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Abstract 

Large-eddy simulation (LES) is employed to study the behaviours of flows and pollutant transport 

inside and over idealized urban street canyons under different unstable thermal stratification. Three 

configurations of idealized street canyon, consisting of building-height-to-street-width (aspect) ratios, 

0.5, 1 and 2, are considered. Under unstable stratification, the vertical profiles of streamwise velocity 

and temperature over the bottom rough surface are more uniform and the turbulent transport of 

momentum and heat are enhanced. Inside the street canyons, the ventilation performance, which are 

characterized by the air exchange rate (ACH), pollutant exchange rate (PCH), pollutant retention time 

and average pollutant concentration, is found improved in unstable stratification. 

1 Introduction 

Apart from wind speed, wind direction, building geometry and building size, thermal stratification is 

another major factor affecting the flows and pollutant transport over urban areas and inside street 

canyons. This situation is not rare that is usually found in daytime when the solar radiation is strong 

and the wind is calm, i.e. an environment of unstable thermal stratification. It can be observed from 

the field measurements that the temperature on a building facade is up to 50 oC in a summer afternoon 

(Bourbia and Awbi, 2004) and the temperature gradient in the near-wall region is as large as 5 oC cm-1, 

resulting in an over-10-oC temperature difference between building facade and air (Louka et al., 2002). 

It was also observed that unstable stratification in the urban boundary layer accounted for 85% in 

daytime and still 64% in night-time (Niachou et al. 2008). Therefore, the effects of unstable thermal 

stratification on the wind flows and ventilation in urban environments should not be overlooked. 

Under unstable thermal stratification, the (negative) vertical temperature gradient induces an upward 

buoyancy force to the wind fields that substantially changes the mean flows, and the turbulent 

transport of momentum, heat and pollutants both inside and above urban street canyons. Numerous 

computational fluid dynamics (CFD) studies have been performed to investigate the turbulent flows 

and pollutant transport inside a street canyon under different thermal configurations, such as wall 

heating, ground heating and all-urban-surface heating (Xie et al., 2007, Li et al., 2010, Cheng and Liu, 

2011). These studies generally showed that the turbulence is more energetic and the ventilation is 

promoted in unstable stratification. The changes in turbulence structure due to unstable stratification 

affect the ground-level ventilation performance of a street canyon, especially the narrow one, in which 

the mean wind is relatively calm and the pollutant removal mainly relies on roof-level turbulence. 

Therefore, an in-depth understanding of how unstable thermal stratification affects the behaviours of 
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turbulent flows and pollutant transport inside and above street canyons could facilitate sophisticated 

urban planning towards better air quality. For example, the thermal environment of a street canyon can 

be controlled by building materials of proper thermal properties or orientation of building facades with 

respect to incoming solar radiation such that the ground-level pollutant concentrations are reduced.  

In this study, large-eddy simulation (LES) sensitivity tests, including urban geometry configurations of 

three aspect ratios (0.5, 1 and 2) and different intensities of unstable thermal stratification, are 

performed with the neutral case for each urban configuration as the respective reference. The LES 

results are compared to the wind tunnel results by Uehara et al. (2000). For the free-stream region 

above the building roughness elements, the vertical profiles of mean streamwise velocity, mean 

temperature, velocity fluctuations, and turbulent momentum and heat fluxes are discussed. Inside the 

(first) street canyon with the ground-level pollutant source, the pollutant concentrations, ventilation 

performance (measured by air (ACH) and pollutant (PCH) exchange rates), pollutant retention time 

and average pollutant concentration under different unstable thermal stratification are also reported. 

2 Methodology 

 

Figure 1: Computational domain and boundary conditions 

 

LES equipped with the one-equation subgrid-scale (SGS) turbulent kinetic energy (TKE) model and 

the box filter (flow variables are filtered according to the grid size) is employed in this study. A three-

dimensional (3D) domain, which is homogeneous in the spanwise direction, is constructed by a series 

of idealized (rectangular) urban street canyons and a free-stream region aloft (Figure 1). Three values 

of building-height-to-street-width (aspect) ratios, h/b = 0.5, 1 and 2, are examined and the number of 

street canyons is 8, 12 and 16, respectively, where h (kept constant) is the building height and b 

(varied) is the street width. The ratio between the height of free-stream region and the building height 

H/h equals 7. A uniform background pressure gradient ∆Px is applied in the streamwise direction to 

drive the prevailing flow in the free-stream region. Hence, the free-stream wind is perpendicular to the 

street axes so that the worst scenario of street canyon ventilation is examined. A free-slip boundary 
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condition (BC) is assigned to the domain top while no-slip BCs are assigned to all urban surfaces. To 

simulate the unstable thermal stratification, the top boundary is kept at constant temperature θf while 

the urban surfaces are kept at a higher constant temperature θf + ∆θ. Periodic BCs for flows and 

temperature are assigned to the spanwise and streamwise domain extents simulating infinitely 

repeating, infinitely long street canyons. Buoyancy force is modelled by the Boussinesq approximation 

so that the effects of density variation are neglected except in the buoyancy force in the governing 

equations. The intensity of unstable thermal stratification is controlled by the value of gravitational 

acceleration g, with g = 0 for the reference cases in neutral stratification.  

An area source of constant concentration C0 is used to release pollutant continuously on the ground 

surface of the first street canyon. A zero-pollutant BC is assigned to the domain inlet, a symmetry BC 

to the domain top and the urban surfaces, an open BC to the domain outlet, hence, the pollutant is 

removed from the domain by prevailing flow without reflection. Periodic BCs are assigned to the 

spanwise extent. Consequently, in the first street canyon, the ground-level pollutant emission rate 

equals the vertical pollutant flux across the roof area that determines the streamwise pollutant flux 

moving out through the domain outlet in pseudo steady-state. 

In the LES models, the fluid (air) is assumed to be dry and incompressible while the pollutant is 

assumed to be passive (flow is independent from pollutant concentration) and inert (no chemical 

reaction). The resolved-scale parts of wind velocity, temperature, kinematic pressure and pollutant 

concentration are calculated numerically from the filtered governing equations, namely, the continuity 

(1), momentum transport (2), thermal energy transport (3) and pollutant transport (4): 
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The over-bar denotes the resolved-scale variables. Tensor notation and summation convention on 

repeated indices are used (i, j = 1, 2 and 3 denote streamwise x, spanwise y, and vertical z directions, 

respectively). ui is the velocity vector, p is the kinematic pressure, λ = 1 for the free-stream region and 

λ = 0 inside the street canyons, δij is the Kronecker delta, ν is the kinematic viscosity, α is the thermal 

expansion coefficient, θ is the temperature, θ0 is the reference temperature (a nominal mean 

temperature in the domain), c is the pollutant concentration. The Prandtl number Pr and the Schmidt 

number Sc are both set to 0.72. The Smagorinsky SGS model (Smagorinsky, 1963) is used and the 

kinematic eddy viscosity νSGS is calculated by: 

∆=
2/1

SGSkSGS
kCν  (5) 

where Ck (= 0.07) is a modelling constant and ∆ (= [∆x∆y∆z]1/3) is the filter width. By the one-

equation SGS model (Schumann, 1975), the SGS turbulent kinetic energy (TKE) kSGS is calculated by 

its transport equation: 
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where the strain rate tensor Sij is calculated by: 
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and Cε (= 1.05) is another modelling constant. 

The spatial domain for each model is discretized into over 4,500,000 rectangular elements. The grid is 

refined near all the no-slip surfaces to capture the rapidly changing flow variables. The smallest grid 

sizes in the street canyon and the free-stream region are, respectively, 0.0431×0.0625×0.0431h3 and 

0.0431×0.0625×0.0274h3. The time step increment for each model is 0.005h/Uf ≤ Δt ≤ 0.03h/Uf, where 

Uf is the free-stream velocity (streamwise velocity at top boundary) depending on the thermal 

stratification. To achieve the pseudo steady-state, an initialization period of at least 1000h/Uf is 

processed in a coarser mesh (around 500,000 to 600,000 rectangular elements). Afterwards, another 

development time of at least 50h/Uf is processed in the aforementioned (refined) mesh configuration. 

The data are then collected for another duration of at least 50h/Uf that are averaged in the spanwise 

direction and over the sampling time. 

As the simulation time goes on, the fields of turbulent flow, temperature and pollutant are self-

developed. The LES data in pseudo steady-state flows, in which the mean and fluctuating statistics are 

unchanged with time, are ensemble averaged in time and spanwise domains. The calculated statistics 

are subsequently analysed in different non-dimensional forms. 

3 Results and Discussion 

The simulation conditions are characterized by the Reynolds number Re and the bulk Richardson 

number Ri (Table 1). The free-stream velocity Uf and the overall domain temperature difference ∆θ are 

the velocity and temperature scales, respectively. The subscripts h and H denote which length scale is 

used. Building height h is used as the length scale when describing the flow conditions inside a street 

canyon while the free-stream height H is used for flow conditions in the free-steam region. 

 

Table 1: Simulation conditions of LES models.

 

h/b ReH RiH Reh Rih 

0.5 

74,000 

↓ 

30,000 

0 

↓ 

-7.57 

10,600 

↓ 

4,300 

0 

↓ 

-1.08 

1 

89,000 

↓ 

42,000 

0 

↓ 

-3.92 

12,700 

↓ 

6,000 

0 

↓ 

-0.56 

2 

94,000 

↓ 

42,000 

0 

↓ 

-3.80 

13,500 

↓ 

6,100 

0 

↓ 

-0.54 
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Figure 2: Vertical profiles of a) streamwise mean velocity, b) standard deviations of streamwise 

velocity, c) standard deviations of vertical velocity and d) Reynolds stress at the middle of street 

canyon. The LES and wind tunnel results are shown in the left and right panels, respectively 

a) 

b) 

c) 

d) 
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The LES results are compared to those of the wind tunnel experiments of Uehara et al. (2000) at h/b = 

1. The vertical profiles of mean streamwise wind velocity, the standard deviations of streamwise and 

vertical wind velocities and the Reynolds stress along the vertical line at the middle of a street canyon 

are shown in Figure 2. In the wind tunnel experiments, 3D cubical blocks, which were different from 

the 2D square ribs in the current LES, were used as the building elements. Shorter roughness elements 

were used to develop an incoming turbulent flow that entered the test section containing the building 

elements. The vertical profiles were taken at the fifth (sample) street canyon. The Reynolds number Re 

based on building height and incoming flow velocity was about 3,500. The bottom ground surface was 

heated to induce the unstable stratification and the building elements are thermally insulted. The bulk 

Richardson number Ri, which is used to describe the wind tunnel results, was based on the temperature 

difference between the ground and the roof-level opening of street canyons. The velocity scale used to 

normalize the wind tunnel results is the mean streamwise velocity at 700 mm above the ground level 

and the overall height of wind tunnel test section is 1 m. 

Both the LES and wind tunnel results show a similar trend for the mean and fluctuating properties of 

the flows with respect to the increase in unstable stratification. The mean wind relative to the free-

stream wind and the turbulence intensities are enhanced both inside the street canyons and in the free-

stream region as the unstable stratification are strengthened. However, the mean wind and turbulence 

intensities inside the street canyons measured in the wind tunnel experiments are several times higher 

in magnitudes than those in the LES. The discrepancy is mainly due to the 3D geometry of building 

elements so additional momentum entrainment is transferred from the street intersections around 

cubical buildings into the street canyons. 

 

 

Figure 3: Vertical Profiles of normalized (a) mean streamwise velocity and (b) mean temperature in 

free-stream region over street canyons of aspect ratio h/b = 0.5 

In the free-stream region of the models of street canyons of aspect ratio h/b = 0.5, by further averaging 

the LES data in the entire streamwise direction, the vertical profiles of mean flow variables are shown 

in Figure 3 while the vertical profiles of flow fluctuations, turbulent momentum flux and turbulent 

heat flux are shown in Figure 4. It is found that, with the increase in buoyancy, the profiles of mean 

velocity and temperature over urban roughness are more uniform. It is because the turbulent mixing 

enhances with the level of unstable stratification. The local maximum of turbulence intensity just 

above the building roof-level rises as the unstable stratification is enhanced. For the LES models of 

h/b = 1 and 2, the trends of results with respective to the level of stratification in the free-stream region 

are similar to those of h/b = 0.5 (which will also be reported in the conference). 
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Figure 4: Vertical profiles of normalized (a) streamwise velocity fluctuation, (b) spanwise velocity 

fluctuation, (c) vertical velocity fluctuation, (d) vertical turbulent momentum flux and (e) vertical 

turbulent heat flux in free-stream region over street canyons of aspect ratio h/b = 0.5 

 

 

Figure 5. Variation of a) ACHmean, b) ACHturb, c) ACHsgs and d) ACH of street canyons with 

Rih for all ARs 

a) b) 

c) d) 
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Air exchange rate ACH is defined as the temporal average of the volumetric outflux of air attributed to 

upward flows at the roof level. ACH is decomposed into ACHmean, ACHturb and ACHsgs, denoting the 

air volumetric outfluxes driven by upward mean wind velocity, resolved-scale turbulence and SGS 

turbulence, respectively (Figure 5). The roof-level opening area plus building roof area ∆Aroof and the 

free-stream velocity Uf are used to normalize all the ACH components and ACH. It is shown that the 

street-canyon ventilation is dominated by turbulence in all the cases (different h/b and Rih) and the 

overall ventilation performance is generally improved with stronger unstable stratification. 

Apart from ACH, pollutant exchange rate (PCH), pollutant retention time and average pollutant 

concentration consistently show that the street-level ventilation performance is improved with stronger 

unstable thermal stratification (these will also be explained in details in the conference). 

4 Conclusions 

With unstable thermal stratification, the vertical profiles of mean velocity and temperature in the free-

stream region over the roughness elements of hypothetical urban areas are more uniform. Moreover, 

the velocity fluctuations, turbulent momentum flux and turbulent heat flux are enhanced. Inside the 

street canyons, ACH, PCH, pollutant retention time and average pollutant concentration all 

consistently show that the street-level air quality is improved in unstable thermal stratification. 
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