
Econometric Theory, 29, 2013, 482–516.
doi:10.1017/S026646661200045X
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This paper studies the asymptotic theory of least squares estimation in a threshold
moving average model. Under some mild conditions, it is shown that the estimator
of the threshold is n-consistent and its limiting distribution is related to a two-sided
compound Poisson process, whereas the estimators of other coefficients are strongly
consistent and asymptotically normal. This paper also provides a resampling method
to tabulate the limiting distribution of the estimated threshold in practice, which is
the first successful effort in this direction. This resampling method contributes to
threshold literature. Simultaneously, simulation studies are carried out to assess the
performance of least squares estimation in finite samples.

1. INTRODUCTION

Since the threshold model was introduced by Tong (1978), it has become a more
or less standard model in nonlinear time series. One of the leading reasons is that
piecewise linear functions can offer a relatively simple and easy-to-handle ap-
proximation to the complex nonlinear dynamics. Threshold autoregressive (TAR)
or TAR-type models have been widely used to study nonlinear phenomena in vari-
ous fields; see Hansen (1997, 1999, 2000), So, Li, and Lam (2002), Tiao and Tsay
(1994) in economics; Li and Lam (1995), Li and Li (1996), Liu, Li, and Li (1997),
Yadav, Pope, and Paudyal (1994) in finance; Tong and Lim (1980) in hydrology;
among others. The probabilistic structures of TAR-type models have been studied
by many authors; see An and Huang (1996), Brockwell, Liu, and Tweedie (1992),
Chan, Petruccelli, Tong, and Woolford (1985), Chan and Tong (1985), Chen and
Tsay (1991), Cline and Pu (2004), Ling (1999), Liu and Susko (1992), Lu (1998),
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and so on. The asymptotic theory of the least squares estimation (LSE) of the
TAR model was established by Chan (1993) and Chan and Tsay (1998); see also
Petruccelli (1986) and Qian (1998). The least absolute deviation estimation was
considered by Caner (2002). An excellent review of the TAR model is available
in Tong (1990), and a selective review of the history of threshold models is given
by Tong (2011).

To date, however, most work in this area has been concentrated on TAR or
TAR-type models. It seems that the threshold moving average (TMA) model has
not attracted too much attention. Maximum likelihood estimation was studied by
Gooijer (1998) when the error is normal. However, its large-sample property still
remains open. Ling and Tong (2005) considered a quasi-likelihood ratio test for
the null linear moving average (MA) model against the TMA model alternative.
This test was extended to the heteroskedastic case by Li and Li (2008). Ling,
Tong, and Li (2007) obtained the ergodic and invertible conditions for a multiple
TMA(1) model. Li, Ling, and Tong (2012) proved that the TMA model is
always strictly stationary and ergodic by using a new approach without resorting
to Markov chain theory. In practice, there have been many applications in
economics and econometrics. For example, Gooijer (1998) used a TMA model to
fit the real U.S. gross national product growth rate for the period 1947.I–1982.IV.
Ling and Tong (2005) used a TMA(1) model to fit monthly data from January
1971 to December 2000 of the exchange rate of the Japanese yen against the
U.S. dollar. These applications also motivate us to further study TMA models in
theoretical aspect.

This paper studies the asymptotic theory of LSE in a TMA model. Under some
mild conditions, it is shown that the estimator of the threshold is n-consistent
and its limiting distribution is related to a two-sided compound Poisson process
(CPP), whereas the estimators of other coefficients are strongly consistent and
asymptotically normal. This paper also provides a resampling method to tabulate
the limiting distribution of the estimated threshold in practice, which is the first
successful effort in this direction. Simultaneously, simulation studies are carried
out to assess the performance of LSE in finite samples. Unlike the TAR model
in Chan (1993), the V -uniform ergodicity of the TMA model is not available
in the literature. For the rate of convergence of the estimated threshold, our ar-
guments highly depend on the invertible representation of residuals in Ling and
Tong (2005) and are much more complicated than those in TAR models. Because
the residual in the TMA model includes infinite threshold indicators, it is hard to
imagine the limiting behavior of the profile objective function, and the jump sizes
in our CPP are extremely different from those in CPP in Chan (1993). Another
key technique in this paper is the weak convergence of a pure jump process. Such
weak convergence of a sequence of pure jump processes has been established by
Kushner (1984, Sect. 7, pp. 123–126) when the limiting process is a diffusion
process. However, when the limiting process is a jump-diffusion process, he only
sketches the idea for Markov chains. In the Appendix, we formalize and extend
Kushner’s idea to non–Markov chain cases when the limiting process is a pure
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jump process. More importantly, this result is of independent interest by itself
and can be applied to many other threshold time series models.

The rest of this paper is organized as follows. Section 2 presents the LSE of
the TMA model and states the results. Section 3 considers a resampling method
in tabulating the limiting distribution of the estimated threshold when the model
parameters are completely unknown. Simulation studies are conducted to assess
the performance of LSE in finite samples in Section 4. Some concluding remarks
are given in Section 5. Sections 6–9 give proofs of theorems. The Appendix es-
tablishes the weak convergence of a pure jump process.

Throughout the paper, some symbols are conventional. The term C is a positive
constant, which may be different in different places; l(·) is the indicator function;
Rp is the euclidean space of dimension p; ‖ ·‖ denotes the euclidian norm; ‖ ·‖∞
is the supremum norm, that is, ‖ f ‖∞ = supx∈R | f (x)|; op(1) (Op(1)) denotes a
sequence of random numbers converging to zero (bounded) in probability; and
=⇒ denotes weak convergence.

2. LEAST SQUARES ESTIMATION AND MAIN RESULTS

A time series {yt , t = 0,±1, ...} is said to be a TMA(1) model if it satisfies the
equation

yt = et + [
φ1( yt−1 ≤ r)+ψ1( yt−1 > r)

]
et−1, (2.1)

where {et } is a sequence of independent and identically distributed (i.i.d.) random
variables and r ∈ R is the threshold parameter. Let λ = (φ,ψ)′. Assume that
λ ∈ �, a compact subset of R2, and there exist two finite constants r and r̄ such
that r ∈ [r , r̄ ] because model (2.1) reduces to a linear MA model when r = ±∞,
which is not of interest in this paper. Here θ0 = (λ′

0,r0)
′ is the true parameter of

θ = (λ′,r)′, and it is an interior point in �×[r ,r ]. The parameter space is denoted
by � = �× [r ,r ]. Throughout the paper we assume that Ee1 = 0 and Ee2

1 < ∞.
Three further assumptions are as follows.

Assumption 2.1. |φ| < 1, |ψ | < 1, and � is compact.

Assumption 2.2. φ0 	= ψ0.

Assumption 2.3. e1 has a continuous and strictly positive density h(x) on R
with supx∈R{(1+ x4)h(x)} < ∞ and Ee4

1 < ∞.

Assumption 2.1 is a sufficient and easy-to-check condition available for the in-
vertibility of model (2.1). When φ = ψ , the invertible region of model (2.1) is
the same as that of the MA(1) model. Assumption 2.2 is the identification con-
dition for the threshold r . Assumption 2.3 is a sufficient condition for the strict
stationarity and ergodicity of model (2.1); see Li et al. (2012). Under Assump-
tions 2.1 and 2.3, from Ling and Tong (2005), the residual et (θ) has the following
representation:
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et (θ) = yt − [
ψ + (φ −ψ)1( yt−1 ≤ r)

]
et−1(θ)

=
∞
∑
j=0

Ht j (θ)yt− j ,

where

Ht j (θ) =
j

∏
i=1

[−ψ − (φ −ψ)1( yt−i ≤ r)
]

for all j ≥ 0 with the convention ∏0
i=1 ≡ 1.

Assume that {y1, ..., yn} is a sample from model (2.1) with sample size n. Given
the initial value Y0 ≡ {ys : s ≤ 0} or et (θ) ≡ 0 for t ≤ 0, the sum of squares errors
function Ln(θ) is defined as

Ln(θ) =
n

∑
t=1

e2
t (θ).

The minimizer θ̂n = (λ̂′
n, r̂n)′ of Ln(θ) is called the least squares estimator of θ0,

that is,

θ̂n = argmin
θ∈�

Ln(θ).

Note that Ln(θ) is discontinuous in r . The way to get θ̂n is as follows. First,
for each fixed r ∈ [r ,r ], we minimize Ln(θ) and get its minimizer λ̂n(r). Be-
cause L∗

n(r) ≡ Ln(θ)|λ=λ̂n(r) only takes finite possible values, we then get the
minimizer r̂n of L∗

n(r) by the enumeration approach. Finally, we can obtain
θ̂n = (λ̂′

n(r̂n), r̂n)′. Generally, there exist infinitely many r such that Ln(·) attains
its global minimum. One can choose the smallest r as the estimator of r0. Ac-
cording to the procedure for θ̂n , it is not hard to show that θ̂n is the least squares
estimator of θ0.

In practice, however, the initial value Y0 is not available, and hence we have
to replace it by some constants, For example, Y0 = x ≡ {x1, x2, ...}. Because
supθ∈� ‖Ht j (θ)‖ = O(ρ j ) almost surely (a.s.) for some ρ ∈ (0,1) by Theorem
A.1 in Ling and Tong (2005), we can show that

sup
θ∈�

∣∣∣e2
t (θ)− e2

t (θ)
∣∣Y0=x

∣∣ = O
(
ρt) a.s.

for any given x . Thus, the initial value will not affect the asymptotic properties of
θ̂n . For simplicity, in what follows, we assume that Y0 is from model (2.1). In this
case, et (θ0) = et . Actually, in the numerical optimization of Ln(θ), we can set the
initial values Y0 equal to the sample mean or directly set et (θ) ≡ 0 for t ≤ 0. The
following result establishes the strong consistency of θ̂n .

THEOREM 2.1. Suppose that Assumptions 2.1 and 2.2 hold, e1 has a bounded,
continuous and strictly positive density h(x) on R, Ee1 = 0, and Ee2

1 < ∞. Then
θ̂n → θ0 a.s. as n → ∞.
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Theorem 2.2 shows the convergence rates of r̂n and λ̂n(r).

THEOREM 2.2. Suppose Assumptions 2.1–2.3 hold. Then

(i) n
(
r̂n − r0

)= Op(1);

(ii)
√

n sup
|r−r0|≤B/n

∥∥λ̂n(r)− λ̂n(r0)
∥∥= op(1)

for any fixed B ∈ (0,∞). Furthermore, as n → ∞,

√
n
(
λ̂n(r̂n)−λ0

)
= √

n
(
λ̂n(r0)−λ0

)
+op(1) =⇒N

(
0, σ 2
−1

)
where σ 2 = Ee2

t and 
 = E[
(
∂et (θ0)/∂λ)(∂et (θ0)/∂λ′)] with

∂et (θ0)

∂λ
= −

[
1(yt−1 ≤ r0)
1(yt−1 > r0)

]
et−1 − [

ψ0 + (φ0 −ψ0)1(yt−1 ≤ r0)
]

×∂et−1(θ0)

∂λ
.

Generally, because both σ 2 and 
 are unknown, we can estimate them consis-
tently by

σ̂ 2
n = 1

n

n

∑
t=1

ẽ2
t

(
θ̂n

)
and 
̂n = 1

n

n

∑
t=1

∂ ẽt

(
θ̂n

)
∂λ

∂ ẽt

(
θ̂n

)
∂λ′ ,

where ẽt (θ) is defined by

ẽt (θ) = yt − [
ψ + (φ −ψ)1( yt−1 ≤ r)

]
ẽt−1(θ)

with ẽj (θ) ≡ 0 for j ≤ 0. Clearly,

∂ ẽt (θ)

∂λ
= −

[
1( yt−1 ≤ r)
1( yt−1 > r)

]
ẽt−1(θ)− [

ψ + (φ −ψ)1( yt−1 ≤ r)
] ∂ ẽt−1(θ)

∂λ
.

By some algebraic calculations, we can show that σ̂ 2
n → σ 2 and 
̂n → 
 in prob-

ability.
To study the limiting distribution of r̂n , we need to consider the following pro-

file sum of squares errors function:

L̃n(z) = Ln

(
λ̂n

(
r0 + z

n

)
,r0 + z

n

)
− Ln

(
λ̂n(r0),r0

)
, z ∈ R.

We can show that L̃n(z) can be approximated in D(R), the space of all cádlág
functions on R being equipped with the Skorokhod metric, by

℘n(z) = 1(z < 0)
n

∑
t=1

ζ1t1
(

r0 + z

n
< yt−1 ≤ r0

)
+1(z ≥ 0)

×
n

∑
t=1

ζ2t1
(

r0 < yt−1 ≤ r0 + z

n

)
,
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where

ζ1t =
{ ∞

∑
j=0

H2
t+ j, j (θ0)

}
δ2

t +2

{ ∞
∑

j=0
et+ j Ht+ j, j (θ0)

}
δt ,

ζ2t =
{ ∞

∑
j=0

H2
t+ j, j (θ0)

}
δ2

t −2

{ ∞
∑

j=0
et+ j Ht+ j, j (θ0)

}
δt (2.2)

with δt = (φ0 −ψ0)et−1.
We define a two-sided CPP ℘(z) as follows:

{℘(z), z ∈ R} = {℘1(−z)1(z < 0)+℘2(z)1(z ≥ 0), z ∈ R} , (2.3)

where {℘1(z), z ≥ 0} and {℘2(z), z ≥ 0} are two independent CPPs with ℘1(0) =
℘2(0) = 0 a.s., with the same jump rate π(r0) > 0 (implied by Lemma 6.3), where
π(x) is the density function of y1, and with the jump distributions F1(·|r0) and
F2(·|r0), where Fk(·|r0) is the conditional probability distribution induced by ζk2
given y1 = r0 for k = 1,2. Because

∫
xd Fk(x |r0) > 0, ℘(z) goes to +∞ a.s.

when z → ±∞. Thus, there exists a unique random interval [M−, M+) on which
the process ℘(z) attains its global minimum a.s. Here, we work with the left
continuous version for ℘1(z) and the right continuous version for ℘2(z). Now, we
have the following theorem.

THEOREM 2.3. If Assumptions 2.1–2.3 hold, then n(r̂n − r0) =⇒ M−. Fur-
thermore, n(r̂n − r0) is asymptotically independent of

√
n(λ̂n(r0)−λ0), which is

always asymptotically normal, regardless of whether r0 is known or not.

Compared with the result on the TAR model in Chan (1993), the types of lim-
iting distributions of the estimated thresholds are the same, that is, each of them
is the smallest minimizer of a two-sided CPP. However, the biggest essential dif-
ference is in the jump distributions of the related CPPs. For the TMA model,
an infinite number of threshold indicators are involved in ζkt ’s defined in (2.2),
whereas the TAR model has no threshold indicators in jump sizes. On the other
hand, ours result and Chan’s result are very different from that in Hansen (1997,
2000). Throughout the paper, we consider the case where the threshold effect is
fixed and further complete the asymptotic theory on threshold models. When the
threshold effect varies with the sample size, Hansen (1997, 2000) has established
the corresponding asymptotic theory for TAR models. In this case, it is an inter-
esting and open topic for TMA models, and some further study will be needed in
the future.

3. NUMERICAL SIMULATION OF M−M−M−
In this section, we shall provide a resampling method to simulate M−. Note that
ours is the first serious effort in the literature of threshold time series models
to estimate the limiting distribution of the threshold estimator. This resampling
method contributes to threshold literature and can be used to construct confidence
intervals for the threshold parameter in threshold models.
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From (2.3), we know that two factors determine the density of M−, that is, the
jump rate π(r0) and the jump distributions F1(·|r0) and F2(·|r0). We can simulate
M− via simulating the CPP (2.3) on the interval [−T,T ] for any given T > 0
large enough because the expectations of the jumps are positive. From Algorithm
6.2 in Cont and Tankov (2004, p. 174), we know that the key step is how to sample
jump sequences from jump distributions. Because it is impossible to sample jump
sequences from Fk(·|r0) directly, we sample from a consistent estimate of Fk(·|r0)
to replace them. The procedure is as follows.

Given the sample Xn ≡ {y1, ..., yn}, we can first use it to estimate θ0 and π(r0)
consistently, denoting the estimators as θ̂n and π̂(r̂n), respectively, where π̂(x) is
the kernel density estimator of π(x), and calculate the residuals {̂et : 1 ≤ t ≤ n}.
Based on the residuals, we can construct the estimator ĥ(x) of h(x):

ĥ(x) = 1

nbn

n

∑
t=1

K

(
êt − x

bn

)
,

where K (x) = (
√

2π)−1 exp(−x2/2) is the Gaussian kernel and bn is the band-
width, which can be selected by

bn = 1.06sn−1/5
(

1+ 35

48
γ̂4 + 35

32
γ̂ 2

3 + 385

1,024
γ̂ 2

4

)−1/5

,

where s, γ̂3, and γ̂4 are the sample standard deviation, skewness, and kurtosis of
the residuals {̂et : 1 ≤ t ≤ n}, respectively. See Hjort and Jones (1996). Of course,
one can use other kernel functions and bandwidths. When h(x) is uniformly con-
tinuous, we have that ‖ĥ −h‖∞ = op(1) as n → ∞; see Theorem A in Silverman
(1978). We have the following algorithm for sampling from a consistent estimate
of F1(·|r0).

Algorithm

Step 1. Set ẑi = (yi , êi )
′ for i = 1, ...,n.

Step 2. For each i ∈ {1, ...,n}, sample independently {ẽt : 2 ≤ t ≤ m + 2} for
some large positive integer m from ĥ(x) given Xn and generate {ỹt :
2 ≤ t ≤ m +1} by iterating model (2.1) with the initial value (ỹ1, ẽ1)

′ =
(r̂n, r̂n − g(ẑi , θ̂n))′ and θ0 being replaced by θ̂n . Then calculate ζ̃

(m)
1,2 ,

denoted by ξ̃
(m,i)

1,2 , where

ζ̃
(m)
1,2 =

⎧⎨⎩ m

∑
j=0

(
j

∏
i=1

[
−ψ̂n −

(
φ̂n − ψ̂n

)
1
(

ỹi+1 ≤ r̂n
)])2

⎫⎬⎭ δ̂ 2
2

+2

{
m

∑
j=0

ẽj+2

(
j

∏
i=1

[
−ψ̂n −

(
φ̂n − ψ̂n

)
1
(

ỹi+1 ≤ r̂n
)])}

δ̂2
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with δ̂2 = (φ̂n − ψ̂n)ẽ1 = (φ̂n − ψ̂n){̂rn − g(ẑi , θ̂n)} and

g(ẑi ,θ) = [φ1(yi ≤ r)+ψ1(yi > r)]êi . (3.1)

Step 3. Calculate all π̂(r̂n|ẑi ) ≡ ĥ(r̂n −g(ẑi , θ̂n)) and sample a U from the con-
ditional discrete density: P(U = i |Xn) = π̂(r̂n|ẑi )/{∑n

l=1 π̂(r̂n|ẑl)} for
i = 1, ...,n, conditionally independent of {ẽt , t ≥ 2} given Xn .

Step 4. Obtain Ỹ1 = ξ̃
(m,U )
1,2 .

By Lemma 9.1 in Section 9, we can see that Ỹ1|Xn ∼ F1(x |r0) asymptotically
for large enough n and m. By repeating the Algorithm, we can obtain a jump
sequence {Ỹi } that can be regarded as the jump sequence from F1(x |r0) asymp-
totically. Similarly, we can obtain a jump sequence {Z̃i } from F2(x |r0) asymptot-
ically.

For z ∈ [−T,T ], the trajectory of CPP ℘̂
(m)
n (z), an approximation of ℘(z), is

given by

℘̂(m)
n (z) = 1(z < 0)

N1

∑
i=1
1(Ui > z)Ỹi +1(z ≥ 0)

N2

∑
j=1
1(Vj < z)Z̃ j ,

where N1 and N2 are sampled from the Poisson distribution with the parameter
π̂(r̂n)T and {U1, ...,UN1} and {V1, ...,VN2} are two independent jump time se-
quences from uniform distributions U [−T,0] and U [0,T ], respectively. Then, we
take the smallest minimizer of ℘̂

(m)
n (z) on [−T,T ] as an approximate observation

M̂ (m)
n of M−. By repeating the preceding algorithm many times, we can simulate

a sequence of observations of M− and use them to make statistical inference for
the threshold. Let PXn (·|A) = P(·|A,Xn). Then, we have the following theorem.

THEOREM 3.1. If Assumptions 2.1–2.3 hold, then, in probability,

lim
m→∞ lim

n→∞
∣∣∣PXn

(
M̂ (m)

n ≤ x
)

−P(M− ≤ x)
∣∣∣= 0

at each x ∈ R for which P(M− = x) = 0.

4. SIMULATIONS

To see whether or not the algorithm in Section 3 does work, we now consider the
following TMA(1) model:

yt = et + [
φ01( yt−1 ≤ r0)+ψ01( yt−1 > r0)

]
et−1, (4.1)

where (φ0,ψ0,r0) = (0.8,−0.4,0.6) and et ∼N (0,1). By the kernel method, we
get π(r0) = 0.2534, where the sample size is 1,000,000. The Gaussian kernel is
used, and the bandwidth is 0.0662. Figure 1a displays one realized path of the
two-sided CPP (2.3) under model (4.1). Using 1,000 replications, Figure 1b gives
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FIGURE 1. (a) One realized path of the two-sided CPP under model (4.1); (b) the density of
M− over different intervals where the CPP is minimized. Here, 1,000 replications are used.

the densities of M− when T = 50,100,200, and 300, where n = 1,000 and m =
100 are used. From the figure, we can see that the densities of M− are very close
to each other for different values of T . According to our simulation experience,

FIGURE 2. The densities of M− (known) and M̂ (m)
n (unknown), respectively. The sample size is

(a) 200 and (b) 400, respectively. Here, et ∼N (0,1), T = 300, and m = 100; 10,000 replications are
used for M− and 1,000 replications for M̂ (m)

n .
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TABLE 1. Empirical quantiles for M− under model (4.1)

α 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%
Q −63.47 −52.98 −38.25 −27.92 23.06 33.36 55.05 60.72

the larger T is, the more accurate is the estimated density of M− when |φ0 −ψ0| is
small. Unfortunately, there is no theory to support the choice of T in the literature.
In practice, we can adopt an attempt for different values of T . For each given one,
we can first simulate 100 observations for M− and plot its density. Based on the
support set of the density, we can choose a suitable T . Once T is chosen, we may
increase the number of replications to obtain a more precise density of M−.

Figure 2 displays a more precise density of M− obtained by 10,000 replications
when all parameters are known. When the parameters are unknown, we estimate
them by using a given sample {y1, ..., yn} and then simulate M−. We can get
an approximation M̂ (m)

n of M−. From the figure, we can see that they are very
close even when n = 200. This indicates that our resampling method is a useful
approach to simulate M−.

Based on 10,000 replications, Table 1 gives the empirical quantiles of M− when
the significance level α = 0.005,0.01, 0.025,0.05,0.95,0.975,0.99, and 0.995.

To assess the performance of the least squares estimator of θ0 in finite samples,
we use sample sizes n = 100, 200, 400, and 800, each with 1,000 replications
for model (4.1). The distribution of et is N (0,1) and student t5, respectively.
In Table 2, we summarize the bias, empirical standard deviation (ESD), and

TABLE 2. Simulation studies for model (4.1) with θ0 = (φ0,ψ0,r0) =
(0.8,−0.4,0.6)

N (0,1) t5

n φ ψ r φ ψ r

100 Bias 0.0276 0.0005 −0.1410 0.0411 −0.0215 −0.1872
ESD 0.1085 0.1319 0.2763 0.1254 0.1247 0.3780
ASD 0.0821 0.1060 0.1710 0.0864 0.1016 0.1791

200 Bias 0.0113 0.0055 −0.0553 0.0180 −0.0088 −0.0556
ESD 0.0674 0.0844 0.1317 0.0747 0.0826 0.1677
ASD 0.0581 0.0750 0.0855 0.0611 0.0719 0.0895

400 Bias 0.0035 0.0017 −0.0178 0.0060 −0.0029 −0.0168
ESD 0.0452 0.0558 0.0426 0.0473 0.0519 0.0634
ASD 0.0411 0.0530 0.0427 0.0432 0.0508 0.0448

800 Bias 0.0026 −0.0009 −0.0060 0.0042 −0.0032 −0.0045
ESD 0.0313 0.0385 0.0203 0.0319 0.0360 0.0290
ASD 0.0290 0.0375 0.0214 0.0306 0.0359 0.0224
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TABLE 3. Coverage probabilities when et ∼N (0,1)

α 100 200 400 800

0.01 0.951 0.973 0.984 0.989
0.05 0.898 0.925 0.947 0.948
0.10 0.837 0.866 0.897 0.910

asymptotic standard deviation (ASD). Here, the ASDs of (φ̂n, ψ̂n) are computed
using 
 in Theorem 2.2 and the ASD of r̂n is obtained by simulating M−.

In Table 2, the consistency of the estimators is illustrated by their biases and
ESDs. That is, the larger the sample size, the smaller the biases and the closer
the ESDs and ASDs on the whole. We also see that the values of the ESDs for r̂n

are about halved each time when the value of n is doubled. This partially illus-
trates the n-consistency of the threshold estimator, under which the estimator of
the threshold parameter would approach the true parameter much faster than the
coefficient parameter estimators.

Table 3 reports the coverage probabilities of r0 for n = 100,200,400, and 800,
respectively, based on the critical values in Table 1. From the table, we can see that
the coverage probability is rather accurate when the sample size n is 400 or above.

Figure 3 shows the empirical distribution and density functions of n(r̂n − r0)
when the error isN (0,1) and the sample size is 800, respectively. From Figure 3,

FIGURE 3. The empirical distribution and density functions of both n(r̂n − r0) and M− for model
(4.1) when et ∼N (0,1) and the sample size is 800.
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FIGURE 4. The density of n(r̂n − r0) when et is N (0,1) and t5, respectively. The sample size is
800.

we see that the empirical distribution and density of both n(r̂n − r0) and M− are
very close, which supports Theorem 2.3 empirically. We also see that the den-
sity of n(r̂n − r0) is leptokurtic and asymmetric, skewing toward the left-hand
side of the origin. Here the skewness is −1.17 and the kurtosis is 10.46. Be-
cause of the skewness, confidence intervals of r0 will not be symmetric about r̂n ,
and we must be careful in constructing confidence intervals of the threshold in
practice.

From Theorem 2.3, we know that the limiting distribution of n(r̂n −r0) depends
on the distribution of the error and is not distribution free. Figure 4 exhibits the
density functions of n(r̂n − r0) when the error is N (0,1) and t5, respectively.
Here, the sample size is 800. From the figure, we can observe the difference for
the density functions of n(r̂n −r0) for different types of errors. The density under
t5 is more skewed to the right.

5. CONCLUDING REMARKS

This paper considers a TMA model and has established the asymptotic theory of
least squares estimation under some easy-to-verify conditions. We have removed
the requirement on the V -uniform ergodicity used in Chan (1993). More impor-
tantly, the limiting distribution of the estimated threshold, which is the smallest
minimizer of a two-sided compound Poisson process, has been derived. A resam-
pling method is proposed to simulate this limiting distribution, and simulation
studies show that it does work well.
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For a general TMA(q1,q2) model:

yt =

⎧⎪⎪⎨⎪⎪⎩
μ1 + et +

q1

∑
i=1

φi et−i , if yt−d ≤ r ;

μ2 + et +
q2

∑
i=1

ψi et−i , if yt−d > r ;

similar results can be easily achieved under some mild conditions when the order
(q1,q2) is known; see Li, Ling, and Li (2010). In applications, because it is gener-
ally unknown, the order (q1,q2) can be selected by using the Akaike information
criterion (AIC):

AIC({qi }) = n log σ̂ 2
n +2(q1 +1)+2(q2 +1) ,

where σ̂ 2
n = 1/n ∑n

t=1 ê2
t and {̂et } are the residuals when (q1,q2) is fixed. A similar

AIC is used in Tsay (1998) for TAR models. For more information criteria as
model selection tools for threshold models, see Kapetanios (2001).

For model (2.1), the convergence rate is always n if the threshold is identi-
fiable when the threshold effect defined in Hansen (1997, 2000) is fixed. There
is no other case like that in Chan and Tsay (1998) for continuous TAR models.
As the threshold effect varies with the sample size, this is also an important and
interesting topic, which was suggested by an anonymous referee. For this, further
study will be needed in the future.

6. PROOF OF THEOREM 2.1

In what follows, Fn
m denotes a σ -field generated by {em, ...,en} for m ≤ n. The-

orem 2.1 can be proved by the approach of Hubers (1967) with the following
lemmas. Hence, it is omitted. More details can be found in Li et al. (2010).

LEMMA 6.1. If Assumption 2.1 holds and E|e1|κ < ∞ for some 1 ≤ κ ≤ 4,
then it follows that

E sup
θ∈�

|et (θ)|κ < ∞.

Proof. From model (2.1), it is not hard to see that E|yt |κ < ∞. Using
the stationarity of {yt } (see Li et al., 2012) and the representation et (θ) =
∑∞

j=0 Ht j (θ)yt− j , we can show that the conclusion holds. n

LEMMA 6.2. For any θ ∈ �, define an open neighborhood of θ for any η > 0
as

Uθ (η) = {
θ∗ = (

λ∗,r∗) ∈ � : ‖λ∗ −λ‖ < η, |r∗ − r | < η
}

.

If Assumption 2.1 holds and Ee2
t < ∞, then

E sup
θ∗∈Uθ (η)

∣∣∣e2
t

(
θ∗)− e2

t (θ)
∣∣∣→ 0, as η → 0.
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Proof. The proof is technical. Hence it is omitted. See Li et al. (2010). n

LEMMA 6.3.

(i) If the density h(x) of e1 is continuous and bounded, then the density π(x)
of yt is also continuous and bounded.

(ii) If h(x) > 0 on R, then π(x) > 0 and there exist constants 0 < m0 < M0 <
∞ such that m0u ≤ P(r < y0 ≤ r + u) ≤ M0u for fixed r ∈ R and any
u ∈ [0,1].

Proof. From model (2.1), yt = et + ēt−1, where ēt−1 = {ψ0 + (φ0 − ψ0)
1(yt−1 ≤ r0)}et−1. Let Ḡ(·) be the distribution of ēt−1. Observe that ēt−1 and
et are independent, so that

π(x) =
∫
R

h (x − z)dḠ(z).

Using the property of convolution, we can obtain that yt has a continuous and
positive density, which in turn implies that there exist constants m0 > 0 and M0 <
∞ such that

m0 ≤ π(x) ≤ M0, as x ∈ [r,r +1].

Thus, the result holds. n

LEMMA 6.4. If the conditions of Theorem 2.1 hold, then Ee2
t (θ) ≥ σ 2 and the

equality holds if and only if θ = θ0.

Proof. By Lemma 6.1,Ee2
t (θ) < ∞. Clearly,Ee2

t (θ0) = σ 2 because et (θ0) = et .
A conditional argument yields

E

{
e2

t (θ)− e2
t

}
= E

{[
et +∇t−1(θ)

]2 − e2
t

}
= E∇2

t−1(θ)

+2E
{
∇t−1(θ)E

(
et |F t−1−∞

)}
= E∇2

t−1(θ) ≥ 0,

where ∇t−1(θ) = [ψ0 + (φ0 − ψ0)1(yt−1 ≤ r0)]et−1 − [ψ + (φ − ψ)1(yt−1 ≤
r)]et−1(θ) and it is measurable with respect to F t−1−∞.

If there exists a θ∗ such that E{e2
t (θ∗)−e2

t } = 0, then ∇t−1(θ∗) = 0 a.s. for each
t because {et (θ∗)} is strictly stationary, and hence et (θ∗) ≡ et +∇t−1(θ∗) = et a.s.
for each t . Thus,

0 = et (θ∗)− et = {[
ψ0 + (φ0 −ψ0)1( yt−1 ≤ r0)

]
− [

ψ∗ + (φ∗ −ψ∗)1( yt−1 ≤ r∗)
]}

et−1,

which implies that[
ψ0 + (φ0 −ψ0)1( yt−1 ≤ r0)

]− [
ψ∗ + (φ∗ −ψ∗)1( yt−1 ≤ r∗)

]= 0. (6.1)
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Without loss of generality, suppose that r∗ ≤ r0. Then, it follows that from (6.1)

(φ0 −ψ∗)2P(r∗ < yt−1 ≤ r0)+ (φ0 −φ∗)2P(yt−1 ≤ r∗)+ (ψ0 −ψ∗)2

× P(yt−1 > r0) = 0.

Note that yt has a continuous and positive density on R by Lemma 6.3; by As-
sumption 2.2 we have φ∗ = φ0, ψ∗ = ψ0, and r∗ = r0. Thus, θ∗ = θ0. n

7. PROOF OF THEOREM 2.2

All proofs of lemmas in this section are omitted because they are technical. The
details can be found in Li et al. (2010). First, we give three lemmas before proving
the theorem.

LEMMA 7.1. If et has a continuous density h(x) on R with supx∈R{(1 +
x4)h(x)} < ∞ and Ee4

1 < ∞, then for fixed r ∈ R and u > 0

(i) E{|ek |ν1(r < yt ≤ r +u)} ≤ Cu f or ν = 1, ...,4;

(ii) E{|ek |α|em |β1(r < yt ≤ r +u)} ≤ Cu f or α,β = 1, ...,4 and k 	= m.

LEMMA 7.2. If e1 has a continuous and positive density onR, then there exists
a constant ρ ∈ (0,1) such that for all t ≥ 1, any u, ū,v, v̄ ∈ R̄ ≡ R∪{±∞} and
any integer m ≥ 0,∣∣∣E{g

(
ej , j ≥ 1

)
1(u < yt ≤ ū)1(v < yt+m ≤ v̄)

∣∣F0−∞
}

−E{g
(
ej , j ≥ 1

)
1(u < yt ≤ ū)1(v < yt+m ≤ v̄)

}∣∣∣≤ Cρt ,

where g(·) is a measurable function and satisfies E{g(ej , j ≥ 1)}2 < ∞.

The approach of Chan (1993) highly depended on the V -uniform ergodicity
when he studied the convergence rate of the estimated threshold in TAR models.
However, for TMA models, the V -uniform ergodicity is not available in the liter-
ature. Lemma 7.2 is a counterpart of V -uniform ergodicity, and it plays a key role
in the proof of the following lemma.

LEMMA 7.3. If Assumptions 2.1 and 2.3 hold, then, for any ε > 0 and η > 0,
there exists a constant B > 0 such that, for n large enough,

(i) P
(

sup
B/n<u≤1

∣∣∣∑n
t=1 et A0t (u)

nG(u)

∣∣∣> η
)

< ε;

(ii) P
(

sup
B/n<u≤1

∣∣∣∑n
t=1[Zt −EZt ]

nG(u)

∣∣∣< η
)

> 1− ε;

(iii) P
(

sup
B/n<u≤1

∣∣∣∑n
t=1[Wt (u)−EWt (u)]

nG(u)

∣∣∣> η
)

< ε;

(iv) P
(

sup
B/n<u≤1

∣∣∣∑n
t=1[Kt (u)−EKt (u)]

nG(u)

∣∣∣> η
)

< ε,
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where G(u) = P(r0 < y0 ≤ r0 +u), Zt = e2
t−11(r0 < yt−1 ≤ r0 +u),

A0t (u) =
∞
∑
j=0

H0
t j (r0 +u)et− j−11

(
r0 < yt−1− j ≤ r0 +u

)
,

Wt (u) = |et−1|1(r0 < yt−1 ≤ r0 +u)
∞
∑
j=1

ρ j |et−1− j |

×1(r0 < yt−1− j ≤ r0 +u
)
,

Kt (u) = ξρt
[
Ut (0,u)+Ut−1(0,u)

]
with

H0
t j (r) =

j

∏
i=1

[−ψ0 − (φ0 −ψ0)1( yt−i ≤ r)
] ;

ξ0ρt =
∞
∑
i=0

ρi |et−i |; ξρt =
∞
∑
i=0

ρi |ξ0ρ t−i |;

Ut (z1, z2) =
∞
∑
j=0

ρ j−1ξρ t− j

j+1

∑
i=0
1(r0 + z1 < yt−i+1 ≤ r0 + z2)

(7.1)

for some ρ ∈ (0,1).

Proof of Theorem 2.2(i). Because θ̂n is consistent, we restrict the param-
eter space to an open neighborhood of θ0. To this end, define Vδ = {θ ∈ � :
‖λ − λ0‖ < δ, |r − r0| < δ} for some 0 < δ < 1; δ is determined later. Then it
suffices to show that there exist constants B > 0, γ > 0, such that for n large
enough

P

⎛⎝ inf
B/n<|r−r0|≤δ

θ∈Vδ

Ln (λ,r)− Ln (λ,r0)

nG (|r − r0|) > γ

⎞⎠> 1− ε.

Here, we only treat the case r > r0. The proof for the case r < r0 is similar.
Write r = r0 +u for some 0 < u < 1. Decompose Ln(λ,r)− Ln(λ,r0) into two

parts, namely,

Ln (λ,r)− Ln (λ,r0) =
{[

Ln(λ,r)− Ln(λ,r0)
]
− [Ln(λ0,r)− Ln(λ0,r0)]

}
+
[

Ln(λ0,r)− Ln(λ0,r0)
]

≡ L(1)
n (λ,r)+ L(2)

n (r).

We first consider L(2)
n (r). By Theorem A.2 in Ling and Tong (2005), it follows

that

et (λ0,r0 +u)− et = − (φ0 −ψ0)
[
et−11(r0 < yt−1 ≤ r0 +u)+ At (u)

]
,
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where

At (u) =
∞
∑
j=1

H0
t j (r0 +u)et− j−11

(
r0 < yt−1− j ≤ r0 +u

)
,

where H0
t j (r) is defined in (7.1). Then, we have

e2
t (λ0,r0 +u)− e2

t ≥(φ0 −ψ0)
2 e2

t−11(r0 < yt−1 ≤ r0 +u)−2(φ0 −ψ0)
2 Wt (u)

−2(φ0 −ψ0)et A0t (u), (7.2)

where Wt (u) and A0t (u) are defined in Lemma 7.3. A conditional argument and
Lemma 6.3 give

sup
B/n<u≤δ

n

∑
t=1

EWt (u)

nG(u)
≤ sup

B/n<u≤δ

(
Cu2

G(u)

)
= O(δ). (7.3)

On the other hand, there exists a positive constant m0 > 0 such that

lim
u↓0

E
{

e2
t−11(r0 < yt−1 ≤ r0 +u)

}
G(u)

≥ m0. (7.4)

By (7.2)–(7.4) and Lemma 7.3(i)–(iii), it follows that

inf
B/n<u≤δ

L(2)
n (r0 +u)

nG(u)
≡ inf

B/n<u≤δ

{
1

nG(u)

n

∑
t=1

[
e2

t (λ0,r0 +u)− e2
t

]}
≥ (φ0 −ψ0)

2 m0 + Op(δ) (7.5)

for sufficiently small δ > 0.
Next, we consider L(1)

n (λ,r). Clearly,

1

n
L(1)

n (λ,r) = 1

n

n

∑
t=1

∫ 1

0

[
∂e2

t (λv ,r)

∂λ′ − ∂e2
t (λv ,r0)

∂λ′

]
(λ−λ0)dv,

where λv = λ0 + v(λ−λ0). Using (7.1), we have∥∥∥∥∥∂e2
t (λ,r0 +u)

∂λ
− ∂e2

t (λ,r0)

∂λ

∥∥∥∥∥≤ Cξρt
{

Ut (0,u)+Ut−1(0,u)
}= C Kt (u),

where Kt (u) is defined in Lemma 7.3. By Lemma 6.3 and Lemma 7.1, it follows
that

sup
B/n<u≤δ

{
n

∑
t=1

EKt (u)

nG(u)

}
≤ C. (7.6)
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From Lemma 7.3(iv) and (7.6), we can obtain

sup
B/n<u≤δ

θ∈Vδ

∣∣∣L(1)
n (λ,r0 +u)

∣∣∣
nG(u)

= Op

(
sup
θ∈Vδ

‖λ−λ0‖
)

= Op(δ). (7.7)

By (7.5) and (7.7), one can get

inf
B/n<u≤δ

θ∈Vδ

Ln (λ,r0 +u)− Ln(λ,r0)

nG(u)
≥ inf

B/n<u≤δ

L(2)
n (r0 +u)

nG(u)

− sup
B/n<u≤δ

θ∈Vδ

∣∣L(1)
n (λ,r0 +u)

∣∣
nG(u)

≥ (φ0 −ψ0)
2m0 + Op(δ).

Let γ = (φ0 −ψ0)
2m0/2 > 0. Then, for sufficiently small δ > 0, we have

P

⎛⎝ inf
B/n<u≤δ

θ∈Vδ

Ln(λ,r0 +u)− Ln(λ,r0)

nG(u)
> γ

⎞⎠≥ P(2γ + Op(δ) > γ
)

> 1− ε.

The proof of (i) is complete. n

For the proof of Theorem 2.2(ii), we need several additional lemmas.

LEMMA 7.4. For any λ ∈ �, define an open neighborhood of λ for any η > 0
as Uλ(η) = {λ∗ ∈ � : ‖λ∗ −λ‖ < η}. If Assumption 2.1 holds and Ee2

t < ∞, then

E

{
sup

r∈[r ,r ]
sup

λ∗∈Uλ(η)

∣∣∣e2
t (λ

∗,r)− e2
t (λ,r)

∣∣∣}→ 0, as η → 0.

To obtain the limiting distribution of λ̂n , we need to study the uniform conver-
gence of λ̂n(r) as r ∈ [r0 − B/n,r0 + B/n] for some B ∈ (0,∞).

LEMMA 7.5. If Assumption 2.1 holds and Ee2
1 < ∞, then for some 0 < B < ∞

sup
|r−r0|≤B/n

∥∥∥λ̂n(r)−λ0

∥∥∥= op(1).

LEMMA 7.6. If Assumption 2.1 and 2.3 hold, then, for η > 0,

(i) E sup
λ∈�

sup
|r−r0|<η

∥∥∥ ∂e2
t (λ,r)
∂λ − ∂e2

t (λ,r0)
∂λ

∥∥∥≤ Cη;

(ii) E sup
λ∈�

sup
|r−r0|<η

∥∥∥ ∂2e2
t (λ,r)

∂λ∂λ′ − ∂2e2
t (λ,r0)

∂λ∂λ′
∥∥∥≤ Cη.
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LEMMA 7.7. If Assumptions 2.1 and 2.3 hold, then, for any η > 0,

(i) E sup
‖λ−λ0‖<η

sup
r∈[r ,r ]

∥∥∥ ∂e2
t (λ,r)
∂λ − ∂e2

t (λ0,r)
∂λ

∥∥∥≤ Cη;

(ii) E sup
‖λ−λ0‖<η

sup
r∈[r ,r ]

∥∥∥ ∂2e2
t (λ,r)

∂λ∂λ′ − ∂2e2
t (λ0,r)

∂λ∂λ′
∥∥∥≤ Cη.

LEMMA 7.8. If Assumptions 2.1 and 2.3 hold, then for any 0 < B < ∞
(i) sup

|r−r0|≤B/n

∥∥∥ ∂Ln(λ0,r)
∂λ − ∂Ln(λ0,r0)

∂λ

∥∥∥= Op(1);

(ii) sup
‖λ−λ0‖<B/

√
n

sup
|r−r0|≤B/n

∥∥∥ ∂2 Ln(λ,r)
∂λ∂λ′ − ∂2 Ln(λ0,r0)

∂λ∂λ′
∥∥∥= Op

(
n1/2

)
.

Proof of Theorem 2.2(ii). By Taylor’s expansion of ∂Ln(λ,r)/∂λ, we have

0 = 1

n

∂Ln

(
λ̂n,r

)
∂λ

= 1

n

∂Ln (λ0,r)

∂λ
+ 1

n

∂2Ln
(
λ̄,r

)
∂λ∂λ′

[
λ̂n(r)−λ0

]
, (7.8)

where λ̄ lies between λ̂n(r) and λ0. By the ergodic theorem, it follows that

1

n

∂2Ln(θ0)

∂λ∂λ′ → 2
, a.s.

as n → ∞. Furthermore, by (7.8) and Lemmas 7.5, 7.7, and 7.8, we have

sup
|r−r0|≤B/n

∥∥∥∥√n
[
λ̂n(r)−λ0

]
+ (2
)−1 1√

n

∂Ln(θ0)

∂λ

∥∥∥∥= op(1).

Hence,

√
n sup

|r−r0|≤B/n

∥∥∥λ̂n(r)− λ̂n(r0)
∥∥∥ ≤ sup

|r−r0|≤B/n

∥∥∥∥√n
[
λ̂n(r)−λ0

]
+ (2
)−1 1√

n

∂Ln(θ0)

∂λ

∥∥∥∥
+
∥∥∥∥√n

[
λ̂n(r0)−λ0

]
+ (2
)−1 1√

n

∂Ln(θ0)

∂λ

∥∥∥∥= op(1).

Note that

1√
n

∂Ln(θ0)

∂λ
= 1√

n

n

∑
t=1

(
∂e2

t (θ0)

∂φ
,

∂e2
t (θ0)

∂ψ

)′
= 2√

n

n

∑
t=1

(
∂et (θ0)

∂φ
,

∂et (θ0)

∂ψ

)′
et

and that ∂Ln(θ0)/∂λ is a sum of martingale differences in terms of σ -fields
{F t−∞}. From the martingale central limit theorem it follows that

1√
n

∂Ln(θ0)

∂λ
=⇒N

(
0, 4σ 2


)
with 
 = E

(
∂e1(θ0)

∂λ

∂e1(θ0)

∂λ′

)
.

Thus, the result holds. The proof is complete. n
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8. PROOF OF THEOREM 2.3

Before the proof, we first discuss the limiting behavior of the normalized profile
sum of squares errors function L̃n(z), defined by

L̃n(z) = Ln

(
λ̂n

(
r0 + z

n

)
,r0 + z

n

)
− Ln

(
λ̂n(r0),r0

)
, z ∈ R.

LEMMA 8.1. If Assumptions 2.1–2.3 hold, then for any B ∈ (0,∞),

sup
|z|≤B

∣∣∣L̃n(z)−
[

Ln

(
λ0,r0 + z

n

)
− Ln (λ0,r0)

]∣∣∣= op(1).

Proof. By Taylor expansion,

L̃n(z)−
[

Ln

(
λ0,r0 + z

n

)
− Ln(λ0,r0)

]
=
[

∂Ln
(
λ̄,r0 + z/n

)
∂λ

− ∂Ln
(
λ̄,r0

)
∂λ

][
λ̂n

(
r0 + z

n

)
−λ0

]
+ ∂Ln (λ∗,r0)

∂λ

[
λ̂n

(
r0 + z

n

)
− λ̂n(r0)

]
,

where λ̄ lies between λ0 and λ̂n(r0 + z/n) and λ∗ lies between λ̂n(r0) and λ̂n(r0 +
z/n). By Lemmas 7.6 and 7.7 and Theorem 2.2, we have

sup
|z|≤B

∣∣∣L̃n(z)−
[

Ln

(
λ0,r0 + z

n

)
− Ln(λ0,r0)

]∣∣∣= op(1). �

LEMMA 8.2. If Assumptions 2.1–2.3 hold, then for any B ∈ (0,∞),

E sup
|z|≤B

∣∣∣[Ln

(
λ0,r0 + z

n

)
− Ln(λ0,r0)

]
−℘n(z)

∣∣∣→ 0 as n → ∞.

Proof. We only prove the case r ≥ r0. The case r < r0 is similar. Let et (z) =
et (λ0,r0 + z/n). Then, by Theorem A.2 in Ling and Tong (2005), it follows that

et (z)− et = (ψ0 −φ0)
∞
∑
j=0

Ht j (θ0)et−1− j1
(

r0 < yt−1− j ≤ r0 + z

n

)
+ Rt ,

where E|Rt | = O(n−2). By Theorem A.1 in Ling and Tong (2005), the Hölder
inequality, and strict stationarity of {yt }, one can get

[et (z)− et ]
2 = (ψ0 −φ0)

2
∞
∑
j=0

[
Ht j (θ0)

]2
e2

t−1− j1
(

r0 < yt−1− j ≤ r0 + z

n

)
+ op

(
n−1).
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Then, by exchanging the order of the summation, it follows that

Ln

(
λ0,r0 + z

n

)
− Ln(λ0,r0) =

n

∑
t=1

{
[et (z)− et ]

2 +2et [et (z)− et ]
}

=
n

∑
t=1

{ ∞
∑
j=0

ξt+ j, j

}
1
(

r0 < yt−1 ≤ r0 + z

n

)
+op(1)

= ℘n(z)+op(1),

where ξt, j = (φ0 − ψ0)
2 H2

t j (θ0)e2
t−1− j − 2(φ0 − ψ0)Ht j (θ0)et et−1− j and op(1)

in this proof is uniform in z ∈ [0, B] and E|op(1)| = o(1). Thus, the result
holds. n

Proof of Theorem 2.3. In the spaceD(R), we use the Skorokhod metric d(·, ·),
defined as d(x, y) = ∑∞

k=1 2−k min{1,dk(x, y)} for x, y ∈D(R), where dk(x, y) is
the Skorokhod metric in D[−k,k]. See (16.4) and (12.16) in Billingsley (1999,
p. 168 and p. 125). Using Lemmas 8.1 and 8.2, we have d(L̃n(z),℘n(z)) → 0 in
probability. By Theorem 3.1 in Billingsley (1999, p. 27), it suffices to prove that
{℘n(z), z ∈ R} converges weakly as n → ∞. By Theorem 5 in Kushner (1984,
p. 32) and Lemma 7.1, it is not hard to show that {℘n(z), z ∈ R} is tight.

Now, we consider a truncated process ℘
(a)
n (z) defined by

℘(a)
n (z) = 1{z < 0}

n

∑
t=1

ζ1t |a−a1t (z,0)+1{z ≥ 0}
n

∑
t=1

ζ2t |a−a1t (0, z),

where a > 0, x |b−b = x1(|x | ≤ b), and 1t (x, y) = 1(r0 + x/n < yt−1 ≤ r0 + y/n).

We first show that {℘(a)
n (z), z ∈ R} converges weakly to a two-sided CPP for

each a > 0. The proof takes two steps: (a) proving the tightness of ℘
(a)
n (z);

(b) characterizing convergence of finite-dimensional distributions. Note the con-
struction of ℘

(a)
n (z). We only deal with the case z ≥ 0; the opposite case is similar.

(a) Tightness of ℘
(a)
n (z). By a conditional argument, we have

P(a < yt ≤ b, c < yt−k ≤ d) ≤ C(b −a)(d − c) for a < b, c < d and k ≥ 1.

It is not hard to verify

E

[∣∣∣℘(a)
n (z)−℘(a)

n (z1)
∣∣∣∣∣∣℘(a)

n (z2)−℘(a)
n (z)

∣∣∣]≤ C(z2 − z1)
2

for any 0 ≤ z1 < z < z2 < ∞. Thus, {℘(a)
n (z),n ≥ 1} is tight by Theorem 5 in

Kushner (1984, p. 32) again.
(b) Convergence of finite-dimensional distributions. For any 0 ≤ z1 ≤ z2 < z3 ≤

z4 and any real numbers c1 and c2, the linear combination of the increments of
℘

(a)
n (z) is



THRESHOLD MOVING AVERAGE MODELS 503

Sn = c1

{
℘(a)

n (z2)−℘(a)
n (z1)

}
+ c2

{
℘(a)

n (z4)−℘(a)
n (z3)

}
=

n

∑
t=1

ζ2t
∣∣a−a

{
c11t (z1, z2)+ c21t (z3, z4)

}
.

Fix z > 0 and let ε = 1/n. Consider the following process indexed by ε:

xε(t) = Xε
[nt] , 0 ≤ t ≤ 1,

Xε
0 = 0,

Xε
k+1 = Xε

k + J ε
k+1, k ≥ 1,

J ε
k = ζ2k

∣∣a−a

{
c11k(z1, z2)+ c21k(z3, z4)

}
,

where the symbol [nt] denotes the integral part of nt . Clearly, xε(1) = Sn . We
need to verify Assumptions A.1–A.4 in the Appendix.

First, we have

Pε
k

(
J ε

m 	= 0
)= P(J ε

m 	= 0|Gk−1
)

= P(r0 + z1ε < ym−1 ≤ r0 + z2ε,
∣∣ζ2m

∣∣≤ a|Gk−1
)

+P(r0 + z3ε < ym−1 ≤ r0 + z4ε,
∣∣ζ2m

∣∣≤ a
∣∣Gk−1

)
= P(|ζ2m

∣∣≤ a
∣∣r0 + z1ε < ym−1 ≤ r0 + z2ε,Gk−1

)
×P(r0 + z1ε < ym−1 ≤ r0 + z2ε

∣∣Gk−1
)

+P(|ζ2m
∣∣≤ a

∣∣r0 + z3ε < ym−1 ≤ r0 + z4ε,Gk−1
)

×P(r0 + z3ε < ym−1 ≤ r0 + z4ε
∣∣Gk−1

)
,

where Gk = σ(J ε
i , i ≤ k). By the strict stationarity of {yt }, Lemma 6.3, and

Lemma 7.2, it follows that for j = 1,3

lim
ε→0

lim
m→∞ε−1P

(
r0 + zjε < ym−1 ≤ r0 + zj+1ε|Gk−1

)= π (r0)
(
zj+1 − zj

)
,

lim
ε→0

lim
m→∞P

(|ζ2m | ≤ a|r0 + zjε < ym−1 ≤ r0 + zj+1ε,Gk−1
)

= P(|ζ22| ≤ a|y1 = r+
0

)≡ κa .

Thus,

lim
ε→0

lim
m→∞ε−1Pε

k

(
J ε

m 	= 0
)= κaπ(r0)

{
(z2 − z1)+ (z4 − z3)

}
. (8.1)

By the stationarity of {yt } again, for any Borel set B, it follows that

Q∗(B) = lim
ε→0

P
(

J ε
k ∈ B|J ε

k 	= 0
)= wQ∗

1(B)+ (1−w)Q∗
2(B), (8.2)

where w = (z2 − z1)/{(z2 − z1)+ (z4 − z3)} and Q∗
i (B) = P(ciζ22|a−a ∈ B|y1 =

r+
0 , |ζ22| ≤ a), i = 1,2. Similarly, by Lemma 7.2, we can verify that, for any
f ∈ Ĉ 2

0 and a scalar x ,
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lim
ε→0

lim
m→∞E

ε
k

{
f (x + J ε

m)− f (x)
∣∣J ε

m 	= 0
}= lim

ε→0
E
{

f (x + J ε
k )− f (x)

∣∣J ε
k 	= 0

}
=
∫ [

f (x +u)− f (x)
]
Q∗(du).

(8.3)

By (8.1)–(8.3), Assumptions A.1–A.4 in the Appendix hold. By Theorem
A.1, we claim that xε(t) converges weakly to a CPP J (t) with jump rate
κaπ(r0){(z2 − z1) + (z4 − z3)} and the jump distribution Q∗. Hence, Sn con-
verges weakly to J (1), a compound Poisson random variable. Now, consider the
characteristic function fa(t) of J (1). Clearly,

fa(t) = exp
{
−κaπ(r0){(z2 − z1)+ (z4 − z3)}

[
1−

∫
R

eitxQ∗(dx)
]}

= exp
{
−κaπ(r0)(z2 − z1)

[
1−

∫
R

eitxQ∗
1(dx)

]}
× exp

{
−κaπ(r0)(z4 − z3)

[
1−

∫
R

eitxQ∗
2(dx)

]}
,

which is equal to that of the linear combination c1{℘(a)(z2) − ℘(a)(z1)} +
c2{℘(a)(z4)−℘(a)(z3)} of the independent increments of the CPP

℘(a)(z) =
N (a)(z)

∑
i=1

Yi , z ∈ [0,∞),

where {N (a)(z), z ∈ [0,∞)} is a Poisson process with jump rate κaπ(r0) and {Yi }
is i.i.d. having the distribution Q(a), where Q(a) is the induced measure of ζ22|a−a
given y1 = r+

0 and |ζ22| ≤ a. By the Cramer–Wold device, the finite-dimensional

distributions of ℘
(a)
n (z) converge weakly to those of the CPP {℘(a)(z)} with

jump rate κaπ(r0) and jump distribution Q(a). Thus, ℘
(a)
n (z) converges weakly

to ℘(a)(z) as n → ∞ in D(R) for each a > 0.
Note that κa → 1 and Q(a) → F2(·|r0) as a → ∞. Then, by Theorem 16 in

Pollard (1984, p. 134), the CPP ℘(a)(z) converges weakly to a CPP ℘(z) with
jump rate π(r0) and jump distribution F2(·|r0) as a → ∞. On the other hand, for
each k > 0, we have

lim
a→∞ lim

n→∞E sup
|z|≤k

∣∣∣℘n(z)−℘(a)
n (z)

∣∣∣= 0.

Thus, for each ε > 0,

lim
a→∞ limsup

n→∞
P

(
d
(
℘(a)

n (z),℘n(z)
)

> ε
)

= 0.

By Theorem 3.2 in Billingsley (1999, p. 28), ℘n(z) =⇒ ℘(z). Thus, L̃n(z) con-
verges weakly to ℘(z) in D(R). The remainder is the same as Theorem 2 in Chan
(1993). n
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9. PROOF OF THEOREM 3.1

Before the proof, we first give a technical lemma.

LEMMA 9.1. If the conditions in Theorem 3.1 hold, then, for each m,

sup
x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)− F (m)
1 (x |r0)

∣∣∣→ 0 in probability,

where F (m)
k (x |r0) is the conditional distribution induced by

ζ
(m)

k2 =
⎧⎨⎩ m

∑
j=0

(
j

∏
i=1

[−ψ0 − (φ0 −ψ0)1( yi+1 ≤ r0)
])2

⎫⎬⎭δ 2
2

−2(−1)k

{
m

∑
j=0

ej+2

(
j

∏
i=1

[−ψ0 − (φ0 −ψ0)1( yi+1 ≤ r0)
])}

δ2 (9.1)

with δ2 = (φ0 −ψ0)e1 given y1 = r0.

Proof. Note that

F (m)
k (x |r0) =

∫
P

(
ζ

(m)
k2 ≤ x

∣∣y1 = r0, Z0 = z
) π(r0|z)

π(r0)
Q(dz)

=
n

∑
i=1
P

(
ζ

(m)
k2 ≤ x

∣∣y1 = r0,Z0 = zi

) π(r0|zi )

∑n
l=1 π(r0|zl)

+o(1) a.s.,

(9.2)

uniformly in x ∈ R by Theorem 2 in Pollard (1984, p. 8), where Z0 = (y0,e0)
′,

zi ∈R2, Q(·) is the distribution of Z0, and π(r0|z) is the conditional density of y1
given Z0 = z. Let

PZ (Y1 ≤ x) =
n

∑
i=1
P

(
ζ

(m)
12 ≤ x

∣∣y1 = r0,Z0 = zi

) π(r0|zi )

∑n
l=1 π(r0|zl)

. (9.3)

By (9.2) and (9.3), it follows that

sup
x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)
− F (m)

1 (x |r0)
∣∣∣≤ sup

x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)
−PZ (Y1 ≤ x)

∣∣∣
+ sup

x∈R

∣∣∣PZ (Y1 ≤ x)− F (m)
1 (x |r0)

∣∣∣
= sup

x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)
−PZ (Y1 ≤ x)

∣∣∣+op(1).

Thus, it suffices to prove that

sup
x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)
−PZ (Y1 ≤ x)

∣∣∣= op(1).
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From the Algorithm, it follows that

PXn

(
Ỹ1 ≤ x

)
=

n

∑
i=1
PXn

(
ζ̃

(m)
1,2 ≤ x |ỹ1 = r̂n, Z̃0 = ẑi

) π̂
(
r̂n|ẑi

)
∑n

l=1 π̂
(
r̂n|ẑl

) ,

where Z̃0 = (ỹ0, ẽ0)
′. By a simple calculation, using (9.3), we have∣∣∣PXn

(
Ỹ1 ≤ x

)−PZ (Y1 ≤ x)
∣∣∣

≤ 2∑n
i=1

∣∣π̂ (r̂n |ẑi
)−π(r0|zi )

∣∣
∑n

l=1 π(r0|zl )

+

{
max

1≤i≤n
π̂
(
r̂n |ẑi

)}
∑n

i=1

∣∣∣PXn

(
ζ̃

(m)
1,2 ≤ x

∣∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
−P

(
ζ

(m)
12 ≤ x

∣∣∣y1 = r0,Z0 = zi

)∣∣∣
∑n

l=1 π̂
(
r̂n |ẑl

) .

Define the residual êt by the equation

êt = yt −
[
φ̂n1

(
yt−1 ≤ r̂n

)+ ψ̂n1
(

yt−1 > r̂n
)]

êt−1

with êj ≡ 0 for j ≤ 0. From Theorems 2.1 and 2.2 and Lemma 7.1, some cal-
culations yield that, for [

√
n] ≤ t ≤ n, where [

√
n] denotes the integral part

of
√

n,

1√
n

n

∑
t=1

∣∣êt − et
∣∣= Op(1) and

∣∣êt − et
∣∣= op(1). (9.4)

Note that∣∣∣g(ẑt , θ̂n

)
− g(zt ,θ0)

∣∣∣≤(∣∣φ̂n −φ0
∣∣+ ∣∣ψ̂n −ψ0

∣∣) |et |+
(∣∣φ̂n

∣∣+ ∣∣ψ̂n
∣∣)∣∣êt − et

∣∣
+
(∣∣φ̂n

∣∣+ ∣∣ψ̂n
∣∣)1(|yt − r0| ≤ ∣∣r̂n − r0

∣∣) |et | .

We have that for [
√

n] ≤ t ≤ n∣∣∣g(ẑt , θ̂n

)
− g(zt ,θ0)

∣∣∣= op(1). (9.5)

Let

h̃(x) = 1

nbn

n

∑
t=1

K

(
et − x

bn

)
.

Then, by the mean value theorem,∥∥∥ĥ − h̃
∥∥∥∞ ≤ 1√

n b2
n

1√
n

n

∑
t=1

∣∣êt − et
∣∣= op(1)
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by (9.4) and bn ∼ n−1/5. By Theorem A in Silverman (1978), ‖h̃ −h‖∞ = op(1).
Thus,∥∥∥ĥ −h

∥∥∥∞ ≤
∥∥∥ĥ − h̃

∥∥∥∞ +
∥∥∥h̃ −h

∥∥∥∞ = op(1).

Then, it follows that

max
1≤i≤n

π̂
(
r̂n|ẑi

)≤ max
1≤i≤n

∣∣∣ĥ(r̂n − g
(

ẑi , θ̂n

))
−h

(
r̂n − g

(
ẑi , θ̂n

))∣∣∣+‖h‖∞

≤
∥∥∥ĥ −h

∥∥∥∞ +‖h‖∞ = ‖h‖∞ +op(1)

and

1

n

n

∑
i=1

∣∣π̂ (r̂n
∣∣ẑi
)−π

(
r0
∣∣zi
)∣∣≤ ∥∥∥ĥ −h

∥∥∥∞ + 1

n

n

∑
i=1

∣∣∣h(r̂n − g
(

ẑi , θ̂n

))
−h (r0 − g(zi ,θ0))

∣∣∣
= op(1)

because E
∣∣h(r̂n − g(ẑi , θ̂n)) − h(r0 − g(zi ,θ0))

∣∣ = o(1) as for [
√

n] ≤ i ≤ n by
Theorem 2.1, (9.5), and the uniform continuity of h(x) (implied by Assumption
2.3). Furthermore,

1

n

n

∑
l=1

π̂
(
r̂n|ẑl

)= 1

n

n

∑
i=1

π(r0|zi )+ 1

n

n

∑
i=1

[
π̂
(
r̂n|ẑi

)−π(r0|zi )
]= π(r0)+op(1)

by the law of large numbers. Therefore,

sup
x∈R

∣∣∣PXn

(
Ỹ1 ≤ x

)
−PZ (Y1 ≤ x)

∣∣∣≤ Op(1)

{
1

n

n

∑
i=1

sup
x∈R

∣∣∣PXn

(
ζ̃

(m)
1,2 ≤ x

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
− P

(
ζ

(m)
12 ≤ x

∣∣y1 = r0,Z0 = zi

)∣∣∣}+op(1),

where Op(1) and op(1) are uniform in x . Because the difference of two con-
ditional probabilities is bounded by 1, it suffices to prove that for each [

√
n]

≤ i ≤ n

sup
x∈R

∣∣∣PXn

(
ζ̃

(m)
1,2 ≤ x

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
−P

(
ζ

(m)
12 ≤ x

∣∣y1 = r0,Z0 = zi

)∣∣∣= op(1).

(9.6)

Next, we shall prove (9.6). Let H̃[k](·) be the conditional distribution of Ỹk ≡
(ỹk, ..., ỹ2)

′ given ỹ1 = r̂n , Z̃0 = ẑi , and Xn , and let H[k](·) be the conditional
distribution of Yk ≡ (yk, ..., y2)

′ given y1 = r0 and Z0 = zi . By induction over k
(≤ m +1), we first show that ‖H̃[m+1] − H[m+1]‖∞ = op(1) as n → ∞.
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When k = 2, it follows that∥∥∥H̃[2] − H[2]

∥∥∥∞
= sup

x∈R

∣∣∣PXn

(
ẽ2 + g

(
v̂i , θ̂n

)
≤ x |ỹ1 = r̂n, Z̃0 = ẑi

)
−P(e2 + g(vi ,θ0) ≤ x |y1 = r0,Z0 = zi

)∣∣∣
= sup

x∈R

∣∣∣∣∣
∫ x−g

(
v̂i ,θ̂n

)
−∞

ĥ(u)du −
∫ x−g(vi ,θ0)

−∞
h(u)du

∣∣∣∣∣
≤
∫
R

∣∣∣ĥ(u)−h(u)
∣∣∣du +‖h‖∞

∣∣∣g(v̂i , θ̂n

)
− g(vi ,θ0)

∣∣∣ ,
where v̂i = (r̂n, r̂n − g(ẑi , θ̂n))′, vi = (r0,r0 − g(zi ,θ0))

′, and g(·, ·) is defined in
(3.1). By the dominated convergence theorem and ‖ĥ − h‖∞ = op(1), we have∫
R |ĥ(u)−h(u)|du = op(1). On the other hand, we have∣∣∣g(v̂i , θ̂n

)
− g(vi ,θ0)

∣∣∣≤(∣∣φ̂n −φ0
∣∣+ ∣∣φ0

∣∣){∣∣r̂n − r0
∣∣+ ∣∣g(ẑi , θ̂n

)
− g(zi ,θ0)

∣∣}
+ ∣∣φ̂n −φ0

∣∣∣∣r0 − g(zi ,θ0)
∣∣.

By Theorem 2.1 and (9.5), we have |g(v̂i , θ̂n)−g(vi ,θ0)| = op(1). Thus, ‖H̃[2] −
H[2]‖∞ = op(1).

Suppose that ‖H̃[k] − H[k]‖∞ = op(1) for some k > 2. Consider the case k +1.
Let Z̃t = (ỹt , ẽt )

′. From the structure of g in (3.1), there exists a piecewise con-
tinuous function f (·, ·) with at most 2k segments such that g(Z̃k, θ̂n) = f (Ỹk, θ̂n)

given ỹ1 = r̂n , Z̃0 = ẑi , and Xn , and g(Zk,θ0) = f (Yk,θ0) given y1 = r0 and
Z0 = zi . Then for A = ∏k−1

i=1 (−∞, xi ]∣∣∣PXn

(
ỹk+1 ≤ x, Ỹk ∈ A

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
−P(yk+1 ≤ x,Yk ∈ A

∣∣y1 = r0,Z0 = zi
)∣∣∣

=
∣∣∣∫
R
PXn

(
f
(

Ỹk, θ̂n

)
≤ x −u, Ỹk ∈ A

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
ĥ(u)du

−
∫
R
P
(

f (Yk,θ0) ≤ x −u,Yk ∈ A
∣∣y1 = r0,Z0 = zi

)
h(u)du

∣∣∣
≤
∫
R

∣∣ĥ(u)−h(u)
∣∣du +

∫
R

Jnk(u)h(u)du +
∫
R

Ink(u)h(u)du,

where

Jnk(u) =
∣∣∣PXn

(
f
(

Ỹk, θ̂n

)
≤ x −u, Ỹk ∈ A

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
−PXn

(
f
(

Ỹk,θ0

)
≤ x −u, Ỹk ∈ A

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)∣∣∣,
Ink(u) =

∣∣∣PXn

(
f
(

Ỹk,θ0

)
≤ x −u, Ỹk ∈ A

∣∣ỹ1 = r̂n, Z̃0 = ẑi

)
−P( f (Yk,θ0) ≤ x −u,Yk ∈ A

∣∣y1 = r0,Z0 = zi
)∣∣∣.
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Noting that

EXn

{∣∣∣ f
(

Ỹk, θ̂n

)
− f

(
Ỹk,θ0

)∣∣∣ ∣∣∣ỹ1 = r̂n, Z̃0 = ẑi

}
≤
(∣∣φ̂n −φ0

∣∣+ ∣∣ψ̂n −ψ0
∣∣)∫ |x |ĥ(x)dx

+
(

2
∥∥∥ĥ
∥∥∥∞

)1/2(∣∣φ̂n
∣∣+ ∣∣ψ̂n

∣∣)∣∣r̂n − r0
∣∣1/2

(∫
|x |2ĥ(x)dx

)1/2

by the Hölder inequality and a conditional argument. Because(∫
|x |ĥ(x)dx

)2

≤
∫

|x |2ĥ(x)dx = 1

n

n

∑
t=1

ê2
t +b2

n → σ 2,

by the expression of ĥ(x), we have

EXn

{∣∣ f
(

Ỹk, θ̂n

)
− f (Ỹk,θ0)

∣∣∣∣∣ỹ1 = r̂n, Z̃0 = ẑi

}
= op(1)

by Theorem 2.1. That is, f (Ỹk, θ̂n)− f (Ỹk,θ0) = op(1) conditionally on ỹ1 = r̂n,

Z̃0 = ẑi , and Xn , in probability. Thus, a.s. for all u, Jnk(u) = op(1).
Thanks to Jnk(u) ≤ 1, we have that, a.s. for all u, EJnk(u) = o(1). Then,
E
∫
R Jnk(u)h(u)du = ∫

R(EJnk(u))h(u)du = o(1) by Fubini’s theorem, the domi-
nated convergence theorem, and the continuity of h(x). Thus,

∫
R Jnk(u)h(u)du =

op(1).
Because ‖H̃[k] − H[k]‖∞ = op(1) and f (·,θ0) is piecewise continuous, by

the continuous mapping theorem, we have that, a.s. for all u, in probability
Ink(u) → 0 as n → ∞. By Fubini’s theorem and the dominated convergence theo-
rem again, we have E

∫
R Ink(u)h(u)du = o(1). Hence, |H̃[k+1](x)− H[k+1](x)| =

op(1) for each x ∈ Rk . Because H[k+1](y) is continuous uniformly in zi , we
have ‖H̃[k+1] − H[k+1]‖∞ = op(1). Thus, ‖H̃[m+1] − H[m+1]‖∞ = op(1). From

its structure, ζ
(m)

k2 in (9.1) is a piecewise continuous function of em+2 and
Ym+1. (Note: ej is a piecewise function of Yj for 2 ≤ j ≤ m + 1.) As a re-
sult of the independence between em+2 and Ym+1 and the continuity of h(x),
P(ζ

(m)
12 ≤ x |y1 = r0,Z0 = zi ) is continuous uniformly in zi . By the continu-

ous mapping theorem and the continuity of P(ζ
(m)
12 ≤ x |y1 = r0,Z0 = zi ), (9.6)

holds.
Therefore, supx∈R |PXn (Ỹ1 ≤ x) − PZ (Y1 ≤ x)| = op(1). The proof is

complete. n

Proof of Theorem 3.1. The proof is argued through subsequences. Let
(�,F,P) be the basic probability space. Denote πn = π̂(r̂n), F̂ (m)

1n (x) =
PXn (Ỹ1 ≤ x), and F̂ (m)

2n (x) =PXn (Z̃1 ≤ x), all of which depend on ω ∈ � because

Xn is defined on �. We define a two-sided CPP by ℘̂
(m)
n (z) that is determined by

the jump rate πn and jump distributions F̂ (m)
1n (x) and F̂ (m)

2n (x). More specifically,
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℘̂(m)
n (z) = I (z < 0)

N̂1n(−z)

∑
k=1

Ỹk + I (z ≥ 0)
N̂2n(z)

∑
k=1

Z̃k

≡ I (z < 0)℘̂1n(−z)+ I (z > 0)℘̂2n(z),

where both {N̂1n(z) : z ≥ 0} and {N̂2n(z) : z ≥ 0} are conditional independent
CPPs given Xn and have the same jump rate πn , {Ỹk} are i.i.d. from F̂ (m)

1n (x)

and {Z̃k} i.i.d. from F̂ (m)
2n (x), and {Ỹk} and {Z̃k} are mutually conditional in-

dependent given Xn . Suppose that ℘̂
(m)
n (z) is defined on the probability space

(�̃, F̃, P̃). To stress the dependence of ℘̂
(m)
n on ω̃, z, and ω (or on ω), we write

it as ℘̂
(m)
n (ω̃, z; ω) (or ℘̂

(m)
n (ω)). Because πn is a weakly consistent estimator of

π(r0), it follows that
(
πn, F̂ (m)

1n (x), F̂ (m)
2n (x)

) → (π(r0), F (m)
1 (x |r0), F (m)

2 (x |r0))
in probability by Lemma 9.1, uniformly in x ∈ R. Thus, for any sub-
sequence (πnk , F̂ (m)

1nk
(x), F̂ (m)

2nk
(x)), there exists a further subsequence (πnki

,

F̂ (m)
1nki

(x), F̂ (m)
2nki

(x)) such that(
πnki

, F̂ (m)
1nki

(x), F̂ (m)
2nki

(x)
)

→
(
π(r0), F (m)

1 (x |r0), F (m)
2 (x |r0)

)
, P-a.s.,

uniformly in x ∈ R. Then, there exists a subset A⊂ � with P(Ac) = 0 such that
for each fixed ω ∈A(
πnki

(ω), F̂ (m)
1nki

(x)(ω), F̂ (m)
2nki

(x)(ω)
)

→
(
π(r0), F (m)

1 (x |r0), F (m)
2 (x |r0)

)
, (9.7)

uniformly in x ∈ R. Consider the process ℘̂
(m)
nki

(ω̃, z; ω). For each fixed ω ∈ A,

in what follows, we will show that ℘̂
(m)
nki

(ω̃, z; ω) converges weakly by Theorem
16 in Pollard (1984, p. 134). To this end, we need to verify the following two
conditions.

(a) Aldous’s condition. Because every CPP is a Lévy process, by the strong
Markov property of Lévy processes (see Cont and Tankov, 2004, p. 96),
the following Aldous’s condition holds; that is, as i → ∞,(

℘̂1nki
(ρi + δi )− ℘̂1nki

(ρi ), ℘̂2nki
(ρi + δi )− ℘̂2nki

(ρi )
)

d=
(
℘̂1nki

(δi ), ℘̂2nki
(δi )

)
P̃−→ 0

because P̃(N̂1nki
(δi ) = 0) = P̃(N̂2nki

(δi ) = 0) = exp(−δiπnki
) → 1 for

each sequence {ρi ,δi }, wherever {δi } is a sequence of positive numbers
converging to zero and {ρi } is a sequence of stopping times (defined on �̃)
taking values in [0,T ] for each fixed T > 0. (The stopping time property
means that the event {ρi ≤ t} should belong to the σ -field generated by
the random variables (℘̂1nki

(z), ℘̂2nki
(z)) for 0 ≤ z ≤ t . See Pollard, 1984,

p. 133.)
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(b) Convergence of finite-dimensional distributions. For any 0 < s1 <
· · · < sk , the characteristic function of (℘̂1nki

(s1), ℘̂2nki
(s1), ℘̂1nki

(s2),

℘̂2nki
(s2), ..., ℘̂1nki

(sk), ℘̂2nki
(sk)) is

ϕ̂nki
(u1, ...,uk ; v1, ...,vk) = Ẽ

{
exp

[
i

(
k

∑
l=1

ul ℘̂1nki
(sl)+

k

∑
l=1

vl ℘̂2nki
(sl)

)]}

=
k

∏
l=1

exp

{
−πnki

(sl − sl−1)

∫ [
1− exp(ial x)

]
×d F̂ (m)

1nki
(x)(ω)

}
×

k

∏
l=1

exp

{
−πnki

(sl − sl−1)

∫ [
1− exp(ibl x)

]
×d F̂ (m)

2nki
(x)(ω)

}
,

where al = uk +·· ·+ul and bl = vk +·· ·+ vl . Because 1−exp(ial x) and
1 − exp(ibl x) are bounded continuous functions, by (9.7) and Theorem
3.2.3 in Durrett (2010), we have that

ϕ̂nki
(u1, ...,uk ; v1, ...,vk) →

k

∏
l=1

exp

{
−π(r0)(sl − sl−1)

∫ [
1− exp(ial x)

]
×d F (m)

1 (x |r0)
}

×
k

∏
l=1

exp

{
−π(r0)(sl − sl−1)

∫ [
1− exp(ibl x)

]
×d F (m)

2 (x |r0)
}

,

which is the characteristic function of (℘
(m)
1 (s1),℘

(m)
2 (s1),℘

(m)
1 (s2),℘

(m)
2

(s2), ...,℘
(m)
1 (sk), ℘

(m)
2 (sk)), where

℘
(m)
1 (z) =

N1(z)

∑
k=1

Yk and ℘
(m)
2 (z) =

N2(z)

∑
k=1

Zk .

By Theorem 16 in Pollard (1984, p. 134), it follows that (℘̂1nki
(ω̃, z; ω),

℘̂2nki
(ω̃, z; ω)) converges weakly to (℘

(m)
1 (z),℘(m)

2 (z)) in D2[0,∞) for

each fixed ω ∈ A. Thus, ℘̂
(m)
nki

(ω) =⇒ ℘(m) in D(R) as n → ∞ for each

fixed ω ∈ A. Regard ℘̂
(m)
n and ℘(m) as random elements and denote by

P̂(m)
n and P(m) the induced probability measures, respectively. Let dp(·, ·)

be the Prohorov metric. See Billingsley (1999, p. 72). Because weak con-
vergence is equivalent to dp-convergence (see Billingsley, 1999, Thm. 6.8,
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p. 73), then, for each fixed ω ∈ A, dp(P̂(m)
nkj

, P(m))(ω) → 0. That is,

dp(P̂(m)
nkj

, P(m)) → 0, P-a.s. Hence,

dp

(
P̂(m)

n , P(m)
)

→ 0, in probability (with respect to P).

Therefore, in probability (with respect to P), ℘̂
(m)
n =⇒ ℘(m) by Theorem

6.8 in Billingsley (1999, p. 73). Furthermore, because the jump distribution
F (m)

k (x |r0) in ℘(m) converges to Fk(x |r0) as m → ∞, applying Theorem
16 in Pollard (1984, p. 134) again, we can get ℘(m)(z) =⇒ ℘(z) in D(R)

as m → ∞. By Theorem 3.1 in Seijo and Sen (2011), in probability, M̂ (m)
n

converges weakly to M− conditionally on Xn . n
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APPENDIX: Weak Convergence of A Pure Jump Process

Let {Xε
k ,k ≥ 0}, indexed by ε, denote a discrete parameter process generated by

Xε
k+1 = Xε

k + J ε
k+1,

where the initial value is Xε
0 and {J ε

k ,k ≥ 1} is a sequence of jumps. Define the piecewise
constant interpolated process xε(t) for t ∈ [0,1] by

xε(t) = Xε
j , t ∈ [

jε,( j +1)ε) for j = 0,1, ..., [1/ε]−1,

and

xε(t) = Xε
[1/ε], t ∈ [[

1/ε]ε, 1
]
,

where [1/ε] denotes the integer part of 1/ε. What we need is the weak convergence of
the interpolated sequence {xε(·)}. When the limiting process of {xε(·)} is an ordinary
differential equation or diffusion process, Kushner (1984) gives a detailed and rigorous
demonstration through two different methods: the perturbed test function method and the
direct-averaging method. However, when the limit is a pure jump process with J ε

m being
a Markov chain, only an outline is presented. Here, we generalize his result for J ε

m being
measurable in terms of Gm = σ{Xε

i , i ≤ m}. Clearly, this result is of interest by itself and

can be applied to many other nonlinear time series models. Let Ĉ 2
0 be a space of func-

tions with compact support and continuous second derivative and let Pε
m and Eε

m be the
conditional probability and conditional expectation on Gm , respectively. We first give the
following assumptions.

Assumption A.1. For each ε > 0, {J ε
k } is strictly stationary, and there exists a constant

λ ∈ (0,+∞) such that

lim
ε→0

lim
m→∞P

ε
k
(

J ε
m 	= 0

)
/ε = λ.

Assumption A.2. There exists a random variable U such that P(J ε
k ∈ B|J ε

k 	= 0) →
P(U ∈ B) as ε → 0 for any Borel set B ∈ B(R).

Assumption A.3. For any f ∈ Ĉ 2
0 and x is a scalar,

lim
ε→0

lim
m→∞E

ε
k
{

f
(
x + J ε

m
)− f (x)|J ε

m 	= 0
}= E{ f (x +U )− f (x)} .

Assumption A.4. There is a positive M < ∞ such that |J ε
k | ≤ M for each k ≥ 1.

Assumptions A.1 and A.2 characterize the jump rate and the distribution of the jump
size in the limiting process, respectively. Assumption A.3 is a sufficient condition for the
average used in the direct-averaging method. Assumption A.4 requires the jumps to be
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bounded. This is a technical condition. In most applications, the jumps are not bounded
in general. We can use the truncated technique to deal with the jumps and consider the
truncated process. For some details, see the proof of Theorem 2.3. Based on the preceding
assumptions, we have the following theorem.

THEOREM A.1. Suppose Assumptions A.1–A.4 hold. If Xε
0 =⇒ x0, then xε(t) =⇒

x(t) in D[0,1] and x(t) = J (t) + x0, where J (t) is a CPP with jump rate λ and jump
distribution Q(·) induced by U at time t and J (0) = 0.

Proof. Let nε be an integer satisfying nε → ∞ and δε = εnε → 0 as ε → 0. For any
fixed function f (·) ∈ Ĉ 2

0 , define the piecewise constant function

Ãε f (t) = 1

εnε

(l+1)nε−1

∑
j=lnε

Eε
lnε

(
f
(

Xε
j+1

)
− f

(
Xε

j

))
for t ∈ [lδε,(l +1)δε). Clearly, it follows that

Eε
k
{

f
(

Xε
m+1

)− f
(

Xε
m
)}= Pε

k
(

J ε
m 	= 0

)
Eε

k
{

f
(

Xε
m + J ε

m
)− f

(
Xε

m
)∣∣J ε

m 	= 0
}

.

By Assumption A.1, we have

Ãε f (t) = 1

εnε

(l+1)nε−1

∑
j=lnε

Eε
lnε

{
f
(

Xε
j+1

)
− f

(
Xε

j

)}

= λ

nε

(l+1)nε−1

∑
j=lnε

Eε
lnε

{
f
(

Xε
j + J ε

j

)
− f

(
Xε

j

)∣∣∣J ε
j 	= 0

}
+o(1).

Let Âε(t) = ∫ t
0 Ãε f (s)ds. By the boundedness of λ and J ε

m in Assumptions A.1 and

A.4, it follows that {(xε(t), Âε(t))} is tight in D2[0,1]. In fact, for the tightness of xε(t),
see Kushner (1984, the last paragraph on p. 32). The tightness of Âε(t) is implied by the
boundness of Ãε f (t) due to f ∈ Ĉ 2

0 . Because it is sufficient to work with an arbitrary
weakly convergent subsequence also indexed by ε, without loss of generality, suppose that
(xε(t), Âε(t)) =⇒ (x(t), Â(t)) in D2[0,1]. By means of the Skorokhod embedding theo-
rem in Kushner (1984, p. 29), we assume that (xε(t), Âε(t)) converges to (x(t), Â(t)) a.s.

Let C = {s ∈ [0,1] : x(t) is continuous at s}. Then for any s ∈ C, there exists an integer
lε such that s ∈ [lεδε,(lε + 1)δε). Let mε = lεnε . Then, for f (·) ∈ Ĉ 2

0 , by Assumptions
A.2 and A.3, it follows that

Ãε f (s) = λ

{
1

nε

mε+nε−1

∑
j=mε

Eε
lεnε

{
f
(

Xε
j + J ε

j

)
− f

(
x(s)+ J ε

j

)∣∣∣J ε
j 	= 0

}}

+λ

{
1

nε

mε+nε−1

∑
j=mε

Eε
lεnε

{
f (x(s))− f

(
Xε

j

)∣∣∣J ε
j 	= 0

}}

+λ

{
1

nε

mε+nε−1

∑
j=mε

Eε
lεnε

{
f
(

x(s)+ J ε
j

)
− f (x(s))

∣∣∣J ε
j 	= 0

}}
+o(1)

→ λE
{

f (x(s)+U )− f (x(s))
}

= λ

∫ [
f (x(s)+u)− f (x(s))

]
Q(du) ≡ A f (x(s)).
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Thus, Â(t) = ∫ t
0 A f (x(s))ds. For arbitrary k, t,s with s1 < s2 < · · · < sk < t < t + s ≤ T

and any bounded and continuous function g(·), by Taylor’s expansion, it follows that

E

{
g
(
xε(sj ), j ≤ m

)×
[

f
(
xε(t + s)

)− f
(
xε(t)

)−
∫ t+s

t
Ãε f (u)du

]}
=�ε,

where �ε→ 0 as ε → 0. Hence,

E

{
g
(
x(sj ), j ≤ k

)[
f (x(t + s))− f (x(t))−

(
Â(t + s)− Â(t)

)]}
= 0,

which implies that x(·) solves the martingale problem for the operator A and the initial
condition x0. That is,

f (x(t))−
∫ t

0
A f (x(s))ds is a martingale for the operator A.

Then xε(t) =⇒ x(t) = J (t)+ x0 in D[0,1], where J (t) is a CPP with jump rate λ and the
jump distribution Q(·) and J (0) = 0. n


