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Abstract 

Language, arguably the cognitive capacity that distinguishes 
humans, is a dynamic complex adaptive system whose 
structure and evolution is influenced by a host of factors. This 
paper takes a population dynamics approach to investigate the 
diffusion of linguistic variants in populations, focusing on the 
effect of differential prestige of linguistic variants and of 
speakers. A novel method that combines computer simulation 
with mathematical modeling is applied to the specific aim of 
identifying factors that formally constitute selective pressures 
on variant diffusion. Of the factors studied, only the intrinsic 
prestige of variants is found to pose selective pressure, while 
speakers’ prestige merely modulates variant spread. 

Keywords: Language evolution, Price equation, Pólya urns, 
population dynamics. 

Introduction 
Language, arguably the cognitive capacity that defines 
humans, is a dynamic complex adaptive system (Beckner et 
al. 2009) whose structure and evolution is influenced by a 
host of factors. We apply the principles of population 
genetics (Fisher, 1930; Wright, 1984) to language, and 
focus on one aspect of language evolution, i.e., the changes 
in the proportions of linguistic variants in a linguistic 
community. Such changes are usually achieved via diffusion 
of various (phonetic, lexical, syntactic, etc.) variants. At the 
population level, linguistic diffusion (henceforth simply 
“diffusion”) can be viewed as the shift in the proportions of 
linguistic variants used by a population over time 
(Nakamura et al., 2007). Some well-documented examples 
of diffusion include the Great Vowel Shift in English 
occurring from the 14th to 16th century (e.g., Wolfe, 1972), 
other sound changes in modern languages (e.g. Shen, 1997; 
Labov, 2001), and lexical borrowing among languages (e.g., 
Bloomfield, 1933; Cheng, 1987).  
    Examining the mechanisms for diffusion can shed light 
on questions concerning the cognitive capacities for 
language and the effects of linguistic or socio-cultural 
constraints on language evolution (Wolfe, 1972; Pinker & 
Bloom, 1990; Croft, 2000; Hauser et al., 2002; Tomasello, 
2008). Empirical studies from historical linguistics and 
sociolinguistics have revealed that linguistic, individual 
learning and socio-cultural factors could all affect diffusion 

(e.g., Labov, 1994, 2001; Shore, 1995; Fisiak, 1995; Croft, 
2000), and recently, mathematical analysis and computer 
simulation have been used to quantitatively analyze the 
effects of these factors on diffusion. By quantifying the 
contact patterns and constraints within or across 
populations, mathematical analysis helps to predict the 
influence of these factors (e.g., Nowak et al., 2002; Abram 
& Strogatz, 2003; Wang et al., 2004; Dall’asta et al., 2006; 
Kalampokis et al., 2007; Minett & Wang, 2008); by 
simulating individual behaviors during linguistic 
interactions, computer modeling helps to trace how 
interactions among individuals spur the origin of a common 
set of form-meaning mappings (e.g., Steels, 1995; Ke et al., 
2002), how processing constraints lead to linguistic 
regularities (e.g., Kirby, 2002; Gong et al., 2009), and how 
social connections affect diffusion within and across 
communities (e.g., Nettle, 1999; Ke et al., 2008).  
    Diffusion can be driven by chance factors; then the 
process is called drift and follows the neutral model of 
evolution (Kimura, 1968). It can also be driven by selection, 
in which case, a feature of the linguistic variants (e.g. ease 
of pronunciation, cognitive salience, social prestige) 
increases its fitness, i.e., makes it more likely to be used and 
learned, and therefore diffused among speakers, than 
alternative variants. 
    The present study focuses on three factors, namely variant 
prestige, model bias and transmission error, and seeks to 
establish whether each of them poses selective pressure on 
the evolution of linguistic variants. How these factors relate 
to linguistic behavior is illustrated next: First, linguistic 
variants possess feature values which may affect the 
probability with which the variants carrying them are 
adopted and used, in other words, they affect the variant’s 
prestige. A physical feature, such as the ease in perception, 
for instance, could confer high prestige to a certain variant 
(Labov, 1994), meaning that it will be more likely to be 
produced than other variants. Cheng (1987) describes 
lexical variants borrowed from other languages as high-
prestige when they are more salient to hearers than the 
existing variants for the same meaning. Second, in human 
society, ordinary people preferentially copy from 
individuals (models) of higher social, political, or economic 
status (Labov, 1963; Johnstone, 2010); this is called 
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individual bias or model bias, and has been used to explain 
the spread of certain cultural variants (Boyd & Richerson, 
1985; Henrich and McElreath 2003; McElreath and Henrich 
2007). Third, transmission error happens simply when 
speakers make production or perception errors. We do not 
expect transmission error to constitute a selection pressure, 
due to its random nature (as implemented in our model). 
     In this paper we apply the Price equation (Price, 1970, 
1972) to quantitatively identify the selective pressures on 
diffusion, i.e., the factors that successfully lead to the spread 
of certain type of variants in a population. Though originally 
proposed in biological terms, this equation can also be 
applied to any group entity that undergoes socio-cultural 
transmission (Gardner, 2008; Jäger, 2008). We also employ 
multi-agent computer model simulations following the 
Pólya urn dynamics (Johnson & Kotz, 1977; Marshall & 
Olkin, 1993). This model simulates production, perception, 
and update of variants in linguistic interactions. The results 
of the simulations are analyzed with the Price equation in 
order to determine whether the factors studied constitute 
selective pressures on the cultural diffusion of linguistic 
variants.  
    The rest of the paper is organized as follows: first, we 
describe the computer model and the Price equation; second, 
we analyze the effects of variant prestige, transmission error 
and model bias on diffusion; and third we conclude the 
paper and point out some promising future work deriving 
from this study. 

Methods 

The Computer Simulations 
The Pólya urn model was first designed to study contagion. 
In its original implementation, it consists of an urn 
containing a number of red and green balls; at each 
timestep, a ball is randomly drawn from the urn, and then 
returned to it together with a number of balls of the same 
colour. Such drawing and returning processes repeat 
themselves, causing the distribution of variant types in the 
urn to change over time. In our model, an urn is initiated 
with V tokens, each belonging to a particular type (v1, v2, … 
vV) and having a quantifiable feature xi (all feature values 
form F). At a time step, a token vi is drawn randomly from 
the urn and returned with another token of the same type.  
   Our computer model, inspired on the prototypical Pólya 
urn model, contains N agents (individuals), each denoted by 
an urn. Variant types and tokens represent linguistic types 
and tokens. During an interaction between two or more 
individuals, a token is drawn from one of the urns (the 
speaker); this corresponds to production. Token(s) of the 
same type are then added to another urn(s) (the listener(s)); 
this corresponds to perception and update of knowledge. 
    Prestige is implemented as follows: when hearing a high-
prestige variant, a higher number of tokens are added to the 
urn – at each time step, a token vi is drawn randomly from 
the urn and returned with pi (the prestige of vi, all prestige 
values form P) tokens of the same type. Model bias is 

implemented thus – when hearing a token used by the high-
status individuals, hearers add more tokens of that type to 
their urns than if the token is produced by a low-status 
individual. Transmission error, or mutation, occurs when a 
token is returned with some token(s) of different type(s). 
The probability of mutation is a parameter in the model. 

The Price Equation 
The aim of the present study is to examine whether a 
number of factors constitute selection pressures on variant 
diffusion. A variant may come to dominate in a population 
for several reasons: it may have intrinsic properties that 
make it adaptive in its environment and it may therefore be 
selected for. Alternatively, the random dynamics of 
evolutionary drift may increase the frequency of the variant. 
The virtue of the Price equation (Eq. 1), a tool from 
evolutionary biology, is precisely that it splits change into 
two components: selection and transmission, allowing us to 
identify which one is causing evolutionary change.   
 

€ 

Δx = Cov(si / s,xi )+ E(Δxi × si / s)
         

(1)     
     Here, xi is the feature value of vi, si is the fitness of vi, s is 
the average fitness, ∆xi is the feature discrepancy of vi 
between time steps, and ∆x is the expectation of feature 
value change. 
    We apply the equation to trace change in the average 
value of a quantifiable feature in a population between two 
consecutive time steps in the computer model and calculate 
the two terms: 1) The covariance between the feature value 
xi and the fitness ratio si/s measures selection, or evolution 
caused by fitness differences between different types of 
variants. Consistent non-zero covariance values over the 
course of a computer simulation indicates that feature xi is 
under selective pressure. 2) The expectation of the product 
of the fitness ratio si/s and the feature discrepancy ∆xi 
measures evolution occurring at transmission, in other 
words differences between parents and offspring variants. 
Consistent non-zero expectation values indicate that feature 
xi is undergoing transmission error such as mutation. 
    By quantifying a feature relevant for diffusion and 
analyzing the average values of the components in the Price 
equation over many simulation runs, we can identify the 
selective pressures on this feature.  

Identifying Selective Pressures on Linguistic 
Diffusion 

For the sake of simplicity, our models contain only two 
variants, each characterized by a quantifiable feature F={1, 
2}. Example quantifiable features include vowel length, 
consonant voicing onset time or lexical item recall rate. A 
simulation has a 100-agent population and 2000 interactions 
among them (20 interactions per agent on average). We 
conducted 1,000 simulations in each of four conditions:  
• Variant prestige with and without transmission error 
• Model bias with and without variant prestige 
    The result of each simulation consists of a record of the 
proportions of variants of each type in each urn at each 
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timestep. On this data, we calculate the Covariance and the 
Expectation terms of the Price equation at 20 sampling 
points evenly distributed along 2000 interactions. To 
complement the Price equation, which traces changes, rather 
than proportions, of variant types, we also calculate Prop 
(see Equation 2) as the proportion of the majority variant 
type at each sampling point.  
     (2) 

    By illustrating whether one type of variants gradually 
diffuses to the population, the average Prop of the 1000 
simulations helps to evaluate the conclusions drawn from 
the Price equation.  

Variant Prestige with and without Transmission 
Error 
Variant prestige encompasses intrinsic properties of the 
variant – and not of the individuals carrying the variant – 
that makes them more likely to be adopted by individuals. 
Henrich and Gil-White (2001)’s study of prestige in cultural 
transmission do not find an effect of variant prestige on 
diffusion, although admittedly their focus was on model 
bias, and variant prestige was implicitly subsumed within 
that focus. In our simulations, each interaction occurs 
between two randomly chosen agents. Differential variant 
prestige is introduced via pi. For conditions with variant 
prestige, P={1, 2}; for those without, P={1, 1}. If pi=2, two 
tokens of the same type (instead of one) are added to the 
listener’s urn, modeling the enhanced adoption of the high-
prestige variant. Transmission error is introduced via 
mutation; c=0.02 is the probability that an added token 
becomes a mutant (of the other type). Figure 1 shows the 
simulation results in these conditions. 
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Figure 1 (c) 

 
Figures 1(a) and 1(b) respectively show the covariance 
without transmission error and the expectation with 
transmission error. For covariance, with variant prestige, it 
becomes consistently positive; otherwise, it fluctuates 

around 0.0 (the proportions of the values above, below, and 
equal 0.0 are shown in the legend of Figure 1(a)). The 
gradual decrease in the absolute value of covariance is due 
to the increase in the total number of variants, which 
reduces the effect of a small number of changed variants in 
each interaction. The positivity of covariance clearly 
indicates that variant prestige is a selective pressure on 
diffusion. For expectation, with variant prestige, it becomes 
consistently negative; otherwise, it fluctuates around 0.0. 
This result suggests that transmission error can reduce the 
selective pressure of variant prestige. However, due to the 
low mutation rate, this effect is smaller than that of variant 
prestige. 
    Figure 1(c) shows the Prop in these conditions. With 
variant prestige, v2, with the higher prestige value, becomes 
the majority type and its Prop gradually reaches a high level 
(above 0.8)1; without variant prestige, either type can 
become the majority type, but the small bias towards either 
type (due to random factors in early interactions) cannot be 
further amplified in later interactions, so Prop remains 
around 0.5. This result confirms the selective pressure of 
variant prestige, consistent with the conclusion drawn from 
the Price equation. Figure 1(c) also shows the Prop in the 
conditions with transmission error (the dotted lines). With 
variant prestige, the Prop with transmission error is lower 
than that without, showing that transmission error reduces 
the selective pressure of variant prestige; without variant 
prestige, the Prop with and without transmission error are 
similarly low, around 0.5, showing that transmission error 
alone has no significant effect on diffusion. This result also 
confirms the conclusion drawn from the Price equation. 
    The mathematical analyses based on the Price equation 
applied to the simulation results using the diffusion model 
formally show that variant prestige is indeed a selective 
pressure on diffusion and transmission error can reduce such 
pressure, but transmission error alone fails to consistently 
drive the diffusion.  
    The consistent positivity (or negativity) of the covariance 
based on variant feature identifies selective pressures on 
diffusion. In the following sections, therefore, we focus on 
covariance, and leave aside conditions without transmission. 

Model Bias with and without Variant Prestige 
Model bias reflects the phenomenon that members in a 
community tend to copy the variants, regardless of the 
actual forms, from certain individuals. It has been claimed 
that such bias could enhance the benefits of cultural 
transmission (Henrich & Gil-White, 2001). We analyze two 
types of model bias. 
    The first type involves a single high-status agent. Here, a 
single agent has a bias value of 2, and the other 99 agents’ 
bias value is 1. Variant prestige and model bias take effect 
jointly during interactions. Without variant prestige, when 
the high-status agent speaks, the hearer adds 2 tokens of the 

                                                             
1 Prop never reaches 100%, because the tokens of the other type 
are not removed. 
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produced type; when another agent speaks, the hearer adds 1 
token of the produced type. With variant prestige, when the 
high-status agent produces a token of the prestigious type, 
the hearer adds 4 tokens of that type; when it produces a 
token of the other type, the hearer adds 2 tokens of that type; 
and when another agent speaks, the update is the same as in 
the condition with only variant prestige. 
    Figure 2 shows the results under this type of model bias. 
Without variant prestige, the Covariance fluctuates around 
0.0; otherwise, it is consistently positive (see Figure 2(a)). 
These results show that the first type of model bias alone 
fails to exert a selective pressure; it has to take effect 
together with variant prestige. This conclusion can be 
confirmed by the Prop in Figure 2(b): without variant 
prestige, the Prop remains slightly higher than 0.5; 
otherwise, it approaches 1.0. 
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Figure 2 (a)   Figure 2 (b) 

 
The second type of model bias concerns multiple 
individuals. The bias towards an individual is defined as the 
probability for this individual to participate in interactions, 
and all probabilities follow a normalized, power-law 
distribution (Newman, 2005). This implementation is 
inspired on empirical data (Newman, 2003), and has been 
adopted in previous work (e.g., Gong et al., 2008). In this 
paper, we only consider the power-law distributions whose λ 
values are 0.0, 1.0, 1.5, 2.0, 2.5, and 3.02.  
    Figure 3 shows the results under the second type of model 
bias. Similar to the first type, the second type of model bias 
alone fails to exert a selective pressure; it has to take effect 
together with variant prestige. This conclusion is shown by 
comparing the Covariance in Figures 3(a) and 3(b), and 
confirmed by the Prop in Figures 3(c) and 3(d).  
In addition, the Prop in the conditions with variant prestige 
seems correlated with the λ values (see Figure 3(d)). To 
illustrate such correlation, we define MaxRange (see 
Equation 3) as the maximum changing range of Prop: 
     

€ 

MaxRange = max
t∈[1, 2000]

(Prop( t)− Prop(0))              (3) 

    Figure 3(e) compares the MaxRange in the conditions 
with and without variant prestige. With variant prestige, the 
MaxRange increases along with the λ. With the increase in 
λ, some agents are more biased, and they can take part in 
more interactions than others. Due to variant prestige, the 
variant bias towards the prestigious variants in these biased 
                                                             
2 If λ=0.0, all agents have the same degree of bias, which 
resembles the case of random interaction. If 0.0 < λ < 1.0, the bias 
values are sensitive to the population size and are, therefore, 
excluded. 

agents will increase, quickly spread to others, and get 
further amplified after many interactions. However, without 
variant prestige, the variant bias in the biased agents 
remains small and cannot be amplified enough to increase 
substantially the proportion of one variant type. Therefore, 
the correlation between the MaxRange and the λ becomes 
less explicit. 
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Figure 3 (e) 

 
 The power-law distributed model bias reflects the 
omnipresent scaling law in social and cognitive domains 
(Kello et al., 2010). Our simulations show that in order for 
such a scaling characteristic to significantly affect diffusion, 
variant prestige is necessary. In addition, the correlation 
between the degree of diffusion and λ values in our study is 
different from that shown in other studies. For example, 
Gong et al. (2008) observe a threshold λ value (around 1.0), 
below or above which the spread of linguistic knowledge is 
less efficient – but our diffusion model differs from that of 
Gong et al. (2008) in that they explicitly modeled lexical 
and syntactic information. This different performance 
indicates that different types of linguistic knowledge may 
follow different diffusion trajectories in the population. 

Discussions, Conclusions and Future work  
Our study demonstrates that, of the factors studied, only 
variant prestige explicitly driving the spread of variants with 
higher prestige values in the population, whereas other 
individual learning or socio-cultural factors, such as 
transmission error or model bias, can take effect only if 
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variant prestige is involved. As shown in our study, 
transmission error simply introduces noise in the effect of 
variant prestige, and model bias does not pose a selection 
pressure. However, if variant prestige is also present, the 
strength of selection for the high-prestige variant can be 
modulated by the distribution of individual status in the 
population.  
    Our findings indicate that external, domain-general 
factors, such as individual status, must take effect via 
intrinsic, domain-specific factors, such as variant prestige. 
In linguistics, this finding also alerts us not to exaggerate 
the effect of language-external factors and inspires us to re-
evaluate conclusions in previous studies (e.g., Henrich & 
Gil-White, 2001). Meanwhile, the Pólya urn dynamics is a 
general transmission framework not specific to linguistic 
communication, and the simulation results are less 
dependent on population size, variant number, or interaction 
number. Additionally, the Price equation provides a concise 
description of evolutionary processes that abstracts away 
from the specific properties of biological evolution (Jäger, 
2008; Gardner, 2008). These aspects make this finding also 
instructive to other phenomena that involve socio-cultural 
transmission. 
    Computer simulation and mathematical analysis jointly 
establish a theoretical platform for linguistic research 
(Loreto & Steels, 2007). Our work exemplifies how these 
two approaches assist each other to explore the target 
question. The conclusions drawn from the Price equation are 
difficult to prove purely mathematically, but they are nicely 
assessed by the proportions of the majority variant type in 
the simulations. The simulations can further examine the 
complementary roles of individual learning and socio-
cultural factors in diffusion. When variants have differential 
variant prestige, transmission error delays the diffusion 
process and helps to preserve the tokens of less prestigious 
type; model bias accelerates the diffusion by spreading and 
amplifying the bias towards prestigious variants, and there 
is a correlation between the degree of diffusion and that of 
model bias. 
     Finally, some aspects of this study can be modified in 
order to explore further questions on the diffusion of 
linguistic and other cultural variants. Among possible 
manipulations we find: changing the structure of the social 
network, the population structure over time – for instance 
adding generation turnover involving death of agents and 
birth of new agents or implementing frequency-dependent 
prestige. These modifications and others are easily feasible 
within the combination of computer simulation based on the 
Pólya urn model and mathematical analysis using the Price 
equation presented here. 
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