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Abstract. We investigate the representation of integers by quadratic forms whose
theta series lie in Kohnen’s plus space M+

3/2(4p), where p is a prime. Conditional upon
certain GRH hypotheses, we show effectively that every sufficiently large discriminant
with bounded divisibility by p is represented by the form, up to local conditions. We
give an algorithm for explicitly calculating the bounds. For small p we then use a
computer to find the full list of all discriminants not represented by the form. Finally,
conditional upon GRH for L-functions of weight 2 newforms, we give an algorithm for
computing the implied constant of the Ramanujan-Petersson conjecture for weight 3/2
cusp forms of level 4N in Kohnen’s plus space with N odd and squarefree.

1. Introduction

Let Q be a positive definite integral quadratic form in m variables and let

θQ(τ) :=
∑

x∈Zm

qQ(x)

be the associated theta series, where q = e2πiτ . We will omit the subscript Q when it
is clear. Throughout this paper, a theta series will always mean θQ for some (mostly
ternary) positive definite integral quadratic form Q. It is well known that θ is a modular
form of weight m

2
. For general information about quadratic forms, a good source is [19].

The natural question of which positive integers n are represented by the form Q, that
is whether there exists x ∈ Zm such that Q(x) = n, has been studied extensively since
Gauss.

One such well known result of Lagrange shows that every positive integer can be
represented as the sum of four squares. The amazing “15 theorem”, proven first but un-
published by Conway and Schneeberger and recently shown by a much simpler method
by Bhargava, asserts that a positive definite integral quadratic form represents every pos-
itive integer if and only if it represents the integers 1,2,3,5,6,7,10,14, and 15 [1]. Bhargava
and Hanke have since shown that every integer valued quadratic form is universal if and
only if it represents every integer less than 290 [2].
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An eligible integer for a positive definite quadratic form Q is a positive integer n for
which Q(x) = n always has a local solution. We will call DQ (resp. DθQ

) a good bound
for Q (resp. θQ) if Q represents every eligible integer greater than DQ (resp. aθ(D) > 0)
where we have used af (n) to denote the n-th Fourier coefficient of f .

Relying on the fact that θ is a modular form, Tartakowsky [29] effectively showed
that every sufficiently large eligible integer is represented by Q when m ≥ 5. The
corresponding result for m = 4 was shown by the bounds of Kloosterman (the celebrated
result of Deligne proved the optimal bound [5]).

We will study here the case m = 3. Up to a technical complication at anisotropic
primes and Schulze-Pillot’s classification of finitely many spinor exceptional classes [26],
bounds by Iwaniec [13] and Duke [7] for coefficients of half-integral weight cusp forms
have shown that every sufficiently large eligible integer is represented.

Theorem (Duke- Schulze-Pillot [9]). If Q is a positive definite quadratic form in 3 vari-
ables, then every sufficiently large eligible integer represented primitively by the Spinor
Genus with bounded divisibility at the anisotropic primes is represented by Q.

This result is ineffective because it relies on a lower bound for the class numbers, while
the best known effective result, due to Oesterlé [22], is insufficient for our purposes.
Assuming GRH for Dirichlet L-functions, the result becomes effective, and hence under
this assumption an algorithm must exist to determine which integers are represented.

By using a deep connection of Waldspurger [30] between half integer weight cusp forms
and special values of L-series of weight 2 newforms, under the additional assumption of
GRH for weight 2 modular forms, Ono and Soundararajan obtain a feasible bound of
2 × 1010 for Ramanujan’s ternary quadratic form x2 + y2 + 10z2. With the help of a
computer, they were able to prove the following.

Theorem (Ono-Soundararajan [24]). Conditional upon GRH, the eligible integers which
are not represented by x2 + y2 + 10z2 are exactly

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719.

In this paper, we generalize the results of Ono and Soundararajan to develop an
explicit algorithm for ternary quadratic forms Q such that θQ ∈ M+

3/2(4p), the space of

modular forms of weight 3/2 and level 4p in Kohnen’s plus space (Ramanujan’s form
does not satisfy this condition). By the theory of modular forms, θ decomposes into

(1.1) θ = E +
m∑

i=1

bigi,

where E is an Eisenstein series, bi ∈ C and gi are fixed Hecke eigenforms in S+
3/2(4p). We

have already seen that the assumption of GRH for Dirichlet L-functions gives a bound
of D1/2−ε for aE(D). The fact that θ ∈ M+

3/2(4p) allows us to determine the coefficient

explicitly. It then remains to bound the coefficients of gi.
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Theorem 1.1. Let N be squarefree and odd, δ > 0, and g ∈ S+
3/2(4N) in the orthogonal

complement of the space of lifts of one dimensional theta-series. Then, assuming GRH
for L-functions of weight 2 newforms, there is an explicitly computable function cδ such
that

|ag(n)| ≤ cδ‖g‖cN dim(S2(Γ0(N)))
1
2N

δ
2n

1
4
+δ,

where ag(n) denotes the n-th Fourier coefficient of g, ‖g‖ denotes the Petersson norm
of g, and cN is an explicitly computable function which grows like N ε.

Remark 1.2. Taking δ = ε, we obtain an explicit algorithm to determine the implied
constant for the Ramanujan-Petersson conjecture in the n aspect under GRH. However,
cδ is too large for practical purposes when δ is small.

We can now basically combine Theorem 1.1 with Littlewood’s bound [20] for the
Eisenstein series to obtain our desired (explicit) algorithm.

Remark 1.3. In practice, we will not bound aE(D) and agi
(D) separately, but will rather

bound the ratio, to obtain a better bound for our algorithm.

Theorem 1.4. Let θ ∈ M+
3/2(4p) be given. Assume GRH for Dirichlet L-functions and

L-functions of weight 2 newforms. Then there exists an explicit algorithm which deter-
mines all fundamental discriminants −D so that D is not represented by θ. Moreover,
this algorithm is “computationally feasible” for small p.

In another paper [16], we will give many examples where the good bound obtained by
Theorem 1.4 is computationally feasible as well as discuss in detail a connection to lifting
supersingular elliptic curves to CM elliptic curves coming from the Deuring lift [6] and
a correspondence of Gross [10]. We will list here the choices of p for which the bound
is computationally feasible for every θ ∈ M+

3/2(4p), namely p = 11, p = 17, and p = 19.

For simplicity, when we write D henceforth, −D will be a fundamental discriminant and
d will denote that −d is any discriminant.

Theorem 1.5. The following table lists all eligible integers T (or the size of the set and
the largest element) divisible at most once by p not represented by the given quadratic
form Q := [a, b, c, d, e, f ] = ax2 +by2 +cz2 +dxy+exz+fyz. Moreover, d is represented
if and only if dp2 is represented and the supersingular elliptic curve corresponding to
Q lifts to an elliptic curve with CM by O−D if and only if D is not in the set T .
p Quadratic Form Q T
11 [4,11,12,0,4,0] {3, 67, 235, 427}

[3,15,15,-2,2,14] #T = 21, maxt∈T t = 11803
17 [7,11,20,-6,4,8] {3, 187, 643}

[3,23, 23, -2,2,22] #T = 88, maxt∈T t = 89563
19 [7, 11, 23, -2, 6, 10] {4, 19, 163, 760, 1051}

[4,19,20,0,4,0] #T = 40, maxt∈T t = 27955.
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In Section 4, we deal with −d not fundamental, using the Shimura lift [27], the Hecke
operators (cf. [23]), and Deligne’s optimal bound for integral weight cusp forms [5].
Fixing a discriminant −d and exploring the representability of d′ = dF 2, the Hecke
operators lead to an equivalence between the following system of equations and the
representability of d by Q.

Theorem 1.6. There is a recursively defined polynomial Pk,m,±1(x) and a function
Q′(x, y), defined as a rational function in terms of the Fourier coefficients of the de-
composition of θ and its Shimura lift, such that aθ(dF

2) = 0 if and only if for every

f =
∏
l

lrl dividing F and f̃ =
∏
l

lsl with sl ≤ 1
2
vl(d),∏

l prime

Prl,sl,(−D
l )(l) = Q′(f, f̃).

Remark 1.7. The power of Theorem 1.6 is that the left side is growing like l, while the
right side grows like 2

√
l, so that the resulting system of equations is seldom consistent.

Theorem 1.8. Fix a discriminant −d. Consider θ = E +
∑
i

bigi, where gi are fixed

Hecke eigenforms. If aθ(dF
2) = 0 with (F, p) = 1,

F �ε (p− 1)2+ε

(
m∑

i=1

|bi|

)2+ε

dα+ε,

where α = 6
7

unconditionally, α = −1
7

under GRH for Dirichlet L-functions, and α = −1
2

under GRH for Dirichlet L-functions and L-functions for weight 2 newforms.

Combining Theorem 1.1 and Theorem 1.8 along with an argument of Duke [8] to
remove the dependence on θ yields the following result.

Theorem 1.9. Let p be a prime, θ ∈M+
3/2(4p), and ε > 0. Assuming GRH for Dirichlet

L-functions and weight 2 modular forms, aθ(d) 6= 0 for every discriminant −d with(
−d
p

)
6= 1 and p2 - d such that

d�ε p
14+ε.

Here the implied constant depends only on ε and is effective. Moreover, aθ(d) = 0 if and
only if aθ(dp

2) = 0.

We now interpret Theorem 1.9 in terms of lifts of supersingular elliptic curves.

Theorem 1.10. Let p be a prime and ε > 0. Assume GRH for Dirichlet L-functions
and weight 2 modular forms. Let E/Fp be a supersingular elliptic curve. Then E lifts

to a elliptic curve over a number field with CM by O−D for every
(
−D
p

)
6= 1 with

D �ε p
14+ε.

A more detailed introduction and further details of the proofs may be found in [15].
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2. Notation and Brief Overview of the Proof of Theorem 1.4

We give useful notation here as well as the background needed for Theorem 1.4. We
will denote half integral weight cusp forms with lower case letters and their Shimura lift
with capital letters.

Let p be an odd prime and θ ∈ M+
3/2(4p) be a theta function. Suppose −D < −4 is

a fundamental discriminant with
(
−D
p

)
6= 1 and aθ(D) = 0. Using an explicit formula

for the coefficients of the Eisenstein series (cf. [10]) in terms of the class number, and
Dirichlet’s Class Number Formula [4],

(2.1) aE(D) =
12

(p− 1)2vp(D)
H(−D) =

12

(p− 1)
· L(1) ·

√
D

π2vp(D)
.

Here L(s) is the Dirichlet L-function of the character χ(n) := χ−D(n) =
(−D

n

)
and vp(D)

is the power of p dividing D. Using equation (1.1) we have decomposed the cuspidal

part into
m∑

i=1

bigi, where gi are a fixed set of Hecke eigenforms. Plugging in and using

Schwarz’s inequality yields

(2.2)
12

(p− 1)π2vp(D)
· |L(1)| ·

√
D ≤

√√√√ m∑
i=1

|bi|2

√√√√ m∑
i=1

|agi
(D)|2.

A variant of the Kohnen-Zagier formula (3.1) gives |agi
(D)|2 = ci2

−vp(D)D
1
2 ·Li(1), where

(2.3) ci :=
|agi

(mi)|2

L(Gi,mi, 1)m
1
2
i

,

with mi the first coefficient of gi such that agi
(mi) 6= 0 with (p,mi) = 1, and

(2.4) Li(s) := L(Gi,−D, s) :=
∞∑

n=1

χ(n)aGi
(D)

ns
.

is the L series of Gi twisted by the character χ, where Gi is the normalized Shimura lift of
gi (the unique newform with the same eigenvalues as gi normalized so that aGi

(1) = 1).
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This gives

(2.5)
12

(p− 1)π2
vp(D)

2

·D
1
4 ≤

√√√√ m∑
i=1

|bi|2

√√√√ m∑
i=1

ci
Li(1)

L(1)2
.

As in [24], we define

(2.6) F (s) := Fi(s) :=

(√
q

2π

)s−1
Li(s)Γ(s)

L(s)L(2− s)
,

where q is the conductor of Li. Notice that F (1) = Li(1)
L(1)2

. By the functional equation

of Li(s) (assuming without loss of generality that the sign of the functional equation is
+1 as we automatically get a better bound if Li(1) = 0), we know that F (s) = F (2− s)
and GRH for Dirichlet L-functions implies that F (s) is analytic for 1

2
< Re(s) < 3

2
.

Therefore, for 1
2
< Re(s) = σ < 3

2
fixed, we know by the Phragmen-Lindelöf principle

that the maximum is attained on the boundary of Re(s) = σ and Re(s) = 2− σ. Thus,
for 1 < σ < 3

2
, the functional equation gives

F (1) ≤ max
t
|F (σ + it)|.

We will bound L(s) from below in Section 6 and Li(s) from above in Section 7.

For d ∈ N, with prime factorization d =
∏
l

lel , we will denote for notational ease

(2.7) Ω(d) :=
∑

l

el, vl(d) = el, v(d) = #{l : el > 0}, and σk(d) =
∑
n|d

nk.

We recall the Euler constant

(2.8) γ := −Γ′

Γ
(1) ≈ .5772

and denote the Riemann Zeta function by ζ(s). Finally, we denote

(2.9) ψ(x) :=
∑
n≤x

Λ(n).

3. A Kohnen-Zagier Type Formula

Let N be odd and square-free and let g ∈ Snew
k+1/2(4N) be a newform in Kohnen’s plus

space. Let G ∈ Snew
2k (N) be the Shimura lift of g normalized so that aG(1) = 1. Let wl

be the sign of the Atkin-Lehner involution Wl for each prime l dividing N .

Lemma 3.1. Let (−1)kD be a fundamental discriminant such that for each prime divisor
l of N , either

(
D
l

)
= wl or

(
D
l

)
= 0. Then

(3.1)
|ag(D)|2

< g, g >
= 2v( N

(N,D)) · (k − 1)!

πk
·Dk−1/2 · L(G, (−1)kD, k)

< G,G >
,
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Remark 3.2. If the conditions of Lemma 3.1 are not satisfied, then Kohnen proved in
[18] that ag(D) = 0.

Proof. This follows Kohnen’s proof in [17], where the result is shown whenever (D, l) = 1.

Noting that
(

(−1)kD
t

)
= 0 for t | gcd(D,N), before evaluating (G|Wt) (z) allows us to

remove the relatively prime condition. Further details may be found in [15]. �

4. Bounding Non-Fundamental Discriminant Coefficients

In this section we employ the power of the Hecke operators and the Shimura lift to
obtain information about −d non-fundamental. The argument also repeatedly uses the
simple fact that aθ(Dl

2) = 0 implies aθ(D) = 0. Notice that many of the results in this
section do not require GRH.

Lemma 4.1. Fix a fundamental discriminant −D and F with (F, p) = 1. Define F ′ :=∏
l|F
l. Then the coefficients of the newform gi ∈ S+

3
2

(4p) satisfy

(4.1) |agi
(DF 2)| ≤ σ− 1

2
(F ′)F

1
2σ0(F )|agi

(D)|,

where σk(n) is defined in equation (2.7).

Proof. First note that if agi
(D) = 0, then agi

(DF 2) = 0 by the Hecke operators, so the
result follows trivially.

We will use here the D-th Shimura correspondence [27] instead of the Shimura lift,
similar to the argument in [9]. We will show that if R = lm such that m ≥ 1 and
(R,F ) = 1, then

(4.2) agi
(D(FR)2) =

agi
(DF 2)

agi
(D)

[
aGD,i

(R)−
(
−D
l

)
aGD,i

(
R

l

)]
.

Using equation (4.2), we get the result easily by multiplicativity and Deligne’s optimal
bound [5] for integer weight eigenforms, which shows that∣∣∣∣aGD,i

(R)−
(
−D
l

)
aGD,i

(
R

l

)∣∣∣∣ ≤ (1 +
1

l
1
2

)
σ0(R)R

1
2 |aGD,i

(1)|.

We then use the fact that aGD,i
(1) = agi

(D). We now return to showing equation (4.2).
Using the multiplicativity of the coefficients of GD,i normalized and the D-th Shimura
correspondence, we obtain

aGD,i
(F )aGD,i

(R) = aGD,i
(FR)aGD,i

(1) =
∑
n|FR

agi
(D)agi

(Dn2)

(
−D
FR/n

)

=

(
−D
l

)
aGD,i

(F )aGD,i
(R/l) +

∑
f |F

agi
(D)agi

(DR2f 2)

(
−D
F/f

)
.
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Rearranging and using the D-th Shimura correspondence again for aGD,i
(F ), we obtain

0 =
∑
f |F

(
agi

(DR2f 2)agi
(D)− agi

(Df 2)

[
aGD,i

(R)−
(
−D
l

)
aGD,i

(R/l)

])(
−D
F/f

)
.

Hence equation (4.2) follows by induction on the number of divisors of F . �

Theorem 4.2. If aθ(DF
2) = 0 with (F, p) = 1, then

(4.3)
F

1
2

2v(F )σ− 1
2
(F ′)σ0(F )

≤ (p− 1)π2
vp(D)

2

12
D− 1

4 ·

(
m∑

i=1

|bi|2
) 1

2

·

(
m∑

i=1

ci
Li(1)

L(1)2

) 1
2

.

Here ci and bi are given by Equations (2.3) and (1.1), respectively.

Proof. If d = DF 2 is not represented by Q, then

aE(d) = −
m∑

i=1

biagi
(d)

We then use the index formula (see [3], Theorem 7.24, p. 146) and Schwarz’s inequality
to bound

F

2v(F )
aE(D) ≤ aE(d)

aE(D)
· aE(D) ≤

√√√√ m∑
i=1

|bi|2

√√√√ m∑
i=1

|agi
(d)|2.

We then plug in (4.1) to bound the right hand side in terms of agi
(D) and then relate

aE(D) with L(1) by Dirichlet’s Class Number Formula and agi
(D) with Li(1) by the

Kohnen-Zagier variant (3.1) as in equation (2.5). �

Proof of Theorem 1.8(Assuming Theorem 1.4). The first part of Theorem 1.8 now fol-

lows directly by taking Duke’s bound [7] for the cusp form to bound agi
(D) � D

3
7
+ε

and hence to bound Li(1) and using the trivial lower bound for L(1). The additional
assumptions give the corresponding (effective) optimal bounds for L(1) and Li(1). �

Theorem 1.6 involves showing a connection between aθ(df
2) = 0 and the following two

recursively defined functions.

Definition 4.3. Set m,n ∈ Z, and ε ∈ {−1, 0, 1}. Define the polynomial Pn,m,ε(x)
recursively as follows:

Pn,m,ε(x) :=


0 if n < 0 or m < 0,
1 if n = 0,
(x− ε)Pn−1,1,ε(x) + εPn−1,0,ε if m = 0, n > 0,
xPn−1,2,ε(x) +

(
x

x−ε

)
Pn−1,0,ε if m = 1, n > 0,

xPn−1,m+1,ε(x) + Pn−1,m−1,ε if m ≥ 1, n > 0.
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Definition 4.4. For a discriminant −d with
(
−d
p

)
6= 1 and l a prime with l2 - d, define

Qn,m(l) :=

∑
i

biaGi
(l)nagi

(dl2m)

−aE(dl2m)
.

Theorem 4.5. Let −d be a discriminant with associated fundamental discriminant −D
and l 6= p prime. Then aθ(dl

2m+2n) = 0 if and only if

Pr,s,(−D
l )(l) = Qr,s(l),

for every r ≤ n and s ≤ m.

Proof. When n = 0, the result is clear. We proceed by induction on n. We note first
that aθ(dl

2ml2n+2) = 0 if and only if aθ(dl
2m+2l2n) = 0. Therefore, by the inductive

hypothesis, aθ(dl
2ml2n+2) = 0 if and only if

Pr,s,(−D
l )(l) = Qr,s(l),

for every r ≤ n and s ≤ m+ 1. These conditions match up with the assumptions above
except when s = m + 1. Thus, it suffices to show assuming Pr,s,(−D

l )(l) = Qr,s(l) for

every r ≤ n and s ≤ m implies that

Pr,m+1,(−D
l )(l) = Qr,m+1(l),

for every r ≤ n, is equivalent to

Pn+1,s,(−D
l )(l) = Qn+1,s(l),

for every s ≤ m.
Let r ≤ n be given. Using the definition of Qr,m+1(l), we have

Qr,m+1(l) =

∑
i

biaGi
(l)ragi

(Dl2m+2)

−aE(Dl2m+2)
.

Since gi is a hecke Eigenform with Gi the normalized Shimura lift, and aGi
(1) = 1, we

have∑
i

biaGi
(l)ragi

(Dl2m+2)

−aE(Dl2m+2)
=

∑
i

biaGi
(l)r+1agi

(Dl2m)

−aE(Dl2m+2)

−
(
−Dl2m

l

)∑
i

biaGi
(l)ragi

(Dl2m)

−aE(Dl2m+2)
− l


∑
i

biaGi
(l)ragi

(Dl2m−2)

−aE(Dl2m+2)

 .
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Now, we note by the index formula (see [3]) that

−aE(Dl2m+2)

−aE(Dl2m)
= l −

(
−Dl2m

l

)
.

Therefore, it follows that

(
l −
(
−Dl2m

l

))
Qr,m+1(l) =

∑
i

biaGi
(l)r+1agi

(Dl2m)

−aE(Dl2m)

−
(
−Dl2m

l

)∑
i

biaGi
(l)ragi

(Dl2m)

−aE(Dl2m)
− l

l −
(−Dl2m−2

l

) ·
∑
i

biaGi
(l)ragi

(Dl2m−2)

−aE(Dl2m−2)

= Qr+1,m(l)−
(
−Dl2m

l

)
Qr,m(l)− l

l −
(−Dl2m−2

l

) ·Qr,m−1(l).

Now, assume that Qr,m+1(l) = Pr,m+1,ε. By assumption, we also have Qr,m = Pr,m,ε

and Qr,m−1 = Pr,m−1,ε. Therefore, rearranging the above formula gives

Qr+1,m(l) =

(
l −
(
−Dl2m

l

))
Pr,m+1,ε(l)+

(
−Dl2m

l

)
Pr,m,ε(l)+

l

l −
(−Dl2m−2

l

) ·Pr,m−1,ε(l).

If m ≥ 2, then the right hand side is

lPr,m+1,ε(l) + Pr,m−1,ε(l) = Pr+1,m,ε(l),

as desired. If m = 1, the right hand side is

lPr,m+1,ε(l) +

(
−D
l

)
Pr,m−1,ε(l) = Pr+1,m,ε(l).

Notice that we used l2 - D above so that
(−D

l

)
=
(−D′

l

)
. Finally, if m = 0, we use the

same observation above to see that the right hand side is(
l −
(
D

l

))
Pr,m+1,ε(l) +

(
−D
l

)
Pr,m,ε(l) = Pr+1,m,ε(l).

The reverse direction follows by reversing the argument. �

Theorem 4.6 (Theorem 1.6). Let −d be a discriminant and (F, p) = 1. Then aθ(dF
2) =

0 if and only if for every f dividing F , with f =
∏

l prime

lnl,f and ml := bvl(d)
2
c , we have

∏
l prime

Prl,sl,(−D
l )(l) =

∑
i

bi
∏

l prime

aGi
(l)rlagi

(
dQ

l prime

l2sl

)

−aE

(
dQ

l prime
l2sl

) ,
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for every rl ≤ nl,f and sl ≤ ml, where −D is the fundamental discriminant corresponding
to the discriminant −d.

Proof. For F a prime power, this is exactly Theorem 4.5. The proof follows by induction
on the number of prime divisors of F , following the same template as in the proof of
Theorem 4.5. �

Corollary 4.7. If θ = E + g with g an eigenform, then aθ(DF
2) 6= 0 for every F - 6

with F 6= pn.

Proof. For l > 3, Theorem 4.5 implies 2
√
l ≥ aG(l) = l and the cases l = 2 and l = 3

follow from inconsistencies between the polynomials for F = l and F = l2 obtained from
Theorem 1.6. �

Corollary 4.8. If θ = E + b1g1 + b2g2, then for l ≥ 5 a prime and −D a discriminant,

aθ(Dl
4) 6= 0.

Moreover, if q is another prime with (q, 6pl) = 1, then

aθ(Dl
2q2) 6= 0

Proof. This follows easily from contradictions in the system of equations that are ob-
tained from Theorem 1.6, using −D a fundamental discriminant. Details of the calcu-
lations may be found in [15]. �

5. Review of the Work of Ono and Soundararajan

In this section, we review some results of Ono and Soundararajan [24] in preparation
for bounding L(s) and Li(s) in the next two sections. Recall χ := χ−D, L(s) := L(s, χ),
Li(s) := L(Gi,−D, s), and F (s) = Fi(s).

5.1. Explicit Formulas. We will use the following 2 lemmas from [24] for explicit

formulas of L′

L
(s) and

L′
i

Li
(s). These formulas are derived by studying an integral and

shifting the line of integration, giving L′

L
(s) or

L′
i

Li
(s) as one of the residues.

Lemma 5.1 (Ono-Soundararajan [24]). Assume that L(s) 6= 0. Then

−L
′

L
(s) = G1(s,X) + Esig(s)−

L′

L
(s− 1)X−1 −R(s),

where

Esig(s) =
∑

ρ

Xρ−sΓ(ρ− s), and R(s) =
1

2πi

−Re(s)−1/2+i∞∫
−Re(s)−1/2−i∞

− L′

L
(s+ w)Γ(w)Xwdw
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and

(5.1) G1(s,X) :=
∞∑

n=1

Λ(n)χ(n)

ns
e−n/X ,

with Λ the Von-Mangoldt function. Here ρ denotes a nontrivial zero of L(s).

Lemma 5.2 (Ono-Soundararajan [24]). If Li(s) 6= 0, then

−L
′
i

Li

(s) = F 1(s,X) +Rsig(s) +Rtri(s) +Rins(s),

where

(5.2) F 1(s,X) :=
∞∑

n=1

λi(n)χ(n)

ns
e−n/X

with λi defined such that for Re(s) > 3/2

−L
′
i

Li

(s) =
∞∑

n=1

λi(n)χ(n)

ns
,

Rsig(s) =
∑
ρi

Xρi−sΓ(ρi − s), Rtri(s) =
∞∑

n=0

X−n−sΓ(−n− s),

and

Rins(s) =
∞∑

n=1

(−X)−n

n!
· L

′
i

Li

(s− n).

Here ρi are the nontrivial zeros of Li.

We will fix i and investigate F (s) := Fi(s). Then

F ′

F
(s) = log

(√
q

2π

)
+
L′i
Li

(s) +
Γ′

Γ
(s)− L′

L
(s) +

L′

L
(2− s).

5.2. Bounds for Γ′

Γ
. We will need bounds for Γ′

Γ
, and will use the bounds obtained in

[24].

Lemma 5.3 (Ono-Soundararajan [24]). Set s = x+ iy.
1) If x ≥ 1, then ∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 11

3
+

log(1 + x2)

2
+

log(1 + y2)

2
.(5.3)

2) If x > 0, then we have the bound

Re

(
Γ′

Γ
(s)

)
≤ Γ′

Γ
(x) +

y2

x|s|2
+ log

(
|s|
x

)
.(5.4)
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3) In general, one has∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 9

2
+

1

< x > (1− < x >)
+ log(2 + |x|) +

log(1 + y2)

2
,(5.5)

where < x >:= min
n∈N

|x+ n|.

Lemma 5.4. If 0 < x < 1, then

(5.6)

∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 11

3
+

log(2)

2
+

1

x
+

log(1 + y2)

2
.

Proof. This follows from ∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 1

|s|
+

∣∣∣∣Γ′Γ (s+ 1)

∣∣∣∣ ,
and Lemma 5.3, since 1

|s| ≤
1
x

and log(1 + x2) ≤ log(2). �

Lemma 5.5 (Hadamard’s Factorization Formula, Ono-Soundararajan [24]). If L(s) 6= 0
then

Re

(
L′

L
(s)

)
= −1

2
log
(m
π

)
− 1

2
Re

(
Γ′

Γ

(
s+ 1

2

))
+
∑

ρ

Re

(
1

s− ρ

)
,

where the sum is taken over all non-trivial zeros ρ of L(s) and m is the conductor of χ.
Additionally, if Li(s) 6= 0 then

Re

(
L′i
Li

(s)

)
= −1

2
log
( q

4π2

)
− Re

(
Γ′

Γ
(s)

)
+
∑
ρi

Re

(
1

s− ρi

)
,

where the sum is taken over all non-trivial zeros ρi of Li(s) and q is the conductor of
Li(s).

6. Bounding L(s) From Below

Fix 1 < σ < 3
2
. For notational ease, define s := σ+it, s0 := 2−σ+it, and σ0 := Re(s0).

Fix X > e
γ+ 1

3
2−σ , recalling the Euler constant γ in (2.8). In preparation for bounding

F (s), in this section we will find a bound from below for log
(∣∣∣L(s0)

L(s)

∣∣∣), depending on X,

t, and σ. A philosophical explanation of the techniques used and further details may be
found in [15].

Set

δ(X) := max
y

∣∣∣∣∣∣∣
σ−1/2∫
σ0−1/2

X−uΓ(−u+ iy)du

∣∣∣∣∣∣∣ ·
(

1

2
log

y2 + (σ − 1/2)2

y2 + (σ0 − 1/2)2

)−1

.
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We note that since Γ decays exponentially in y and the other term only has polynomial
growth, δ(X) is well defined. Recall our definition (5.1) of G1 and denote

(6.1) G(s,X) :=
∞∑

n=2

Λ(n)χ(n)

ns log(n)
e−n/X = −

∫
G1(w,X)dw.

The goal of this section is to prove the following.

Theorem 6.1. Assume GRH for Dirichlet L-functions. Let χ be a primitive Dirichlet

character of conductor m and let L(s) = L(s, χ). For X > e
γ+ 1

3
2−σ we have

log
|L(s0)|
|L(s)|

≥ X

X + 1− δ(X)X
( Re(G(s0,X))− Re(G(s,X)) + cθ,σ,X,1

+ cθ,σ,X,t,1 + cθ,σ,X,m,1) ,

where the functions cθ,σ,X,1, cθ,σ,X,t,1, and cθ,σ,X,m,1 are given by

cθ,σ,X,1 := −(σ − σ0)
|Γ(3/2− σ0)|
2πXσ0+1/2

(
π

r

759

100
+
π log(226)

2r2
+

2√
15r2

)
− σ − σ0

2X

(
22

3
+

2

σ0

)
− 1− σ0

2X

(
log(1 +

(
3−σ0

2

)2
)

2
+

log(2)

2
+

2

σ0

)

−
(
σ − 1

2X

)(
log(2) +

2

3− σ0

)
− 2δ(X) log

Γ
(

σ+1
2

)
Γ
(

σ0+1
2

) − 2δ(X) log

(
σ + 1

σ0 + 1

)
,

with r =
√

(σ0 + 1/2)(σ0 − 1/2),

cθ,σ,X,t,1 := (σ − σ0)

(
−|Γ(3/2− σ0)|

4rXσ0+1/2
− 1

2X
−
(
δ(X)

2

))
log(1 + t2),

and finally

cθ,σ,X,m,1 := |σ − σ0|
(

X − 1

X2 − δ(X)

2

)
log
(m
π

)
.

Proof. Integrating from s0 to s in Lemma 5.1 yields

log

(
L(s0)

L(s)

)
= G(s0,X)−G(s,X)+

s∫
s0

Esig(w)dw−
s∫
s0

R(w)dw+
1

X
log

(
L(s0 − 1)

L(s− 1)

)
.

We will take the real part of both sides, and bound each term.
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(i) We will first bound
s∫
s0

R(w)dw. We will show

(6.2) Re

− s∫
s0

R(w)dw

 ≥ −

∣∣∣∣∣∣
s∫
s0

R(w)dw

∣∣∣∣∣∣ ≥ −|σ − σ0|

[
log
(

m
π

)
X2

+
|Γ(3/2− σ0)|
2πXσ0+1/2

(
π

r

(
759

100
+

1

2
log(1 + t2)

)
+
π log(226)

2r2
+

2√
15r2

)]
.

Rewriting w = u+ it and plugging in the functional equation for L′

L
gives

R(w) =
1

2πi

−u−1/2+i∞∫
−u−1/2−i∞

Γ(z)Xz

[
log
(m
π

)
+

1

2
· Γ′

Γ

(
2− z − w

2

)

+
1

2
· Γ′

Γ

(
1 + z + w

2

)
+
L′

L
(1− z − w)

]
dz.

Consider z = −u−1/2+ iy. Since Re
(

1+z+w
2

)
= 1

4
, Re

(
2−z−w

2

)
and t+y

2
= Im

(
1+z+w

2

)
=

−Im
(

2−z−w
2

)
, we use Lemma 5.4 to bound the term with 1+z+w

2
and Lemma 5.3 to bound

the term with 2−z−w
2

. Since Re
(

1+z+w
2

)
= 3

2
, we can bound the L′

L
term by

∣∣∣ ζ′ζ (3
2

)∣∣∣ ≤ 151
100

.

Noting that

log

(
1 +

(t+ y)2

4

)
≤ log(1 + t2 + y2 + t2y2) = log(1 + t2) + log(1 + y2),

we obtain

(6.3)

∣∣∣∣L′L (1− z − w) +
1

2

Γ′

Γ

(
1 + z + w

2

)
+

1

2

Γ′

Γ

(
2− z − w

2

)∣∣∣∣
≤ 151

100
+

11

6
+

log(2)

4
+ 2 +

11

6
+

log(1 + 25/16)

4
+

1

2
log(1 + t2) +

1

2
log(1 + y2)

≤ 759

100
+

1

2
log(1 + t2) +

1

2
log(1 + y2).

Since |Γ(x+ iy)| ≤ |Γ(x)|, the functional equation for Γ yields

|XzΓ(z)| = X−u−1/2 · |Γ(z + 2)|
|z(z + 1)|

≤ X−u−1/2 · |Γ(3/2− u)|
(1/2 + u)(u− 1/2) + y2

.

It is easy to see that for X > e
γ+ 1

3
2−σ , this function of u on the right hand side decreases

in [1/2, σ], so we get that the maximum for u ∈ [σ0, σ] is attained at u = σ0.
This gives the bound

(6.4) |XzΓ(z)| ≤ X−σ0−1/2 · |Γ(3/2− σ0)|
(1/2 + σ0)(σ0 − 1/2) + y2

.
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Furthermore, shifting the line of integration in the remaining term to the far left, noting
that −2 < −σ − 1/2 < −u− 1/2 < −σ0 − 1/2 < −1, then for X > 1,

(6.5)
1

2πi

−u−1/2+i∞∫
−u−1/2−i∞

Γ(z)Xz log
(m
π

)
= log

(m
π

) ∞∑
n=2

(−X)−n

n!
≤

log
(

m
π

)
X2 .

Recall r =
√

(σ0 + 1/2)(σ0 − 1/2). Plugging in the bounds from equations (6.3), (6.4),
and (6.5) give

|R(w)| ≤ log(m
π )

X2 + |Γ(3/2−σ0)|
2πXσ0+1/2

∞∫
−∞

1
y2+r2

(
759
100

+ 1
2
log(1 + t2) + 1

2
log(1 + y2)

)
dy

=
log(m

π )
X2 + |Γ(3/2−σ0)|

2πXσ0+1/2

(
π
r

(
759
100

+ 1
2
log(1 + t2)

)
+

∞∫
0

log(1+y2)
y2+r2 dy

)
.

Splitting the remaining integral into the range 0 to 15 and 15 to ∞ gives

|R(w)| ≤
log
(

m
π

)
X2 +

|Γ(3/2− σ0)|
2πXσ0+1/2

(
π

r

(
759

100
+

1

2
log(1 + t2)

)
+
π log(226)

2r2
+

2√
15r2

)
.

Since this is independent of w, integrating from w = s0 to w = s gives equation (6.2).

(ii) We will next find a bound for 1
X

log
∣∣∣L(s0−1)

L(s−1)

∣∣∣. We will show

(6.6)
1

X
log

∣∣∣∣L(s0 − 1)

L(s− 1)

∣∣∣∣ ≥ 1

X

[
log

|L(s)|
|L(s0)|

+ |σ − σ0| log
(m
π

)
− 1− σ0

2

(
22

3
+

log(1 +
(

3−σ0

2

)2
)

2
+ log(1 + t2) +

log(2)

2
+

2

σ0

)

−σ − 1

2

(
22

3
+ log(1 + t2) + log(2) +

2

3− σ0

+
2

σ0

)]
.

Again using the functional equation for L′

L
and noting that |L(2 − s0)| = |L(s)| and

|L(2− s)| = |L(s0)|, we have
(6.7)

log
|L(s0 − 1)|
|L(s− 1)|

≥ log
|L(s)|
|L(s0)|

+ |σ − σ0| log
(m
π

)
− 1

2

s∫
s0

∣∣∣∣Γ′Γ
(

3− w

2

)
+

Γ′

Γ

(w
2

)∣∣∣∣ |dw|.
For w ∈ (σ0, 1) we use equation (5.3) to bound Γ′/Γ((3 − w)/2) while we use equation
(5.6) to bound the other term and again to bound both terms when w ∈ [1, σ], yielding
equation (6.6).
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(iii) Finally, we bound
s∫
s0

Esig(w)dw. We will show here

(6.8)

s∫
s0

Re(Esig(w))dw ≥ −δ(X) ·

[
log

|L(s)|
|L(s0)|

+
σ − σ0

2
log
(m
π

)
+ 2 log

Γ
(

σ+1
2

)
Γ
(

σ0+1
2

)
+ 2 log

(
σ + 1

σ0 + 1

)
· t2

t2 + (σ0 + 1)2
+

(
σ + 1

2
− σ0 + 1

2

)
log

(
1 +

t2

(σ0 + 1)2

)]
.

Since 1
w−ρ

is analytic from s0 to s, an individual zero ρ := 1/2 + iy contributes

s∫
s0

Re(Xρ−wΓ(ρ− w))dw ≥ −

∣∣∣∣∣∣
σ∫
σ0

X1/2−uΓ(1/2− u+ i(y − t))du

∣∣∣∣∣∣ ·(
log

|s− ρ|
|s0 − ρ|

)−1

·
s∫
s0

Re

(
1

w − ρ

)
dw.(6.9)

We have added the additional term (6.9), which is 1, so that we may use Re
(

1
w−ρ

)
later

in Hadamard’s factorization formula (5.5).
Since the integral and the log term merely make up one such term for y fixed, we

know that they are bounded above by δ(X). Therefore, summing the contributions of
all zeros gives us

(6.10)

s∫
s0

Re(Esig(w))dw ≥ −δ(X)

s∫
s0

∑
ρ

Re
1

w − ρ
dw.

Integrating Hadamard’s factorization formula (5.5) yields
(6.11)

s∫
s0

∑
ρ

Re

(
1

w − ρ

)
dw = log

|L(s)|
|L(s0)|

+
σ − σ0

2
log
(m
π

)
+

s∫
s0

Re

(
Γ′

Γ

(
w + 1

2

))
dw.

We now use equation (5.4) to bound the Γ′/Γ term. After noting that for w = u + it,

4
(

u+1
2

)2
+ t2 ≥ t2 + (σ0 + 1)2 and integrating, we obtain equation (6.8).

Finally, rearranging equations (6.2), (6.6), and (6.8) and combining the terms involv-

ing log L(s0)
L(s)

yields Theorem 6.1. �

7. Bounding Li(1) from above

We use the same notation as in Section 6. We also define σ1 := 3−σ and s1 := σ1 + it.
In addition, we will fix 1 < σ2 < 2 and consider s2 := σ2 + it. In practice we will
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choose σ2 > σ, but the theorem holds in general. We will find a bound from above for
log(|Li(D)|), depending on X, t, and σ. Recall our definition (5.2) of F 1 and denote

F (w,X) :=
∞∑

n=1

λi(n)χ(n)

nw log(n)
e−n/X = −

∫
F 1(w,X)dw.

Theorem 7.1. Assume GRH for L-functions of weight 2 newforms, and set Li(s) :=
L(Gi, χ, s) with χ a primitive character such that Li has conductor q. Then,

log |Li(s)| ≤
X

X + 1
F (s,X)− X((1 + 2γ(X))α(X)− γ(X)β(X))

(X + 1)(1 + γ(X))
F 1(s2,X)

+
X

X + 1
(cθ,σ,X,2 + cθ,σ,X,t,2 + cθ,σ,X,q,2) ,

where

cθ,σ,X,2 :=
N∑

n=2

|λi(n)|
nσ1 log(n)

(
1− e−n/X

)
+ 2 log(ζ(σ1 − 1/2))− 2

N∑
n=1

Λ(n)

nσ1−1/2 log(n)

+ max{|Γ(σ)|, |Γ(σ1)|} ·
X1−σ

(X − 1) log(X)

+ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|
(

1

X2 +
1

3X2(X − 1)

)
+

2

X
log(ζ(3− σ − 1/2)) +

2(σ1 − σ)

3X2

(
49

6
+ log(20)

)
+

2

X
log

Γ(σ1 + 1)

Γ(σ + 1)

+
2
(
log σ1−1

σ−1
− log 2−σ1

2−σ

)
3X2 +

(1 + 2γ(X))α(X)− γ(X)β(X)

(1 + γ(X))

(
Γ′

Γ
(σ2) +

1

σ2

)
+ α(X)

|Γ(−σ2)|X1−σ2

X − 1
+ α(X)

3X + 2

3X2

(
49

6
+ log(20) +

1

(2− σ2)(σ2 − 1)

+ 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣) ,

cθ,σ,X,t,2 := log(1 + t2)

(
2(σ1 − σ)

3X2 +
(σ1 − σ)

X
+

(1 + 2γ(X))α(X)− γ(X)β(X)

2(1 + γ(X))

+
3X + 2

X2 α(X)

)
,
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cθ,σ,X,q,2 := log
( q

4π2

)((1 + 2γ(X))α(X)− γ(X)β(X)

2(1 + γ(X))

+
γ(X)(α(X)− β(X))

(1 + γ(X))
· |Γ(−σ2)|X1−σ2

X − 1
+
α(X)

X
+
σ1 − σ

X

)
,

γ(X) := X1−σ2 ·max
y
|Γ(1− σ2 + iy)|

(
(σ2 − 1) +

y2

σ2 − 1

)
,

(7.1) β(X) :=


(σ2−1)Xσ2−1

Xσ2−1−Γ(2−σ2)

σ1∫
σ

Re
(
X1−uΓ(1− u)

)
du if X < Γ(2− σ2)

1
σ2−1

− (σ2−1)Xσ2−1

Xσ2−1+Γ(2−σ2)

σ1∫
σ

Re
(
X1−uΓ(1− u)

)
du if Γ(2− σ2)

1
σ2−1 ≤ X

,

and finally

α(X) := max
y

∣∣∣∣∣∣
σ1∫
σ

(
X1−uΓ(1− u+ iy)

)
du−

(
β(X)X1−σ2Γ(1− σ2 + iy)

)∣∣∣∣∣∣(7.2)

·
(

(σ2 − 1) +
y2

σ2 − 1

)
.

Proof. Integrating both sides of Lemma 5.2 from s to s1 yields

logLi(s) = logLi(s1) + F (s,X)− F (s1,X) +

s1∫
s

(Rsig(w) +Rins(w) +Rtri(w))dw.

We take real parts of both sides to bound log |Li(s)|. Since |λi(n)| ≤ 2
√
nΛ(n), we

bound

(7.3) log |Li(s1)| −Re(F 1(s1,X)) ≤
(
1− e−n/X

) N∑
n=2

|λi(n)|
nσ1 log(n)

+
∞∑

n=N+1

2Λ(n)

nσ1−1/2 log(n)
.

Notice that taking the logarithmic derivative of ζ and integrating yields

∞∑
n=N+1

2Λ(n)

nσ1−1/2 log(n)
= 2 log(ζ(σ1 − 1/2))− 2

N∑
n=1

Λ(n)

nσ1−1/2 log(n)
,

which can easily be computed numerically with a computer.
(i) We first bound the contribution from the trivial zeros:
Since 1 < σ < w < σ1 < 2 and |Γ(−n − w)| < |Γ(−w)|, the maximum is attained

either at s or s1. Thus, we can factor out max{|Γ(σ)|, |Γ(σ1)|} and integrate to obtain

(7.4)

s1∫
s

Rtri(w)dw ≤ max{|Γ(σ)|, |Γ(σ1)|} ·
X1−σ

(X − 1) log(X)
.
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(ii) We now bound the contribution from the poles of Γ: We will show

(7.5)
s1∫
s

Rins(w)dw ≤ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|
(

1

X2 +
1

3X2(X − 1)

)

− log(|Li(s)|)
X

+
2

X
log(ζ(3− σ − 1/2)) +

2(σ1 − σ)

3X2

(
49

6
+ log(1 + t2) + log(20)

)
+

2(log σ1−1
σ−1

− log 2−σ1

2−σ
)

3X2 +
2

X
log

Γ(σ1 + 1)

Γ(σ + 1)
+
σ1 − σ

X
log(1 + t2) +

(σ1 − σ)

X
log

q

4π2
.

We use the functional equation to obtain

s1∫
s

Rins(w)dw =
∞∑

n=1

− (−X)−n

n!

[
log

Li(2 + n− s1)

Li(2 + n− s)
+ (σ − σ1) log

q

4π2

+

s1∫
s

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)
dw

 .
First we note that

(7.6)
∞∑

n=1

(−X)−n

n!
(σ − σ1) log

q

4π2
≤

(σ1 − σ) log q
4π2

X
.

Expanding log Li(2+n−s1)
Li(2+n−s)

and noting that for n ≥ 2, 1
m2+n−σ1

− 1
m2+n−σ ≤ 1

m4−σ1
− 1

m4−σ ,

we get the bound

(7.7)
∞∑

n=2

(−X)−n

n!
log

∣∣∣∣Li(2 + n− s1)

Li(2 + n− s)

∣∣∣∣
≤ 2 |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|

(
1

2X2 +
1

6X2(X − 1)

)
.

For n = 1, taking the real part and noting that |Li(3− s1)| = |Li(s)|, we have

(7.8) (−X)−1 log
|Li(3− s1)|
|Li(3− s)|

≤ − log(|Li(s)|)
X

+
2

X
log(ζ(3− σ − 1/2)).

For n ≥ 1 we have Re(2− w + n) ≥ 1, so we may use equation (5.3) to bound the term
with that parameter. For n ≥ 2 we use equation (5.5) to bound the other term, and for
n = 1 we may use equation (5.6).
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It remains to bound
s1∫
s

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)
dw.

Since 1 < σ ≤ w ≤ σ1 < 2, we know that 2−w+n ≥ 1 for all n ≥ 1, so that we can use
equation (5.3) to bound that term. We will use equation (5.5) to bound the term with
w − n for n ≥ 2. For n = 1, we have u − n ∈ (0, 1), so that we can use equation (5.6).
We note that for u = Re(w) > 1 we have < u− n > (1− < u− n >) = (2− u)(u− 1).
This yields, for n ≥ 2,∣∣∣∣Γ′Γ (2− w + n) +

Γ′

Γ
(w − n)

∣∣∣∣
≤ 49

6
+ log((3 + n− u)(2 + n− u)) + log(1 + t2) +

1

(2− u)(u− 1)
.

For n = 1, we have u− 1 > 0 and 3− u > 0, so that we can use equation (5.4) and the
functional equation to obtain

Re

(
Γ′

Γ
(w − 1)

)
≤ Re

(
Γ′

Γ
(w)

)
− Re

(
1

w − 1

)
≤ Re

(
Γ′

Γ
(w)

)
≤ Γ′

Γ
(u)+

t2

u(t2 + u2)
+

1

2
log(1+t2) ≤ Γ′

Γ
(u)+

1

u
+

1

2
log(1+t2) =

Γ′

Γ
(u+1)+

1

2
log(1+t2)

and

Re

(
Γ′

Γ
(3− w)

)
≤ Γ′

Γ
(3− u) +

t2

(3− u)(t2 + (3− u)2)
+

1

2
log(1 + t2)

≤ Γ′

Γ
(3− u) +

1

3− u
+

1

2
log(1 + t2) =

Γ′

Γ
(4− u) +

1

2
log(1 + t2).

Since u > 1, log((3 + n− u)(2 + n− u)) ≤ log ((n+ 1)(n+ 2)) < n!
6

log(20) for n ≥ 3
so for X > 2,

(7.9) −
∞∑

n=1

(−X)−n

n!

s1∫
s

Re

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)
dw

≤ 2(σ1 − σ)

3X2

(
49

6
+ log(1 + t2) + log(20)

)
+

2
(
log σ1−1

σ−1
− log 2−σ1

2−σ

)
3X2

+
2

X
log

Γ(σ1 + 1)

Γ(σ + 1)
+

(σ1 − σ)

X
log(1 + t2).
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(iii) Finally we bound the contribution from the significant zeros of Li: We
will show

(7.10)

s1∫
s

Re (Rsig(w)) dw ≤
(

(1 + 2γ(X))α(X)− γ(X)β(X)

1 + γ(X)

)(
1

2
log
( q

4π2

)
+

1

2
log
(
1 + t2

)
+

Γ′

Γ
(σ2) +

1

σ2

− F 1(s2,X)

)
+ α(X)

|Γ(−σ2)|X1−σ2

X − 1

+
γ(X)(α(X)− β(X))

1 + γ(X)
· |Γ(−σ2)|X1−σ2

X − 1
log
( q

4π2

)
+ α(X)

3X + 2

X2

(
49

6
+ log(20)

+
1

(2− σ2)(σ2 − 1)
+ log(1 + t2) + 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣)+
α(X)

X
log
( q

4π2

)
.

Fix an individiual zero ρ := 1 + iy.
s1∫
s

Re
(
Xρ−wΓ(ρ− w)

)
dw = Re

(
β(X)Xρ−s2Γ(ρ− s2)

)

+

s1∫
s

Re
(
Xρ−wΓ(ρ− w)

)
dw − Re

(
β(X)Xρ−s2Γ(ρ− s2)

)
≤ Re

(
β(X)Xρ−s2Γ(ρ− s2)

)
+ α(X)Re

(
1

s2 − ρ

)
.

Now, summing over all non-trivial zeros of Li gives the bound

(7.11)

s1∫
s

Re (Rsig(w)) dw ≤ β(X)Re (Rsig(s2)) + α(X)
∑

ρ

Re

(
1

s2 − ρ

)
.

Rearranging Lemma 5.5 gives

(7.12)
∑

ρ

Re

(
1

s2 − ρ

)
= Re

(
L′i
Li

(s2)

)
+

1

2
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
We again use the exact formula for

L′
i

Li
from Lemma 5.2 to obtain

(7.13)
L′i
Li

(s2) = −F 1(s2,X)−Rsig(s2)−Rtri(s2)−Rins(s2).

We again need to bound each of these.
Clearly, taking the absolute value and noting that |Γ(−n− s2)| ≤ |Γ(−σ2)|, we have

(7.14) |Rtri(s2)| ≤ |Γ(−σ2)|
∞∑

n=0

X−n−σ2 =
|Γ(−σ2)|X1−σ2

X − 1
.
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We next bound Rins(s2). We use the functional equation of
L′

i

Li
to obtain

(7.15)

Rins(s2) =
∞∑

n=1

−(−X)−n

n!

(
L′i
Li

(n+ 2− s2) +
Γ′

Γ
(s2 − n) +

Γ′

Γ
(n+ 2− s2) + log

( q

4π2

))
.

We note that
L′

i

Li
(w) = −

∞∑
m=1

λi(m)χ(m)
mw with |λi(m)| ≤ 2

√
mΛ(m) and again use equations

(5.5), (5.3), the fact that 6 log((n+1)(n+2))
n! log(20)

≤ 1 for every n ≥ 3, and X > 2 to obtain

(7.16) |Rins(s2)| ≤
1

X
log
( q

4π2

)
+

3X + 2

3X2

(
49

6
+ log(20) +

1

(2− σ2)(σ2 − 1)

+ log(1 + t2) + 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣) .
We then use equation (5.4) to bound Re

(
Γ′

Γ
(s2)

)
≤ Γ′

Γ
(σ2)+

1
σ2

+ 1
2
log (1 + t2). Combining

the terms involving Re(Rsig(s2)), it remains to bound

(7.17) |β(X)− α(X)|Re(Rsig(s2)).

We bound Re(Rsig(s2)) similarly to the way that we bound Rsig above. Bounding by
the absolute value, each non-trivial zero ρ of Li contributes at most∣∣Xρ−s2Γ(ρ− s2)

∣∣ ≤ X1−σ2 |Γ(1− σ2 + i(y − t))|
(

(σ2 − 1) +
(t− y)2

σ2 − 1

)
· Re

(
1

s2 − ρ

)
.

We then bound γ(X) so that we have shown, using the functional equation for
L′

i

Li
and

the exact formula from Lemma 5.2,

Re(Rsig(s2)) = Re
∑

ρ

(
Xρ−s2Γ(ρ− s2)

)
≤ γ(X)Re

(∑
ρ

1

s2 − ρ

)

= γ(X)

(
1

2
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
+ Re

(
L′i
Li

(s2)

))
= γ(X)·((

1

2
+
|Γ(−σ2)|X1−σ2

X − 1

)
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
− F 1(s2,X)− Re(Rsig(s2))

)
.

We have already bounded Re(Γ′

Γ
(s2)), so combining the Re(Rsig(s2)) terms yields

(7.18) |Re(Rsig(s2))| ≤
γ(X)

1 + γ(X)

((
1

2
+
|Γ(−σ2)|X1−σ2

X − 1

)
log
( q

4π2

)
+

Γ′

Γ
(σ2) +

1

σ2

+
1

2
log
(
1 + t2

)
− F 1(s2,X)

)
.
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The inequalities (7.14), (7.16), and (7.18) bound the terms in equation (7.13). Noting
that α(X) ≥ β(X) because plugging y = 0 into the term we are maximizing in α(X)
gives exactly β(X), since (σ2 − 1)Γ(1− σ2) = −Γ(2− σ), we get equation (7.10). �

8. Fundamental Discriminants and Bounds for Weight 3/2 Cusp Forms

In this section we show how to find a bound Dθ,σ,σ2 such that for every fundamental

discriminant −D with
(
−D
p

)
6= 1 and D > Dθ,σ,σ2 we have aθ(D) > 0. Thus, combining

this result with Section 4 gives the result for all discriminants.

8.1. Bounds for Fundamental Discriminants and Half Integer Weight Cusp
Forms. We now proceed to show how bounds for α(X), γ(X), and δ(X) are obtained.

Lemma 8.1. Fix a finite number of intervals [y0,n, y1,n] with 0 ≤ y0,n < y1,n < ∞ such
that

⋃m
n=1[y0,n, y1,n] ∪ [y1,m,∞) = [0,∞). Then

(8.1)

δ(X) ≤ max

maxn≤m

σ−1/2∫
σ0−1/2

X−u|Γ(−u+ iy0,n)|du ·
(

1

2
log

y2
1,n + (σ − 1/2)2

y2
1,n + (σ0 − 1/2)2

)−1

,

σ−1/2∫
σ0−1/2

X−u|Γ(2− u+ iy1,m)| 2((
σ0 − 1

2

)2
+ y2

1,m

)
log

(
(σ− 1

2)
2
+y2

1,m

(σ0− 1
2)

2
+y2

1,m

)
 .

For γ(X), we obtain the bound

(8.2) γ(X) ≤ X1−σ2 ·max

{
maxn≤m |Γ(1− σ2 + iy0,n)|

(
(σ2 − 1) +

y2
1,n

σ2 − 1

)
,

|Γ(3− σ2 + iy1,m)| 1

σ2 − 1

}
.

Finally, for α(X) we obtain

(8.3) α(X) ≤ max

maxn≤m

σ1∫
σ

X1−u|Γ(1− u+ iy0,n)|
(

(σ2 − 1) +
y2

1,n

σ2 − 1

)

−β(X)X1−σ2Γ(1− σ2 + iy1,n)

(
(σ2 − 1) +

y2
0,n

σ2 − 1

)
,

σ1∫
σ

X1−u|Γ(3− u+ iy1,m)|

(σ2 − 1) +
y2
1,m

σ2−1

(σ − 1)2 + y2
1,m

 .



REPRESENTATIONS OF INTEGERS BY TERNARY QUADRATIC FORMS 25

Remark 8.2. Taking the limit X →∞ in the lemma with the intervals [0, 1] and [1,∞),

we see that lim
X→∞

δ(X) = 0 and lim
X→∞

α(X) = 0 after noting that lim
X→∞

β(X) = 0.

Proof. We will show the result for δ(X), and the analogous calculation for α(X) and
γ(X) is left to the reader.

First define δ[y0,y1](X) to be the max taken in the interval y0 ≤ y ≤ y1. Further,

define f(y) :=
σ−1/2∫
σ0−1/2

X−u|Γ(−u + iy)|du and g(y) :=
(

1
2
log y2+(σ−1/2)2

y2+(σ0−1/2)2

)−1

. Notice

first that f is strictly decreasing in y ≥ 0, which follows easily from the fact that

Γ(z) = e−γz

z

∞∏
n=1

(
1 + z

n

)−1
e

z
n , while g is strictly increasing. Therefore, noting that both

functions are even in y, we fix 0 ≤ y0 < y < y1 <∞, then pull the absolute value inside
the integral to give

δ[y0,y1](X) ≤ f(y0)g(y1).

Now we deal with the case where y1 = ∞. The functional equation of Γ(z) gives us

f(y) =

σ−1/2∫
σ0−1/2

X−u |Γ(2− u+ iy)|
(u2 + y2)1/2((1− u)2 + y2)1/2

du.

We then bound 1 − u ≥ 1 −
(
σ − 1

2

)
= 3

2
− σ = σ0 − 1

2
and u ≥ σ0 − 1

2
and note that

|Γ(2− u+ iy)| is decreasing in y to get

f(y) ≤

 σ−1/2∫
σ0−1/2

X−u|Γ(2− u+ iy0)|du

 · 1(
σ0 − 1

2

)2
+ y2

.

Defining z :=
(
σ0 − 1

2

)2
+ y2 and a :=

(
σ − 1

2

)2 − (σ0 − 1
2

)2
, we see that the remaining

terms with y form 2

z log(1+a
z )

, which decreases in z since a > 0 and z > 0. �

We have now set up the framework to show our main theorems.

Proof of Theorem 1.1. We only need to show the result for a fundamental discriminant,
since the results from Section 4 extend the bound for non-fundamental discriminants.
We will first show the result for an orthonormal basis of newforms gi. Consider the
completion of Li(s), which we will normalize to

Λi(s) :=
( q

4π2

) s−1
2

Γ(s)Li(s).

Again using the functional equation Λi(s) = ±Λi(2− s) and the analytic continuation,
assuming without loss of generality that the sign of the functional equation is 1, we can
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bound Li(1) = Λi(1) ≤ max
t
|Λi(σ + it)| with 1 < σ < 3

2
. We will choose σ < 1 + δ.

Since
lim

X→∞
α(X) = 0 = lim

x→∞
β(X),

This gives the power of q from Theorem 7.1 as

X

X + 1

[
(1 + 2γ(X))α(X)− γ(X)β(X)

2(1 + γ(X))
+ γ(X)

α(X)− β(X)

1 + γ(X)
· |Γ(−σ2)|X1−σ2

X − 1

+
σ1 − σ

X
+
α(X)

X

]
+
σ − 1

2

We then choose X0 large enough so that the resulting sum is less than δ, which is
possible because every term goes to zero except σ−1

2
< δ

2
. Note that this choice of X0

only depends on σ, σ2 and not on the level or the particular form. We then choose
X1 ≥ X0 large enough so that the decay in t from Γ(s) overwhelms the polynomial
growth from the cθ,σ,X,t,2 factor in Theorem 7.1. Choosing N = 1 in cθ,σ,X,2, we now
note that the resulting constant is independent of the form Li, except for F (s,X) and
F 1(s2,X). Bounding |λi(n)| ≤ 2

√
nΛ(n) in each case, we are able to bound these

independent of Li using Lemma 8.5 below. Since our choice of X1 did not depend on
Li, we obtain a bound from the Kohnen-Zagier variant (3.1) of

(8.4) |agi
(D)|2 =

2−vp(D)

π‖Gi‖2
D

1
2Li(1) ≤ 1

‖Gi‖2

2−vp(D)

π
cδN

δD
1
2
+2δ,

where cδ is the constant obtained from Theorem 7.1 after plugging in X1 and σ, mul-
tiplied by |Γ(σ)|, noting that q ≤ ND2. Thus, for the coefficient |agi

(D)|, the only

dependence we have on Li is N
δ
2

‖Gi‖ , where Gi is normalized to have aGi
(1) = 1.

We then take an arbitrary form g with Petersson norm 1 and write g =
∑
i

bigi,

where gi are an orthonormal basis, so that 〈gi, gj〉 = δij and
∑
i

|bi|2 = 1 and each of gi

satisfy the bound (8.4) from some level dividing the level N of g. Then we simply take
cN := max

i

1
‖Gi‖ and we get the desired result since there are at most dim(S2(Γ0(N)))

terms and cN � N ε from Hoffstein and Lockhart [12].
�

We use the following lemma of Duke [8] to prove Theorem 1.9.

Lemma 8.3 (Duke [8]). Fix f ∈ S3/2 (Γ0(N), ψ). Then

‖f‖2 � Γ(α)d(N)N2α

∞∑
n=1

|af (n)|2n−α,

where α > 1
2

is any number so that the series exists, d(·) is the divisor function, and the
constant is absolute.
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Proof of Theorem 1.9. Set g := θ − E. We will bound E and g independent of θ. After
noting that dim(S2(Γ0(p))) ≤ dp+1

12
e ≤ p, Theorem 1.1 yields

(8.5) |ag(d)| �ε ‖g‖p
1
2
+εd1/4+ε.

Assuming GRH for Dirichlet L-functions, bounding the class number from below in
equation (2.1) yields

(8.6) aE(d) �ε
1

p
d1/2−ε.

It remains to use Lemma 8.3 to bound ‖g‖ independent of θ. Define

M(G) :=
∑
Q′∈G

ω−1
Q′ ,

where G is the genus containing Q and ωQ′ is the number of automorphs.
Since aθQ′ (d) ≥ 0 for every Q′, Siegel’s averaging theorem (cf. [10]) gives

|ag(d)| ≤ (M(G)ωQ + 1)aE(d).

Moreover, it is well known [21] that ωQ ≤ 48, so |ag(d)| � M(G)aE(d). The Eichler
mass formula (cf. [10]) gives

M(G) =
p− 1

12
≤ p.

Therefore,

|ag(d)| � paE(d) �ε d
1
2
+ε.

It is important to note here that the implied constant does not depend on g. The power
of d attained allows us to choose α = 2 + 2ε in Lemma 8.3 for the convergence of the
sum. Since we know that N = p is the level, this yields

‖g‖2 �ε p
4+4ε.

Therefore,

(8.7) |ag(d)| �ε ‖g‖p
1
2d1/4+ε �ε p

5
2
+εd1/4+ε.

Combining equations (8.6) and (8.7), aE(d) � |ag(d)| if d�ε p
14+ε, as desired. �

Theorem 8.4 (Theorem 1.4). Fix θ ∈ M+
3/2(4p). Assume GRH for Dirichlet L-series

and L-functions of weight 2 newforms. For every X > eγ+ 1
3/2−σ such that

X

X + 1

[
(1 + 2γ(X))α(X)− γ(X)β(X)

1 + γ(X)
+

2γ(X)(α(X)− β(X))

1 + γ(X)
· |Γ(−σ2)|X1−σ2

X − 1

+
2(σ1 − σ)

X
+

2α(X)

X

]
+

X(σ − σ0)

X + 1− δ(X)X

(
δ(X)

2
− X − 1

X2

)
+ (σ − 1) <

1

2
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there exists an effectively computable constant Dσ,X such that for all fundamental dis-

criminants −D < −Dσ,X with
(
−D
p

)
6= 1, one has aθ(D) 6= 0.

Moreover, such an X exists, so, assuming GRH for Dirichlet L-functions and weight
2 modular forms, there is an effectively computable constant Dσ such that for all funda-

mental discriminants −D < −Dσ with
(
−D
p

)
6= 1, aθ(D) 6= 0.

Proof. By equation (2.5), it suffices to bound F (s). By definition,

log |F (s)| = log(|Li(s)|) + log(|Γ(s)|)− log(|L(s0)|)− log(|L(s)|) +
σ − 1

2
log

q

4π2
.

Plugging in our bounds from Theorems 6.1 and 7.1 yields

log |F (s)| ≤ X

X + 1
F (s,X)− X((1 + 2γ(X))α(X)− γ(X)β(X)

(X + 1)(1 + γ(X))
F 1(s2,X)

− X

X − 1− δ(X)X
( Re(G(s0,X))− Re(G(s,X))) + cθ,σ,X,2 + cθ,σ,X,t,2 + cθ,σ,X,q,2

− (cθ,σ,X,1 + cθ,σ,X,t,1 + cθ,σ,X,m,1) + log |Γ(s)| − 2 log |L(s)|.

Using the fact that q = pD2 and m = D, it remains to deal with log |Γ(s)|, 2 log |L(s)|,
and the remaining terms involving F , F 1, and G. We will combine the terms cθ,σ,X,t,1

and cθ,σ,X,t,2 and use the exponential decay of log |Γ(σ + it)| to remove the dependence
on t. Since σ > 1, the term dealing with log |L(s)| may be bounded easily by

(8.8) log |L(s)| ≥ − log |ζ(σ)|.

If we denote the sum of the terms involving F , F 1, and G, using the notation used
in [24], as

(8.9)
∞∑

n=2

Re
χ(n)

nit log(n)
v(n; X),

then, fixing a constant N0, we may bound the first N0 terms by a constant, and the
remaining terms we will bound separately.

The contribution to v(n; X) from the terms involving F and F 1 is

e−n/xλi(n)χ(n) · X

X + 1
·
(

1

nσ
− aX

log(n)

nσ2

)
,

where aX is the term in front of F 1 above. Choosing σ2 > σ and noting that aX > 0,
the asymptotic growth shows us that there exists an N0 such that for n > N0 we can
bound the above term by

λi(n)χ(n) · X

X + 1
·
(

1

nσ

)
.
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Now, using the fact that |λi(n)| ≤ 2Λ(n)
√
n, we have

|v(n; X)| ≤ e−n/x

(
2Λ(n)

nσ−1/2
+ bX

(
Λ(n)

nσ0
− Λ(n)

nσ

))
≤ cX

Λ(n)

nmin(σ0,σ−1/2)
e−n/x.

Therefore, since cX is independent of n, it remains to bound sums of the form

H(α,X) :=
∞∑

n=N0+1

Λ(n)

nα log(n)
e−n/x.

We will need the following lemma which is a small generalization of a lemma from [24]
to proceed with bounding the terms n→∞. Recall our definition (2.9) of ψ(x).

Lemma 8.5. Conditional upon the Riemann Hypothesis, one has for 0 < α < 1,

H(α,X) ≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0X

1−α

log(N0)
Γ(1− α,N0/X)

where

Γ(x; y) :=

∞∫
y

tx−1e−tdt,

and ψ(x) < cN0x for every x ≥ N0.

Proof. Since ψ(x) jumps only at prime powers, it follows that

H(α,X) =

∞∫
N0

e−t/X

tα log(t)
dψ(t)

Using the results in Rosser and Schoenfeld [25], we have ψ(x) < cN0x for x ≥ N0 − 1/2,
and some cN0 > 1. Since Chebysheve showed that ψ(x) ∼ x is equivalent to the prime
number theorem, shown by Hadamard and de la Vallée-Poussin (cf. [11]), this constant
goes to 1 as N0 goes to infinity, but Rosser and Schoenfeld give an explicit constant of

1 +
log(N0)

2

8π
√
N0

assuming the Riemann Hypothesis.
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Integration by parts now yields

H(α,X) ≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) + cN0

∞∫
N0

e−t/X

tα log(t)
dt

≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0

log(N0)

∞∫
N0

e−t/X

tα
dt

=
e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0e

−N0/XX1−α

log(N0)
Γ(1− α,N0/X).

�

We now return to the proof of Theorem 1.4. Notice that we have now shown that the
only terms involving D are the terms σ−1

2
log
(

q
4π2

)
, cθ,σ,X,q,2 and −cθ,σ,X,m,1.

Investigating equation (2.5) shows that if the constant in front of log(D) is less than
1
2
, then we will have a result of the form D ≤ c. Therefore, it only remains to show

that there is an X such that the constant in front of log(D) is less than or equal to
1
2
. Plugging in m = D and q = pD2, and using our bounds for α(X), γ(X) and δ(X)

obtained in Lemma 8.1, we see that the limit of the power of D as X → ∞ is σ − 1.
Since σ < 3

2
, such an X exists. �

Remark 8.6. In practice, we will fix a constant N0 and use cancellation between the
first N0 terms of the sum in equation (8.8) and the first N0 terms of (8.9) to get a better
explicit bound (see [16]).
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