

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Assessing the hydrologic restoration of an urbanized area via integrated distributed hydrological model

D. H. Trinh¹ and T. F. M. Chui²

Received: 5 December 2012 - Accepted: 22 March 2013 - Published: 4 April 2013

Correspondence to: T. F. M. Chui (maychui@hku.hk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

iscussion Paper

Discussion Pap

Discussion Paper

Discussion Paper

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I∢

►I

< -

•

Back

Close

Full Screen / Esc

Printer-friendly Version

¹Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore

²Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

Green structures (e.g. green roof and bio-retention systems) are adopted to mitigate the hydrological impacts of urbanization. However, our current understanding of the urbanization impacts are often process-specific (e.g. peak flow or storm recession), and our characterizations of green structures are often on a local scale. This study uses an integrated distributed hydrological model, Mike SHE, to evaluate the urbanization impacts on both overall water balance and water regime, and also the effectiveness of green structures at a catchment level. Three simulations are carried out for a highly urbanized catchment in the tropics, representing pre-urbanized, urbanized and restored conditions. Urbanization transforms vegetated areas into impervious surfaces, resulting in 20 and 66 % reductions in infiltration and base flow respectively, and 60 to 100 %increase in peak outlet discharge. Green roofs delay the peak outlet discharge by 2 h and reduce the magnitude by 50 %. Bio-retention systems mitigate the peak discharge by 50 % and also enhance infiltration by 30 %. The combination of green roofs and bio-retention systems even reduces the peak discharge to the pre-urbanized level. The simulation results obtained are independent of field data, enabling a generic model for understanding hydrological changes during the different phases of urbanization. This will benefit catchment level planning of green structures in other urban areas.

Introduction

Urbanization transforms vegetated areas into impervious surfaces. This causes water flow to be intervened by man-made structures and drainage networks, resulting in significant impacts on hydrological conditions (Antrop, 2004; Haase, 2009). The first and foremost impact is the change in water balance (DeFries and Eshleman, 2004). The replacement of vegetation with impervious surface enhances surface runoff and river discharge (Bhaduri et al., 2000; Dietz and Clausen, 2008; Wang et al., 2005; Du et al., 2012; Ott and Uhlenbrook, 2004; Sanders, 1986) and also reduces water losses

Discussion Paper

Discussion Paper

Discussion Pape

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

Title Page Introduction **Abstract**

Figures

Full Screen / Esc

Printer-friendly Version

Discussion Pape

Interactive Discussion

through canopy interception, vegetation evapotranspiration and soil evaporation (Dow and DeWalle, 2000; Endreny, 2005; Rose and Peters, 2001). Not only surface water, urbanization also affects groundwater in terms of recharge (Barron et al., 2013). Some suggest that groundwater recharge increases due to the reduction in evapotranspiration (Klöcking and Haberlandt, 2002; Rose and Peters, 2001) and/or the leakage from water systems and sewers if the groundwater table is lower than the pipe level (Göbel et al., 2004; Lerner, 1990). Others believe that the additional impervious surfaces decrease groundwater recharge due to the reduction of infiltration (Collin and Melloul, 2003; Rose and Peters, 2001; Schoonover et al., 2006). Besides changing water balance, urbanization also influences water regime (i.e. pattern of flow) such as increasing and decreasing the high and low flows respectively, and also increases the daily variation in stream flow locally (Konrad and Booth, 2005). The storm recession period is also significantly shorter in urban streams (Rose and Peters, 2001). As listed above, there are numerous studies examining the hydrological impacts of urbanization. Nevertheless, they mostly focus on the changes in particular components or processes. and examine the impacts on either water balance or water regime. There is thus an incentive to develop an integrated understanding on the overall changes in both water balance and water regime.

For environmental benefits and water resources management, there has been rising interests to mitigate the hydrological impacts of urbanization and to restore preurbanized hydrological conditions. One approach is to implement small-scale hydrologic control throughout a catchment. Examples of such hydrologic controls, known as "green structures" or "low impact development practices", include green roofs and bio-retention systems. Even though there are many variants of green structures, green roofs and bio-retention systems are representative of most kinds of green structures as they comprise the main hydrologic restoration mechanisms of surface runoff delay and infiltration enhancement. Green roofs collect and retain rainwater falling onto buildings for a certain period of time (from hours to days) (Oberndorfer et al., 2007), thereby reducing and delaying water discharge to the canals. Studies have found that green roofs

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract

Introduction

Figures

Printer-friendly Version

Printer-friendly Version

retain 40-80 % of precipitation (Hutchinson et al., 2003; Palla et al., 2012; VanWoert et al., 2005) and reduce 60-80 % of peak discharge (Bliss et al., 2009; Mentens et al., 2006; Palla et al., 2012; Villarreal et al., 2004). They also tend to retain a higher fraction of precipitation in small storms than in large ones (Carter and Rasmussen, 2006). On the other hand, bio-retention systems not only retain stormwater (Xiao and McPherson, 2011) but also enhance infiltration (Davis, 2008; James and Dymond, 2012). Evaluating the effectiveness of bio-retention systems Holman-Dodds et al. (2003) concluded that they do not reduce runoff significantly on the site with low infiltration capacity; while Chang et al. (2009) emphasised that it is more effective when sited close to the watershed outlet. More quantitatively, Davis (2008) showed that with 2% bio-retention system over 0.24 ha area, peak flow reduced by 44 to 63 %. However, most of the above studies are in plot-scale or small catchments, only evaluating the local impacts of an individual green structure.

The objective of this study is to assess the catchment-scale impact of urbanization on both water balance and water regime using an integrated distributed hydrological model, Mike SHE. The model should include all the main hydrological components (e.g. canopy interception, evapotranspiration, overland flow, river routing and groundwater) and should detail the spatial variations within a catchment. With the use of the integrated distributed hydrological model, the feasibility of restoring the hydrological condition is examined through the implementation of green roofs and bio-retention systems on a catchment-scale.

Methodology

The integrated distributed hydrological model

Urbanization and green structures affect the interactions of various hydrological processes such as canopy interception, plant evapotranspiration, water and soil evaporation, infiltration, overland flow, and groundwater flow. Thus, an integrated hydrological **HESSD**

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

> > Title Page

Introduction **Abstract**

Figures

Full Screen / Esc

model that accounts for all the above processes is needed to access the hydrological impacts of urbanization and green structures. Compared to distributed models, lumped models have two main limitations. Firstly, the domain response is only evaluated at the outlet and sub-domain response is not considered. Furthermore, the various characteristics of a catchment are lumped into one single parameter which may not be truly reflective. This research is interested in sub-domain response and also requires the considerations of the heterogeneous land uses including green structures in an urbanized catchment. Therefore, despite the high demand in input data and long computation time, a fully distributed model is more suitable for this study.

In particular, Mike SHE (System Hydrologique European), a comprehensive deterministic, distributed, and physically based modelling system, is selected for this research. Mike SHE couples river routing modelling (Mike 11), overland flow and groundwater modelling, giving a complex integrated hydrological analysis of surface and subsurface water systems. It simulates all major processes in the land phase of the hydrological cycle, including precipitation, interception, infiltration, evapotranspiration, subsurface flow in unsaturated and saturated zones, overland flow and flow in the channel and river. Figure 1 shows the main components of Mike SHE and their governing equations. The Saint Venant equation is solved numerically in two dimensions for overland flow and in one dimension for channel flow. The one-dimensional Richards' equation (or simplified gravity equation) is solved for the pressure head (or moisture) variation in the unsaturated zone. The horizontal movement of water in unsaturated zone is considered negligible. Saturated groundwater flow is simulated using the three-dimensional Boussinesg equation.

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

ables Figures

I₫

Full Screen / Esc

Printer-friendly Version

2.2.1 Green roof

Green roof is a conventional roof covered with soil and vegetation, and consists of four main components: vegetation layer, soil layer, geotextile filter and drainage material (Czemiel Berndtsson, 2010). It functions as a micro-catchment and includes all the main hydrological processes such as: rainfall, plant interception, evapotranspiration, infiltration and storage. Though green roof is often installed to save energy and to mitigate the urban heat island effect, it has also been shown to benefit stormwater management (Bengtsson et al., 2005; Mentens and Raes et al., 2006; VanWoert et al., 2005). Rainfall needs to percolate and infiltrate through the vegetation and soil layers, thereby delaying runoff discharge as well as improving water runoff quality.

The key hydrological impact of a green roof during a storm event is the delay in runoff discharge. In MikeSHE, this delay in runoff discharge is simulated by delaying the rainfall in each individual green roof by 3 h. The duration of delay is based on previously published studies; Moran et al. (2004) reported a delay time of 3 h and Rowe et al. (2003) found peak flow was delayed by 2 to 4.5 h. The detailed flow process within the different layers of a green roof is not simulated given its high computational demand and small impact on predicting the overall discharge delay of a green roof. Other important hydrological processes, such as evapotranspiration and infiltration, are simulated as part of the integrated model as explained in Sect. 2.1.

2.2.2 Bio-retention system

Bio-retention system is a shallow planted depression, and consists of ponding area, filter media, transition layer and drainage layer. It is one of the stormwater best management practices that provides both conveyance function and stormwater treatment. Stormwater runoff is filtrated through and treated by vegetation and soil within the

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

Discussion Paper

Discussion Paper

nclusions References

ables Figures

→

Back Close

Full Screen / Esc

Printer-friendly Version

HESSD 10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page Abstract Introduction Conclusions References Tables Figures

4

Back

0.000

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

bio-retention area. The filtrated water is either collected by a drainage system or allowed to infiltrate into the ground. To enhance infiltration into the system, it often employs filter media with a hydraulic conductivity of one to two orders of magnitude (i.e. 10 to 100 times) higher than that of the surrounding soil profile. In addition, the system allows ponding which provides further flow retention. In the integrated hydrological model, we implement bio-retention systems that allow stormwater to infiltrate directly into the surrounding soil profile (i.e. no subsoil drainage). The bio-retention systems are modelled as homogenous soils with a high hydraulic conductivity of 10⁻⁵ m s⁻¹, extending 1 m below the ground. The systems are also equipped with 20 cm of detention ponding. All the hydrological processes, e.g. evapotranspiration and infiltration, are also considered in the integrated model.

2.3 Marina-like catchment – a case study in Singapore

The biophysical and hydrological environment of Singapore has altered dramatically due to rapid urbanization and industrialization (Lu et al., 2005). Marina catchment (Fig. 2), the most urbanized part of Singapore, has typical characteristics of a highly urbanized catchment in the tropical area. It has a catchment area of 160.8 km², and currently consists of different land uses and soil conditions and includes the different components of hydrological and vegetation system (e.g. plant, river, reservoirs, mixture of permeable and impermeable surfaces). Adopting the main characteristics of Marina catchment, an integrated distributed hydrological model of Marina-like catchment is built to evaluate the impact of urbanization on water balances and regimes. In other words, this objective of this study is not to reproduce the exact situations of Marina catchment, but rather to demonstrate the generic influences of urbanization on hydrological conditions. The model is further developed and applied to evaluate the effectiveness of catchment-scale green structures in mitigating the hydrological impacts of urbanization.

To address the issues raised in the objective, several simulations are performed. Firstly, to evaluate the effect of urbanization in Singapore, a pre-urbanized scenario

10, 4099–4132, 2013

HESSD

Hydrologic restoration of an

urbanized area

D. H. Trinh and

T. F. M. Chui

Title Page

Abstract

Introduction

Figures

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

in which all the hydrological conditions are at natural state is set up. It is then compared with an urbanized scenario in which all the hydrological factors are urbanized. Secondly, to evaluate the effectiveness of green structures in minimizing the impact of urbanization, another set of scenarios is set up to reflect the different strategies in installing the green structures in an urbanized environment. The results are then compared with those without the green structures to conclude their effectiveness. The simulation of each scenario is one-year, and is further elaborated below:

- The first scenario (pre-urbanized) represents the condition before urbanization in which the entire land surface is covered by plants and the rivers are in natural conditions.
- The second scenario (urbanized) represents the current situation in which the land surface coverage has changed drastically due to urbanization and is a combination of permeable, impermeable surfaces and buildings; rivers are also concrete-lined.
- The third scenario represents hypothetical situations in which green roofs and/or bio-retention systems are installed at strategic locations to mitigate the hydrological impacts of urbanization. This scenario is further divided into three different strategies:
 - Strategy 1: Restored by green roofs (Green roof). All the buildings in the catchment are covered with green roofs which account for 14% of the catchment area.
 - Strategy 2: Restored by bio-retention systems (Bio-retention). 5% of the catchment area is converted from impervious surfaces in the urbanized scenario to bio-retention systems in this strategy. The bio-retention systems are located near the streams and are in areas where the groundwater table is at least 1.5 m below the ground.

To focus on the impacts resulting from the change from vegetated to impervious surface and the implementation of green structures, other factors such as climate, soil and topography are assumed not to change among the scenarios. Each scenario is run for one year under the same climate condition. The digital-elevation model SRTM (i.e. topography) in 2005 is obtained from US Geological Survey with 30 m resolution (USGS, 2010) and are applied to all three scenarios. The surface mesh includes 89 900 elements; each element is rectangular with a dimension of 60 by 60 m. Below the surface mesh, 45 subsurface layers are added. The thickness of layers increases with depth, starting from 0.2 m at the top to 1 m at the bottom. Each of the main hydrologic components has its own time step. River routing is the most dynamic process and is highly responsive to rainfall and topographical condition, followed by overland flow, and finally unsaturated and groundwater flow. However, there is a flow exchange between the different flow processes, which lead to some restrictions on the time steps. For river routing, a time step of 1 min is used. For overland flow, unsaturated and groundwater components, time steps of 0.25, 0.5 and 12 h are used respectively.

2.3.1 Surface and subsurface parameters

To parameterize the surface and subsurface, the model domain is divided into zones based on the land cover, surface properties, soils, and geology. *Land cover* map (Fig. 3) is digitized from Singapore Master Plan in 2003 (URA, 2003), and is classified into four groups with vegetation of different leaf area indexes (LAI) and roof depths (RD) (Table 1).

For *soil properties*, top soil (i.e. soil from surface up to 1 m depth) information is extracted from Singapore soil map (Fig. 3), digitized from the Soil of the Republic of Singapore (Wells, 1977; Ives, 1977). Below 1 m depth, the soil is assumed to be loamy sand. Using the soil information from Table 2, together with the hydraulic parameters

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract

Introduction

onclusions

References

Tables

Discussion Paper

Discussion Pape

Figures

I∢

_

•

•

Back

Close

Full Screen / Esc

Printer-friendly Version

en on-

HESSD

10, 4099-4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

ables Figures

I₹

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

of standard soil texture from United State Department of Agriculture, Van Genuchten parameters are estimated to define moisture retention and unsaturated hydraulic conductivity.

Regarding surface properties, detention storage is used to limit the amount of wa-5 ter that can flow over the ground surface; the depth of ponded water must exceed the detention depth before water is routed overland. For Marina-like catchment, detention depth is generally set as 0.01 mm as the catchment is mostly covered by impervious surface. The detention depth for reservoirs is the maximum reservoir level, while the detention depth is set as 20 cm for areas with bio-retention systems based on Singapore's National Water Agency guideline for bio-retention systems design (PUB, 2011). In Mike SHE, the amount of precipitation reaching the ground is considered as ponded water. Part of the ponded water infiltrates into the ground. The remaining part is called available ponded water and is used to estimate the amount of surface runoff. The fraction of available ponded water contributing to surface runoff depends on runoff fraction or runoff coefficient. In our case study, it is assumed that the runoff coefficients for impermeable and permeable coverage are 70 and 30 %, respectively. Surface roughness, defined by Manning number (M) (inverse of the conventional Manning's coefficient n), are 25 and 80 for surface covered with plant and open space, respectively. The values are equivalent to the Manning's coefficient of 0.04 and 0.0125, which are typical values for vegetated and concreted surface (Chow, 1959).

For geological properties, hydraulic parameters for the saturated zone are assumed to be loamy sand, a typical soil type in Singapore, for the entire catchment with a horizontal hydraulic conductivity of 1.22×10^{-5} [m s⁻¹] and a vertical hydraulic conductivity equivalent to 10% of the horizontal hydraulic conductivity. Specific yield and specific storage is 0.2 [–] (Freeze and Cherry, 1979) and 9.82×10^{-4} m⁻¹ (Younger, 1993), respectively.

The initial condition of the integrated hydrological model is the combination of the initial conditions of different components such as ponding depth, soil moisture content and groundwater table. Ponding depth of reservoirs is assumed to be at the reservoir water levels, and is set at 0 m in the rest of the domain. To obtain an initial groundwater condition, a 10 yr simulation is carried out. As the groundwater table in Singapore is only a few meters below the ground surface (Rezaur et al., 2003), the initial groundwater table for the 10 yr simulation is set at 1.5 m below the ground. The climate condition of year 2005 is repeated 10 times for this 10 yr simulation. The groundwater table, reaching dynamic equilibrium after 10 yr, is then used as the initial condition of the remaining simulations. The initial condition sensitivity analysis of the results to the initial condition is also carried out. It is shown that within a reasonable or range of initial conditions, the results converge to the same solutions. Initial soil moisture is set to achieve equilibrium pressure corresponding to the groundwater table from the 10 vr simulation. In addition. for each of the 1 yr scenario simulation, another 5 yr of stabilization simulation is carried out to obtain dynamic equilibrium conditions of all the hydrological components which are then used as the initial conditions for that particular scenario.

2.3.3 Boundary conditions

For the top boundary, precipitation is the only in-flux and evapotranspiration is the only out-flux. Rainfall and potential evapotranspiration are assumed to be uniformly distributed in the entire catchment. Hourly rainfall data from year 2005 is obtained from the Kent Ridge campus of National University of Singapore (NUS), located at the South-Western edge of the catchment. Evapotranspiration is calculated from Penman–Monteith method (Eq. 1) using hourly weather data (e.g. atmospheric pressure, air temperature, relative humidity, wind speed, and incoming radiation) from NUS for year 2005.

. .

Discussion Paper

Discussion Paper

Discussion Paper

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

-1

- ■

•

Back

Close

Full Screen / Esc

Printer-friendly Version

Printer-friendly Version

Interactive Discussion

 $\lambda E = \frac{\Delta (H_{\text{net}} - G) + \rho_{\text{air}} c_p \left(e_z^0 - e_z\right) / r_a}{\Delta + \gamma \left(1 + r_c / r_a\right)}$

where λ is the latent heat of vaporization (MJ kg⁻¹), E is the hourly potential evapotranspiration (mm h $^{-1}$), Δ is the slope of saturation vapour pressure—temperature curve (kPa $^{\circ}$ C $^{-1}$), H_{net} is the net radiation (MJ m $^{-2}$ h $^{-1}$), G is the heat flux density to the ground (MJ m⁻² h⁻¹), ρ_{air} is the air density (kg m⁻³), c_n is the specific heat at the constant pressure (MJ kg⁻¹ °C⁻¹), e_z^0 is the saturation vapour pressure of air at height z (kPa), e_z is the water vapour pressure of air at height z (kPa), γ (kPa°C⁻¹) is the psychometric constant, r_c is the plant resistance (s m⁻¹), r_a is the diffusion resistance (s m⁻¹).

For the boundary conditions on the sides, since the model domain is the entire Marina-like catchment, there are no fluxes across the inland boundary. The boundary bordering the sea is assumed to have a fixed head of 0 m corresponding to the mean sea level. Reservoirs in the catchment are set as internal boundary conditions with head-controlled flux. The exchange fluxes depend on the head difference between the groundwater table and the reservoir water depth with a leakage coefficient of 10⁻³ s⁻¹. The bottom boundary of the domain is bed rock and thus has no flux, and is assumed to be at 35 m below the ground.

2.3.4 River routing

The main river network of the Marina-like catchment is delineated from the digital elevation model (DEM) and published documents from Singapore's national water agency (PUB, 2007). Most of the channel cross sections are assumed to rectangular, except the main river flow from north to south of the catchment (i.e. Kallang River) has the addition of the trickle channel. The channel width is estimated based on remote sensing data and the channel elevation is estimated from DEM data. Inflow boundary at the upstream is set at a constant discharge value of 0 m³ s⁻¹. At downstream, water

(1)

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

> > Title Page

Introduction **Abstract**

Figures

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

> > Title Page

Introduction **Abstract**

Figures

Printer-friendly Version

Full Screen / Esc

Interactive Discussion

level is at a constant elevation of 11 m which is approximately the level of the Marina reservoir (the most southern and downstream reservoir). Manning numbers (M) are 25 and 80 for earthen and concrete river banks, respectively. The fluxes exchanged between groundwater and surface water in the channel is estimated using a leakage coefficient of 10⁻⁵. For the stabilization of the model, initial water depth and discharge are at 0.1 m and 0 m³ s⁻¹, respectively.

Results

Impacts on overall water balance

To determine the impacts on water balance, the different hydrological components and their temporal variations at one particular location are examined (Fig. 4). The selected location is near the main river and in the midstream of the catchment where is highly urbanized. The results, extracted from the bio-retention scenario, indicate that the hydrologic processes are temporally dynamic due to the changes in rainfall. For example, in the beginning of January, during the event with a rainfall intensity of 3.5 mm h⁻¹, the infiltration rate is slightly less than 3.5 mm h⁻¹. The top soil is saturated, producing a downward flux from the unsaturated to the saturated zone at the rate of 2 mm h⁻¹. Due to the series of rainfall events, groundwater table rises by 0.2 m. During the relatively dry period of mid-January to mid-February, there are no downward fluxes from the unsaturated to the saturated zone. As the top soil dries out gradually, the moisture in the unsaturated zone is not enough to support the evaporation process, water is therefore taken from the saturated zone leading to a gradual drawdown in the groundwater table.

The only influx to the catchment is rainfall, and it either turns into outfluxes (e.g. base flow, direct runoff flow and evapotranspiration) or increases the storage within the system (e.g. canopy storage, surface water storage and subsurface water storage). Figure 5 presents the distribution of rainfall into the different components aggregated over one year for the different scenarios. Canopy storage is not shown in the figure as it

Discussion Pape

Interactive Discussion

is negligible compared to other components. The amount of surface and subsurface storage change in all the scenarios are also small (less than 0.5% of total water balance) as all the scenarios are simulated under dynamic equilibrium conditions of all the hydrological components.

For all scenarios, the greatest contributing factor is evapotranspiration. Compared to the other scenarios, there is a higher fraction (10% more) of evapotranspiration in the pre-urbanized scenario since the entire land surface is covered by trees. There is a drastic increase (by 20%) in the direct runoff in the urbanized scenario due to the change of 66% land use from pervious to impervious surfaces. Corresponding to a large amount of direct runoff in the urbanized scenario, base flow depth is reduced by almost 66% in the urbanized scenario when compared to the pre-urbanized one. The base flow depth is also not increased by green roofs, and it only increases marginally with the implementation of bio-retention systems in either the bio-retention or hybrid scenarios due to the enhancing infiltration function of bio-retention systems.

Impacts on eminent water resources issues

Flash floods 3.2.1

To study the impact of urbanization and the strategies in averting flash floods, river discharge is first analyzed. Urbanization increases the peak outlet discharge significantly (Fig. 6). During rainfall events of small intensity (e.g. 5, 13 and 28 December) and average intensity (e.g. 17, 19 July and 26 December), peak outlet discharge increases by more than 100%. For rainfall events with high intensity (26 July and 8 December), the percentage increase is smaller (about 60%). However, the magnitudes of peak discharge for small- and average-intensity rainfall are small. Thus, the high percentage increase in fact does not have significant impact on the catchment. On the other hand, although the percentage increase of high-intensity rainfall is smaller, it has significant impact as the magnitude of peak discharge is relatively high. The highest peak outlet

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

> > Title Page

Introduction **Abstract**

Figures

Full Screen / Esc

4112

in

discharge in the urbanized scenario is 550 m³ s⁻¹, leading to potential flash floods in the low lying areas.

Besides assessing the impact of urbanization, the effectiveness of each strategy in reducing the flood risk is also examined. Overall, all the restoration strategies reduce the peak discharge. In average-intensity rainfall events, the green roof scenario or the bio-retention scenario reduces the peak discharge by 25 %. The hybrid scenario can fully reduce the peak flow to the pre-urbanized level. For example, the rainfall event on 19 July produces a peak outlet discharge of 60 m³ s⁻¹ in the pre-urbanized scenario; this amount increases to 125 m³ s⁻¹ in the urbanized scenario. The installation of either green roofs or bio-retention systems brings the peak discharge from 125 m³ s⁻¹ down to 90 m³ s⁻¹. For the case in which both green roofs and bio-retention systems are installed, the peak discharge is the same as in the pre-urbanized scenario. In the case of high-intensity rainfall, focusing on the highest rainfall event in the simulation year on 8 December, a rainfall depth of 136 mm in 5 h results in an outlet peak discharge of 550 m³ s⁻¹ under urbanized conditions. Installation of either green roofs or bio-retention systems decreases the peak discharge to 450 m³ s⁻¹, and the installation of both structures decreases the peak discharge to 330 m³ s⁻¹ which is even lower than the peak discharge of 350 m³ s⁻¹ in the pre-urbanized scenario. To conclude, the large-scale restoration strategy restores the pre-urbanized condition effectively in terms of outlet discharge, reducing the potential flooding problems.

Other than examining the magnitude of peak discharges, Fig. 7 compares the peak time to evaluate peak delays in each restoration scenario. Taking the rainfall event on 26 July as an example, the downstream peak outlet discharge in the urbanized and the bio-retention scenarios occur at the same time. However, there are two peaks in the green roof and hybrid scenarios, with the first peak occurring slightly later in the urbanized scenario and the second peak delayed for another 2 h. This is due to the existence of green roofs which delay discharge for about 3 h in both scenarios. The hydrograph on 25 July also gives similar results except that the time of delay varies depending on the rainfall characteristics. Although the double peaks only occur

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

ables Figures

[4]

Full Screen / Esc

Printer-friendly Version

Discussion Pape

Interactive Discussion

in simulations and may be indistinct during field observations, the results do illustrate the peak attenuation due to green roofs.

Besides comparing the peak time downstream, one can also examine the change of delay along the channel from upstream to midstream and subsequently downstream. Focusing on only the hybrid scenario, the relative heights of the two peaks vary between upstream, midstream and downstream due to the merging of secondary rivers which are at different locations from green structures. Furthermore, there is a slight increase in the delay of the peak from upstream to downstream due to the propagation of wave along the river. Overall, examining the peak timing and its propagation through the river network demonstrates the importance of a catchment-level planning of green structures (in terms of locations as well as the percentage of surface coverage) in mitigating floods.

3.2.2 Ground water replenishment

The main source of groundwater replenishment in this catchment is from surface water infiltrating into the ground. Urbanization not only increases the peak river discharge but also decreases the infiltration rate, preventing surface water from going into the ground and recharging subsurface storage. As mentioned in the water balance section, green roofs do not significantly change the water budget or enhance infiltration rate. This section therefore focuses on comparing the infiltration rates in the urbanized, preurbanized and bio-retention scenarios to evaluate the effectiveness of bio-retention systems in enhancing infiltration. For plot scale, the infiltration rates at one particular location where land use has changed from pervious, to impervious and then to bioretention system is compared (Fig. 8). The infiltration rate is highest in the bio-retention scenario and is equal to the rainfall rate.

The impervious concrete surfaces in an urbanized catchment such as buildings, roads and pavements prevent infiltration. The infiltration rate of the entire catchment in 2005 is reduced by 20 % in the urbanized scenario as compared to the pre-urbanized scenario, while the bio-retention scenario restores 10%. The actual infiltration rate

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Introduction **Abstract**

Figures

Full Screen / Esc

Discussion Paper

Printer-friendly Version

Interactive Discussion

under different scenarios (Fig. 9) varies temporally depending on the rainfall intensity as well as the time interval between two consecutive rainfall events. There is significantly less infiltration in the urbanized scenario during high intensity rainfall events such as those on 9 May, 12 and 17 November. The decrease can be as high as 40 to 50 %, compared to only 10 to 15 % in average rainfall events such as those from 14 to 18 May or from 31 October to 5 November. Bio-retention systems restore 20 to 30 % and 5 to 10% of the pre-urbanized infiltration during high and average rainfall events respectively. For all the small rainfall events (e.g. 11, 20 May and 15 November), the infiltration rate of the bio-retention scenario is higher than that in the pre-urbanized scenario. Most of the small rainfall events occur closely in time. In the pre-urbanized condition, the soil is fully saturated after several events. Water can no longer infiltrate and contributes to surface runoff. However, more water can infiltrate in the bio-retention systems because the detention ponding provides additional time for water to infiltrate into the ground.

Discussion

The following key points underpin the analysis of the hydrological characteristics of the different scenarios. Firstly, evapotranspiration accounts for a relatively high percentage of water budgets in all scenarios. It therefore should not be neglected; otherwise this might lead to over-estimations of the other components. Secondly, groundwater plays an important role and should be taken into consideration, especially when the hydrological changes in shallow groundwater systems are examined. The exchange between groundwater and surface water depends on the difference in groundwater level and surface water level, as well as the soil moisture content in the unsaturated zone. In shallow groundwater systems, it is even possible to have groundwater exfiltration during heavy rainfall in low-lying areas. Thirdly, different designs of green structures (e.g. green roofs versus bio-retention systems) provide different hydrological functions and their relative locations within the catchment also yield different outcomes at the catchment outlet.

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Introduction **Abstract**

Figures

Full Screen / Esc

5 Summary and conclusions

- This study assesses the overall hydrological impacts of urbanization and the effectiveness of catchment-scale green structures in restoring pre-urbanized hydrological conditions. A physical-based integrated distributed hydrological model, Mike SHE, is used to simulate a highly urbanized catchment in the tropics under three main scenarios (i.e. pre-urbanized, urbanized and restored) that differ in their land uses. The most important findings are summarized as follows:
 - 1. In terms of the hydrological impacts of transforming 66% of vegetated area into impervious surface and changing the vegetation type in the remaining area during urbanization, it is observed that:
 - Infiltration on average reduces by 20 % which is proportional to the increase of impervious surface. There is thus less subsurface water recharge and less subsurface water storage. The actual reduction in each rainfall event varies with rainfall intensity and time interval from the previous rainfall event.
 - Base flow decreases by 66 % and surface runoff increases by 20 %, leading to a higher potential of flash floods. The peak outlet discharge increases by 100 % during low- and average-intensity rainfall and by 60 % in high-intensity rainfall. Although the percentage increase is lower, the increase of discharge during high-intensity rainfall is more impactful due to the relatively high pre-urbanized value.
 - 2. To mitigate the hydrological impacts of urbanization, three catchment-scale green structure strategies are explored:

10

sion Paper

Discussion Pape

Discussion Paper

Discussion Pape

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

ables Figures

l∢ ≽l

- ★

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

15

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

- Title Page

 Abstract Introduction

 Conclusions References

 Tables Figures
- Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion
 - © **1**

- The first strategy is to install green roofs in all the buildings, accounting for 14 % of the catchment area. The green roofs retain rainfall for 3 h, but exert minimal changes in water balance or infiltration. They however reduce the peak outlet discharge by 30 to 50 %, and delay the peak by 2 h and thus can mitigate flash floods in urban areas.
- The second strategy is to set up bio-retention systems in 5% of the catchment area. Bio-retention systems are modelled as 1 m deep soils with relatively high hydraulic conductivity of 10⁻⁵ m s⁻¹. On average, infiltration for the catchment increases by 10%. The actual increase in each event depends on the rainfall condition and can be as high as 30% during rainfall with high intensity. Base flow increases and surface runoff decreases and this second strategy can therefore also mitigate flash floods.

10

15

- The third strategy is to implement a combination of the previous two strategies (i.e. installing 14% green roofs and 5% bio-retention). It provides the functions of both types of structures (e.g. improving water balance, enhancing infiltration rate, delaying peak outlet discharge), and manages to reduce the peak outlet discharge down to, and even lower than the pre-urbanized value in some cases.
- 3. Assessing the hydrologic restoration of an urbanized area via the case study, further conclusions can be made:
 - Evapotranspiration is one of the important processes and should not be neglected as it accounts for a relatively high percentage of the water budget.
 - Groundwater plays an important role, especially in shallow groundwater systems, as it has direct dynamic effects on the infiltration rate and the water exchange between groundwater and surface water.
 - It is feasible to re-shape the outlet hydrograph via large-scale hydrological controls throughout a catchment but it is important to perform a catchmentscale planning for the desired integrated spatial and temporal effects.

The simulation results obtained are independent of field data, enabling a generic model for understanding hydrological changes during the different phases of urbanization. The results and conclusions drawn are thus beneficial and applicable to catchment-level water resource planning and management in many urban areas worldwide, especially those in the tropical region.

Acknowledgements. The research was supported by Academic Research Fund (AcRF) Tier 1 from Singapore Ministry of Education (MOE) (FRC grant R-302-000-007-112).

References

- Antrop, M.: Landscape change and the urbanization process in Europe, Landscape Urban Plan., 67, 9–26, doi:10.1016/s0169-2046(03)00026-4, 2004.
- Barron, O. V., Barr, A. D., and Donn, M. J.: Effect of urbanisation on the water balance of a catchment with shallow groundwater, J. Hydrol., 485, 162–176, doi:10.1016/j.jhydrol.2012.04.027, 2013.
- Bengtsson, L., Grahn, L., and Olsson, J.: Hydrological function of a thin extensive green roof in southern Sweden, Nord. Hydrol., 36, 259–268, 2005.
- Bhaduri, B., Harbor, J., Engel, B., and Grove, M.: Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model, Environ. Manage., 26, 643–658, 2000.
- Bliss, D. J., Neufeld, R. D., and Ries, R. J.: Storm Water Runoff Mitigation Using a Green Roof, Environ. Eng. Sci., 26, 407–417, doi:10.1089/ees.2007.0186, 2009.
- Carter, T. L. and Rasmussen, T. C.: Hydrological behavior of vegetated roofs, J. Am. Water Resour. Assoc., 42, 1261–1274, doi:10.1111/j.1752-1688.2006.tb05299.x, 2006.
- Chang, C. L., Lo, S. L., and Huang, S. M.: Optimal strategies for best management practice placement in a synthetic watershed, Environ. Monit. Assess., 153, 359–364, doi:10.1007/s10661-008-0362-y, 2009.
- Chow, V. T.: Open-Channel Hydraulics, McGraw-Hill, 1959.
- Collin, M. L. and Melloul, A. J.: Assessing groundwater vulnerability to pollution to promote sustainable urban and rural development, J. Clean. Product., 11, 727–736, doi:10.1016/s0959-6526(02)00131-2, 2003.

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

ables Figures

→

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Interactive Discussion

Czemiel Berndtsson, J.: Green roof performance towards management of runoff water quantity and quality: A review, Ecol. Eng., 36, 351–360, doi:10.1016/j.ecoleng.2009.12.014, 2010.

Davis, A.: Field Performance of Bioretention: Hydrology Impacts, J. Hydrol. Eng., 13, 90-95, doi:10.1061/(ASCE)1084-0699(2008)13:2(90), 2008.

5 DeFries, R. and Eshleman, K. N.: Land-use change and hydrologic processes: a major focus for the future, Hydrol. Process., 18, 2183-2186, doi:10.1002/hyp.5584, 2004.

Dietz, M. E. and Clausen, J. C.: Stormwater runoff and export changes with development in a traditional and low impact subdivision, J. Environ. Manage., 87, 560-566, doi:10.1016/j.jenvman.2007.03.026, 2008.

Dow, C. L. and DeWalle, D. R.: Trends in evaporation and Bowen ratio on urbanizing watersheds in eastern United States, Water Resour. Res., 36, 1835-1843, 2000.

Du, J., Qian, L., Rui, H., Zuo, T., Zheng, D., Xu, Y., and Xu, C. Y.: Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China, J. Hydrol., 464-465, 127-139, doi:10.1016/j.jhydrol.2012.06.057, 2012.

Endreny, T. A.: Evaporation, in: Water Encyclopedia, John Wiley & Sons, Inc., 2005.

20

Freeze, R. A. and Cherry, J. A.: Groundwater, Englewood Cliffs, New Jersey, Prentice Hall, 1979.

Göbel, P., Stubbe, H., Weinert, M., Zimmermann, J., Fach, S., Dierkes, C., Kories, H., Messer, J., Mertsch, V., Geiger, W. F., and Coldewey, W. G.: Near-natural stormwater management and its effects on the water budget and groundwater surface in urban areas taking account of the hydrogeological conditions, J. Hydrol., 299, 267–283, doi:10.1016/j.jhydrol.2004.08.013, 2004.

Haase, D.: Effects of urbanisation on the water balance – A long-term trajectory, Environ. Impact Assess. Rev., 29, 211–219, doi:10.1016/j.eiar.2009.01.002, 2009.

Holman-Dodds, J. K., Bradley, A. A., and Potter, K. W.: Evaluation of hydrologic benefits of infiltration based urban storm water management1, J. Am. Water Resour. Assoc., 39, 205-215, doi:10.1111/j.1752-1688.2003.tb01572.x, 2003.

Hutchinson, D., Abrams, P., Retzlaff, R., and Liptan, T.: Stormwater monitoring two ecorrofs in Portland, Oregon, USA, in: Greening Rooftops for Sustainable Communites, Chicago, 2003.

Ives, D. W.: Soil of the Republic of Singapore, in: New Zealand Soil Bureau Scientific Report, Soil Bureau, Lower Hutt, New Zealand, 1977.

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

> D. H. Trinh and T. F. M. Chui

> > Title Page

Abstract

Introduction

Figures

Back

Full Screen / Esc

Interactive Discussion

© BY

James, M. and Dymond, R.: Bioretention Hydrologic Performance in an Urban Stormwater Network, J. Hydrol. Eng., 17, 431–436, doi:10.1061/(ASCE)HE.1943-5584.0000448, 2012.

Klöcking, B. and Haberlandt, U.: Impact of land use changes on water dynamics – a case study in temperate meso and macroscale river basins, Phys. Chem. Earth A/B/C, 27, 619–629, doi:10.1016/s1474-7065(02)00046-3, 2002.

Konrad, C. P. and Booth, D. B.: Hydrologic Changes in Urban Streams and Their Ecological Significance, in: American Fisheries Society Symposium, Alaska, 157–177, 2005.

Lerner, D. N.: Groundwater recharge in urban areas, Atmos. Environ. B, 24, 29–33, doi:10.1016/0957-1272(90)90006-G, 1990.

Lu, X. X., Wong, P. P., and Chou, L. M.: Singapore's Biophysical Environment, The McGraw Hill, Singapore, 2005.

Mentens, J., Raes, D., and Hermy, M.: Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century?, Landscape Urban Plan., 77, 217–226, doi:10.1016/j.landurbplan.2005.02.010, 2006.

Moran, A., Hunt, B., and Jennings, G.: A North Carolina Field Study to Evaluate Greenroof Runoff Quantity, Runoff Quality, and Plant Growth, in: 2nd Greening Rooftops for Sustainable Communities Conference, Portland, 446–460, 2004.

Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., Gaffin, S., KÖHler, M., Liu, K. K. Y., and Rowe, B.: Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services, BioScience, 57, 823–833, 2007.

Ott, B. and Uhlenbrook, S.: Quantifying the impact of land-use changes at the event and seasonal time scale using a process-oriented catchment model, Hydrol. Earth Syst. Sci., 8, 62–78, doi:10.5194/hess-8-62-2004, 2004.

Palla, A., Gnecco, I., and Lanza, L. G.: Compared performance of a conceptual and a mechanistic hydrologic models of a green roof, Hydrol. Process., 26, 73–84, doi:10.1002/hyp.8112, 2012.

PUB: ABC Waters Master Plan for the Central Catchment, in: ABC Waters Master Plan, Public Utility Board (Water), Singapore, 2007.

PUB: Design guidelines Public Utilities Board, Singapore, 2011.

Rezaur, R. B., Rahardjo, H., Leong, E. C., and Lee, T. T.: Hydrologic Behavior of Residual Soil Slopes in Singapore, J. Hydrol. Eng., 8, 133–144, 2003.

HESSD

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

nclusions References

Tables Figures

14

-1

•

Close

Full Screen / Esc

- **HESSD**
 - 10, 4099–4132, 2013
 - **Hydrologic** restoration of an urbanized area
 - D. H. Trinh and T. F. M. Chui
 - Title Page Abstract Introduction References **Figures** Tables **Back**
 - Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion

- Rose, S. and Peters, N. E.: Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach, Hydrol. Process., 15, 1441-1457, doi:10.1002/hyp.218, 2001.
- Rowe, D., Rugh, C., VanWoert, N., Monterusso, M., and Russell, D.: Green roof slope, substrate depth, and vegetation influence runoff, in: 1st North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Chicago, 354–362, 2003.
- Sanders, R. A.: Urban vegetation impacts on the hydrology of Dayton, Ohio, Urban Ecol., 9, 361-376, doi:10.1016/0304-4009(86)90009-4, 1986.
- Schoonover, J. E., Lockaby, B. G., and Helms, B. S.: Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA, J. Environ. Qual., 35, 2123-2131, 2006.
- URA: Singapore Master Plan in 2003 Urban Redevelopment Authority, Singapore, 2003.
- USGS: USGS Global Visualization Viewer USGS Global Visualization Viewer, Virginia, 2010.
- VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., and Xiao, L.: Green Roof Stormwater Retention: Effects of Roof Surface, Slope and Media Depth, J. Environ, Qual., 34, 1036-1044, doi:10.2134/jeg2004.0364, 2005.
- Villarreal, E. L., Semadeni-Davies, A., and Bengtsson, L.: Inner city stormwater control using a combination of best management practices, Ecol. Eng., 22, 279-298, doi:10.1016/j.ecoleng.2004.06.007, 2004.
- Wang, Y., Choi, W., and Deal, B. M.: Long-term impacts of land-use change on non-point source pollutant loads for the St. Louis Metropolitan Area, USA, Environ. Manage., 35, 194-205, 2005.

20

- Wells, N.: The role of soils in the utilisation of sewage sludge in Singapore, in: New Zealand Soil Bureau Scientific Report, Soil Bureau, Lower Hutt, New Zealand, 1977.
- Xiao, Q. and McPherson, E. G.: Performance of engineered soil and trees in a parking lot bioswale, Urban Water J., 8, 241–253, doi:10.1080/1573062x.2011.596213, 2011.
- Younger, P. L.: Simple generalized methods for estimating aquifer storage parameters, Q. J. Eng. Geol. Hydrogeol., 26, 127-135, 1993.

Table 1. Vegetation characteristics.

Vegetation type	Land use	Vegetation parameter		
		Leaf area index (-)	Root depth (mm)	
Impervious	Residential, Business centre, Industry, Institution, Commercial, Military area, Airfield, Port, Infrastructure	0	0	
No plant	Reserve site, Cemetery	0	0	
Bushes	Agriculture	3	2000	
Mixed trees	Open space, Recreation	5	4000	
Trees	Park	6	5000	

10, 4099-4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I4 FI

Back Close

Full Screen / Esc

Printer-friendly Version

Table 2. Soil texture and properties.

Soil type	Depth	Soil texture (%)		e (%)	Soil type	Depth	Soil texture (%)		
	(cm)	Sand	Silt	Clay		(cm)	Sand	Silt	Clay
REMGAM	0–8	78	2	20	TAMPOI	0–6	81.2	2.1	16.7
	8-34	61	1	38		6–13	72.5	1	26.5
	34-68	57	3	40		13–44	69.6	0	30.4
	68–160	55	2	43		44–100	61.7	0	38.3
JERANGAU	0–5	35.7	6.1	58.2	BEDOK	0 – 10	Clay loam		
	15–30	38	4	58		10-100	Silt clay		
	30-82	30	4	66	CHOWBOONLAY	0–10	Silt		
	82+	28	3	69		10–100	Silt clay		
AYERTERJUN	0–7	24	47	29	CHANGI	0-100	Sand		
	7–24	23	44	33	HOLYROOD	0-100	Loam sand		
	24-60	13	33	54	JURONG	0-100	Silt clay		
	60–135	9	29	62	KRANJI	0–100	Silt clay		
HARIMAU	0–14	77.8	4	18.2	MATAIKAN	0-100	Sand clay loam		
	14-28	73.5	4.1	22.4	MASAI	0-100	Clay		
	28–35	69.8	3.1	27.1	TENGAH	0-100	Lo	am sa	nd
	53-94	57.8	1.2	41					

10, 4099-4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

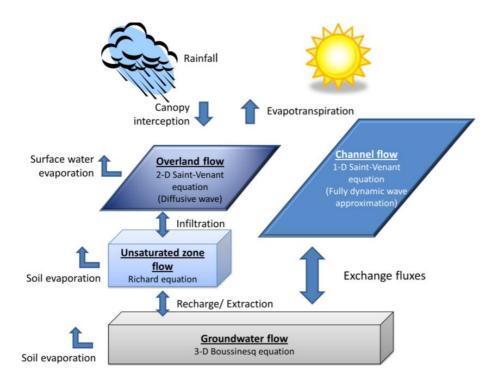
Abstract Introduction

Conclusions References

Tables Figures

I◀

►I


■Back

Close

Full Screen / Esc

Printer-friendly Version

Fig. 1. Components of integrated distributed hydrological model.

10, 4099-4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

Conclusions References

Tables Figures

4

Back Close

Full Screen / Esc

Printer-friendly Version

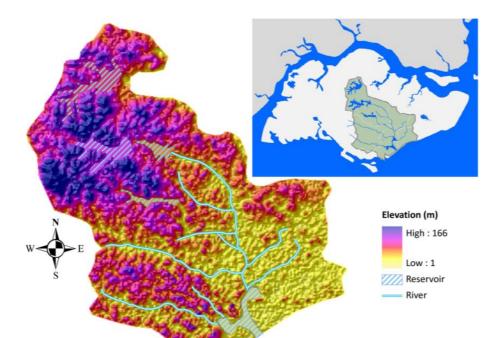


Fig. 2. Location of Marina catchment.

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Abstract Introduction

Conclusions References

Title Page

Tables Figures

→

Close

Full Screen / Esc

Back

Printer-friendly Version

Interactive Discussion

2 Kilometers

Averteriun

Bedok

Jurong

Kranji

10, 4099–4132, 2013

HESSD

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

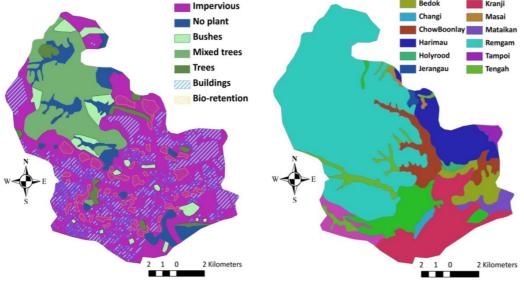
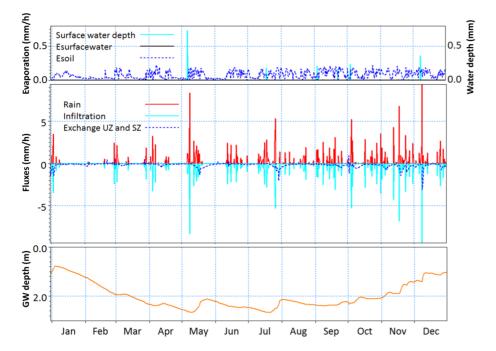



Fig. 3. Land cover (left panel) and soil distribution (right panel) of Marina-like catchment (land use: 66% impervious, including 14% building and 5% potential bio-retention area; 9% no plants; 25 % plants, including 5 % bushes, 18 % mixed trees and 2 % trees).

Printer-friendly Version

Fig. 4. Water balance at one particular location in catchment equipped with bio-retention systems (Esoil: evaporation from soil; Esurfacewater: evaporation from surface water (small value and covered by the dotted blue line); Exchange UZ and SZ: exchange between unsaturated and saturated zone; GW depth: groundwater table depth).

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I I I

Full Screen / Esc

Back

Printer-friendly Version

10, 4099–4132, 2013

HESSD

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Printer-friendly Version



Fig. 5. Water balance aggregated over one year for different scenarios.

Discussion Paper

Discussion Paper

Printer-friendly Version

HESSD

10, 4099–4132, 2013

Hydrologic

restoration of an

urbanized area

D. H. Trinh and

T. F. M. Chui

Title Page

Introduction

References

Figures

▶|

Abstract

Conclusions

Tables

14

Back

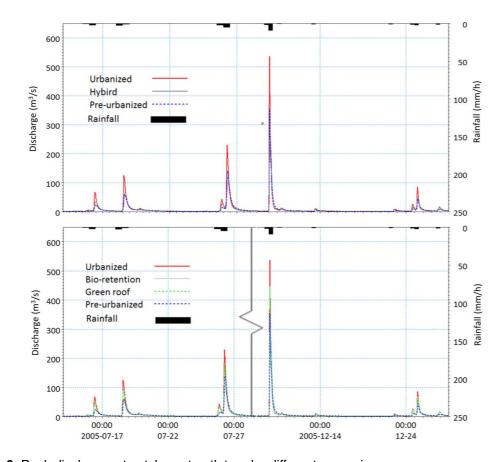


Fig. 6. Peak discharge at catchment outlet under different scenarios.

10, 4099–4132, 2013

HESSD

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Full Screen / Esc

Printer-friendly Version

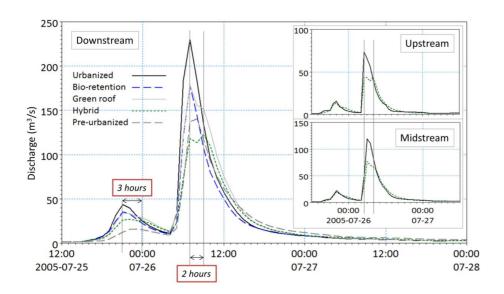


Fig. 7. Delay of outlet peak discharge under different scenarios and delay of peak discharge along main river (i.e. Kallang River) of catchment.

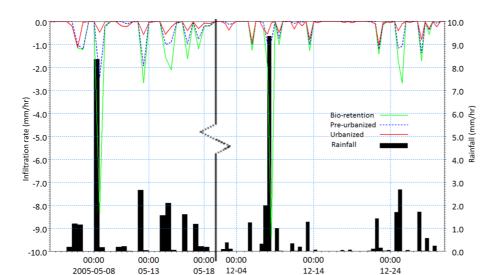


Fig. 8. Infiltration rate at one particular location in catchment.

10, 4099–4132, 2013

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

■ Back Close

Full Screen / Esc

Printer-friendly Version
Interactive Discussion

10, 4099–4132, 2013

HESSD

Hydrologic restoration of an urbanized area

D. H. Trinh and T. F. M. Chui

Printer-friendly Version

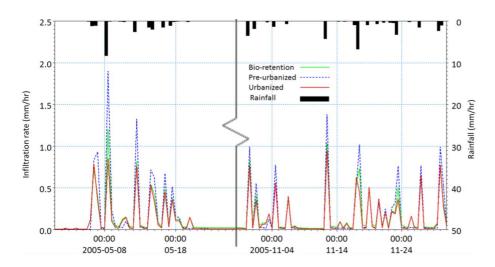


Fig. 9. Average infiltration rate of entire catchment under different scenarios.