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Low-frequency noise is annoying and hard to deal with. By connecting certain shunt circuit 

to a moving-coil loudspeaker, we demonstrate improved low-frequency absorption of normal 

incident sound. The loudspeaker is installed in a cavity of 5cm in depth. Negative impedance 

converter is used to construct a hybrid RLC-parallel and RLC-series shunt circuit.  The low-

frequency reactance of the shunted loudspeaker system is reduced in magnitude together with 

a modified system damping. The proposed device is measured in a well calibrated impedance 

tube, and good noise absorption performance is achieved in the frequency range of 100Hz to 

400Hz as predicted. 

1. Introduction 

Low-frequency noise are very annoying 
1
 and difficult to control using readily available passive 

devices. New passive approaches such as metamaterials have been developed 
2, 3

. A single-layer 

metamaterial can handle low-frequency noise in a narrow band effectively. Recently, broadband 

absorption in the low-frequency region by lining metematerials layers was also reported 
4
. However, 

constrained by back cavity stiffness, the effective frequency band is not located in the sufficient low 

range. Another approach of passive method is to introduce external load to tune the impedance of 

devices to match that of air 
5, 6

. The use of an electro-magnetic-mechanical absorber, which is a 

moving-coil loudspeaker in this case, belongs to the latter category. 

Loudspeaker is used as a sample absorber in this work, and its reactance is reduced by a shunt 

circuit connected to the system. Such an approach is able to improve broadband impedance match-

ing between the loudspeaker in cavity enclosure and air at low frequencies, thus improving sound 

absorption in that region. Both simulation and experimental results are presented.   

Shunt circuits were first introduced into electromechanical vibrator by Hagood and von Flotow 
7
 

who applied it in vibration control of piezoelectric ceramic. After that, researchers employed vari-

ous types of circuits aiming to control the impedance of different electromechanical devices. Shunt 

circuit was hence introduced to tune the acoustic characteristics of piezoelectric panels in 2002 
8
; 

and afterward 
9, 10, 11

. Recently, studies are concentrated on exploring the possibility of adding shunt 

circuit to loudspeakers. A moving-coil loudspeaker was used by Fleming et al. 
12 

to suppress the 

duct acoustic modes by constructing a side-branch Helmholtz resonator. Pietrzko’s series of work 

on the use of negative impedance converter (NIC) is also reported with both simulation and experi-

ments 
13, 14

. Meynial et al. 
15

 first adopted shunted loudspeaker in room acoustics, followed by 
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Lissek et al. 
16, 17, 18

 with good performance in the low-frequency region. Lissek et al. 
5, 18

 focused 

on applying shunted loudspeaker to duct acoustics, controlling low-frequency noise, resonance, 

among other things. They analyzed the analogy between the shunt strategies and active impedance 

control in simulation. They found that the velocity feedback strategy performs better in noise reduc-

tion and such a system was validated experimentally. Zhang 
6
 made a comprehensive discussion on 

the effect of different electrical components in the shunt circuit of a loudspeaker and proposed a 

strategy to suppress the system dynamic mass for improved high frequency performance.  

The effort paid on low-frequency noise absorption is well noted but convenient devices are still 

not readily available. Resonator devices are limited in its effective bandwidth and traditional porous 

materials requires large space 
19

. We here propose a shunt-circuit-based low-frequency absorber. 

The circuit modifies the impedance of loudspeaker such as to match the characteristic impedance of 

air. A major benefit is that low-frequency absorption performance is improved a lot between 100Hz 

and 400Hz using a shallow cavity of 5cm in depth. Both theoretical and experimental discussions 

are conducted.     

2. Loudspeaker with shunt circuits 

2.1  General dynamic model of loudspeaker with shunt circuits 

Under Linear hypothesis, a moving-coil loudspeaker can be seen as a single degree-of-freedom, 

mass-spring system below the cut-off frequency of the loudspeaker diaphragm. The impedance of a 

loudspeaker with open electrical terminals can be denoted by    , 

   ( )         
                                 (1) 

where s is the Laplace variable,  ,     and   are the dynamic mass, damping and stiffness of the 

moving-coil loudspeaker, respectively. The sum of the terms of mass and stiffness is called mechan-

ical reactance. When such a loudspeaker is installed at the end of an impedance tube, the normal-

incidence sound absorption coefficient is 
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where            is the impedance of air and A is the cross section area of the impedance tube. 

From Eq. (1) we see that the loudspeaker reactance becomes larger when frequency goes to low 

which will decrease the absorption coefficient to zero at the DC frequency. When the back enclo-

sure of the loudspeaker is small, the stiffness term is very large hence the low-frequency absorption 

is low. This is the problem that most resonator-type absorbers encounter and this is the issue we set 

out to address. The proposed device is shown in Figure 1. When the loudspeaker is connected to an 

electrical loading,   , at the terminals of the loudspeaker, an additional mechanical impedance will 

be introduced.  

The system impedance becomes, 

  121( )s emZ s ms s Bl Z                                                 (3) 

where    is the force factor derived from the magnetic field in the loudspeaker. Moving-coil re-

sistance and inductance are contained in   . If negative impedance converter (NIC) 
20

 is employed, 

   could be any designed value, beyond the constrain of coil resistance and inductance. The full 

implementation of the system is shown in Figure 1. When a sound hits the loudspeaker diaphragm, 

electromotive force (EMF) is induced in the moving coil, which is proportional to (  )  times the 

mechanical excitation. Therefore, a current will flow and is inversely proportional to electrical load-
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ing    and the additional acoustic impedance is (  )   
  . By manipulating    we can obtain a de-

sirable acoustic impedance at low frequencies.  

 

Figure 1. Moving coil loudspeaker with shunt circuit 

2.2 Stability 

While an active unit such as NIC is connected to the system, it’s possible to cause the system to 

be unstable. Without loss of generality, we here only consider an R-L-C series shunt circuit. The 

transfer function is Eq. (4) and the stability characteristic equation is Eq. (5) 
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                                           (5) 

Aware that coil resistance and inductance    and    is included in     and    for the conven-

ience of reading in Eq. (5). It’s a fourth order equation which is not easy to solve analytically. How-

ever, we can use Routh-Hurwitz stability criterion to derive the stability boundary, according to 

which the stability requires 
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It follows that 

                                                                                              (7) 

will guarantee a stable system.   

2.3 Impedance design  

From Eq. (2) and Eq. (3), we get:  
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To make good low-frequency absorption, it’s key to design    to decrease the system reactance 

at low frequency. Our design starts from a hybrid R-L-C circuit as shown in Figure 1. The acoustic 

impedance induced by the circuit is  

              
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The imaginary part of     should be positive for frequencies below the eigen frequency of the 

unshunted loudspeaker,     , and slightly negative after that in order to reduce the magnitude of 

the system reactance. In Eq. (9) we can see that    is not effective at both low frequency and high 

frequency. Therefore, for the sake of convenient analysis, we make it zero.     is written as 

Eq. (10), separated into real and imaginary parts. The real part is the induced damping and the im-

aginary part reactance.  
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where   is the angular frequency. Making   smaller and larger than the unshunted loudspeaker 

(henceforth ‘open loudspeaker’) resonance, we can get approximations of    : 
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Eq. (11) shows that the induced reactance is positive at low frequencies, and the series capaci-

tance and resistance are important for this purpose. When the frequency is higher, the reactance 

becomes negative as we want. The by-product is an extraordinary damping spectrum introduced. 

The situation is complex in the mid frequency range, the ranges of ‘low’, ’high’ and ‘mid’ being 

relative to the design frequency.  

3. Experimental validation   

 

Figure 2. Measurement setup. 

In what follows, we will conduct simple numerical calculations to predict the performance of 

the designed loudspeaker as absorber, which will be validated experimentally. First, the impedance 

of the open-circuit loudspeaker is measured, and the impedance data are extracted to predict the 

absorption coefficient of the shunted loudspeaker. The sample loudspeaker used is Visaton WS-17 

whose technical data are shown in Table 1. The loudspeaker is sealed in a rigid box whose depth is 

adjustable, the value used in this study being 5cm. The shunted loudspeaker is installed at the end of 

a rectangular impedance tube, as illustrated in Fig. 2. Two microphones are mounted in the tube for 

standing-wave measurement and decomposition. A computer controls the driving excitation and 

data collection. The shunted circuit is connected to the loudspeaker terminals and the designed cir-

cuit parameters are shown in Table 2.  

Table 1. Technical data of WS-17 according to 
http://www.visaton.com/en/chassis_zubehoer/tiefton/ws17e_8.html 

Dynamic moving mass Nominal impedance D.C. resistance Voice-coil inductance 

13 g 8 Ω 5.8 Ω 0.9 mH 

Force factor    Effective piston area Resonance frequency   

3.9 Tm 143 cm
2 

45 Hz  

The measured absorption coefficient of the open circuit loudspeaker is shown in Fig. 3 and the 

reactance and damping shown in the figure are all dimensionless. Fig. 3 shows that, because of the 

large reactance below 150 Hz, the absorption performance is poor. Meanwhile, its dimensionless 

damping is below 1 which is not sufficient. Therefore, a shunt circuit is designed to connect the 

loudspeaker to modify its mechanical impedance.   
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Figure 3. Absorption coefficient and impedance of open termination loudspeaker 

The shunt circuit parameters are listed in Table 2. We use Eq. (8) to predicte the absorption co-

efficient and impedance, shown in Fig. 4. The experimental results of the shunted loudspeaker are 

shown in the same figure.   

Table 2. Shunt circuit parameters 

Op-amp          
LM358 1 Ω 0.9 mH 0.7mF 

R          

0.32 Ω 0.5 Ω 0.18 mH absent 

 

When the output of the operational amplifier (op-amp),    and    , are too large to be supplied 

by the chosen op-amp, the op-amp goes into saturation. In our design,   should be kept small and 

   should avoid being too small 
6
.    and    are not important in determining properties of shunt 

circuit . However, we still keep them in the analytical analysis and experiments for the sake of 

completeness in analysis.    
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Figure 4. Impedance and sound absorption for the open-circuit and shunted loudspeakers. The legends 

shown between the first two sub-figures apply to all. 

We find that the absorption coefficient is improved a lot and it is above 0.7 in the range of 

100~420 Hz. The predicted coefficient agrees with the experimental result well while the effective 

band is found to be broader in experiments. In Fig. 4, it is clear that the low-frequency reactance is 

decreased as we anticipated, and the damping gets larger. A good absorption performance is 

achieved in the low frequency range considering the thin structural design. 

4. Conclusion 

In this paper, a shunt-circuit-based strategy to achieve broadband low-frequency absorption is 

proposed, and the numerical prediction is validated experimentally using an impedance tube. The 

proposed devices have thin structure and simple implementation which can effectively reduce sys-

tem reactance and increase damping. Series capacitor and resistor are found to be key to overcome 

large reactance provide by the shallow enclosure, realizing low-frequency absorption.     
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