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1. Introduction 
 

Most statisticians, geologists and economists working with compositional data would now 
accept that the argument about whether to use log-ratios when modelling compositional data has 
been won by those following the approach of Aitchison (1985). It is clear that the Euclidean metric 
is not an appropriate measure for data in the simplex and should be replaced by the Aitchison 
distance. However, there are many other scientific disciplines that have not heard the message and 
continue to use distance metrics that are inappropriate for the sample space. In particular, when the 
composition is not directly observable, but is a vector of parameters in a model, there continues to 
be confusion as to what is an appropriate model. For example, the argument amongst 
epidemiologists and statisticians about whether to use risk ratios or odds ratios has raged for more 
than 30 years (Cummings, 2009). Those favouring risk ratios highlight the ease of interpretation by 
clinicians and that the risk ratio is not affected when adjustment is made by a variable that is not a 
confounder. Those favouring odds ratios point out that odds ratios are symmetrical with respect to 
both the outcome and risk variables, which is consistent with the likelihood ratio principle, unlike 
risk ratios.  
 

The specific situation that I wish to examine here is when the composition is a set of 
(unobservable) probabilities. We will start with the very simple situation of two complementary 
probabilities representing the chance of success and failure commonly used in many 
epidemiological models. In these models, the aim is to understand the effect of a range of factors on 
the chance of death or survival.  
 
2. A simple example 
 

Consider the simplest situation, where we have a single factor X that is present or absent and 
we observe how many individuals with or without X present are alive or dead. 
 

If p1 is the probability of being alive with X present (labelled as 1) and p0 is the 
corresponding probability when X is not present (labelled as 0) and n1 and n0 are the corresponding 
numbers of individuals found alive, while m1 and m0 are the corresponding numbers found dead, 
then the log likelihood function is clearly: 
 

LL=n1log(p1) + m1log(1-p1) + n0log(p0) + m0log (1-p0) 
 

In this situation, there is no problem finding a point estimate for the risk ratio p1/p0, for 
which the maximum likelihood estimate is: 

 
 n1(n0+m0)/(n0(n1+m1)) ; 
 
or for the odds ratio, which is p1(1-p0)/(p0(1-p1)), for which the maximum likelihood 

estimate is: 
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 n1m0/(m1n0). 
 

Using likelihood ratio or Bayesian analysis, it is also straightforward to construct interval 
estimates for both measures. 
 

Constructing exact confidence intervals for the risk ratio is difficult, although for the odds 
ratio it is straightforward after conditioning. As a result, it is common to use bootstrap intervals 
based on the maximum likelihood estimates. 
 
3. The arguments 
 

Cummings (1979) nicely summarizes most of the arguments between use of the risk ratio 
and odds ratio as follows: 
 
3.1 Interpretation overall 
 

The argument states that risk ratio is superior because it is more easily understood and used 
by clinicians. The supporting evidence is a long list of papers where the authors have clearly 
misunderstood the difference between risk ratio and odds ratio. In practice, if the risk is low under 
all scenarios, then there is little difference between the two measures. However, if the risk exceeds 
10%, then the error in using the wrong measure is arguably significant. 
 
3.2 Interpretability of averages 
 

The estimate of the risk ratio (unlike odds ratio) will not change if we adjust for a variable 
that is not a confounder. This again means that it is easier to interpret a risk ratio, although if there 
are any confounders, this advantage disappears. 
 
3.3 Constancy of odds ratios 
 

As odds ratios are from R+, it is possible for an odds ratio to be constant across a population, 
whereas because of the constraint on the risk ratio, this is impossible as there is an upper limit on 
probabilities, so the risk ratio cannot exceed the reciprocal of the unexposed risk. In short, risk ratio 
modelling does not address the implicit constraint. This argument should sound familiar to 
compositional data analysts and we will re-examine this argument in more detail below. 
 
3.4 Symmetry of odds ratios 
 

When calculating odds ratios, it makes no difference how we label outcome, we obtain the 
same result. However, risk ratios change if we change the labelling. 
 
3.5 Estimation problems with risk ratios 
 

Cummings (1979) does not discuss this problem, but Williamson (2011) devotes his entire 
thesis to discussing in detail how to address the problem that maximum likelihood methods often 
fail to converge for log binomial models, which involve fitting binomial models with linear models 
for the log risk ratio, which are the logical extension of the simple model considered above. He 
shows that for many methods commonly used for modelling risk ratios, there are problems with 
estimation using standard iterative methods because the likelihood maximum is on the boundary, as 
a consequence of the constraint on the probabilities. 
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4. More complex situations 
 
 For more complex scenarios, it is common to frame the problem in terms of generalized 
linear models, popularized in the book by Nelder and McCullagh (1989). In this formulation, the 
underlying distribution is that the outcome variables follow independent Bernoulli distributions 
with probability pi of success, with a linear predictor 
 
µ= X β 
 
where µ = g(p) 
 
for some link function g() that is a monotonic differentiable function. 
 
The most common approach is to use the canonical link, which ensures that the linear predictor µ 
yields XTY as the sufficient statistic, which in this case means using g(p)=log(p/(1-p)). 
 
Other possibilities considered by Nelder and McCullagh for the case of binary data are that g(p) is 
 
 log(-log(1-p)) 
 
 -log(-log(p)) 
 
or 
 
 Φ-1(p). 
 
The models being used by those modelling risk ratios directly, however, correspond to g(p) is 
 
 log(p). 
 
 
5. Discussion 
 

What then does compositional data analysis have to offer, in helping to identify a resolution 
for this longstanding argument?  
 

First, it will be recalled that the early arguments against log ratio analysis included claims 
that it must be faulty because it was harder to interpret than linear model analysis (or than mappings 
onto the sphere rather than Rd). It was only when people understood that some questions do not 
make sense for compositional data, such as trying to model the difference in compositions using 
Euclidean distance that progress could be made. 
 

Second, we now recognise the need to either map all our questions onto Rd so that we can 
use the Euclidean metric or alternatively define a distance metric that is appropriate for the original 
sample space. 
 

Let us now re-examine the difference between log binomial regression (models for risk 
ratios) and logistic regression (models for odds ratios) 
 

As noted above, the standard log binomial linear model is based on the link function: 
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g(p) = log (p) 
 

Whereas for logistic regression, the matching link function is: 
 

g(p)=log(p/(1-p)). 
 

On the face of it, there may seem no theoretical reason why one model should be superior to 
the other. 
 

However, p and 1-p comprise a simple composition, even if p is a parameter, rather than 
data. Hence, it makes sense to a compositional data analyst that we must either use logistic 
regression with a Euclidean metric or equivalently model p on the simplex using the Aitchison 
metric. 
 

If we examine the log binomial model, there is an obvious mapping problem because log(p) 
only covers R-, so there is an implicit constraint on Xβ to cover only R- as well. This constraint is 
very problematic because as a constraint on β, it depends on X. This means that if we do two 
experiments with different X, then the constraints on β are different, so there is no simple way to 
combine our results. This also means that regardless of sample size, adding one new observation 
with a different value of X can significantly change the constraint for β and hence the estimate. 

 
It is interesting to note that Nelder and McCullagh mention that all their suggestions for g(p) 

(unlike g(p)=log(p)) correspond to “inverses of well-known cumulative distribution functions 
having support on the entire real axis”, although they do not explain why this matters, presumably 
because they consider this so glaringly obvious. They also go on to explain that the logistic function 
has the key advantage over other link functions of giving the same answer for prospective and 
retrospective sampling (i.e. conditioning on either row or column totals). 
 

In short, it is impossible to frame sensible questions about β for a log binomial model unless 
there are fixed boundaries for X. In other words, we not only must know the sample space for Y, 
but must also have a finite sample space for X and cannot generate sensible models if the sample 
space for X is continuous. 
 

This is clearly a very serious weakness of log binomial models. The advantage of risk ratios 
being easier to interpret is far outweighed by the difficulty of interpreting the parameters of the 
underlying models other than for very simple situations. Constructing linear models with constraints 
on the parameter space that depend on X does not seem sensible. 
 
 
6. Conclusions 
 

By reviewing the arguments about risk ratio versus odds ratio from a compositional data 
analysis perspective, it is clear that the log binomial models that underpin risk ratio models have 
serious flaws and cannot make sense if the sample space for X is not finite. In comparison, the 
logistic regression models that underpin odds ratio models are consistent with compositional data 
analysis principles and can handle any sample space for X, even if the consequence is models that 
may appear harder to interpret for clinicians. 
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