The feedback matrix F = Fx+Fλ V2 V

−1
1 =

[
0 −1

]
assigns

the spectrum σ(A+B F ) = {−9} with double multiplicity. However, since this system is not left invertible,

as the largest controllability subspace4 is R? = im
[

0

1

]
, we can find the gains by changing the spectrum of

A+B F restricted to R?. Let us compute a friend F̂ of V̂?g which assigns the eigenvalues {−3,−9} to the

spectrum of (Â+ B̂ F̂ | V̂?g ). We get F̂ =
[

0 −1/3 0 0
]
. Then, F = Fx+Fλ V2 V

−1
1 =

[
0 −1/3

]
assigns the spectrum σ(A+B F ) = {−3,−9}.

Notes

1. We recall that, given a quadruple (A,B,C,D), an output-nulling subspace is a subspace V of the state-space satisfying
the inclusion [

A
C

]
V ⊆ (V ⊕ {0}) + im

[
B
D

]
, (3.4)

which is equivalent to the existence of a matrix F (referred to as a friend of V) such that (A+B F )V ⊆ V ⊆ ker(C+DF ),
see Trentelman et al. (2001), p. 160. Notice that in view of (3.4), we have that given a subspace V and a basis matrix V
(i.e., a matrix whose columns are linearly independent and that span V), then V is output-nulling if and only if two matrices
Ξ and Ω exist such that [

A
C

]
V =

[
V
0

]
Ξ +

[
B
D

]
Ω, (3.5)

see Ntogramatzidis (2007); Ntogramatzidis (2008). Since the set of output-nulling subspaces of a given quadruple is closed
under subspace addition, there exists a largest output-nulling subspace – denoted by V? – which represents the set of all
initial states for which a control can be found that maintains the output at zero.
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2. Given a quadruple (A,B,C,D), an output-nulling subspace V is referred to as a stabilisability subspace if a friend F
exists such that the map A + B F restricted to V is asymptotically stable. When the pair (A,B) is stabilisable, then also
the map induced by A+ B F in the quotient space Rn/V is stable, so that F exists such that the spectrum of A+ B F is
stable. The set of stabilisability subspaces is closed under addition, and its largest element is denoted by V?g .

3. Given a quadruple (A,B,C,D), an input-containing subspace is a subspace S of the state-space satisfying the inclusion[
A B

] (
(S ⊕ Rm) ∩ ker

[
C D

])
⊆ S, (3.6)

Trentelman et al. (2001), p. 185. In view of (3.4), given a subspace S and a full row-rank matrix W such that kerW = S,
then S is input containing if and only if two matrices Γ and Λ exist such that

W
[
A B

]
= Γ

[
W 0

]
+ Λ

[
C D

]
, (3.7)

see Ntogramatzidis (2007); Ntogramatzidis (2008). Since the set of input-containing subspaces is closed under subspace
intersection, there exists a smallest input-containing subspace indicated by S?.

4. The largest controllability subspace of a quadruple (A,B,C,D) can be computed as the intersection R? = V? ∩ S?,
Trentelman et al. (2001), Theorem 8.22. This subspace represents the states that can be driven to the origin by maintaining

the output identically equal to zero. If
[
B

D

]
is full column-rank, the quadruple (A,B,C,D) is left invertible if and only if

R? = {0}.
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Abstract: In this paper, we consider a general nonlinear control system that is subject to both terminal
state and continuous inequality constraints. The continuous inequality constraints must be satisfied at every
point in the time horizon—an infinite number of points. Our aim is to design an optimal feedback controller
that yields efficient system performance and satisfaction of all constraints. We first formulate this problem
as a semi-infinite optimization problem. We then show that, by using a novel exact penalty approach, this
semi-infinite optimization problem can be converted into a sequence of nonlinear programming problems,
each of which can be solved using standard numerical techniques. We conclude the paper with some
convergence results.

Key words: Optimal control; State feedback; Exact penalty function; Nonlinear programming.

1 PROBLEM FORMULATION

We consider nonlinear control systems in the following general form:

ẋ(t) = f(t,x(t),u(t)), t ∈ [0, T ], (1.1)

x(0) = x0, (1.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rr is the control, x0 ∈ Rn is a given initial state, T is a given
terminal time, and f : R× Rn × Rr → Rn is a given continuously differentiable function.

System (1.1)-(1.2) is subject to the following terminal state constraints:

Ψi(x(T )) = 0, i = 1, . . . , p, (1.3)

where Ψi : Rn → R, i = 1, . . . , p are given continuously differentiable functions.
In addition, system (1.1)-(1.2) is subject to a set of continuous inequality constraints defined as follows:

hj(t,x(t),u(t)) ≤ 0, t ∈ [0, T ], j = 1, . . . , q, (1.4)

where hj : R × Rn × Rr → R, j = 1, . . . , q are given continuously differentiable functions. Note that
control bounds can be easily incorporated into (1.4).

Our aim is to design an optimal state feedback control for system (1.1)-(1.2). To this end, we assume
that the control takes the following form:

u(t) = ϕ(x(t), ζ), t ∈ [0, T ], (1.5)

where ζ ∈ Rm is a vector of feedback control parameters and ϕ : Rn ×Rm → Rr is a given continuously
differentiable function. Typical choices for the feedback controller (1.5) include linear state feedback
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control (in which ϕ is a linear function—see Khalil H. K. (2002)) and PID control (in which ϕ is the
sum of linear, integral, and derivative terms—see Li B. (2011)).

The feedback control parameters ζk, k = 1, . . . ,m are subject to the following bound constraints:

ak ≤ ζk ≤ bk, k = 1, . . . ,m, (1.6)

where ak and bk, k = 1, . . . ,m are given constants. Let Γ denote the set of all ζ ∈ Rm satisfying (1.6).
Substituting (1.5) into (1.1) gives

ẋ(t) = f̃(t,x(t), ζ), t ∈ [0, T ], (1.7)

where
f̃(t,x(t), ζ) = f(t,x(t),ϕ(x(t), ζ)).

Let x(·|ζ) denote the solution of system (1.7) with the initial condition (1.2). Then the terminal con-
straints (1.3) become

Ψi(x(T |ζ)) = 0, i = 1, . . . , p. (1.8)

Substituting the feedback control (1.5) into the continuous inequality constraints (1.4) gives

h̃j(t,x(t|ζ), ζ) ≤ 0, t ∈ [0, T ], j = 1, . . . , q, (1.9)

where
h̃j(t,x(t|ζ), ζ) = hj(t,x(t|ζ),ϕ(x(t|ζ), ζ)).

Let Λ denote the set of all ζ ∈ Γ satisfying (1.8) and (1.9).
We now consider the problem of choosing the feedback control parameters ζk, k = 1, . . . ,m to minimize

the total system cost subject to the constraints (1.8) and (1.9).

Problem P Choose ζ ∈ Λ to minimize the cost function

J(ζ) = Φ(x(T |ζ), ζ) +

∫ T

0

L(t,x(t|ζ), ζ)dt,

where Φ : Rn × Rm → R and L : R× Rn × Rm → R are given continuously differentiable functions.

Note that (1.9) defines an infinite number of constraints—one for each point in [0, T ]. Hence, Problem P
can be viewed as a semi-infinite optimization problem. In the next section, we will use a novel exact
penalty approach to approximate Problem P by a nonlinear programming problem.

2 AN EXACT PENALTY METHOD

Define a constraint violation function on Γ as follows:

∆(ζ) =

p∑
i=1

Ψi(x(T |ζ))2 +

q∑
j=1

∫ T

0

max
{
h̃j(t,x(t|ζ), ζ), 0

}2
dt.

Clearly, ∆(ζ) = 0 if and only if ζ ∈ Λ.
Let ε̄ > 0 be a given constant. We consider the following penalty function defined on Γ× [0, ε̄]:

Gσ(ζ, ε) =


J(ζ), if ε = 0, ∆(ζ) = 0,

J(ζ) + ε−α∆(ζ) + σεβ , if ε ∈ (0, ε̄],

∞, if ε = 0, ∆(ζ) 6= 0,

(2.1)

where ε ∈ [0, ε̄] is a new decision variable, α and β are fixed constants such that 1 ≤ β ≤ α, and σ > 0 is
a penalty parameter.

In the penalty function (2.1), the last term σεβ is designed to penalize large values of ε, while the middle
term ε−α∆(ζ) is designed to penalize constraint violations. When σ is large, minimizing (2.1) forces ε
to be small, which in turn causes ε−α to become large, and thus constraint violations are penalized very
severely. Hence, minimizing the penalty function for large σ will likely lead to feasible points satisfying
constraints (1.8) and (1.9). On this basis, we can approximate Problem P by the following penalty
problem.
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Problem Q Choose (ζ, ε) ∈ Γ× (0, ε̄] to minimize the penalty function

Gσ(ζ, ε) = J(ζ) + ε−α∆(ζ) + σεβ .

Problem Q only involves bound constraints and is therefore much easier to solve than Problem P. In the
next section, we will present some convergence results that formally link Problem Q with Problem P.
First, however, we discuss how to solve Problem Q.

Problem Q can be viewed as a nonlinear programming problem in which the feedback control parame-
ters ζk, k = 1, . . . ,m and the new decision variable ε need to be chosen to minimize the penalty function
Gσ. Numerical algorithms for solving such problems typically use the gradient of the cost function to
compute descent directions that lead to more profitable areas of the feasible region (Luenberger D. G.
(2008)). Notice, however, that ζ influences Gσ implicitly through the dynamic system (1.7), and thus
computing the gradient of Gσ is not straightforward. Nevertheless, the techniques developed by Vincent
and Grantham (Vincent (1981)) and Loxton et al. (Loxton R. (2008)) can be used to derive formulae for
the gradient of Gσ. This is described below.

First, for each k = 1, . . . ,m, consider the following variational system:

φ̇k(t) =
∂f̃(t,x(t|ζ), ζ)

∂x
φk(t) +

∂f̃(t,x(t|ζ), ζ)

∂ζk
, t ∈ [0, T ], (2.2)

φk(0) = 0. (2.3)

Let φk(·|ζ) denote the solution of the variational system (2.2)-(2.3). We have the following result.

Theorem 2.1 For each k = 1, . . . ,m,

∂x(t|ζ)

∂ζk
= φk(t|ζ), t ∈ [0, T ].

Proof. First, note that
∂

∂ζk

{
x(0|ζ)

}
=

∂

∂ζk

{
x0
}

= 0. (2.4)

Thus, ∂x(·|ζ)/∂ζk satisfies the initial condition (2.3).
Now, by (1.7),

x(t|ζ) = x(0|ζ) +

∫ t

0

f̃(s,x(s|ζ), ζ)ds = x0 +

∫ t

0

f̃(s,x(s|ζ), ζ)ds, t ∈ [0, T ]. (2.5)

It can be shown that x(t|ζ) is a continuously differentiable function of ζk, k = 1, . . . ,m (Loxton R.
(2011)). Hence, by using Leibniz’s rule to differentiate (2.5) with respect to ζk, we obtain

∂x(t|ζ)

∂ζk
=

∫ t

0

{
∂f̃(s,x(s|ζ), ζ)

∂x

∂x(s|ζ)

∂ζk
+
∂f̃(s,x(s|ζ), ζ)

∂ζk

}
ds, t ∈ [0, T ], (2.6)

where

∂f̃(s,x(s|ζ), ζ)

∂x
=
∂f(s,x(s|ζ),ϕ(x(s|ζ), ζ))

∂x
+
∂f(s,x(s|ζ),ϕ(x(s|ζ), ζ))

∂u

∂ϕ(x(s|ζ), ζ)

∂x

and
∂f̃(s,x(s|ζ), ζ)

∂ζk
=
∂f(s,x(s|ζ),ϕ(x(s|ζ), ζ))

∂u

∂ϕ(x(s|ζ), ζ)

∂ζk
.

Differentiating (2.6) with respect to time yields

d

dt

{
∂x(t|ζ)

∂ζk

}
=
∂f̃(t,x(t|ζ), ζ)

∂x

∂x(t|ζ)

∂ζk
+
∂f̃(t,x(t|ζ), ζ)

∂ζk
, t ∈ [0, T ]. (2.7)

Equations (2.4) and (2.7) show that ∂x(·|ζ)/∂ζk is the solution of the variational system (2.2)-(2.3). This
completes the proof. 2

We are now ready to derive formulae for the gradient of Gσ.
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Theorem 2.2 The partial derivatives of Gσ are given by

∂Gσ(ζ, ε)

∂ζk
=
∂J(ζ)

∂ζk
+ ε−α

∂∆(ζ)

∂ζk
, k = 1, . . . ,m, (2.8)

and
∂Gσ(ζ, ε)

∂ε
= −αε−α−1∆(ζ) + βσεβ−1, (2.9)

where

∂J(ζ)

∂ζk
=
∂Φ(x(T |ζ), ζ)

∂x
φk(T |ζ) +

∂Φ(x(T |ζ), ζ)

∂ζk
+

∫ T

0

{
∂L(t,x(t|ζ), ζ)

∂x
φk(t|ζ) +

∂L(t,x(t|ζ), ζ)

∂ζk

}
dt,

∂∆(ζ)

∂ζk
= 2

p∑
i=1

Ψi(x(T |ζ))
∂Ψi(x(T |ζ))

∂x
φk(T |ζ)

+ 2

q∑
j=1

∫ T

0

max
{
h̃j(t,x(t|ζ), ζ), 0

}{∂h̃j(t,x(t|ζ), ζ)

∂x
φj(t|ζ) +

∂h̃j(t,x(t|ζ), ζ)

∂ζk

}
dt.

Proof. From Theorem 2.1, we have

∂J(ζ)

∂ζk
=
∂Φ(x(T |ζ), ζ)

∂x

∂x(T |ζ)

∂ζk
+
∂Φ(x(t|ζ), ζ)

∂ζk
+

∫ T

0

{
∂L(t,x(t|ζ), ζ)

∂x

∂x(t|ζ)

∂ζk
+
L(t,x(t|ζ), ζ)

∂ζk

}
dt

=
∂Φ(x(T |ζ), ζ)

∂x
φk(T |ζ) +

∂Φ(x(T |ζ), ζ)

∂ζk
+

∫ T

0

{
∂L(t,x(t|ζ), ζ)

∂x
φk(t|ζ) +

L(t,x(t|ζ), ζ)

∂ζk

}
dt.

Similarly,

∂∆(ζ)

∂ζk
= 2

p∑
i=1

Ψi(x(T |ζ))
∂Ψi(x(T |ζ))

∂x
φk(T |ζ)

+ 2

q∑
j=1

∫ T

0

max
{
h̃j(t,x(t|ζ), ζ), 0

}{∂h̃j(t,x(t|ζ), ζ)

∂x

∂x(t|ζ)

∂ζk
+
∂h̃j(t,x(t|ζ), ζ)

∂ζk

}
dt

= 2

p∑
i=1

Ψi(x(T |ζ))
∂Ψi(x(T |ζ))

∂x
φk(T |ζ)

+ 2

q∑
j=1

∫ T

0

max
{
h̃j(t,x(t|ζ), ζ), 0

}{∂h̃j(t,x(t|ζ), ζ)

∂x
φk(t|ζ) +

∂h̃j(t,x(t|ζ), ζ)

∂ζk

}
dt.

Equation (2.8) follows immediately from these equations. Equation (2.9) is obtained using standard
differentiation rules. 2

On the basis of Theorem 2.2, we can compute the gradient of Gσ using the following procedure:
(i) Combine the original control system with the variational systems to form an expanded initial value
problem; (ii) Solve this expanded initial value problem using a numerical integration method; (iii) Sub-
stitute the solution of the initial value problem into (2.8) and (2.9). This procedure can be integrated
with a standard gradient-based optimization method—e.g. sequential quadratic programming (Nocedal
J. (2006))—to solve Problem Q as a nonlinear programming problem.

3 CONVERGENCE RESULTS

In this section, we describe the mathematical theory relating Problem P with Problem Q. We begin with
the following result proved by Lin et al. (Lin Q. (2012)).

Theorem 3.1 Let {σl}∞l=1 be an increasing sequence of penalty parameters such that σl →∞ as l→∞.
Furthermore, let (ζl,∗, εl,∗) denote a global solution of Problem Q. Then the sequence {(ζl,∗, εl,∗)}∞l=1 has
at least one limit point, and any limit point is a global solution of Problem P.

Theorem 3.1 suggests that we can obtain a solution of Problem P by solving Problem Q sequentially
for increasing values of the penalty parameter. As mentioned in the previous section, Problem Q is
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essentially a nonlinear programming problem that can be solved using standard numerical optimization
techniques.

One disadvantage of Theorem 3.1 is that it requires the global solution of Problem Q. Problem Q is
non-convex in general, and thus we will usually only be able to solve it locally. Nevertheless, by making
some mild assumptions, one can show that a local solution of Problem Q converges to a local solution of
Problem P as the penalty parameter increases.

We assume that for each feasible point ζ ∈ Λ of Problem P, the following conditions are satisfied:

(A1) The vectors ∂Ψi(x(T |ζ))/∂ζ, i = 1, . . . , p are linearly independent (when p 6= 0).

(A2) There exists a vector [η1, . . . , ηm]> ∈ Rm and negative real numbers ϑ1 < 0 and ϑ2 < 0 such that

m∑
k=1

ηk
∂Ψi(x(T |ζ))

∂ζk
= 0, i = 1, . . . , p,

m∑
k=1

ηk

{
∂h̃j(t,x(t|ζ), ζ)

∂x
φk(t|ζ) +

∂h̃j(t,x(t|ζ), ζ)

∂ζk

}
< ϑ1,

t ∈ { s ∈ [0, T ] : h̃j(s,x(s|ζ), ζ) ≥ ϑ2 }, j = 1, . . . , q,

ηk

{
> 0, if ζk = ak,

< 0, if ζk = bk.

(A3) There exists a constant L > 0 and a neighbourhood N of ζ such that for each j = 1, . . . , q,

max
{
h̃j(t,x(t|ζ′), ζ′), 0

}2 ≤ L
∫ T

0

max
{
h̃j(s,x(s|ζ′), ζ′), 0

}2
ds, (ζ′, t) ∈ N × [0, T ].

Under Assumptions (A1)-(A3), we have the following result proved by Lin et al. (Lin Q. (2012)).

Theorem 3.2 Let {σl}∞l=1 be an increasing sequence of penalty parameters such that σl →∞ as l→∞.
Furthermore, let (ζl,∗, εl,∗) denote a local solution of Problem Q. Suppose that {Gσl(ζl,∗, εl,∗)}∞l=1 is
bounded. Then there exists a positive integer l′ such that for each l ≥ l′, ζl,∗ is a local solution of
Problem P.

Theorem 3.2 implies that when the penalty parameter σ is sufficiently large, the values of the feedback
control parameters in a locally optimal solution for Problem Q will also be locally optimal for Problem P.
On this basis, we propose the following algorithm for solving Problem P:

(1) Choose ζ0 ∈ Γ (initial guess), σ0 > 0 (initial penalty parameter), ρ > 0 (tolerance), and σmax > σ0

(upper bound for the penalty parameter).

(2) Set ε̄→ ε0 and σ0 → σ.

(3) Starting with (ζ0, ε0) as the initial guess, use a nonlinear programming algorithm (e.g. sequential
quadratic programming) to solve Problem Q. Let (ζ∗, ε∗) denote the local minimizer obtained.

(4) If ε∗ < ρ, then stop: take ζ∗ as a local solution of Problem P. Otherwise, set 10σ → σ and go to
Step 5.

(5) If σ ≤ σmax, then set (ζ∗, ε∗) → (ζ0, ε0) and go to Step 3. Otherwise stop: the algorithm cannot
find a solution of Problem P.
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in conventional penalty methods. Furthermore, we apply our new method to solve test problems from the
CUTEr collection.
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Abstract: In this paper, firstly, the necessary and sufficient optimality conditions for ε-global properly
efficient elements of set-valued optimization problems, respectively, were established in linear spaces. Sec-
ondly, an equivalent characterization of ε-global proper saddle point is presented. Finally, the necessary
and sufficient conditions for ε-global properly saddle point of a Lagrangian set-valued map were obtained.
The results in this paper generalize some known results in the literature.

Key words: Set-valued maps; Generalized cone subconvexlikeness; ε-global properly efficient element;
ε-global proper saddle point.

1 INTRODUCTION

In recent decades, some authors have been interested in studying generalized convexity of set-valued
maps to overcome the restriction of convexity of set-valued maps. Borwein (Borwein J.M (1977)) and
Giannessi (Giannessi F (1984)) introduced cone convexity of set-valued maps. Based on Borwein and
Giannessi’s work, some authors (Rong W.D (2000), Li Z.F (1998), Yang X.M (2000), Sach P.H (2005),
Yang X.M (2001)) introduced some new notions of generalized convexity such as cone convexlikeness,
cone subconvexlikeness, generalized cone subconvexlikeness, ic-cone-convexlikeness and nearly cone sub-
convexlikeness. Under the assumption of the above generalized convexity, some optimality conditions
were established.

We know that there is some relation between efficiency of solutions and optimality conditions. Some-
times, it is difficult to find the exact solutions of vector optimization problems with set-valued maps.
To overcome the difficulty, some authors introduced different types of approximate solutions. Recently,
with the development of set-valued analysis, some new progress about approximate solutions of vector
optimization problems with set-valued maps has been made. Rong and Wu (Rong W.D (2000)) firstly
introduced ε-weakly efficient solution of vector optimization problems with set-valued maps. Li et al. (
Li T.Y (2007)) and Tuan (Tuan L.A (2010)) defined ε-strictly efficient solution and ε-Benson properly
efficient solution of vector optimization problems with set-valued maps, respectively.

Note that, in the above mentioned papers, vector optimization problems with set-valued maps are
restricted in the setting of topological linear spaces or locally convex spaces. Since linear spaces are much
wider than topological linear spaces or locally convex spaces, it is necessary to establish new optimality
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conditions in linear spaces. Under the assumption of generalized convexity of set-valued maps, Li (Li Z.M
(1999)) and Hernández et al. (Hernández E (2007)) were devoted to establishing optimality conditions
of vector optimization problems with set-valued maps in linear spaces.

In this paper, our purpose is to derive some ε-optimality conditions of vector optimization problems
with set-valued maps by using the notion of ε-global proper efficiency introduced by Zhou and Peng
(Zhou Z.A (2012)) in linear spaces. This paper is organized as follows. In Section 2, we give some
preliminaries, including notations and lemmas. In Section 3, under the assumption of generalized cone
subconvexlikeness, we present the necessary and sufficient optimality conditions for ε-global properly
efficient elements of set-valued optimization problems in linear spaces. In Section 4, we obtain the
necessary and sufficient conditions for ε-global proper saddle points of a Lagrangian set-valued map.

2 ε-OPTIMALITY CONDITIONS

In this section, we will present the necessary and sufficient optimality conditions for ε-global properly
efficient elements of set-valued optimization problems.

We denote by L(Z, Y ) the set of all linear operators from Z to Y . A subset L+(Z, Y ) of L(Z, Y ) is
defined as L+(Z, Y ) := {T ∈ L(Z, Y )|T (D) ⊆ C}. The Lagrangian set-valued map of (VP) is defined by

L(x, T ) := F (x) + T (G(x)),∀(x, T ) ∈ A× L+(Z, Y ).
Consider the following unconstrained vector optimization problem with set-valued maps:

(UVP)T Min L(x, T ) subject to (x, T ) ∈ A× L+(Z, Y ).
Let I(x) = F (x)×G(x),∀x ∈ A. By Definition 2.5, the set-valued map I : A⇒ Y × Z is generalized

C ×D-subconvexlike on A iff cone(I(A)) + cor(C ×D) is a convex set in Y × Z.
Theorem 3.1 Let ε ∈ C, x ∈ S and 0 ∈ G(x). Suppose that the following conditions hold:
(i) (x, y) is an ε-global properly efficient element of (VP);
(ii) I(x) is generalized C ×D-subconvexlike on A, where I(x) = (F (x)− y + ε)×G(x);
(iii) vcl(cone(G(A) +D)) = Z;
Then, there exists T ∈ L+(Z, Y ) and a nontrivial pointed convex cone C ′ with C \ {0} ⊆ cor(C ′) such
that −T (G(x)∩ (−D)) ⊆ (cor(C)∪{0})\ (ε+ cor(C ′)) and (x, y) is an ε-global properly efficient element
of (UVP)T .

We can give an example to illustrate Theorem 3.1.
Remark 3.1 Condition (iii) was introduced by Sach (Sach P.H (2005)) in locally convex spaces. Note
that Condition (iii) can be replaced by the condition 0 ∈ cor(G(A)+D). We assert that the latter implies
the former. Indeed, let 0 ∈ cor(G(A) + D). Clearly, vcl(cone(G(A) + D)) ⊆ Z. we only show that Z ⊆
vcl(cone(G(A) +D)). Let z ∈ Z. Since 0 ∈ cor(G(A) +D), there exists γ > 0 such that γz ∈ G(A) +D.
Clearly, z ∈ 1

γ (G(A) + D) ⊆ vcl(cone(G(A) + D)). Hence, vcl(cone(G(A) + D)) = Z. However, we can

give an example to show that Condition (iii) does not imply the condition 0 ∈ cor(G(A) +D).
Remark 3.2 If ε = 0, then −T (G(x) ∩ (−D)) = {0}. Clearly, 0 ∈ −T (G(x) ∩ (−D)) ⊆ −T (G(x)).
Therefore, 0 ∈ T (G(x)). Thus, from the proof of Theorem 3.1, the condition that 0 ∈ G(x) can be
droppeded.
Theorem 3.2 Let ε ∈ C, x ∈ S and y ∈ F (x). If there exists T ∈ L+(Z, Y ) such that (x, y) is an ε-global
properly efficient element of (UVP)T , then (x, y) is an ε-global properly efficient element of (VP).
Remark 3.3 If ε = 0 and the linear spaces Y and Z are replaced by the locally convex spaces, then
Theorem 3.2 reduces to Theorem 3.2 in (Yu G.L. (2009)).

3 ε-GLOBAL PROPER SADDLE POINTS

In (Yu G.L. (2009)), Yu and Liu introduced the notion of the global proper saddle point of the Lagrangian
set-valued map L(x, T ) in locally convex spaces. Next, we will introduce a new notion called ε-global
proper saddle point of the Lagrangian set-valued map L(x, T ) in linear spaces.
Definition 4.1 (x, T ) ∈ A × L+(Z, Y ) is called an ε-global proper saddle point of the Lagrangian
set-valued map L(x, T ) iff

L(x, T ) ∩ ε-GMin(
⋃
x∈A

L(x, T ), C) ∩ ε-GMax(
⋃

T∈L+(Z,Y )

L(x, T ), C) 6= ∅.

The following proposition is an important equivalent characterization for an ε-global proper saddle
point of the Lagrangian set-valued map L(x, T ).
Proposition 4.1 Let vcl(D) = D and ε ∈ C. Then, (x, T ) ∈ A× L+(Z, Y ) is an ε-global proper saddle
point of the Lagrangian set-valued map L(x, T ) iff there exist y ∈ F (x), z ∈ G(x) and a nontrivial pointed
convex cone C ′ with C \ {0} ⊆ cor(C ′) such that
(i) y + T (z) ∈ ε-GMin(

⋃
x∈A

L(x, T ), C);
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(ii) G(x) ⊆ −D;
(iii) −T (z) ∈ C \ (ε+ C ′ \ {0});
(iv) (F (x)− y − T (z)− ε) ∩ (C ′ \ {0}) = ∅.

We can give an example to illustrate the sufficiency of Proposition 4.1.
Remark 4.1 When we prove the sufficiency of Proposition 4.1, we use the condition G(x) ⊆ −D. The
condition G(x) ∩ (−D) 6= ∅ is weaker than the condition G(x) ⊆ −D, but we can give an example to
show that the condition G(x) ⊆ −D cannot be replaced by the condition G(x) ∩ (−D) 6= ∅.
Theorem 4.1 Let vcl(D) = D, ε ∈ C and 0 ∈ G(x). If (x, T ) ∈ A × L+(Z, Y ) is an ε-globally proper
saddle point of the Lagrangian set-valued map L(x, T ), then there exist y ∈ F (x) and z ∈ G(x) such that
(x, y) is an ε-global properly efficient element of (VP), where ε = ε− T (z).
Remark 4.2 If ε = 0 and the linear spaces Y and Z becomes the locally convex spaces, then Theorem
4.1 reduces to Theorem 4.2 in (Yu G.L. (2009)).

Finally, under the assumption of generalized cone subconvexlikeness, a sufficient condition of the
existence of ε-global proper saddle point of the Lagrangian set-valued map L(x, T ) will be established.
Theorem 4.2 Let vcl(D) = D, ε ∈ C and 0 ∈ G(x). Suppose that the following conditions hold:
(i) (x, y) is a ε-global properly efficient element of (VP);
(ii) I(x) is generalized C ×D-subconvexlike on A, where I(x) = (F (x)− y + ε)×G(x);
(iii) vcl(cone(G(A) +D)) = Z;
(v) y ∈ ε-GMax(

⋃
T∈L+(Z,Y )

L(x, T ), C).

Then, there exists T ∈ L+(Z, Y ) such that (x, T ) is an ε-global proper saddle point of L.
Remark 4.3 According to Theorems 3.1 and the sufficiency of Proposition 4.1, if ε = 0 and G(x) ⊆ −D,
then the condition that 0 ∈ G(x) can be dropped and condition (v) can be replaced by the condition that
there exist y ∈ F (x), z ∈ G(x) and a nontrivial pointed convex cone C ′ with C \ {0} ⊆ cor(C ′) such that
(F (x)− y) ∩ (C ′ \ {0}) = ∅.

4 CONCLUSION

In this paper, we consider ε-optimality conditions of vector optimization problems with set-valued maps
based on the algebraic interior in real linear spaces. Using a separation theorem characterized by the
algebraic interior, we obtain the necessary and sufficient optimality conditions for ε-global properly effi-
cient element of set-valued optimization problem. By a strong separation theorem characterized by the
algebraic interior and the vector closure, we give an equivalent characterization of an ε-global proper sad-
dle point for the Lagrangian set-valued map L(x, T ). We also establish the relation between an ε-global
proper saddle point of L(x, T ) and an ε-global properly efficient element of (VP). Our results in this
paper generalize some known results in the literature. Following the line in this paper, whether other
kinds of proper efficiency such as Henig proper efficiency and super proper efficiency can be discussed in
linear spaces is an interesting topic.
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Abstract: In this paper, by using a alternative theorem, we establish Lagrangian conditions and dual-
ity results for set-valued vector optimization problems when the objective and constant are nearly cone-
subconvexlike multifunctions in the sense of E-weak minimizer.
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1 INTRODUCTION

Optimality conditions and duality theorems for optimization problems of single-valued functions satisfy-
ing convexity or weaker conditions have been studied by many authors, see ([Corley 1981]), ([Borwein
1977]), ([Hayashi and Komiya 1982]), ([Craven and Jeyakumar 1987]), ([Jahn 1986]), ([Jeyakumar and
Oettli 1993]), ([Illes and Kassay 1999]), ([Khanh and Nuong 1989]). In particular, in works of ([Hayashi
and Komiya 1982]), ([Craven and Jeyakumar 1987]), ([Jahn 1986]), ([Jeyakumar and Oettli 1993]), La-
grangian conditions and duality theorems for convexlike functions and a class of quasiconvex functions
were discussed.

In recent years, many authors have generalized the single-valued functions to set-valued mappings,
for its extensive applications in many fields such as mathematical programming ([Aubin and Frankowska
1990]) economics ([Klein and Thompson 1984]) and differential inclusions ([Robinson 1979]). In par-
ticular, Lagrangian conditions and duality theorems were discussed when the objective and constraint
are convex, preinvex, subconvexlike and nearly convexlike set-valued mappings in ([Corley 1987]), ([Luc
1989]), ([Bhatia and Mehra 1997]), ([Li and Chen 1997]), ([Rong and Wu 2000]) and ([Song,1996]),
respectively.

Recently, Yang, Li and Wang ([Yang et al. 2001]) introduced a new class of generalized convexity for
set-valued functions, called nearly cone-subconvexlike, which is a generalization of the set-valued functions
mentioned above. They obtained a alternative theorem, a Lagrangian multiplier theorem and two scalar-
ization theorems. Sach ([Sach 2003]) showed some characterizations of nearly cone-subconvexlikeness and
established some saddle theorems under nearly cone-subconvexlikeness conditions for set-valued vector
optimization. Some related works, we refer to ([Peng and Yang 2001]).

∗Corresponding author
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In this paper, under nearly cone-subconvexlikeness, Lagrangian conditions and duality results for
set-valued vector optimization problems are obtained in the sense of E-weak minimizer by using the
alternative theorem of Yang, Li and Wang ([Yang et al. 2001]) .

2 PRELIMINARIES

Let F : X → 2Y and G : X → 2Z be two set-valued mappings with nonempty value. We consider the
following vector optimization problem with set-valued mappings:

(P) min F (x)

s.t. G(x) ∩ (−D) 6= ∅.

Let K denote the set of all feasible points for the problem (P), i.e.,

K = {x ∈ X | G(x) ∩ (−D) 6= ∅}.

Let E ⊂ Y be a nonempty subset, and let ε ∈ C.

Definition 2.1

(i) A point x0 ∈ K is said to be a weak efficient solution of problem (P ), if there exists y0 ∈ F (x0)
such that (F (K)− y0) ∩ (−intC) = ∅. The pair (x0, y0) is said to be a weak minimizer of problem
(P ).

(ii) A point x0 ∈ K is said to be an ε-weak efficient solution of problem (P ), if there exists y0 ∈ F (x0)
such that (F (K) − y0 + ε) ∩ (−intC) = ∅. The pair (x0, y0) is said to be ε-weak minimizer of
problem (P ).

(iii) A point x0 ∈ K is said to be an E-weak efficient solution of problem (P ), if there exists y0 ∈ F (x0)
such that (F (K) − y0 + E) ∩ (−intC) = ∅. The pair (x0, y0) is said to be E-weak minimizer of
problem (P ).

It is clear that the set of weak efficient solutions is contained in the set of ε-weak efficient solutions.
Some relationships between ε-weak efficient solutions and E-weak efficient solutions were investigated in
([Huang 2002]) as follows:

(i) if E = {ε}, then an E-weak efficient solution of problem (P ) becomes a ε-weak efficient solution of
problem (P );

(ii) if x0 is an E-weak efficient solution of problem (P ) and there exists ε′ ∈ E such that ε − ε′ ∈ C,
then x0 is an ε-weak efficient solution of problem (P );

(iiii) if x0 is an ε-weak efficient solution of problem (P ) and E − ε ⊂ C, then x0 is an E-weak efficient
solution of problem (P ).

Definition 2.3 Let X be a convex set. A set-valued function F : X → 2Y is said to be C-convex on X
if, for any x1, x2 ∈ X and λ ∈ [0, 1], one has

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

Definition 2.4 ([Li and Chen 1997])

(i) A set-valued function F : X → 2Y is said to be C-convexlike on X if, for all x1, x2 ∈ X and
λ ∈ (0, 1),

λF (x1) + (1− λ)F (x2) ⊂ F (X) + C.

(ii) A set-valued function F : X → 2Y is said to be C-subconvexlike on X if, there exists θ ∈ intC such
that for all x1, x2 ∈ X, λ ∈ (0, 1), and ε > 0,

εθ + λF (x1) + (1− λ)F (x2) ⊂ F (X) + C.

Remark 2.1 In Definition 2.3, X may be a nonconvex set.
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Remark 2.2 From ([Li and Chen 1997]), we know that

(i) F is C-convexlike on X if and only if F (X) + C is a convex set;

(ii) F is C-subconvexlike on X if and only if F (X) + intC is a convex set.

Lemma 2.1 If F : X → 2Y is C-convexlike on X, then F is C-subconvexlike on X.

Definition 2.4 ([Song,1996]) A set-valued function F : X → 2Y is said to be nearly C-convexlike on X
if cl(F (X) + C) is a convex set.

Remark 2.3 If F (X) + intC is a convex set, then cl(F (X) +C) is a convex set, because cl(F (X) +C) =
cl(F (X) + intC).

In order to prove Theorem 2.1, we need the following lemma.

Lemma 2.2 ([Breckner and Kassay 1997]) Let C be a convex cone in Y with intC 6= ∅, and let S be a
subset of Y . Then

int[cl(S + C)] = S + intC.

Theorem 2.1 If F : X → 2Y is nearly C-convexlike on X, then F (X) + intC is a convex set.
Proof. Since F is nearly C-convexlike on X, then cl(F (X) +C) is a convex set. Noting that the interior
of a convex set is convex, it follows that int[cl(F (X) + C)] is covex. By Lemma 2.2, we have that
F (X) + intC is a convex set. This completes the proof. 2

Corollary 2.1 If F : X → 2Y is nearly C-convexlike on X if and only if F (X) + intC is convex.

Definition 2.5 ([Yang et al. 2001]) A set-valued function F : X → 2Y is said to be nearly C-
subconvexlike on X if and only if clcone(F (X) + C) is a convex set.

3 MAIN RESULTS

In this section, let L(Z, Y ) denote the set of all linear continuous operators Λ : Z → Y with Λ(D) ⊂ C
and E ⊂ intC be a subset.

Theorem 3.1 Let intC 6= ∅ and G(K)∩ (−intD) 6= ∅. Assume that set-valued function (F − y0 +E,G)
is nearly (C ×D)-subconvexlike on K. If (x0, y0) is E-weak minimizer of problem (P ), then there exists
Λ ∈ L(Z, Y ) such that (x0, y0) is E-weak minimizer of the following problem:

(P ) min
x∈K

(F (x) + Λ(G(x))

and
−Λ(G(x0) ∩ (−D)) ⊂ (intC ∪ {0}) \ (E + intC).

Now, we consider the dual problem. Define a set-valued mapping Φ : L(Z, Y )→ 2Y by

Φ(Λ) = {y | ∃x ∈ K such that (x, y) is E-weak minimizer of problem P}.

Consider the following maximum problem:

(DP) max Φ(Λ)

s.t. Λ ∈ L(Z, Y ).

A point Λ ∈ L(Z, Y ) is said to be a feasible point of problem (DP ) if Φ(Λ) 6= ∅. We say that (Λ0, y0)
is E-weak maximizer of problem (DP ) if Λ0 is a feasible point of problem (DP ), y0 ∈ Φ(Λ0), and there
exists no feasible point Λ ∈ L(Z, Y ) such that

(y0 − Φ(Λ) + E) ∩ (−intC) 6= ∅.

Theorem 3.2 (E-weak duality). If Λ0 is a feasible point of problem (DP ) and x0 is a feasible point of
problem (P ), then

(F (x0)− Φ(Λ0) + E) ∩ (−intC) = ∅.
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Theorem 3.3 (E-strong duality). Let (F −y0 +E,G) be nearly (C×D)-subconvexlike on K. If (x0, y0)
is E-weak minimizer of problem (P ) and G(K)∩ (−intD) 6= ∅, then there exists Λ0 ∈ L(Z, Y ) such that
(Λ0, y0) is E-weak maximizer of problem (DP ).
Remark 3.1

(i) If E = {ε}, F and G are subconvexlike, then Theorems 3.2 and 3.3 reduce to Theorems 5.1 and 5.2
of ([Rong and Wu 2000]) ;

(ii) If E = {0}, F and G are nearly convexlike, then Theorems 3.2 and 3.3 reduce to Theorems 4.5 of
([Song,1996]).
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Abstract: In this paper, we characterize approximate proper efficient solutions of vector optimization
with set-valued maps. We present scalarization theorems for approximate proper efficient solutions with
generalized cone subconvexlike set-valued maps and Lagrange multiplier theorems under generalized Slater
constraint qualification.

Key words: Vector optimization problem with set-valued maps; Approximate proper efficient solutions;
Generalized cone subconvexlike; Scalarizations; Lagrange multiplier theorems.

1 INTRODUCTION

In recent years, the concept of approximate solutions for vector optimization have been studied in several
frameworks and with kinds of purposes. The first notions of approximation was introduced by Kutateladze
[1] and have been used to establish vector variational principle, approximate Kuhn-Tucker type conditions
and approximate duality theorems, etc.(see [2]-[4]). However, under Kutateladze’s ε-efficiency concept, the
approximate solutions so obtained are not metrically consistent. Indeed, it is possible to obtain a feasible
sequence (xn) of εn-efficient solutions such that xn → x0, yet f(x0) is far from the image solution set as
εn → 0 (see [5]). For this reason, several authors have proposed a number of other ε-efficiency concepts
(see, for example, White [6]; Helbig [7]; Tanaka [8]). In [9,10], Gutierrez et al introduced new concepts
of ε-efficiency, which extend and unify various existing notions of approximate solutions (Kutateladze
[1],White [6], Helbig [7] and Tanaka [8]. More recently, motivated by the approximate efficient solutions
in [9] and [10], Gao et al [11, 12] introduced a new class of approximate Benson-proper efficient solutions
and a unified approximate solution for multiobjective optimization problems, and presented scalarizations
theorems, existences results and Lagrange multiplier theorems. Based on the proper approximate solution
in [11] , Gutierrez et al [13] presented scalarizations, Lagrange multiplier theorems and Lagrange saddle
point theorems for approximate Benson-proper efficient solutions of vector optimization problems. In
the last years, these concepts allowed one to obtain Ekeland’s variational principle and well-posedness
properties in vector optimization problems ([5], [15]-[18], multiplier rules for approximate solutions ([19]-
[22]), and approximate saddle points theorems ([23]).

In the past years, necessary conditions for efficiency, weak efficiency, proper efficiency and other results
related to optimization theory such as alternative theorems have been developed in several papers under
some generalized convexity functions: cone-convexlike ([24]), generalized subconvexlike [25], generalized
cone-subconvexlike [26] and near cone subconvexlike [27]. These generalized convexity functions can
be applied successfully to derive necessary conditions for weakly efficient solutions and Benson properly
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efficient solutions in terms of Lagrange multipliers and saddle points( [11]-[13], [28]-[33]). Recently, Gao et
al [12] and Gutierrez et al [13] introduced a new notions of generalized convexity, which are more weaker
than nearly subconvexlikeness, and presented linear scalarizatons and approximate Lagrange saddle point
theorems for approximate solutions of vector optimization problems.

Motivated the works in [9], [11] and [13], we consider approximate proper efficient solutions for set-
valued optimization problems. We obtain linear scalarizations and Lagrange multiplier theorems of proper
approximate efficient solutions for set-valued optimization problems.

The paper is structured as follows. In Section 2, some basic notions and approximate proper efficient
solution for set-valued optimization problems are introduced. In Section 3, generalized subconvexlike
function for set-valued maps are defined. And we obtain several linear scalarization theorems for ap-
proximate proper efficient solution in set-valued optimization problems with generalized subconvexlike
set-valued maps. In Section 4, under the slater constraint qualification([38]), Lagrange multiplier theorem
for approximate proper efficient solution in set-valued optimization problems are obtained.
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Abstract: In this paper we deal with a system of two hemivariational inequalities which is a variational
formulation of a boundary value problem for two coupled elliptic partial differential equations. The boundary
conditions in the problem are described by the Clarke subdifferential multivalued and nonmonotone laws.
First, we provide the results on existence and uniqueness of a weak solution to the system. Then we consider
an optimal control problem for the system, we prove the continuous dependence of a solution on the control
variable, and establish the existence of optimal solutions. Finally, we illustrate the applicability of the
results in a study of a mathematical model which describes the static frictional contact problem between a
piezoelectric body and a foundation.

Key words: Hemivariational inequality; Nonconvex potential; Optimal control; Piezoelectric frictional
contact model.
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Abstract: In this paper, the nonxlinear enzyme-catalytic kinetic system of batch and continuous fermen-
tation in the process of glycerol bio-dissimilation is investigated. On the basis of both glycerol and 1,3-PD
pass the cell membrane by active and passive diffusion under substrate-sufficient conditions, we consider the
delay of concentration changes on both extracellular substances and intracellular substances. We establish a
nonlinear delay dynamical systems according to the batch and continuous fermentation of bio-dissimilation
of glycerol to 1,3-propanediol(1,3-PD) and we propose an identification problem, in which the biological
robustness is taken as a performance index, constrained with nonlinear delay dynamical system. An algo-
rithm is constructed to solve the identification problem and the numerical result shows the value of time
delays of glycerol, 3-HPA, 1,3-PD intracellular and extracellular substances. This work will be helpful for
deeply understanding the metabolic mechanism of glycerol in batch and continuous fermentation.

Key words: Time delay; Biological robustness; Parameter identification; Nonlinear dynamical system

1 INTRODUCTION

Over the past several years, 1, 3-propanediol(1, 3-PD) has attracted much attention in microbial pro-
duction throughout the world because of its lower cost, higher production and no pollution. Zeng A.P.
(2002); Zeng A.P. (1996) carried out including the quantitative description of the cell growth kinetics of
multiple inhibitions, the metabolic overflow kinetics of substrate consumption and product formation, Ye
J.X. investigated the existence of equilibrium points and stability, Tian Y. and Wang L. considered the
dynamical behavior for the models of the continuous cultures and the feeding strategy of glycerol Wang
L.. Parameter identification and multistage modeling are widely discussed in fed-batch culture, see Wang
L. and the references therein.

However, due to less information about intracellular behavior, less attempt has been made on the
glycerol metabolic system. Wang J. prosposed a complex metabolic network and the corresponding non-
linear hybrid dynamical system to determine the most possible metabolic system based on the biological
robustness.

Time delay is considered to play an important role in occurrence of oscillation, although the mechanism
of oscillation is very complex. In this work, a finite time delay vector between the biomass formation
and the operating conditions on both extracellular substances and intracellular substances is taken into
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account in the kinetic system. We establish a nonlinear delay dynamical systems according to the batch
and continuous fermentation of bio-dissimilation of glycerol to 1,3-propanediol(1,3-PD) and we propose
an identification problem, in which the biological robustness is taken as a performance index, constrained
with nonlinear delay dynamical system. An algorithm is constructed to solve the identification problem
and the numerical result shows the value of time delays of glycerol, 3-HPA, 1,3-PD intracellular and
extracellular substances. This work will be helpful for deeply understanding the metabolic mechanism
of glycerol in batch and continuous fermentation. The effect of time delay shows that the system can
qualitatively describe oscillatory phenomena occurring in the experiment.

This paper is organized as follows. In Section 2, the model of the delay differential system in continuous
and batch culture is proposed. Section 3 investigates the biological robustness and parameter identifi-
cation model. In Section 4, we develop a computational approach to solve the parameter identification
model and illustrates the numerical results. Finally, conclusions are provided in Section 5.

2 NONLINEAR DYNAMICAL SYSTEM WITH DELAY

In this paper, assumption that the transport of glycerol and 1,3-PD across cell membrane are both active
transport coupled with passive diffusion, considering the process of substrate taking up and products
secreting across the cell membrane, a finite time delay τ = (τ1, τ2, τ3, τ4) between the biomass formation
and the operating conditions is taken into account in the kinetic system as follows:

ẋ1(t) = (µ−D)x1(t) (2.1)

ẋ2(t) = D(Cs0 − x2(t))− q2x1(t) (2.2)

ẋ3(t) = q3x1(t)−Dx3(t− τ1) (2.3)

ẋ4(t) = q4x1(t)−Dx4(t) (2.4)

ẋ5(t) = q5x1(t)−Dx5(t) (2.5)

ẋ6(t) =
1

u7
(u8 x2(t)

x2(t) + u9
+ u10(x2(t)− x6(t− τ2))N+(x2(t)− x6(t− τ2)− q20) (2.6)

−µx6(t− τ2)

ẋ7(t) =
u11x6(t− τ2)

KG
m +KG

m(x7(t−τ3)
u12 ) + x6(t− τ2)

− u13x7(t− τ3)

KP
m + x7(t− τ3) +

x2
7(t−τ3)
u14

(2.7)

−µx7(t− τ3)

ẋ8(t) =
u13x7(t− τ3)

KP
m + x7(t− τ3)(1 + x7(t−τ3)

u14 )
− u15x8(t− τ4)

x8(t− τ4) + u16
− µx8(t− τ4) (2.8)

−u17(x8(t− τ4)− x3(t− τ1))N+(x8(t− τ4)− x3(t− τ1))

Here x(t; τ) = (x1(t), x2(t), x3(t − τ1), x4(t), x5(t), x6(t − τ2), x7(t − τ3), x8(t − τ4))T are concentrations
of biomass, glycerol, 1,3-PD, acetic acid, ethanol in reactor and intracellular concentrations of glycerol,
3-HPA, 1,3-PD, respectively. D and Cs0 are, respectively, the dilution rate and substrate concentrate
in feed. In the continuous culture, Cs0 = 675mmol/L,D = 0.15h−1. Based on the mechanism of
fermentation, Cs0 = 0mmol/L,D = 0xh−1 in the batch culture. According to the factual experiments,

we consider the properties of the system on a subset Wa :=
∏8
k=1[xk∗, x∗k] which is admissible set of

state vector x(t; τ). x∗k,xk∗ are the lower and upper bounds of xk(t). Let U = (u1, . . . u17)T , the
value of parameters can be found in Wang L.. τ1, τ2, τ3, τ4 are the delay value of 1,3-PD and in reactor
intracellular concentrations of glycerol, 3-HPA, 1,3-PD, respectively and τ2 < τ3 < τ4 < τ1. Let Γ =
{τ |τ = (τ1, τ2, τ3, τ4)} is the parameter need to be identified, Γa :=

∏4
i=1[τi∗, τ∗i ] is admissible set of τ ,

τi∗ = 0.001, τ i∗ = 0.3 are the lower and upper bounds of the delay value.
The specific cellular growth rate appeared in Eq.(2.1) can be expressed as follows:

µ = µm
x2(t)

x2(t) +Ks
(1− x2(t)

x∗2(t)
)(1− x3(t− τ1)

x∗3(t− τ1)
)(1− x4(t)

x∗4(t)
)(1− x5(t)

x∗5(t)
)

Using the Monod equation for describing active transport and Fick diffusion law for passive diffusion,
we can express the specific substrate consumption rate q2 and specific product formation rate q3 as follows:
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q2 = u1 x2(t)

x2(t) + u2
+ u3(x2(t)− x6(t− τ2))N+(x2(t)− x6(t− τ2)) (2.9)

q3 = u4 x8(t− τ4)

x8(t− τ4) + u5
+ u6(x8(t− τ4)− x3(t− τ1))N+(x8(t− τ4)− x3(t− τ1)) (2.10)

Here

N+(y) =

{
1, y > 0

0, y ≤ 0

While the uptake of extracellular glycerol is considered as a black box model, its specific consumption
rate q20, the specific product formation rates of acetate q4 and ethanol q5 are shown as follows:

q20 = m2 +
µ

Y2
+4q2

x2(t)

x2(t) +K∗2
(2.11)

q4 = m4 + µY4 +4q4
x2(t)

x2(t) +K∗4
(2.12)

q5 = m5 + µY5 (2.13)

Then, we can describe the process of fermentation by the following nonlinear delay dynamical system.

 ẋ(t) = f b(x; τ) = (f b1(x; τ), · · · , f b8(x; τ))T , t ∈ [t0, tb]
x(t0) = x0

x0i(t; τ) = φ0i(t), t ∈ [−τ, 0], i = 3, 6, 7, 8
(2.14)

 ẋ(t) = f c(x; τ) = (f c1(x; τ), · · · , fc8(x; τ))T , t ∈ [tb, tf ]
x(tb) = xb

xbi(t; τ) = φbi(t), t ∈ [tb − τ, tb], i = 3, 6, 7, 8
(2.15)

Where [t0, tb] ⊂ R+ and [tb, tf ] ⊂ R+ be the period of time of batch and continuous stage, respectively.
Apparently, 0 < tb < tf < ∞. x0is the initial state of the batch stage; xb is the initial state of the
continuous stage, which is also the state of the batch stage at the terminal time tb.

Similarly to the result by Yan H.H., it is easy to verify the following property.

Proposition 2.1 The vector-valued functions defined above f b : Wa×Γa → R8
+ and f c : Wa×Γa → R8

+

are continuous on Wa × Γa.

3 DESCRIPTION OF BIOLOGICAL ROBUSTNESS AND PARAMETER IDENTIFICATION

To determine the validity of the delay system, the computational values of the state vector should be
consistent with experimental data. Since only extracellular data can be measured in experiments, we
define the relative error between computational concentrations and experimental data of extracellular
substances, on the other hand, how to evaluate the validity of the computational concentrations of
intracellular substances becomes the heart of the matter. Firstly, we recall some fundamental definitions,
which are similar with the work by Wang L.. On the basis of the factual continuous fermentation process,
the solution of the system should reach the steady state, which is referred to as the approximately steady
state defined as follows.

Definition 3.1 ∀ε > 0, τ ∈ Γa, if there is tδ := inf{ts : ‖f(x(t; τ))‖ < ε,∀t ∈ [ts, tf ]} such that x(t; τ)
is the solution of NDS, we call that the x(t; τ) ∈ Wa reaches approximately steady state at tδ with the
accuracy ε.

Definition 3.2 With uniform distribution, the set of sample points randomly generated in Γa, namely
Γl := {τk|τk = (τk1 , τ

k
2 , τ

k
3 , τ

k
4 ), k = 1, 2, . . . , q}, here q is a sufficiently large positive integer.
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Definition 3.3 The set of solution according to Γl of the system NDS is defined by S(τk) := {x(t; τk)|x(t; τk);
Furthermore, S0(τk) := {x(t; τk)|x(t; τk) is the solution of the systemNDS with τk ∈ Γ0 }; Let Γw ⊆ Γ0

denotes the set of approximately steady state can be reached; Sw(τk) is set of steady state solution at tδ
with respect to τk ∈ Γw.

Next, we will prove the important property of the compactness about the sets Γ0 and Γw. According to
experiment process and transport mechanism, we also need the assumptions as follows:

(A1) During the process of continuous culture, the substrate added to the reactor only includes
glycerol, which is exported by the dilution rate D.

(A2)The concentrations of reactants are uniform in reactor. Time nonuniform space distribution are
ignored.

Theorem 3.1 Under assumptions (A1) and (A2), the subsets S(τk) and Sw(τk) are compact in C([t0, tf ], R8
+).

If Γ0 and Γw are both non-empty, the sets Γ0 and Γw are compact in R4
+.

Proof: On the basis of assumptions, Γa is a non-empty bounded and closed subset in R4
+. According to

the Proposition2.1, the map τk ∈ Γa → x(·; τk) ∈ S(τk) is continuous, so S(τk) is compact in functional
space C([t0, tf ], R8

+). Let {τk}(⊂ Γ0 ⊂ Γa) be any sequence, Wa and Γa be the non-empty bounded
subset of R8

+ and R4
+, respectively. It is easy to verify the sequence {τk} is also bounded, so it must

has the convergent sequence, namely {τkj } and while j → ∞, {τkj } → τ∗. From the definition of Γ0,

x(·; τkj ) ∈ S(τk) and x(·; τkj ) ∈ Wa, so x(·; τ∗) ∈ S(τk) and x(·; τ∗) ∈ Wa, τ∗ ∈ Γ0. Summing up the

above, Γ0 is compact in R4
+, Similarly we can prove that Sw(τk) is compact in C([t0, tf ], R8

+) and Γw is
compact in R4

+.

3.1 Quantitative definition of biological robustness

Definition 3.4 Let the computational concentrations and experimental data of extracellular substances
at steady stage be y = (y1, y2, y3, y4, y5)T and x(tδ; τ

k), k = 1, 2, 3, 4, respectively, then the relative error
of the extracellular substance concentrations is defined as

SSD(τk) :=
1

5

5∑
s=1

|xs(tδ; τk)− ys|
|ys|

(3.1)

Let Γsw := {τk ∈ Γw : x(tδ; τ
k) ∈ Sw(τk) and the SSD ≤ α holds, Ssw := {x(·; τk)|x(·; τk) is the

approximate solution of the system NDS with respect to τk ∈ Γsw. We have the definition to describe
the differences about the intracellular substances at steady stage.

Definition 3.5 ∀τm, τn ∈ Γsw, (m 6= n), x(tδm; τm) and x(tδn; τn) are approximate solutions of the
system NDS at tδm and tδn corresponding to τm, τn, respectively. The average relative difference of
intracellular states is defined by:

MSD(τm, τn) :=
1

3

8∑
s=6

(
|xs(tδm; τm)− xs(tδn; τn)|

‖τm − τn‖
)2 (3.2)

∀τp′ ∈ Γsw, τp
′
. The average relative difference of intracellular states with τp

′
is defined by:

MSD(τp
′
) =

1

q

q∑
p=1

MSD(τp
′
, τp) (3.3)

Definition 3.6 For given τa ∈ Γsw, a ∈ Iq, the maximum deviation of intracellular substances x(·; τa)
at steady stage τa in B(τa; δ) is defined by:

MSDmax(τa) = maxMSD(τ b), τ b ∈ B(τa; δ), for all k ∈ Iq and any τk ∈ Γsw, (3.4)

The robust performance of the dynamical system is defined by:

J(τ∗) := min{MSDmax(τk)|τk ∈ Γsw}, τ∗ = argmin{J(τk)|τk ∈ Γsw}. (3.5)

Remark If there exists τ1, τ2 ∈ Γsw, and τ1 6= τ2, such that J(τ1) < J(τ2), then will say τ1 is better
than τ2.
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3.2 Parameter identification model

Since only extracellular data can be measured in experiments, a quantitative definition of biological
robustness was proposed and it is as the part of performance index of an identification model. That is,
the performance index is composed of SSD and MSD. So the parameter identification model of the
nonlinear delay dynamical system is shown as follows:

(IP) : inf J(τk) , SSD(τk) + min{MSDmax(τk)

s.t. x(t; τk) ∈ Ssw, t ∈ [t0, tf ]

τk ∈ Γsw,

∀ε > 0,∃tδ, s.t‖f(x(t; τk); τk)‖ < ε,∀t ∈ (tδ, tf ].

(3.6)

Theorem 3.2 Parameter identification model IP is identifiable.

Proof: On the basis of the compactness of Ssw and Γsw, we can obtain the desired result.

4 ALGORITHM AND NUMERICAL RESULT

The algorithm of IP (3.6) is presented as follows:

Algorithm 1

step1 Given N > 0, let n = 0,Γl = ∅

step2 Let n = n + 1, if n > N , goto step5; otherwise, generate the stochastic samples τk following the
uniform distribution Γa;

step3 For each τk, solve the nonlinear delay differential equation by Euler method. If the solution
x(tδ; τ

k) ∈Wa, and ‖f c(x(t; τk))‖ ≤ εf ,∀t ∈ [te, tf ] for te ∈ [tb, tf ], goto step4; else goto step2;

step4 Based on (3.1), compute SSD(τk), if SSD(τk) ≤ δf , then Γsw = Γsw
⋃
{τk}, goto step2;

step5 Compute MSD(τm, τn), τm, τn ∈ Γsw, τ
m 6= τn and MSDmax(τk), τk ∈ Γsw on the basis of (3.2)

and (3.3);

step6 J(τk) = MSDmax(τk), τk ∈ Γsw, and J(τ∗k) = min{J(τk)|τk ∈ Γsw}, τ∗k = argmin{J(τk)|
τk ∈ Γsw}

Where n,N stands for the sequence and maximum of the stochastic samples, respectively. Γsw is the
set of the constraints are satisfied. According to the model and algorithm mentioned above, we have
programmed the software and applied it to the optimal control problem of microbial fermentation in
batch culture. The basic data are listed as follows:

boundary value of state vector :
x∗1 = 0.001 mmol/L, x∗1 = 2039 mmol/L, x∗2 = 0.001 mmol/L, x∗2 = 939.5 mmol/L, x∗3 = 0.01

mmol/L, x∗3 = 10 mmol/L. u∗4 = 0.01 mmol/L, u∗4 = 1026 mmol/L, u∗5 = 200, u∗5 = 360.9 mmol/L.
We adopt α = 0.2 in the procedure. Then, by Algorithm 1, the optimal value of delay vector τ and

the approximately steady solution x = (x1, x2, · · · , x8)T are (0.27956, 0.0150799, 0.0185566, 0.0249532)T

and (4.00206, 4.56946, 277.769, 121.471, 130.227, 4.55788, 136.994, 0.420106)T , respectively.

5 CONCLUSION

In this paper, the non-linear enzyme-catalytic kinetic system of batch and continuous fermentation in
the process of glycerol bio-dissimilation is investigated. The delay of concentration changes on both
extracellular substances and intracellular substances is considered to establish a nonlinear delay dynamical
systems. According to the batch and continuous fermentation of bio-dissimilation of glycerol to 1,3-
propanediol(1,3-PD), we propose an identification problem, in which the biological robustness is taken as
a performance index, constrained with nonlinear delay dynamical system. An algorithm is constructed
to solve the identification problem and the numerical result shows the value of time delays of glycerol,
3-HPA, 1,3-PD intracellular and extracellular substances.
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Abstract: The particle swarm optimization (PSO) is a population-based optimization technique, where
a number of candidate solutions called particles simultaneously move toward the tentative solutions found
by particles so far, which are called the personal and global bests, respectively. Since, in the PSO, the
exploration ability is important to find a desirable solution, and various kinds of methods have been inves-
tigated to improve it. In this paper, we propose a novel PSO method exploiting a steepest descent method
with perturbations to a virtual quartic objective function having its global optima at the personal and
global best, where elements of each particle’s position are updated by the proposed chaotic system or the
standard update formula. Thus, the proposed PSO can search for solutions without being trapped at any
local minimum due to the chaoticness. Moreover, we show the sufficient condition of parameter values of
the proposed system under which the system is chaotic.

Key words: Chaotic system; Particle swarm optimization (PSO); Metaheuristics; Snap-back repeller.

1 INTRODUCTION

The particle swarm optimization (PSO) is a population-based stochastic optimization technique which is
inspired by social behavior of bird flocking or fish schooling (J. Kennedy (1995)). In the PSO, a number
of candidate solutions called particles are simultaneously updated toward the tentative best solutions
called the personal best and global best, respectively, which are found by particles so far. The PSO is
a very simple and has a high performance to find desirable solutions, while it is known to suffer from
the premature convergence prior to discovering such solutions. Thus, in order to improve the exploration
ability, various kinds of improved methods have been investigated (M. Clerc (2006), R. Poli (2007)).

Now, we focus on the PSOs exploiting a chaotic system to improve the exploration ability. Those
methods often use chaotic sequences to update positions of particles, in which particles search for solutions
extensively because of the chaoticness. It is reported that this kind of PSOs have a wider diversification
ability than the original PSO (B. Alatas (2009), B. Liu (2005)). However, since those methods often use
a single kind of well-known function such as the logistic function to generate chaotic sequences for any
optimization problems, the sequences are not necessarily suitable to solve the optimization problem.

In this paper, we propose a new PSO with a chaotic system which is derived from a steepest descent
method with perturbations to a virtual objective function having global optima at the personal and global
best. The derived system is theoretically shown to be chaotic an appropriate conditions, and can be used
for improvement of search of the PSO.
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This paper consists of four sections. In Section 2, we show the standard PSO model and its improved
methods. In Section 3, we propose a novel PSO method exploiting a steepest descent method to a virtual
quartic objective function with perturbations, and show the sufficient condition of the chaoticness of the
proposed model. Finally, we conclude this paper in Section 4.

2 PARTICLE SWARM OPTIMIZATION AND ITS IMPROVED METHODS

In this paper, we focus on the following global optimization problems having many local minima and the
rectangular constraint.

(P ) min f(x) s.t. x ∈ X :=

n∏
i=1

[xli, x
u
i ].

In order to solve this problem, in the PSO, a number of candidate solutions called particle are simulta-
neously updated by exchanging the information each other. At each iteration, particle i moves toward
a linear combination of two best solutions called the personal best pi(t) and the global best g(t), where
the former is the best solution obtained by each particle i until iteration t and the latter is the best one
obtained by all particles until iteration t. Then, the update formula of the j-th elements of position xij(t)

and velocity vij(t), j ∈ {1, . . . , n} of particle i ∈ Ip := {1, . . . , l} is given by

(SP) vij(t+ 1) := wvij(t) + c1µ1(gj(t)− xij(t)) + c2µ2(pij(t)− xij(t)), (2.1)

xij(t+ 1) := xij(t) + vij(t+ 1), (2.2)

where w, c1, c2 > 0 are constant weights, while µ1 and µ2 are randomized numbers uniformly selected
from (0, 1). We call (SP) the standard update formula. This extremely simple approach has been sur-
prisingly effective across a variety of problem domains (J. Kennedy (1995)). However if the parameter
selection is not appropriate, particles sometimes tend to converge quickly to a local minimum, and it is
difficult to find a desirable solution. Hence, in order to improve the ability, various kinds of improved
methods have been investigated (M. Clerc (2006)). Recently, PSOs improved by exploiting chaotic sys-
tems are proposed, which are called chaotic PSOs (B. Alatas (2009), K. Tatsumi (2009)). Mathematically,
the chaos means an aperiodic deterministic behavior which is exceedingly sensitive to its initial condi-
tions. Even though the model of the system is well defined and contains no random parameters, the
behavior appears to be random. The chaotic PSOs strengthen the search ability by these properties of
the chaos and most of them use well-known functions such as the logistic function which can generate
chaotic sequences (B. Alatas (2009), B. Liu (2005)). Since those PSOs use the same function for differ-
ent optimization problems which is irrelevant to an objective function, the sequences are not necessarily
suitable for all problems. On the other hand, it is reported that the system called gradient model with
perturbations (GP), which is derived from a steepest descent method with perturbations to an objective
function is chaotic, and it can be used to improve diversification of the search in some metaheuristics (
K. Tatsumi (2009)).

Therefore, in this paper, we propose a new chaotic PSO which is derived on the basis of the GP model.
Then, it is convenience to consider the chaos in the sense of Li-Yorke defined as follows. Now, let us
consider a discrete-time system:

x(t+ 1) = F (x(t)), (2.3)

where x(t) ∈ <n, t = 1, 2, . . . and F is a map from <n to itself. A point x satisfying F (x) = x is called a
fixed point of F . The ε-neighborhood Nε(x) of a point x is defined by Nε(x) := {y ∈ <n |‖x− y‖ ≤ ε},
where ‖ · ‖ denotes the Euclidean norm in <n. It is well known that the existence of a fixed point called a
snap-back repeller in a system implies that the system is chaotic in the sense of Li-Yorke (C. Li (2003)).

Theorem 2.1 Suppose that F (x) is continuously differential on a set Xo ⊂ <n and z is a fixed point of
F , and also that

1. all eigenvalues of ∇F (x) exceed 1 in norm for all x ∈ Nr̄(z) ⊂ X0 for some r̄ > 0.

2. ∇F (x) is symmetric for all x ∈ X0, and there exist a point x0 ∈ Nr̄(z) with x0 6= z, F (m)(x0) = z
and det(∇F (m)(x0)) 6= 0 for some positive integer m.

Then, system (2.3) is chaotic in the sense of Li-Yorke. Moreover, the points z and x0 are called the
snap-back repeller and the homoclinic point of F , respectively.
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Although a snap-back repeller of F is unstable point, there exist many orbits called homoclinic orbits,
which approaches the snap-back repeller, and at the same time are repelled from the point. Then, since
the GP model uses a system for updating a tentative solution which has a snap-back repeller closed to
interior any local minimum, this model can search for a solution around the local minima extensively
without being trapped undesirable solutions.

In this paper, we propose a chaotic system for the PSO based on the same concept as GP model.

3 PSO WITH PROPOSED CHAOTIC SYSTEM

In this section, we propose a new PSO using the system exploiting a steepest descent method to a virtual
quartic objective function which have only two optimal solutions at pi(t) and g(t). In the proposed model,
we focus on the distance ri(t) between the personal and global best of particle i which is defined as

ri(t) :=

∣∣∣∣g(t)− pi(t)
2

∣∣∣∣ , (3.1)

and update all elements xij(t) of the position such that the elements ri(t) are not less than a sufficiently
small positive constant rmin by the proposed chaotic system, while other elements are updated by (SP)
for the detail search. For the sake of simplicity, we suppose that the following inequalities are satisfied
for j = 1, 2, . . . , n,

rij(t) ≥ rmin. (3.2)

Let us consider the following minimization problem of a virtual quartic function which has global minima
at pi(t) and g(t) for each particle i at iteration t:

(VP) min f (i,t)
v (x) :=

1

‖g(t)− pi(t)‖2
‖x− pi(t)‖2‖x− g(t)‖2. (3.3)

Here, note that function values of f
(i,t)
v at pi(t) and g(t) are equal, f

(i,t)
v (pi(t)) = f

(i,t)
v (g(t)) = 0. If a

current solution x(t) is updated by the steepest descent method to f
(i,t)
v , it may be easily trapped at

either of the personal best or global best. Therefore, we add perturbation terms to the virtual objective
function as follows:

(VP2) min f (i,t)
p (x) := f (i,t)

v (x)−
n∑
j=1

arij(t) cos
(
ω(xj − pij(t))

)
, (3.4)

where arij(t) and positive constant ω denote the amplitudes and the angular frequency of the perturba-
tions, respectively, and ω is selected as follows:

ω :=
2mπ

rmin
, (3.5)

where m is a positive integer. The problem (VP2) has at least one global minimum at pi(t). Then, by
applying the steepest descent method with step-size α for (VP2), we obtain the system,

(D) xi(t+ 1) := h(x(t)) = xi(t)− α∇f (i,t)
v (x)− βω

 ri1(t) sin
(
ω(xi1(t)− pi1(t))

)
...

rin(t) sin
(
ω(xin(t)− pin(t))

)
 , (3.6)

where β are defined as β := aα. We use (D) as an update formula of particles.
In the following, we show the sufficient conditions of parameter values in which system (D) is chaotic.

We show the following relations between α, ω, β and rmin in (D) that the system (D) is chaotic.

Theorem 3.1 Suppose that ω is sufficiently large. If for particle i, positive parameters α, ω, β and rmin

satisfy the following inequalities:

αλi∞ ≤
1

3π2
βω2rmin, (3.7)

2π ≤ βω2rmin, (3.8)
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where λi∞ is defined by

λi∞ := max

{
‖∇2fv(x)‖∞

∣∣∣∣‖x− g(t)‖∞ ≤
2π

ω
or ‖x− pi(t)‖∞ ≤

2π

ω

}
, (3.9)

then pi(t) is a snap-back repeller of h, and there exist a snap-back repeller ĝi(t) of h such that ‖ĝ(t) −
g(t)‖∞ < (π + 0.16)/2ω.

The result of Theorem 3.1 yields that pi(t) and ĝ(t) are snap-back repellers of (D) during the period
where neither of the global best or personal best is updated. Even if the global best or personal best is
updated, (D) is always chaotic as long as the assumptions of Theorem 3.1 are satisfied. Since we suppose
that ω is sufficiently large, we can consider that the distance between g(t) and ḡ(t) is sufficiently small.
Thus, the proposed particle can be expected to search for solutions intensively around pi(t) and g(t) on
the basis of (D), while it does not trapped at any local minima. In addition, the sufficient conditions
(3.7) and (3.8) in Theorem 3.1 give us the relations between parameters, α, β and ω for the chaoticness
of (D), which also provides a criterion of selecting parameter values in the system (D) in the proposed
model.

Although in this section, we assume that (3.2) holds for any j, in general, it is not necessarily satisfied.
Therefore, in the proposed model, as mentioned above, the element xij(t) such that does not satisfy (3.2)
is updated by (SP), and other elements are updated by (D). Then, by considering modified (VP) and
(VP2) with respect to xj such that rij(t) satisfies (3.2), we can derive the modified system of (D), and
show that the system is also chaotic under the assumptions of Theorem 3.1. Hence, if there exist at least
one rij(t) satisfies (3.2), particle i can search extensively in constrained region when the distance between

pi(t) and g(t) is so large, else particles can search in detail around the personal and global bests. It is
expected that the proposed model can search appropriately for any optimization problem.

4 CONCLUSION

In this paper, we have proposed the new PSO which uses the chaotic system exploiting a steepest descent
method with perturbations to a virtual quartic objective function based on the personal and global best
solutions. In the proposed model, elements of particle’s position are updated by the proposed system
for diversification of searching if the corresponding elements of distance between the personal and global
bests are not less than a sufficiently small positive constant, while other elements are updated by the
standard update formula used in the original PSO for the detailed search. Moreover, we have shown the
sufficient conditions under which the proposed system is chaotic.
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Abstract: Considering the existence of time delay and hybrid nature in the constantly fed-batch process, a
time-delayed switched autonomous system is proposed to formulate the 1,3-propanediol (1,3-PD) production
process. Taking the switching instants and the terminal time as the control variables, a constrained time-
delayed optimal control problem is then presented. An equivalently constrained time-delayed optimal control
problem is also investigated. Finally, a numerical solution method is developed to seek the optimal control
strategy. Numerical simulation results show that the mass of 1,3-PD per unit time at the terminal time is
increased considerably.

Key words: Time-delayed switched autonomous system; Optimal control; Numerical method; Constantly
fed-batch process.

1 INTRODUCTION

Fed-batch is a technique in microbial processes where one or more nutrients are supplied to the bioreactor
during the cultivation and products remain in the containment until the end of the run (Yamanè T.
(1984)). In 1,3-Propanediol (1,3-PD) production, one efficient way is the fed-batch process. Unlike the
previous researches, we focalize an optimal control problem in constantly fed-batch process, a simple
feeding mode has been widely applied for the production of many bioproducts.

2 TIME-DELAYED SWITCHED AUTONOMOUS SYSTEM

Taking the delay effect on the production of new biomass into account, the switched autonomous system
with time delay to describe the fed-batch process can be formulated as ẋ(t) = f i(x(t), x(t− h)), t ∈ (τi−1, τi], i = 1, 2, · · · , 2n+ 1,

x(0) = x0,
x(t) = φ(t), t ∈ [−h̄, 0],

(2.1)

where x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))T ∈ R6
+ be the continuous state whose components

are, respectively, biomass, glycerol, 1,3-PD, acetate and ethanol concentrations and the volume of culture
fluid at t in reactor. x0 ∈ R6 is a given initial state, h is a delay argument bounded above by a given
constant h̄ and φ(t) is a given continuous function on [−h̄, 0]. According to the fed-batch process, the
switching sequence is preassigned, such that

0 = τ0 ≤ τ1 ≤ · · · ≤ τ2n ≤ τ2n+1 = T (2.2)
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where the switching instants τi, i = 1, · · · , 2n, and the terminal time T are decision variables. In
particular, for t ∈ (τ2j , τ2j+1], j ∈ Λ1 := {0, 1, · · · , n},

f2j+1(x(t), x(t− h))

:= (µx1(t− h),−q2x1(t− h), q3x1(t− h), q4x1(t− h), q5x1(t− h), 0)T , (2.3)

and for t ∈ (τ2j+1, τ2j+2], j ∈ Λ2 = {0, 1, · · · , n− 1},

f2j+2(x(t), x(t− h)) :=



µx1(t− h)−D(x(t))x1(t)

D(x(t))( cs0
1 + r − x2(t))− q2x1(t− h)

q3x1(t− h)−D(x(t))x3(t)
q4x1(t− h)−D(x(t))x4(t)
q5x1(t− h)−D(x(t))x5(t)
(1 + r)v

 . (2.4)

In (2.2) and (2.4), cs0 > 0 denotes the concentration of initial feed of glycerol in the medium. r > 0 is
the velocity ratio of adding alkali to glycerol. v > 0 is the velocity of feeding glycerol and is a constant.
D(x(t)) is the dilution rate defined by

D(x(t)) =
(1 + r)v

x6(t)
. (2.5)

The specific growth rate of cells µ, the specific consumption rate of substrate q2 and the specific formation
rates of products q`, ` = 3, 4, 5, are expressed as the ones in Liu C. (2011).

Since biological considerations limit the rate of switching, there are maximal and minimal time dura-
tions that are spent on each of the batch and feed processes. On this basis, define the set of admissible
switching instants and terminal time as

Γ := {(τ1, τ2, · · · , τ2n+1)T ∈ R2n+1 : ρi ≤ τi − τi−1 ≤ %i, i = 1, 2, · · · , 2n+ 1}, (2.6)

where ρj and %j are the minimal and the maximal time durations, respectively. Accordingly, any τ ∈ Γ
is regarded as an admissible vector of switching instants and terminal time.

There exist critical concentrations, outside which cells cease to grow, of biomass, glycerol, 1,3-PD,
acetate and ethanol. Hence, it is biologically meaningful to restrict the concentrations of biomass, glycerol
and products in a set W defined as

xT (t) ∈W :=

6∏
`=1

[x∗`, x
∗
` ], ∀ t ∈ [0, T ]. (2.7)

3 TIME-DELAYED OPTIMAL CONTROL PROBLEMS

The mass of 1,3-PD per unit time at the terminal time is taken as the cost functional and the time-delayed
optimal control problem (TOC) in fed-batch fermentation can be formulated as

(TOC) min J(τ) := −x3(T |τ)x6(T |τ)

T

s.t. ẋ(t) = f i(x(t), x(t− h)), t ∈ (τi−1, τi], i = 1, 2, · · · , 2n+ 1,

x(0) = x0,

x(t) = φ(t), t ∈ [−h̄, 0],

xT (t) ∈W,

where x3(T |τ) and x6(T |τ) are, respectively, the third and the sixth components of the solution to the
system (2.1) at the terminal time T .

Note that the (TOC) is of non-standard feature because the terminal time as well as the switching
instants is the variable to be determined. Thus, the (TOC) is actually time-delayed optimal control
problem with free terminal time. We now employ a time-scaling transformation from t ∈ [0, T ] to
s ∈ [0, 1] as follows:

t = Ts. (3.1)
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Then, let x̃(s) := x(t(s)), h̃ := h
T ,

¯̄h := h̄
T , g

i(x̃(s), x̃(s− h̃), T ) := Tf i(x̃(s), x̃(s− h̃)), φ̃(s) := φ(t(s)) and
si := τi

T , i = 1, 2, · · · , 2n+ 1. As a result, the original system (2.1) takes the form:
˙̃x(s) = gi(x̃(s), x̃(s− h̃), T ), s ∈ (si−1, si], i = 1, 2, · · · , 2n+ 1,
x̃(0) = x0,

x̃(s) = φ̃(s), s ∈ [−¯̄h, 0].

(3.2)

Furthermore, let
ξi := si − si−1, i = 1, 2, · · · , 2n+ 1, (3.3)

be the duration between si−1 and si. Clearly,

si =

i∑
k=1

ξk, i = 1, 2, · · · , 2n+ 1. (3.4)

Let ξ := (ξ1, ξ2, · · · , ξ2n+1) ∈ R2n+1 be the duration vector. It is obvious that

ξi ≥ 0, i = 1, 2, · · · , 2n+ 1, (3.5)

and
2n+1∑
i=1

ξi = 1. (3.6)

With this notation, we note that the determination of the switching vector is equivalent to the determi-
nation of the duration vector. Consequently, x̃ can be view as being dependent on the terminal time and
the duration vector , i.e.,

x̃(s) = x̃(s|T, ξi−1, ξi−2, · · · , ξ1), (3.7)

for s ∈ (si−1, si], i = 1, 2, · · · , 2n + 1. With this transformation, define the feasible set of the terminal
time and the switching instants as

F̃ = {(T, ξ) ∈ Ξ : x̃(s|T, ξ) ∈W, ∀ s ∈ [0, 1]}. (3.8)

As a result, the (TOC) turns into the following equivalently time-delayed optimal control problem
(ETOC):

(ETOC) min J̃(T, ξ) := − x̃3(1|T, ξ)x̃6(1|T, ξ)
T

s.t. (T, ξ) ∈ F̃ .

4 NUMERICAL SOLUTION METHODS

The (ETOC) is essentially an optimization problem with continuous state inequality constraint (2.7).
By ε − γ approximation method (Teo K. (1991)), (ETOC) can be approximated by the approximately
constrained time-delayed optimal control problem as follows:

(ETOCε,γ) min J̃ε,γ(T, ξ) := − x̃3(1|T, ξ)x̃6(1|T, ξ)
T

(4.1)

s.t. (T, ξ) ∈ F̃ε,γ ,

where

F̃ε,γ := {(T, ξ) ∈ Ξ : H̃ε,γ(T, ξ) := γ +

12∑
l=1

∫ 1

0

ϕε(hl(x̃(s|T, ξ)))ds ≥ 0}, (4.2)

ε > 0, γ > 0 and

ϕε(η) =


η, if η < −ε,

− (η − ε)2

4ε , if − ε ≤ η ≤ ε,
0, if η > ε.

(4.3)

and

h`(x̃(s|σp, δp)) := x∗` − x̃`(s|T, ξ),
h6+`(x̃(s|σp, δp)) := x̃`(s|T, ξ)− x∗`, ` = 1, 2, · · · , 6.
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Now, to solve the (TOC), we need to solve a sequence of problems {(ETOCε,γ)}. These problems can
be solved using any efficient optimization technique, such as the sequential quadratic programming routine
(SQP) (Nocedal J. (1999)). For this, we need the gradients for the cost functional and the constraint
with respect to the terminal time and the switching instants as shown in the following theorems.

Theorem 4.1 For each ε > 0 and γ > 0, the gradients of the cost functional (4.1) and the constraint
(4.2) with respect to the terminal time are, respectively, given by

∂J̃ε,γ(T, ξ)

∂T
= −ζ3(1|T, ξ)x̃6(1|T, ξ)T + x̃3(1|T, ξ)ζ6(1|T, ξ)T − x̃3(1|T, ξ)x̃6(1|T, ξ)

T 2 , (4.4)

and

∂H̃ε,γ(T, ξ)

∂T
=

12∑
l=1

∫ 1

0

∂ϕε(hl(x̃(s|T, ξ)))
∂hl

∂hl(x̃(s|T, ξ))
∂x̃

ζ(s)ds, (4.5)

where ζ(s) is the solution of the following time-delay system:

ζ̇(s) =
∂gi(x̃(s|T, ξi−1, · · · , ξ1), x̃(s− h̃|T, ξi−1, · · · , ξ1), T )

∂x̃(s)
ζ(s) +

∂gi(x̃(s|T, ξi−1, · · · , ξ1), x̃(s− h̃|T, ξi−1, · · · , ξ1), T )

∂x̃(s− h̃)
ζ(s− h̃) +

h̃

T

∂gi(x̃(s|T, ξi−1, · · · , ξ1), x̃(s− h̃|T, ξi−1, · · · , ξ1), T )

∂x̃(s− h̃)
×

gi(x̃(s− h̃|T, ξi−1, · · · , ξ1), x̃(s− 2h̃|T, ξi−1, · · · , ξ1), T ) +

f i(x̃(s|T, ξi−1, · · · , ξ1), x̃(s− h̃|T, ξi−1, · · · , ξ1)),∀s ∈ (si−1, si],

i = 1, 2, · · · , 2n+ 1, (4.6)

with

ζ(0) = 0, (4.7)

ζ(s) =
∂φ̃(s)

∂T
, ∀ s ∈ [−¯̄h, 0]. (4.8)

Theorem 4.2 For each ε > 0 and γ > 0, the gradients of the cost functional (4.1) and the constraint
(4.2) with respect to the switching instants are, respectively, given by

∂J̃ε,γ(T, ξ)

∂ξi
= −χ

i
3(1|T, ξ)x̃6(1|T, ξ) + x̃3(1|T, ξ)χi6(1|T, ξ)

T
, (4.9)

and

∂H̃ε,γ(T, ξ)

∂ξi
=

12∑
l=1

∫ 1

0

∂ϕε(hl(x̃(s|T, ξ)))
∂hl

∂hl(x̃(s|T, ξ))
∂x̃

χi(s)ds,

i = 1, 2, · · · , 2n, (4.10)

where χi(s) are the solution of the following time-delay systems:

χ̇i(s) =
∂gi+1(x̃(s|T, ξi, · · · , ξ1), x̃(s− h̃|T, ξi, · · · , ξ1), T )

∂x̃(s)
χi(s) +

∂gi+1(x̃(s|T, ξi, · · · , ξ1), x̃(s− h̃|T, ξi, · · · , ξ1), T )

∂x̃(s− h̃)
χi(s− h̃), s ∈ (si, si+1],

· · ·

χ̇i(s) =
∂g2n+1(x̃(s|T, ξ2n, · · · , ξ1), x̃(s− h̃|T, ξ2n, · · · , ξ1), T )

∂x̃(s)
χi(s) +

∂g2n+1(x̃(s|T, ξ2n, · · · , ξ1), x̃(s− h̃|T, ξ2n, · · · , ξ1), T )

∂x̃(s− h̃)
χi(s− h̃),

s ∈ (s2n, 1], (4.11)
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with

χi(si) = gi(x̃(si|T, ξi−1, · · · , ξ1), x̃(si − h̃|T, ξi−1, · · · , ξ1), T ), (4.12)

χi(s) = 0,∀ s ∈ [−¯̄h, si]. (4.13)

Furthermore,

∂J̃ε,γ(T, ξ)

∂ξ2n+1
=
χ2n+1

3 (1|T, ξ)x̃6(1|T, ξ) + x̃3(1|T, ξ)χ2n+1
6 (1|T, ξ)

T
, (4.14)

and

∂H̃ε,γ(T, ξ)

∂ξ2n+1
=

12∑
l=1

∫ 1

0

∂ϕε(hl(x̃(s|T, ξ)))
∂hl

∂hl(x̃(s|T, ξ))
∂x̃

χ2n+1(s)ds, (4.15)

where

χ2n+1(s) = g2n+1(x̃(s|T, ξ2n, · · · , ξ1), x̃(s− h̃|T, ξ2n, · · · , ξ1), T ),

s ∈ (s2n, 1], (4.16)

with

χ2n+1(s) = 0, s ∈ [−¯̄h, s2n]. (4.17)

In view of Theorem 4.1 and 4.2, the following algorithm can now be used to generate an approximately
optimal solution of (TOC).

Algorithm 4.1.

Step 1. Choose initial values of ε, γ and (T, ξ), set parameters α < 1, β < 1, ε̄ and γ̄.

Step 2. Compute (T ∗ε,γ , ξ
∗
ε,γ).

Step 2.1 Solve the switched autonomous system with time delay to obtain x̃(s|T, ξi−1, ξi−2, · · · ,
ξ1), s ∈ (si−1, si], i = 1, 2, · · · , 2n+ 1.

Step 2.2 Solve the time-delay systems (4.5) and (4.10) to obtain (4.4),(4.5),(4.9) and (4.9). Fur-
thermore, by (4.15) and Step 2.1, we compute (4.14) and (4.15).

Step 2.3 Solve (ETOCε,γ) using SQP to give (T ∗ε,γ , ξ
∗
ε,γ).

Step 3. Check feasibility of H(T ∗ε,γ , ξ
∗
ε,γ) = 0. If H(T ∗ε,γ , ξ

∗
ε,γ) is feasible, then go to Step 4. Else set

γ = αγ. If γ ≤ γ̄, we have an abnormal exit. Else set go to Step 2.

Step 4. Set ε = βε. If ε > ε̄, go to Step 2. Else output τ∗ε,γ from (T ∗ε,γ , ξ
∗
ε,γ) by (3.1) and (3.4) and stop.

Then, τ∗ε,γ is an approximately optimal solution of (TOC).

5 NUMERICAL SIMULATION RESULTS

Applying Algorithm 4.1 to the (TOC), we obtain the optimal terminal time T ∗ = 13.7377h, in which
the corresponding n∗ = 309, and the optimal switching instants in Bat. Ph. and Phs. I-IX as listed in
Table 5.1. It should be noted that the obtained optimal terminal time is much shorter than the original
terminal time 24.16h, which is key to reduce the operation costs. Moreover, under the obtained optimal
switching instants and the optimal terminal time, the mass of 1,3-PD per unit time is 290.541mmolh−1

which is increased by 16.263% in comparison with experimental result 249.9mmolh−1 at original terminal
time.
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Table 5.1 The optimal switching instants in fed-batch process.

Phases Switching instants Optimal values (s)

Bat. Ph. τ1 18360.0366

Ph. I τ2j 18368.0366+100(j − 1)
(j = 1, · · · , 28) τ2j+1 18360.0366 + 100j

Ph. II τ2j 21168.0366+101.662(j-29)
(j = 29, · · · , 65) τ2j+1 21160.0366+101.662(j-28)

Ph. III τ2j 24929.5306+100.0328(j-66)
(j = 66, · · · , 126) τ2j+1 24921.5306+100.0328(j-65)

Ph. IV τ2ι 31031.0731+100.98(j-127)
(j = 127, · · · , 245) τ2j+1 31023.5314+100.98(j-126)

Ph. V τ2j 43047.843+100.2407(j-246)
(j = 246, · · · , 309) τ2j+1 43040.1514+100.2407(j-245)
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Abstract: In this paper, we consider modeling and optimal control problem in the fed-batch fermentation
of glycerol by Klebsiella pneumoniae with open loop glycerol input and pH logic control. Since it is decisive
for increasing the productivity of 1,3- propanediol (1,3-PD) to optimize the feeding volume of glycerol in the
fermentation process, we propose a new nonlinear hybrid dynamical system to formulate the process based
on the hybrid characteristic of the fed-batch operation. In the system, the feeding volume of glycerol is
regarded as the control variable. Some important properties of the proposed system are then discussed. To
maximize the concentration of 1,3-PD at the terminal time, an optimal control model is established, and a
computational approach is constructed to solve the control model. Finally, the numerical simulations show
that the terminal intensity of producing 1,3-PD has been increased obviously by employing the optimal
feeding strategy.

Key words: Nonlinear dynamical system; Optimal control; HPSO; Fed-batch fermentation.
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Abstract: In this paper, we are concerned with the existence of the solutions of hemivariational inequalities
for a class of (S)+ mapping and a generalized pseudomonotone mapping.
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1 INTRODUCTION

Let Ω be a bounded domain of RN with smooth boundary, K be a subset of a real reflexive Banach
space X , X ∗ the dual space of X , and let A : K →X ∗ be an operator and T : X → Lp(Ω;Rm) be a
linear continuous operator, where 1 ≤ p < ∞. For each u ∈ X , we denote û, an element of Lp(Ω;Rm),
by û := Tu. Suppose that j : Ω × Rm → R is a Carathédory function which is locally Lipschitz with
respect to the second variable y ∈ Rm and satisfies the following assumption:

(J) there exists h1 ∈ L
p
p−1 (Ω,R) and h2 ∈ L∞(Ω,R) such that

|z| ≤ h1(x) + h2(x)|y|p−1

for a.e. x ∈ Ω, every y ∈ Rm and z ∈ ∂j(x, y), where ∂j(x, y) is the Clarke generalized gradient of
a locally Lipschitz mapping j(x, ·) at y ∈ Rm.

We will be concerned with the existence of solutions of the following hemivariational inequality problem:
Find u ∈ K such that, for every v ∈ K ,

〈Au, v − u〉+

∫
Ω

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0, ∀v ∈ K , (1.1)

where 〈·, ·〉 means the duality pairing between X and X ∗, for the point x ∈ Ω, j0(x, y;h) denotes the
Clarke generalized directional derivative of the locally Lipschitz mapping j(x, ·) at the point y ∈ Rm with
respect to the direction h ∈ Rm.

The concept of hemivariational inequality was introduced by Panagiotopoulos as the mathematical
models of many problems coming from mechanics, engineering and economics (cf. Panagiotopoulos P.D.
(1993)). Because of their wide applicability, existence of solutions for hemivariational inequalities like
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(1.1) has been investigated by many authors in recent years (cf. Liu Z.H. (2003); Dályay Z. (2004); Noor
M.A. (2005); Costea N. (2009); Costea N. (2010); Costea N. (2011); Denkowski Z. (2007); Filippakis
M. (2005); Filippakis M. (2006); Gasinski L., Papageorgiou N.S. (2005); Goeleven D. (2003); Motre-
anu D. (1999); Motreanu D. (2003); Papageorgiou N.S. (2009); Huang Y.S. (2009)), and the references
therein, where the treatment relies on monotonicity principles, projection arguments, topological method
and nonsmooth critical point theory. For example, by using a surjectivity result for multivalued (S+)
type mapping, Liu Z.H. (2003) obtained some existence results for a class of evolution hemivariational
inequalities. By employing nonsmooth version of the Mountain Pass Theorem, Dályay Z. (2004) gave
some sufficient conditions to ensure the hemivariational inequality with strongly monotone and homoge-
neous of degree p− 1 operator has a nontrivial solution. In Noor M.A. (2005), by means of the auxiliary
principle technique, Noor studied the hemivariational inequalities with pseudomonotone operator and
partially relaxed strongly monotone operator in a Hilbert space. By using the Galerkin approximation,
Huang Y.S. (2009) obtained an existence result for the hemivariational inequality problem with a gen-
eralized pseudomonotone mapping satisfying the Karamandian condition, and then established a new
existence result for an elliptic hemivariational inequality problem which was considered in Motreanu D.
(2003), Motreanu D. (2004) and Denkowski Z. (2007). By employing a fixed point theorem for set valued
mappings, Costea N. (2009) studied the hemivariational inequalities with relaxed η − α monotone map-
pings in a reflexive Banach space, and in Costea N. (2010), they obtained some existence theorems of
solutions for hemivariational inequalities of Hartman-Stampacchia type involving stably pseudomonotone
operators.

In this paper, we are concerned with the existence results for the nonlinear hemivariational inequality
(1.1) in a reflexive Banach space for general mapping, without monotonicity assumption. The purpose
of this paper is threefold. First, we are interested in studying the existence of solutions of (1.1) for
the mapping A being of (S)+, and we establish a existence result of (1.1) on a bounded, closed and
convex subset in a reflexive Banach space under mild conditions (see Theorem 4). Next, we give some
sufficient conditions to guarantee the existence of solutions of (1.1) in a unbounded subset (see Theorem
5). Finally, we study the existence of solutions of (1.1) for a generalized pseudomonotone mapping A (see
Theorem 6). Note that the assumptions and the methods given in this paper are different from those in
the references mentioned above.

The following definitions can be found in Clarke F.H. (1983) and Pacali D. (1978).

Definition 1.1 The generalized directional derivative of a locally Lipschitz functional f : X → R at a
point u ∈X in the direction v ∈X , denoted f0(u; v), is defined by

f0(u; v) = lim sup
u′→u
t↓0

f(u′ + tv)− f(u′)

t
.

Definition 1.2 The generalized gradient of a locally Lipschitz functional f : X → R at a point u ∈X ,
denoted ∂f(u), is defined by

∂f(u) = {ζ ∈X ∗ : f0(u; v) ≥ 〈ζ, v〉, ∀ v ∈X }.

Definition 1.3 The operator A : K → X ∗ is w∗ -demicontinuous if for any sequence {un} ∈ K
converging to u, the sequence {Aun} converges to Au for the w∗ -topology.

Definition 1.4 A mapping f : X → X ∗ is called to satisfy the condition (S)+ if, {uk}k∈N ⊂ X
satisfies uk ⇀ u and lim sup 〈f(uk), uk − u〉 ≤ 0, then uk → u.

Definition 1.5 A mapping A : K → X ∗ is said to be generalized pseudomonotone if, {un}n∈N ⊂ K
satisfies un ⇀ u, Aun ⇀ w0 and lim sup

n→∞
〈Aun, un−u〉 ≤ 0, we have w0 = Au0 and 〈Aun, un〉 → 〈w0, u0〉

as n→∞.

Let J : Lp(Ω,Rm)→ R be the function defined by

J(u) =

∫
Ω

j(x, u(x))dx.

We have ∫
Ω

j0(x, u(x); v(x))dx ≥ J0(u, v), ∀u, v ∈ Lp(Ω,Rm).
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Then ∫
Ω

j0(x, û(x); v̂(x))dx ≥ J0(û, v̂), ∀u, v ∈ K .

By Lemma 6.1 and Corollary 6.1 in Motreanu D. (2003), we have

Lemma 1.1 (Lemma 6.1 in Motreanu D. (2003)) Assume that j satisfies the assumption (J) and X1,
X2 are nonempty subsets of X , then the mapping (u, v) 7→

∫
Ω
j0(x, û(x); v̂(x))dx from X1 ×X2 to RN

is upper semicontinuous. Moreover, if T : X → Lp(Ω,Rm) is a linear compact operator, then the above
mapping is weakly upper semicontinuous.

Lemma 1.2 (Corollary 6.1 in Motreanu D. (2003)) Let V be a finite dimensional Banach space and let
K be a compact and convex subset of V . If assumption (J) is fulfilled and if A : K → V ∗ is a continuous
operator, then problem (P) has at least a solution.

Denote Λ by the family of all finite dimensional subspaces F of X , ordered by inclusion, KF = K ∩F .
Let iKF be the canonical injection of KF into K and i∗F be the adjoint of the canonical injection iF of
F into X . We have

Lemma 1.3 (Lemma 6.2 in Motreanu D. (2003)) Let A : K → X ∗ is w∗-demicontinuous. Then the
operator B : KF → F ∗, B = i∗FAiK

⋂
F is continuous.
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Abstract: We discuss a type of stochastic integro-differential interval system in this paper. We firstly
prove that the solution of this system exists and is unique, and then we give a sufficient criterion to show the
exponential stability property for such system. Finally, we generalize these results to multiple time delays
cases.
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1 INTRODUCTION

Recently, lots of advances on stochastic differential interval delay systems could be found in Mao’s (Mao
X. (2001)) and other authors’ papers (Liao X.X(2000)). In last decade, Mao generalizes the results in the
case of such system with Markov switching (Mao X. (2002), Mao X (2006)). Motivate by these results, in
this paper, we discuss a stochastic integro-differential interval system, which is a generalization of Mao’s
studies. Here we refer to such system as following

dx(t) = [A0x(t) +A1x(t− τ) +A2

∫ 0

−τ x(t+ θ)dµ(ϑ)]dt

+[B0x(t) +B1x(t− τ) +B2

∫ 0

−τ x(t+ θ)dν(ϑ)]dBt

(1.1)

where A0, A1, A2, B0, B1, B2 are constant matrices and µ, ν denote probability measures, τ is a positive
constant. Consider an interval system of the form

dx(t) = [(A0 + ∆A0)x(t) + (A1 + ∆A1)x(t− τ) + (A2 + ∆A2)
∫ 0

−τ x(t+ θ)dµ(ϑ)]dt

+[(B0 + ∆B0)x(t) + (B1 + ∆B1)x(t− τ) + (B2 + ∆B2)
∫ 0

−τ x(t+ θ)dν(ϑ)]dBt

(1.2)

whereA0m, A1m, A2m, B0m, B1m, B2m are constant matrices and ∆A0 ∈ [−A0m, A0m], ∆A1 ∈ [−A1m, A1m],
∆A2 ∈ [−A2m, A2m], ∆B0 ∈ [−B0m, B0m], ∆B1 ∈ [−B1m, B1m], ∆B2 ∈ [−B2m, B2m] are constant ma-
trices, and µ, ν denote probability measures, τ is a positive constant.
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In the past few years, a great dedication on stability of deterministic interval system has been studied,
for example,

ẋ(t) = (A+ ∆A)x(t),

here we refer to Han H.S. (1993), Sun Y (1997) and Wang K (1994). This paper utilizes methods which
are used in those papers to cope with the case of system (2.2).

2 PRELIMINARIES

We let | • | denote the Euclidean norm in the Euclidean space Rn . A is a matrix and its transpose is
denoted by AT . If A is a symmetric matrix, let λmax(A) and λmin(A) represent its largest and smallest
eigenvalue respectively. Define a norm of A as ‖ A ‖= sup{|Ax| : |x| = 1} =

√
λmax(AAT ). Obviously,

if A is a symmetric matrix, then λmax(A) ≤ ‖A‖.
For Am = [amij ]n×n and AM = [aMij ]n×n satisfying amij ≤ aMij , ∀1 ≤ i, j ≤ n, the interval matrix

[Am, AM ] is defined by

[Am, AM ] = {A = [aij ]n×n : amij ≤ aij ≤ aMij ,∀1 ≤ i, j ≤ n}.

For A,Am ∈ Rn×n, where Am is a nonnegative matrix, we note that any interval matrix [Am, AM ] has a
unique representation of the form [A−Am, A+Am], where A = 1

2 (Am +AM ), and Am = 1
2 (AM −Am).

In this paper, we let (Ω,F, {F}t≥0, P ) be a complete probability space with a filtration {F}t≥0 satisfying
the usual conditions. Let Bt denotes a Brownian motion defined on the probability space. Let τ be
a positive number and C([−τ, 0];Rn) be the family of all continuous Rn-valued functions on [−τ, 0]
with the values in Rn. We define a norm as ‖y‖τ = sup−τ≤s≤0 |y(t)| for any y ∈ C([−τ, 0];Rn). Let
L2(Ω,Ft0 , C([−τ, 0];Rn)) represents all Ft0-measurable C([−τ, 0];Rn)-valued random variables ξ with
E‖ξ‖2τ <∞ and here we write L2 for short unless otherwise specified. If x(t), t ≥ t0−τ is an n-dimensional
continuous stochastic process, we denote x̂(t) = x(t+ s) : −τ ≤ s ≤ 0 as a C([−τ, 0];Rn)-valued process
on t ≥ 0. For any initial data x̂(t0) = ξ ∈ L2(Ω,Ft0 , C([−τ, 0];Rn)), there exists a unique global solution
to 2.1 which is denoted by x(t, t0, ξ).

Definition 2.1 The system (2.1) is said to be

(a) exponentially stable, if there exists constants M and γ such that for all t0 ≥ 0 and ξ ∈ L2(Ω,Ft0 , C([−τ, 0];Rn)),

E‖x̂(t, t0, ξ)‖2τ ≤Me−γ(t−t0)E‖ξ‖2τ .

(b) almost surely exponentially stable if

lim
t→∞

sup
1

t
log|x(t, t0, ξ| < 0. a.s.

3 MAIN RESULT

In this section, we will study the stability properties of system (2.2).
Let

ℵ = {ξ|ξ(θ) : −τ ≤ θ ≤ 0 is random variable; ξ ∈ Ft0 ∩ C([−τ, 0];Rd) and E‖ξ‖2 <∞}.

Theorem 3.1 For any ξ ∈ ℵ, there exists a unique solution x(t) of system (2.1) satisfies xt0 = ξ.

Lemma 3.1 If x(t) is a solution to equation (2.1), then for any T > t0, ∃C > 0, such that

E( sup
t0−τ≤t≤T

|x(t)|2) < C.

In particular, x(t) belongs to L2([t0 − τ, T ];Rd)).
In order to study the stability properties of system (2.2), firstly, we should consider system (2.1).

Theorem 3.2 Assume there exists a symmetric positive-definite matrix Q such that

2
√
λmax(Q−

1
2AT1 QA1Q−

1
2 ) + 2

√
$A(λ)λmax(Q−

1
2AT2 QA2Q−

1
2 )

+ (
√
λmax(Q−

1
2BT0 QB0Q−

1
2 ) +

√
λmax(Q−

1
2BT1 QB1Q−

1
2 ) +

√
$B(λ)λmax(Q−

1
2BT2 QB2Q−

1
2 ))2

< −λmax(Q−
1
2 (QA0 +AT0 Q)Q−

1
2 ),
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$A(λ) =

∫ 0

−τ
e−λθdµ(θ), $B(λ) =

∫ 0

−τ
e−λθdν(θ). (3.1)

Then system (2.1) is exponentially stable in L2(Ω, C([−τ, 0];Rn)) and moreover, it is almost surely ex-
ponentially stable.

Proof. Firstly, we note that Q−
1
2 (QA0 +AT0 Q)Q−

1
2 must be negative definite.

Set
λ = −λmax(Q−

1
2 (QA0 +AT0 Q)Q−

1
2 ) > 0. (3.2)

By the condition of Theorem 3.2, we can find a constant γ ∈ (0, λ) such that

(1 + eγτ )
√
λmax(Q−

1
2AT1 QA1Q−

1
2 ) + (1 + eγτ )

√
λmax(Q−

1
2BT0 QB0Q−

1
2 )λmax(Q−

1
2BT1 QB1Q−

1
2 )

+ 2
√
$A(λ)λmax(Q−

1
2AT2 QA2Q−

1
2 ) + 2

√
λmax(Q−

1
2BT0 QB0Q−

1
2 )$B(λ)λmax(Q−

1
2BT2 QB2Q−

1
2 )

+ (1 + eγτ )
√
$B(λ)λmax(Q−

1
2BT2 QB2Q−

1
2 )λmax(Q−

1
2BT1 QB1Q−

1
2 ) + λmax(Q−

1
2BT0 QB0Q

− 1
2 )

+ $B(λ)λmax(Q−
1
2BT2 QB2Q

− 1
2 ) + eγτλmax(Q−

1
2BT1 QB1Q

− 1
2 ) < λ− γ.

(3.3)
We claim that there exists a such that∫ ∞

t0

eγtE(x(t)TQx(t))dt ≤ Ceγt0E‖ξTQξ‖, (3.4)

for all t0 ≥ 0 and ξ ∈ L2(Ω, Ft0 , C([−τ, 0];Rn)).
In addition, we also affirm that there exists another constant C ′ > 0 such that

E‖x̂(t)TQx̂(t)‖ ≤ C ′e−γ(t−t0)E‖ξTQξ‖, (3.5)

which is hold in L2(Ω, Ft0 , C([−τ, 0];Rn)). Then apply (3.4), we imply that Equation (2.2) is almost
surely exponentially stable.

Apply Theorem 3.2, now it is capable to cope with such system with interval matrix coefficient, exactly
for all matrices belong to the interval satisfy the sufficient condition of Theorem 3.2, and here we can
prove that

Theorem 3.3 If there exists a symmetric positive-definite matrix Q such that

2[λmax(Q−
1
2AT1 QA1Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖A1‖‖A1m‖+ ‖A1m‖2)]1/2

+ 2[(λmax(Q−
1
2AT2 QA2Q

− 1
2 )) + ‖Q‖

λmin(Q) (2‖A2‖‖A2m‖+ ‖A2m‖2)$A(λ)]1/2

+ {[λmax(Q−
1
2BT0 QB0Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B0‖‖B0m‖+ ‖B0m‖2)]1/2

+ [λmax(Q−
1
2BT1 QB1Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B1‖‖B1m‖+ ‖B1m‖2)]1/2

+ [(λmax(Q−
1
2BT2 QB2Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B2‖‖B2m‖+ ‖B2m‖2))$B(λ)]1/2}2

≤ −λmax(Q−
1
2 (QA0 +AT0 Q)Q−

1
2 )− 2‖A0m‖‖Q‖

λmin(Q)

(3.6)

Then Equation (2.2) is exponentially stable in L2(Ω, C([−τ, 0];Rn)) and moreover, it is almost surely
exponentially stable.

Before prove the theorem, we first give some lemmas.

Lemma 3.2 For a positive-definite symmetric matrix Q,

‖Q− 1
2 ‖‖Q 1

2 ‖ ≤ ‖Q‖
λmin(Q)

.

Lemma 3.3 For a positive-definitive, symmetric matrix Q and an n× n matrix A,

λmax(Q−
1
2 (QA+ATQ)Q−

1
2 ) ≤ 2‖A‖‖Q‖

λmin(Q)
.

Lemma 3.4 If ∆A ∈ [−Am, Am], then ‖∆A‖ ≤ ‖Am‖.
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Lemma 3.5 For a positive-definitive, symmetric matrix Q, and B and ∆B ∈ [−Bm, Bm],

λmax(Q−
1
2 (BTQ∆B + (∆B)TQB) + (∆B)TQ(∆B))Q−

1
2 ) ≤ 2‖B‖‖Q‖‖Bm‖

λmin(Q)
+
‖Q‖‖Bm‖2

λmin(Q)
.

Proof of Theorem 3.3: In order to prove the exponential stability property for the interval sys-
tem (2.2), we must guarantee that the condition (3.1) of Theorem 3.2 is hold for all the matrix coef-
ficients ∆A1 ∈ [−A1m, A1m], ∆A2 ∈ [−A2m, A2m], ∆B0 ∈ [−B0m, B0m], ∆B1 ∈ [−B1m, B1m], ∆B2 ∈
[−B2m, B2m], i.e.

2
√
λmax(Q−

1
2 (A1 + ∆A1)TQ(A1 + ∆A1)Q−

1
2 ) + 2

√
$A(λ)λmax(Q−

1
2 (A2 + ∆A2)TQ(A2 + ∆A2Q−

1
2 )

+ (
√
λmax(Q−

1
2 (B0 + ∆B0)TQ(B0 + ∆B0)Q−

1
2 ) +

√
λmax(Q−

1
2 (B1 + ∆B1)TQ(B1 + ∆B1)Q−

1
2 )

+
√
$B(λ)λmax(Q−

1
2 (B2 + ∆B2)TQ(B2 + ∆B2)Q−

1
2 ))2

< −λmax(Q−
1
2 (Q(A0 + ∆A0) + (A+ ∆A0)TQ)Q−

1
2 )

According to lemma 3.3 and lemma 3.4, we note that

−λmax(Q−
1
2 (Q(A0 + ∆A0) + (A+ ∆A0)TQ)Q−

1
2 )

≥ −λmax(Q−
1
2 (QA0 +AT0 Q)Q−

1
2 )− 2‖A0m‖‖Q‖

λmin(Q)

, I1.

Using lemma 3.4 and lemma 3.5, we have

λmax(Q−
1
2 (A1 + ∆A1)TQ(A1 + ∆A1)Q−

1
2 )

< λmax(Q−
1
2AT1 QA1Q

− 1
2 ) + λmax(Q−

1
2 (AT1 Q∆A1 + (∆A1)TQA1 + (∆A1)TQ∆A1)Q−

1
2 )

≤ λmax(Q−
1
2AT1 QA1Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖A1‖‖A1m‖+ ‖A1m‖2)

Then

2
√
λmax(Q−

1
2 (A1 + ∆A1)TQ(A1 + ∆A1)Q−

1
2 ) + 2

√
$A(λ)λmax(Q−

1
2 (A2 + ∆A2)TQ(A2 + ∆A2)Q−

1
2 )

+ (
√
λmax(Q−

1
2 (B0 + ∆B0)TQ(B0 + ∆B0)Q−

1
2 ) +

√
λmax(Q−

1
2 (B1 + ∆B1)TQ(B1 + ∆B1)Q−

1
2 )

+
√
$B(λ)λmax(Q−

1
2 (B2 + ∆B2)TQ(B2 + ∆B2)Q−

1
2 ))2

≤ 2[λmax(Q−
1
2AT1 QA1Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖A1‖‖A1m‖+ ‖A1m‖2)]1/2

+ 2[λmax(Q−
1
2AT2 QA2Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖A2‖‖A2m‖+ ‖A2m‖2)$A(λ)]1/2

+ {[λmax(Q−
1
2BT0 QB0Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B0‖‖B0m‖+ ‖B0m‖2)]1/2

+ {[λmax(Q−
1
2BT1 QB1Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B1‖‖B1m‖+ ‖B1m‖2)]1/2

+ {[λmax(Q−
1
2BT2 QB2Q

− 1
2 ) + ‖Q‖

λmin(Q) (2‖B2‖‖B2m‖+ ‖B2m‖2)$B(λ)]1/2

, I2.

If I1 ≥ I2, we can conclude that the matrix coefficient be of interval type satisfy the condition of Theorem
3.2, which leads to the exponential stability property for the stochastic interval system.
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123 NONLINEAR DYNAMICS OF JEFFCOTT

ROTORS UNDER AIR EXCITING VIBRATION FORCE
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Wuhan, China 430074
bDepartment of Mathematics and Statistics

Curtin University, Perth, WA, Australia

Abstract: This paper studies nonlinear dynamic characteristics of the Jeffcott rotor with air exciting
vibration force generated by the impeller blade tip clearance of eccentric and seal clearance force. First,
a direct integral method is applied to calculate the system parameters. Then, combined with the compu-
tational results, phase diagram, axis path and poincare maps, the nonlinear dynamics of the rotor under
different rotor speeds and blade tip clearance force is analyzed. Our results show that with the increase of
the blade tip clearance force and the rotary speed, the rotor system will experience more and more probable
periodic motion and period-doubling motion transformation during the process to the chaotic status.
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Abstract: In this paper, we discuss a class of switched integro-differential control system with time delay
in detection of switching signal, sufficient conditions are given to guarantee the system being asymptotically
stable or exponentially stable.

Key words: Switched systems; asymptotically stable; exponentially stable; delay; switched signal

1 INTRODUCTION

Switched systems are systems that consist of several subsystems and controlled by switching laws. Such
systems are often encountered in reality, such as in computer science, control systems and etc. Now,
Switched systems is one of the most important part of hybrid systems. For switched systems, one of
the most important and challenging problems is the stability, i.e. what switching laws can guarantee the
switched systems stable.

Recently, there has been increasing interest in the stability analysis of switched systems and switching
control design of such systems (Sun X.M.(2006), Xie G(2000),Daafouz,J (2002), Liu X.Z.(2006)), Sun
X.M.(2006) considered stability of switched systems with time-delay, based on the result of average
dwell time and Lyapunov functions method, the result of exponentially stability is obtained under time-
delay. Using inequality and multiple Lyapunov functions method, Exponential stability is studied for
some special linear switched system in Xie G(2000). LMI method is also used to study the stability of
switched systems in (Zhang Y (2007), Liu J(2008)). Similar results are presented in ( Sun X.M (2006),
Gurvits L (1995)). Liu X.Z.(2006) studied the problems of asymptotical stability and stabilization of
a class switched control systems, a delay-dependent stability criterion is formulated in term of linear
matrix inequalities (LMIs) by using quadratic Lyapunov functions and inequality analysis technique.
Some authors considered discrete systems and give some results (Liberzon D(1999), Zhai G(2002), Zhai
G(2001). There are other methods are used in studying switched systems, such as dwell time and average
dwell time and so on. The stability of some slow-switched control systems is studied in Solo V(1994). Hu
K(2008) investigates the exponentially stability of the switched delay systems with integral item.

In the above results, the switching signal do not include time delay. But in real world, it is well known
that we need time to receive the control signal, it means that switching signal should include time delay.
Recently, Xie G. M(2003), Xie G. M(2005) investigate the switched linear systems with time-delay in
switching signal and some sufficient conditions are given for stability. In this paper, we study linear
switched integro-differential system with time delay in switching signal and some sufficient conditions are
obtained to guarantee the system is asymptotically stable or exponentially stable.
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The paper is organized as follows. Firstly, we proved some notations and assumptions which are useful
in this paper in section 2. Then, main results are given in Section 3 and a brief conclusion is given in the
last section.

2 PRELIMINARIES

In this paper, we consider following switched linear system: ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Cσ(t)

∫ t
t−τ x(s)ds

γ(t) = σ(t− τ)

(2.1)

where x(t) ∈ Rn, u(t) ∈ R is the signal input, and Aσ(t), Bσ(t), Cσ(t) ∈ Rn×n are matrix, the right
continuous function σ(t) : R → Θ = {1, 2, · · · , N} is the switching signal, γ(t) is the detection function
of σ(t), time-delay τ > 0.

In this paper, we always assume that
Assumption A

i) there exist α > 0, β > 0,M ≥ 1 such that ‖e(Ai+BiKi)t‖ ≤ Me−αt ,
∥∥e(Ai+BiKi−1)t

∥∥ ≤ Me−βt for
all i ∈ Θ;

ii) (Ai, Bi, Ci) is activated, then it will hold at least for a period of TD > τ , TD is dwell time.

For system (2.1), we introduce the piecewise constant state feedback as follows:

u(t) = Kγ(t)x(t)

where Ki is to be designed, i = 1, 2, · · · , N, then we get the closed-loop system

ẋ(t) = Aσx(t) +Bσ(t)Kγ(t)x(t) + Cσ(t)

∫ t

t−τ
x(s)ds (2.2)

We will use the following definition (see Xie G. M(2005)).

Definition 2.1 (Asymptotically stabilizability) System (2.1) is said to be asymptotically stabilizable via
state feedback, if for any switching signal σ(t), the closed-loop systems (2.2) satisfies limt→∞ x(t) = 0.

Definition 2.2 (Exponential stabilizability) System (2.1) is said to be exponentially stabilizable via state
feedback, if for any switching signal σ(t), there exist two constant C > 0, and λ > 0, such that the
closed-loop system (2.2) satisfies ‖x(t)‖ ≤ C‖x(0)‖e(−λt).

3 MAIN RESULT

In this section, we will give some sufficient conditions to guarantee the switched system (2.1) is asymp-
totically stabilizable and exponentially stabilizable.

Following lemma is needed for our results.

Lemma 3.1 (Gronwall inequality) Suppose that g, u ∈ C, g, u ≥ 0 and c is a nonnegative real constant.
Then ∀t ∈ [t0, t1, ]

u(t) ≤ c+

∫ t

t0

g(s)u(s)ds

implies that the inequality

u(t) ≤ ce
∫ t
t0
g(s)ds

is true.

Using this lemma, we can prove the following result.

Theorem 3.1 For system (2.1), suppose that

(a) Assumption A are satisfied;

(b) ∃C > 0 such that ‖Cm‖ ≤ C for all m ∈ Θ, and −γ = CMτeατ − α < 0;
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(c) M̃ = M2e(2α+CMeβτ−CMτeατ )τ , limm→∞ M̃me−γ(tm−t0) = 0.

Then the systems is asymptotically stabilizable by state feedback mechanism.

Proof. Consider system (2.1), for given switching signal σ(t) = m, if t ∈ [tm−1 + τ, tm],m = 1, 2, · · · ,

x(t) = e(Am+BmKm)(t−tm−1−τ)x(tm−1 + τ) +

∫ t

tm−1+τ

e(Am+BmKm)(t−s)
∫ s

s−τ
Cmx(u)duds

‖x(t)‖ ≤ Me−α(t−tm−1−τ)‖x(tm−1 + τ)‖+
∫ t
tm−1+τ

e−α(t−s) ∫ s
s−τ CM‖x(u)‖duds

≤ Me−α(t−tm−1−τ)‖x(tm−1 + τ)‖+
∫ t
tm−1+τ

e−α(t−s) ∫ s
s−τ CM‖xu‖duds

≤ Me−α(t−tm−1−τ)‖x(tm−1 + τ)‖+
∫ t
tm−1+τ

e−α(t−s)CM‖xu‖τds

eα(t−tm−1−τ)‖x(t)‖ ≤M‖x(tm−1 + τ)‖+

∫ t

tm−1+τ

CMeα(s−tm−1−τ)‖xu‖τds

since
e−ατeα(t−tm−1−τ)‖xt‖ ≤ supt−τ≤u≤te

α(u−tm−1−τ)‖x(u)‖

thus
eα(t−tm−1−τ)‖xt‖ ≤ eατsupt−τ≤u≤te

α(u−tm−1−τ)‖x(u)‖

≤ eατM‖xtm−1+τ‖+ CMτeατ
∫ t
tm−1+τ

eα(s−tm−1−τ)‖xu‖ds

eα(t−tm−1−τ)‖xt‖ ≤ eατM‖xtm−1+τ‖eCMτeατ (t−tm−1−τ)

So
‖xt‖ ≤ eατM‖xtm−1+τ‖e(CMτeατ−α)(t−tm−1−τ)

When t ∈ [tm−1, tm−1 + τ ]

‖x(t)‖ ≤ Me−β(t−tm−1)‖x(tm−1)‖+
∫ t
tm−1

e−β(t−s)CM‖xu‖τds

eβ(t−tm−1)‖x(t)‖ ≤ M‖x(tm−1)‖+
∫ t
tm−1

CMeβ(s−tm−1)‖xu‖τds

e−βτeβ(t−tm−1)‖xt‖ ≤ sup
t−τ≤u≤t

eβ(u−tm−1)‖x(u)‖

since

e−βτeβ(t−tm−1)‖xt‖ ≤M‖x(tm−1)‖+

∫ t

tm−1

CMeβ(s−tm−1)‖xu‖τds

thus

eβ(t−tm−1)‖xt‖ ≤M‖xtm−1
‖eβτ + eβτ

∫ t

tm−1

CMeβ(s−tm−1)‖xu‖τds

eβ(t−tm−1)‖xt‖ ≤M‖xtm−1‖eβτeCMeβτ (t−tm−1)

‖xt‖ ≤M‖xtm−1‖eβτe(CMeβτ−β)(t−tm−1)

‖xtm−1+τ‖ ≤M‖xtm−1‖eβτe(CMeβτ−β)τ

So

‖xt‖ ≤ eατMM‖xtm−1
‖eβτe(CMeβτ−β)τe(CMτeατ−α)(t−tm−1−τ)

‖xt‖ ≤ M2‖xtm−1
‖e(2α+CMeβτ−CMτeατ )τe(CMτeατ−α)(t−tm−1)

especially when t = tm,

‖xtm‖ ≤ M2‖xtm−1
‖e(2α+CMeβτ−CMτeατ )τe(CMτeατ−α)(tm−tm−1)
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Denote M̃ = M2e(2α+CMeβτ−CMτeατ )τ , −γ = CMτeατ − α, then

‖xtm‖ ≤ M̃‖xtm−1‖e−γ(tm−tm−1) ≤ M̃2e−γ(tm−tm−2)‖xtm−2‖

≤ M̃me−γ(tm−t0)‖xt0‖

This inequality implies that the systems is asymptotically stabilizable by state feedback mechanism. The
proof is finished.

If we prolong the dwell time properly, we can obtain the following result.

Theorem 3.2 For system (2.1), suppose that

(a) Assumption A are satisfied;

(b) ∃C > 0 such that ‖Cm‖ ≤ C for all m ∈ Θ, and −γ = CMτeατ − α < 0;

(c) ∃M̄ > 0, 0 < λ < γ, such that

m


< 1

M̃
ln M̄eλ(tm−t0), if M̃ > 1,

≥ 1
M̃

ln M̄eλ(tm−t0), if M̃ ≤ 1,

where M̃ = M2e(2α+CMeβτ−CMτeατ )τ .

Then the systems is exponentially stabilizable by state feedback mechanism.

Proof. Based on the proof of Theorem 3.1, we can obtain

‖xtm‖ ≤ M̃me−γ(tm−t0)‖xt0‖

which implies that
‖xtm‖ ≤ M̄e−(γ−λ)(tm−t0)‖xt0‖

Thus, the systems is exponentially stabilizable by state feedback mechanism. The proof is completed.

4 CONCLUSION

In this paper, asymptotically stabilizable and exponentially stabilizable of a class of switched linear sys-
tems with time-delay in switching signal is studied. Switching law and controllers designing to guarantee
the system is asymptotically stabilizable or exponentially stabilizable are obtained by inequality analysis
technique. This method can be extended to deal with nonlinear switched system.
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Abstract: In this paper, a fuzzy bandwidth design methodology with uncertain traffic demand is presented
for bandwidth capacity optimization in communication networks. In the proposed methodology, uncertain
traffic demand is first handled by a triangular fuzzification method. Then a fuzzy optimization analysis of
the bandwidth capacity optimization problems considering the trade-off between resource utilization and
network performance is presented and accordingly the optimal bandwidth to obtain maximum revenue are
derived. Finally, the relationships between fuzzy bandwidth design and stochastic bandwidth design are
explored when the traffic demand follows an exponential distribution process.

Key words: Communication Networks; Fuzzy Traffic Engineering; Bandwidth Optimization Design; Un-
certain Traffic Demand.

1 INTRODUCTION

In the field of communication networks (CNs), traffic engineering is of utmost importance for optimizing
resource utilization and improving network performance. Usually, online planning and offline planning
are two common forms of traffic engineering.

Online traffic engineering focuses on instantaneous network states and individual connections. While
offline traffic engineering simultaneously examines each channel’s resource constraints as well as examining
what is needed of each Local Service Provider (LSP) in order to provide global calculations and solutions
for the CNs from a centralized view (Wu J. (2006)).

The online planning is very complexity because of requirement of instantaneous network performance
optimization and thus offline optimization based on the global view has attracted much attention in the
past decades.

Previously, the offline traffic engineering optimizations were realized by a deterministic multi-commodity
flow (MCF) model with the objective to optimize the network total revenue from serving traffic demand.

In the deterministic MCF model, the demand of each channel was assumed to be a fixed quantity and
the network revenue was also assumed to be a linearly increasing function of the amount of bandwidth
provisioned up to the capacity, where all traffic demand was satisfied (Wu J. (2006)), (Mitra D. (1999)),
(Suri S. (2003)).
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However, the deterministic MCF approach may be infeasible in the case of traffic demand uncertainty.
When the traffic demand is uncertain, we cannot know the traffic load exactly and thus it is difficult to
design a suitable bandwidth capacity.

If the network bandwidth capacity is initially designed to be large enough, the network performance
may be good, but it may also lead to inefficient utilization of network resources and thus generating some
unnecessary maintenance costs for the over-provisioned bandwidth capacity.

To ensure effective resource utilization, the network bandwidth capacity should be small, but with a
small bandwidth capacity the network may not satisfy the possible traffic demand and thus increasing a
risk of reduction of network total revenue. Also, less-provisioned bandwidth capacity may depress service
performance in CNs. For the reasons, it is extremely important for CNs to design a suitable bandwidth
capacity within the environment of traffic demand uncertainty.

In the past studies, the uncertain demand is treated as a random variable to design an appropriate
bandwidth capacity in CNs. Typical examples include Mitra and Wang (Mitra D. (2001)), (Mitra D.
(2003)), (Mitra D. (2005)) and Wu et al. (Wu J. (2006)), (Wu J. (2005-1)), (Wu J. (2005-2)). Although
demand randomization is an effective method to handle uncertainty, random traffic demand is only an
estimation of traffic demand data in a statistical sense during a specified period.

However, the traffic demand usually varies within the confidence interval due to uncertain environment;
random traffic demand can be reasonably treated as a triangular fuzzy number corresponding to the
confidence interval. Based on the fuzzification treatment for traffic demand, this paper proposes a fuzzy
bandwidth design scheme (i.e., fuzzy traffic engineering) to optimize bandwidth capacity in CNs. In the
proposed scheme, uncertain traffic demand is first handled by a triangular fuzzification method. Then a
basic analysis of the bandwidth allocation problems based on the fuzzy traffic demand is given. Finally,
some important results about the optimal bandwidth design are derived based on the fuzzy optimization
framework.

2 SYSTEM MODEL FOR THE CN SYSTEM

A communication network (CN) system can usually be regarded as a collection of nodes and links. Similar
to the previous descriptions in (Wu J. (2006)), (Mitra D. (2001)), (Wu J. (2005-1)), let (N,L) be a CN
system decomposed of nodes ni (ni ∈ N, 1 ≤ i ≤ N) and links l (l ∈ L), where N is the total number of
nodes and L is the total number of links in the CN system. For any link l, it has maximal bandwidth
capacity Clmax for serving user demand including voice, packet data, image and full-motion video. Let V
be the set of all node pairs and n ∈ V denote an arbitrary node pair, where n = (ni, nj) and ni, nj ∈ N .

Usually, a link l between two nodes ni and nj can formulate a route r, but there may be more than
one route to be routed for a node pair, we use R(n) to represent an admissible route set for n ∈ V .
Denote the traffic load or traffic demand on an arbitrary node pair n = (ni, nj) by dn (n ∈ V ) and let
bn (n ∈ V ) be the amount of bandwidth capacity provisioned to an arbitrary node pair n = (ni, nj) and
ξr (r ∈ R(n)) denote the amount of capacity provisioned on route r, then we have bn = Σr∈R(n)ξr.

In this paper, we consider the CN to be a whole system. We let B denote the amount of bandwidth
capacity provisioned to the CN system, we have B = Σn∈V bn. Similarly we let D be the total traffic
demand in the CN system, we also have D = Σn∈V dn, which is characterized by a random distribution
with its probability density function f(D).

Usually, a CN system can gain its revenue by serving traffic demand to and from its users. Let a be
the unit revenue by transmitting the traffic load or serving the traffic demand and denote the unit cost
for unit bandwidth capacity allocated to the network.

If a network bandwidth is designed to be too small to satisfy traffic demand, a unit penalty cost p should
be charged. If a network bandwidth is initially designed to be too large, a unit otiose or maintenance
cost h for redundant bandwidth capacity should be considered in the whole CN system.

The objective of the CN system is to maximize the revenue of the network with a good trade-off
between resource utilization and network performance. To avoid unrealistic and trivial cases, we assume
a > p > 0, a > c > 0, a > h > 0.

Now our main task is how to design a reasonable bandwidth capacity B to maximize the network
revenue under demand uncertainty with the consideration of the trade-off between resource utilization
and network performance. In the next section, we come to solve this task.

3 OPTIMAL BANDWIDTH DESIGN WITH FUZZY DEMAND

In this section, we formulate a model for the network bandwidth design problem and derive the optimal
bandwidth capacity with an uncertain demand.
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Let π(B,D) denote the expected profit function by transmitting messages in the network. According
to the previous notations presented in Section 2, the expected profit function of the network can be
formulated as

π(B,D) =

∫ B

0

[aD − cB − h(B −D)]f(D)dD +

∫ ∞
B

[(a− c)B − p(D −B)]f(D)dD. (3.1)

In the above equation, D is random traffic demand with its probability density function f(D), which
can be estimated by some actual traffic demand data within a specified service period. Usually, at the
beginning of a specified service period, random traffic demand is equal to actual traffic demand.

However, in the whole specified service period, the actual traffic demand usually varies because of the
demand uncertainty. The random traffic demand is not necessarily equal to the actual traffic demand at
the end of specified service period but rather may vary within the confidence interval [D −∆1, D + ∆2],
where 0 < ∆1 < D, ∆2 > 0 and ∆1, ∆2 can be appropriately determined by the decision maker. Thus
differing in the random demand D, uncertain demand or fuzzy demand D̃ can be reasonably regarded as
the following triangular fuzzy number corresponding to the confidence interval [D−∆1, D+∆2], namely,

D̃ = (D −∆1, D,D + ∆2), (3.2)

which has the membership function:

µD̃(x,D) =


(x−D + ∆1)/∆1, D −∆1 ≤ x ≤ D
(D + ∆2 − x)/∆2, D ≤ x ≤ D + ∆2

0, otherwise.

(3.3)

In order to derive the relationship between random demand D and fuzzy demand D̃, we can calculate
the centroid of fuzzy demand D̃, that is,

Z = C(D̃) =

∫ +∞

−∞
xµD̃(x,D)dx

/∫ +∞

−∞
µD̃(x,D)dx

=

(∫ D

D−∆1

x2 −Dx+ ∆1x

∆1
dx+

∫ D+∆2

D

Dx+ ∆2x− x2

∆2
dx

)
/(∫ D

D−∆1

x−D + ∆1

∆1
dx+

∫ D+∆2

D

D + ∆2 − x
∆2

dx

)
= D + (∆2 −∆1)/3 (3.4)

where Z can be regarded as the estimated value of the traffic demand in the fuzzy sense, i.e., the point
estimate of random demand D in the probabilistic sense plus a fuzzy term (∆2 −∆1)/3.

If ∆2 > ∆1, then Z > D; if ∆1 > ∆2, then Z < D, and if ∆1 = ∆2, then Z = D.

Theorem 1 If the probability density function of random demand D is f(D) and uncertain demand is
fuzzified to a triangular fuzzy number D̃ with the centroid Z, then

(1) The fuzzy demand Z can be seen as a new random variable, the probability density function of
which can be expressed as ϕ(Z) = f(Z − (∆2 −∆1)/3) for ∆1 ≤ ∆2.

(2) The expected total profit in the fuzzy sense is π(B,Z) =
∫ B

0
[aZ−cB−h(B−Z)]ϕ(Z)dZ+

∫∞
B

[(a−
c)B − p(Z −B)]ϕ(Z)dZ for ∆1 ≤ ∆2.

(3) The optimal bandwidth capacity in the fuzzy sense is the B∗, which satisfied
∫ B∗

0
ϕ(Z)dZ = a+p−c

a+p+h

where ∆1 ≤ ∆2. And the maximum profit is π(B∗, Z).

Proof:

(1) From Eq. (3.4) we have Z = D + (∆2 − ∆1)/3. By reformulation, the fuzzy demand Z can be
represented as Z = D + ∆2−∆1

3 = 2
3D + ∆2

3 + D−∆1

3 > 0. Thus Z is a measurable random variable
with respect to D.

From Z = D + (∆2 − ∆1)/3 we have D = Z − (∆2 − ∆1)/3. Because the probability density
function of random traffic demand D is f(D), we have f(D) = f(Z − (∆2 − ∆1)/3) and thus
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f ′(D)dD = f ′(Z − (∆2 − ∆1)/3)dZ. According to the differential invariance principle, we have
ϕ(Z) = f(Z − (∆2 −∆1)/3).

According to the property of probability density function, we have f(D) > 0, ∀D ≥ 0 and f(D) = 0,
∀D < 0. Similarly, we also have ϕ(Z) > 0, ∀Z ≥ 0 and ϕ(Z) = 0, ∀Z < 0. If Z : 0 → ∞, then
D : (∆2 −∆1)/3→∞, due to D = Z − (∆2 −∆1)/3, thus,∫ ∞

0

ϕ(Z)dZ =

∫ ∞
0

f(Z − (∆2 −∆1)/3)dZ =

∫ ∞
∆1−∆2

3

f(D)dD

=


∫ ∞

∆1−∆2
3

f(D)dD =

∫ ∞
0

f(D)dD = 1, if ∆1 ≤ ∆2∫ ∞
∆1−∆2

3

f(D)dD < 1, if ∆1 > ∆2.

According to the property of probability density function, we only consider the case of ∆1 ≤ ∆2

and ∆1 > ∆2 should not be considered in this case.

(2) Similar to the Eq. (3.1), when ∆1 ≤ ∆2 the expected total profit in the fuzzy sense can be
represented as

π(B,Z) =

∫ B

0

[aZ − cB − h(B − Z)]ϕ(Z)dZ +

∫ ∞
B

[(a− c)B − p(Z −B)]ϕ(Z)dZ.

(3) In order to maximize the expected total profit of network in the fuzzy sense, an optimal bandwidth
B∗, which is a solution to ∂π(B,Z)/∂B = 0 (first order condition), should be designed. When

∆1 ≤ ∆2, from the first order condition we have
∫ B∗

0
ϕ(Z)dZ = a+p−c

a+p+h where B∗ is defined only if
∆1 ≤ ∆2.

And ∂2π(B,Z)/∂B2 = −(a+ p+ h)ϕ(Z) < 0 (second order condition), since ∂2π(B,Z)/∂B2 < 0 ,
the optimal second order condition is satisfied and B∗ is the optimal solution. Thus the maximum
expected profit is π(B∗, Z).

From the results of Eq. (3.4), if ∆1 = ∆2, then Z = D, thus we have the following corollary.

Corollary 1 If ∆1 = ∆2, then Z = D and ϕ(Z) = f(D). Thus the fuzzy traffic engineering optimiza-
tion case becomes the pure stochastic traffic engineering optimization case. That is, the fuzzy traffic
engineering optimization problem is an extension of stochastic traffic engineering optimization problem.

In order to distinguish the difference between the two types of traffic engineering problem, we use a
special distribution case to explore their relationships in next section.

4 OPTIMAL BANDWIDTH DESIGN WITH EXPONENTIAL DISTRIBUTION DEMAND

In this section, we assume the demand follows the exponential distribution process to derive the optimal
bandwidth capacity in CN system.

To compare the difference between stochastic traffic engineering and fuzzy traffic engineering, we have
the following two theorems. It is worth noting that the selection of exponential distribution is just one
illustrative example for the proposed fuzzy traffic engineering optimization model. As for the use of
other distribution (e.g., Gaussian distribution process), it would be able to obtain the similar results by
employing the following theorems.

Theorem 2 (Stochastic traffic engineering case) If the traffic demand follows exponential distribution
process,

f(D) =


1

λ
e−

D
λ , D ≥ 0

0, D < 0

where λ is known and 0 < λ ≤ 1, then

(1) The optimal bandwidth is given as follows:

B∗(λ) = λ ln

(
a+ p+ h

h+ c

)
.



OPTIMAL BANDWIDTH DESIGN WITH UNCERTAIN TRAFFIC DEMAND IN COMMUNICATION NETWORKS 397

(2) The maximum expected profit is given as follows:

π(B∗(λ), D) = λ(a− c)− (h+ c)B∗(λ).

Proof:

(1) If the demand follows the exponential distribution process, then optimal bandwidth B∗(λ) can be
calculated from the Theorem 1,∫ B∗

0

ϕ(Z)dZ =

∫ B∗

0

1

λ
e−

D
λ dD = 1− e−B

∗
λ =

a+ p− c
a+ p+ h

⇒ e−
B∗
λ = (h+ c)/(a+ p+ h)⇒ B∗(λ) = λ ln

(
a+ p+ h

h+ c

)
.

(2) Substituting e−
B∗
λ = (h+ c)/(a+ p+ h) into π(B,D), we have

π(B∗(λ), D) =

∫ B∗

0

[aD − cB − h(B∗ −D)]
1

λ
e−

D
λ dD +

∫ ∞
B∗

[(a− c)B∗ − p(D −B∗)] 1

λ
e−

D
λ dD

= −(h+ c)B∗ − λ(a+ p+ h)e−
B∗
λ + λ(a+ h)

= λ(a− c)− (h+ c)B∗(λ)

where B∗(λ) = λ ln
(
a+p+h
h+c

)
.

Theorem 3 (Fuzzy traffic engineering case) If the traffic demand follows the exponential distribution
process,

f(D) =


1

λ
e−

D
λ , D ≥ 0

0, D < 0

where λ is known and 0 < λ ≤ 1, and demand D is fuzzified into a triangular fuzzy number D̃, i.e.,
D̃ = (D −∆1, D,D + ∆2), D, 0 < ∆1 < D, ∆2 > 0, then

(1) The optimal bandwidth is given as follows:

B∗(λ; ∆1,∆2) = −λ ln

[
1−

(
a+ p− c
a+ p+ h

)
e

∆1−∆2
3λ

]
.

(2) With the above (1), the maximum expected profit is given as follows:

π(B∗(λ; ∆1,∆2), D) = λ(a+ p− c)e
∆1−∆2

3λ − λp− (h+ c)B∗(λ; ∆1,∆2).

Proof of Theorem 3 is omitted for restriction of the length of the paper.

Corollary 2 In Theorem 3, if ∆1 = ∆2 ≡ ∆→ 0 for each λ ∈ [0, 1], then we have

(1) lim
∆→0

B∗(λ; ∆1,∆2) = B∗(λ).

(2) lim
∆→0

π(B∗(λ; ∆1,∆2), D) = π(B∗(λ), D).

Proof of Corollary 2 is omitted for restriction of the length of the paper.
From the above Corollary 2, we once confirm that fuzzy traffic engineering case is an extension of

stochastic traffic engineering case.

5 CONCLUSIONS

In this paper, we employed the fuzzy method to derive an optimal bandwidth capacity for the CN system
under demand uncertainty in order to obtain the maximum expected revenue. First of all, the general
expression for optimal network bandwidth design was derived. Based on the general expression, we used
the exponential distribution to illustrate the relationships between the fuzzy traffic engineering optimiza-
tion and stochastic traffic engineering optimization. The results obtained reveal that the proposed fuzzy
traffic engineering optimization problem is an extension of stochastic traffic engineering optimization
problem.
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